
Student Workbook (ROLE)

Red Hat Enterprise Linux 8.4 RH294

Red Hat Enterprise Linux Automation with

Ansible
Edition 1

RH294-RHEL8.4-en-1-20210818 Copyright ©2021 Red Hat, Inc.

Red Hat Enterprise
Linux Automation
with Ansible

RH294-RHEL8.4-en-1-20210818 Copyright ©2021 Red Hat, Inc.

Red Hat Enterprise Linux 8.4 RH294

Red Hat Enterprise Linux Automation with Ansible

Edition 1 20210818

Publication date 20210818

Authors: Trey Feagle, Hervé Quatremain, Dallas Spohn, Adolfo Vazquez,
Morgan Weetman

Course Architect: Steven Bonneville
DevOps Engineer: Dan Kolepp
Editor: Philip Sweany, Seth Kenlon, Jeff Tyson, Nicole Muller, David

O'Brien

Copyright © 2021 Red Hat, Inc.

The contents of this course and all its modules and related materials, including handouts to audience members, are

Copyright © 2021 Red Hat, Inc.

No part of this publication may be stored in a retrieval system, transmitted or reproduced in any way, including, but

not limited to, photocopy, photograph, magnetic, electronic or other record, without the prior written permission of

Red Hat, Inc.

This instructional program, including all material provided herein, is supplied without any guarantees from Red Hat,

Inc. Red Hat, Inc. assumes no liability for damages or legal action arising from the use or misuse of contents or details

contained herein.

If you believe Red Hat training materials are being used, copied, or otherwise improperly distributed, please send

email to training@redhat.com or phone toll-free (USA) +1 (866) 626-2994 or +1 (919) 754-3700.

Red Hat, Red Hat Enterprise Linux, the Red Hat logo, JBoss, OpenShift, Fedora, Hibernate, Ansible, CloudForms,

RHCA, RHCE, RHCSA, Ceph, and Gluster are trademarks or registered trademarks of Red Hat, Inc. or its subsidiaries

in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.

Java® is a registered trademark of Oracle and/or its affiliates.

XFS® is a registered trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or

other countries.

MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other countries.

Node.js® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the official Joyent

Node.js open source or commercial project.

The OpenStack® Word Mark and OpenStack Logo are either registered trademarks/service marks or trademarks/

service marks of the OpenStack Foundation, in the United States and other countries and are used with the

OpenStack Foundation's permission. We are not affiliated with, endorsed or sponsored by the OpenStack

Foundation or the OpenStack community.

All other trademarks are the property of their respective owners.

Contributors: James Mighion, Alejandra Ramirez Palacios, Michael Phillips

Portions of this course were adapted from the Ansible Lightbulb project. The material from that

project is available from https://github.com/ansible/lightbulb under the MIT License.

https://github.com/ansible/lightbulb

Document Conventions vii

 ... vii

Introduction ix

Red Hat Enterprise Linux Automation with Ansible .. ix

Orientation to the Classroom Environment ... x

1. Introducing Ansible 1

Automating Linux Administration with Ansible ... 2

Quiz: Automating Linux Administration with Ansible ... 9

Installing Ansible ... 11

Guided Exercise: Installing Ansible ... 16

Summary .. 18

2. Implementing an Ansible Playbook 19

Building an Ansible Inventory .. 20

Guided Exercise: Building an Ansible Inventory .. 25

Managing Ansible Configuration Files .. 29

Guided Exercise: Managing Ansible Configuration Files .. 36

Running Ad Hoc Commands .. 40

Guided Exercise: Running Ad Hoc Commands .. 47

Writing and Running Playbooks ... 52

Guided Exercise: Writing and Running Playbooks .. 58

Implementing Multiple Plays ... 63

Guided Exercise: Implementing Multiple Plays ... 73

Lab: Implementing Playbooks ... 79

Summary ... 86

3. Managing Variables and Facts 87

Managing Variables ... 88

Guided Exercise: Managing Variables ... 97

Managing Secrets .. 103

Guided Exercise: Managing Secrets ... 108

Managing Facts ... 111

Guided Exercise: Managing Facts ... 120

Lab: Managing Variables and Facts ... 125

Summary .. 138

4. Implementing Task Control 139

Writing Loops and Conditional Tasks .. 140

Guided Exercise: Writing Loops and Conditional Tasks ... 151

Implementing Handlers ... 154

Guided Exercise: Implementing Handlers ... 157

Handling Task Failure .. 162

Guided Exercise: Handling Task Failure ... 166

Lab: Implementing Task Control ... 174

Summary .. 182

5. Deploying Files to Managed Hosts 183

Modifying and Copying Files to Hosts .. 184

Guided Exercise: Modifying and Copying Files to Hosts .. 190

Deploying Custom Files with Jinja2 Templates ... 198

Guided Exercise: Deploying Custom Files with Jinja2 Templates 203

Lab: Deploying Files to Managed Hosts ... 206

Summary .. 212

6. Managing Complex Plays and Playbooks 213

Selecting Hosts with Host Patterns .. 214

RH294-RHEL8.4-en-1-20210818 v

Guided Exercise: Selecting Hosts with Host Patterns .. 222

Including and Importing Files .. 229

Guided Exercise: Including and Importing Files .. 234

Lab: Managing Complex Plays and Playbooks ... 239

Summary ... 247

7. Simplifying Playbooks with Roles 249

Describing Role Structure .. 250

Quiz: Describing Role Structure ... 255

Reusing Content with System Roles ... 257

Guided Exercise: Reusing Content with System Roles .. 264

Creating Roles .. 270

Guided Exercise: Creating Roles .. 276

Deploying Roles with Ansible Galaxy .. 282

Guided Exercise: Deploying Roles with Ansible Galaxy ... 289

Getting Roles and Modules from Content Collections .. 296

Guided Exercise: Getting Roles and Modules from Content Collections 303

Lab: Simplifying Playbooks with Roles ... 308

Summary .. 319

8. Troubleshooting Ansible 321

Troubleshooting Playbooks ... 322

Guided Exercise: Troubleshooting Playbooks .. 325

Troubleshooting Ansible Managed Hosts .. 332

Guided Exercise: Troubleshooting Ansible Managed Hosts .. 337

Lab: Troubleshooting Ansible .. 341

Summary ... 350

9. Automating Linux Administration Tasks 351

Managing Software and Subscriptions .. 352

Guided Exercise: Managing Software and Subscriptions .. 361

Managing Users and Authentication .. 368

Guided Exercise: Managing Users and Authentication .. 372

Managing the Boot Process and Scheduled Processes ... 379

Guided Exercise: Managing the Boot Process and Scheduled Processes 383

Managing Storage ... 392

Guided Exercise: Managing Storage .. 400

Managing Network Configuration ... 413

Guided Exercise: Managing Network Configuration ... 420

Lab: Automating Linux Administration Tasks ... 424

Summary ... 438

10. Comprehensive Review: Linux Automation with Ansible 439

Comprehensive Review ... 440

Lab: Deploying Ansible .. 443

Lab: Creating Playbooks .. 448

Lab: Creating Roles ... 455

A. Supplementary Topics 467

Examining Ansible Configuration Options ... 468

B. Ansible Lightbulb Licensing 471

Ansible Lightbulb License .. 472

vi RH294-RHEL8.4-en-1-20210818

Document Conventions

This section describes various conventions and practices used throughout all
Red Hat Training courses.

Admonitions
Red Hat Training courses use the following admonitions:

References

These describe where to find external documentation relevant to a
subject.

Note

These are tips, shortcuts, or alternative approaches to the task at hand.
Ignoring a note should have no negative consequences, but you might
miss out on something that makes your life easier.

Important

These provide details of information that is easily missed: configuration
changes that only apply to the current session, or services that need
restarting before an update will apply. Ignoring these admonitions will
not cause data loss, but may cause irritation and frustration.

Warning

These should not be ignored. Ignoring these admonitions will most likely
cause data loss.

Inclusive Language
Red Hat Training is currently reviewing its use of language in various areas
to help remove any potentially offensive terms. This is an ongoing process
and requires alignment with the products and services covered in Red Hat
Training courses. Red Hat appreciates your patience during this process.

RH294-RHEL8.4-en-1-20210818 vii

viii RH294-RHEL8.4-en-1-20210818

Introduction

Red Hat Enterprise Linux Automation with Ansible
Red Hat Enterprise Linux Automation with Ansible (RH294) is intended
for Linux system administrators and developers who need to automate
provisioning, configuration, application deployment, and orchestration.

Students will learn how to install and configure Ansible on a management
workstation and prepare managed hosts for automation. Students will write
Ansible Playbooks to automate tasks, and run them to ensure servers are
correctly deployed and configured. Examples of approaches to automate
common Linux system administration tasks will be explored.

Course

Objectives

• Install and configure Ansible from Red Hat Ansible
Automation Platform on a control node.

• Create and manage inventories of managed hosts,
and prepare them for Ansible automation.

• Run individual ad hoc automation tasks from the
command line.

• Write Ansible Playbooks to consistently automate
multiple tasks and apply them to managed hosts.

• Parameterize playbooks using variables and facts,
and protect sensitive data with Ansible Vault.

• Write and reuse existing Ansible roles to simplify
playbook creation and reuse code.

• Automate common Red Hat Enterprise Linux system
administration tasks using Ansible.

Audience • Linux system administrators, DevOps engineers,
infrastructure automation engineers, and systems
design engineers responsible for automation
of configuration management, consistent and
repeatable application deployment, provisioning
and deployment of development, testing, and
production servers, and integration with DevOps CI/
CD workflows.

Prerequisites • Red Hat Certified System Administrator (EX200/
RHCSA) certification or equivalent Red Hat
Enterprise Linux knowledge and experience.

RH294-RHEL8.4-en-1-20210818 ix

Introduction

Orientation to the Classroom
Environment

Figure 0.1: Classroom environment

In this course, the main computer system used for hands-on learning activities is workstation.

Four other machines are also used by students for these activities: servera, serverb, serverc,

and serverd. All these five systems are in the lab.example.com DNS domain.

All student computer systems have a standard user account, student, which has the password

student. The root password on all student systems is redhat.

Classroom Machines

Machine name IP addresses Role

bastion.lab.example.com 172.25.250.254 Gateway system to connect

student private network

to classroom server (must

always be running)

workstation.lab.example.com 172.25.250.9 Graphical workstation used

for system administration

servera.lab.example.com 172.25.250.10 Host managed with Ansible

serverb.lab.example.com 172.25.250.11 Host managed with Ansible

serverc.lab.example.com 172.25.250.12 Host managed with Ansible

serverd.lab.example.com 172.25.250.13 Host managed with Ansible

x RH294-RHEL8.4-en-1-20210818

Introduction

The primary function of bastion is that it acts as a router between the network that connects

the student machines and the classroom network. If bastion is down, other student machines will

only be able to access systems on the individual student network.

Several systems in the classroom provide supporting services. Two servers,

content.example.com and materials.example.com, are sources for software and lab

materials used in hands-on activities. Information on how to use these servers is provided in the

instructions for those activities. These are provided by the classroom.example.com virtual

machine. Both classroom and bastion should always be running for proper use of the lab

environment.

Controlling Your Systems

rht-vmctl Commands

Action Command

Start server machine rht-vmctl start server

View "physical console" to log in and work with

the server machine

rht-vmview view server

Reset server machine to its previous state

and restart the virtual machine

rht-vmctl reset server

Students are assigned remote computers in a Red Hat Online Learning classroom. They are

accessed through a web application hosted at rol.redhat.com [http://rol.redhat.com]. Students

should log in to this site using their Red Hat Customer Portal user credentials.

Controlling the Virtual Machines

The virtual machines in your classroom environment are controlled through a web page. The state

of each virtual machine in the classroom is displayed on the page under the Online Lab tab.

Machine States

Virtual Machine

State

Description

STARTING The virtual machine is in the process of booting.

STARTED The virtual machine is running and available (or, when booting, soon

will be).

STOPPING The virtual machine is in the process of shutting down.

STOPPED The virtual machine is completely shut down. Upon starting, the virtual

machine boots into the same state as when it was shut down (the disk

will have been preserved).

PUBLISHING The initial creation of the virtual machine is being performed.

WAITING_TO_START The virtual machine is waiting for other virtual machines to start.

RH294-RHEL8.4-en-1-20210818 xi

http://rol.redhat.com
http://rol.redhat.com

Introduction

Depending on the state of a machine, a selection of the following actions is available.

Classroom/Machine Actions

Button or Action Description

PROVISION LAB Create the ROL classroom. Creates all of the virtual machines needed

for the classroom and starts them. Can take several minutes to

complete.

DELETE LAB Delete the ROL classroom. Destroys all virtual machines in the

classroom. Caution: Any work generated on the disks is lost.

START LAB Start all virtual machines in the classroom.

SHUTDOWN LAB Stop all virtual machines in the classroom.

OPEN CONSOLE Open a new tab in the browser and connect to the console of the

virtual machine. Students can log in directly to the virtual machine

and run commands. In most cases, students should log in to the

workstation virtual machine and use ssh to connect to the other virtual

machines.

ACTION → Start Start (power on) the virtual machine.

ACTION →

Shutdown
Gracefully shut down the virtual machine, preserving the contents of

its disk.

ACTION → Power
Off

Forcefully shut down the virtual machine, preserving the contents of its

disk. This is equivalent to removing the power from a physical machine.

ACTION → Reset Forcefully shut down the virtual machine and reset the disk to its initial

state. Caution: Any work generated on the disk is lost.

At the start of an exercise, if instructed to reset a single virtual machine node, click ACTION →

Reset for only the specific virtual machine.

At the start of an exercise, if instructed to reset all virtual machines, click ACTION → Reset

If you want to return the classroom environment to its original state at the start of the course,

you can click DELETE LAB to remove the entire classroom environment. After the lab has been

deleted, you can click PROVISION LAB to provision a new set of classroom systems.

Warning

The DELETE LAB operation cannot be undone. Any work you have completed in the

classroom environment up to that point will be lost.

The Autostop Timer

The Red Hat Online Learning enrollment entitles students to a certain amount of computer time.

To help conserve allotted computer time, the ROL classroom has an associated countdown timer,

which shuts down the classroom environment when the timer expires.

To adjust the timer, click MODIFY to display the New Autostop Time dialog box. Set the number

of hours and minutes until the classroom should automatically stop.

xii RH294-RHEL8.4-en-1-20210818

Introduction

Click ADJUST TIME to apply this change to the timer settings.

RH294-RHEL8.4-en-1-20210818 xiii

xiv RH294-RHEL8.4-en-1-20210818

Chapter 1

Introducing Ansible

Goal Describe the fundamental Ansible concepts and
how it is used, and install Ansible from Red Hat
Ansible Automation Platform.

Objectives • Describe the motivation for automating
Linux administration tasks with Ansible,
fundamental Ansible concepts, and Ansible’s
basic architecture.

• Install Ansible on a control node and describe
the distinction between community Ansible and
Red Hat Ansible Automation Platform.

Sections • Automating Linux Administration with Ansible
(and Quiz)

• Installing Ansible (and Guided Exercise)

RH294-RHEL8.4-en-1-20210818 1

Chapter 1 | Introducing Ansible

Automating Linux Administration with
Ansible

Objective
After completing this section, you should be able to describe the motivation for automating Linux

administration tasks with Ansible, fundamental Ansible concepts, and Ansible's basic architecture.

Automation and Linux System Administration
For many years, most system administration and infrastructure management has relied on manual

tasks performed through graphical or command-line user interfaces. System administrators often

work from checklists, other documentation, or a memorized routine to perform standard tasks.

This approach is error-prone. It is easy for a system administrator to skip a step or perform a step

mistakenly.

Often there is limited verification that the steps were performed properly or that they result in the

expected outcome.

Furthermore, by managing each server manually and independently, it is very easy for many

servers that are supposed to be identical in configuration to be different in minor (or major)

ways. This can make maintenance more difficult and introduce errors or instability into the IT

environment.

Automation can help avoid the problems caused by manual system administration and

infrastructure management. As a system administrator, you can use automation to ensure that

all your systems are quickly and correctly deployed and configured. This allows you to automate

the repetitive tasks in your daily schedule, freeing up your time and allowing you to focus on more

critical things. For your organization, this means you can more quickly roll out the next version of

an application or updates to a service.

Infrastructure as Code

A good automation system allows you to implement Infrastructure as Code practices.

Infrastructure as Code means that you can use a machine-readable automation language to

define and describe the state you want your IT infrastructure to be in. Ideally, this automation

language should also be very easy for humans to read, because then you can easily understand

what the state is and make changes to it. This code is then applied to your infrastructure to ensure

that it is actually in that state.

If the automation language is represented as simple text files, it can easily be managed in a

version control system. The advantage of this is that every change can be checked into the version

control system, ensuring that you have a history of the changes you make over time. If you want to

revert to an earlier known-good configuration, you can check out that version and apply it to your

infrastructure.

This builds a foundation to help you follow best practices in DevOps. Developers can define their

desired configuration in the automation language. Operators can review those changes more

easily to provide feedback, and use that automation to reproducibly ensure that systems are in the

state expected by the developers.

2 RH294-RHEL8.4-en-1-20210818

Chapter 1 | Introducing Ansible

Mitigating Human Error

By reducing the tasks performed manually on servers using automation of tasks and Infrastructure

as Code practices, your servers will be in consistent configurations more often. This means that

you need to become accustomed to making changes by updating your automation code, rather

than manually applying them to your servers. Otherwise, you run the risk of losing manually applied

changes the next time you apply changes using automation.

Automation allows you to use code review, peer review by multiple subject matter experts, and

documentation of the procedure by the automation itself to reduce your operational risks.

Ultimately, you can enforce that changes to your IT infrastructure must be made through

automation in order to mitigate human error.

What is Ansible?
Ansible is an open source automation platform. It is a simple automation language that can

perfectly describe an IT application infrastructure in Ansible Playbooks. It is also an automation

engine that runs Ansible Playbooks.

Ansible can manage powerful automation tasks and can adapt to many different workflows

and environments. At the same time, new users of Ansible can very quickly use it to become

productive.

Ansible Is Simple

Ansible Playbooks provide human-readable automation. This means that playbooks are

automation tools that are also easy for humans to read, comprehend, and change. No special

coding skills are required to write them. Playbooks execute tasks in order. The simplicity of

playbook design makes them usable by every team, which allows people new to Ansible to get

productive quickly.

Ansible Is Powerful

You can use Ansible to deploy applications for configuration management, for workflow

automation, and for network automation. Ansible can be used to orchestrate the entire application

life cycle.

Ansible Is Agentless

Ansible is built around an agentless architecture. Typically, Ansible connects to the hosts it

manages using OpenSSH or WinRM and runs tasks, often (but not always) by pushing out small

programs called Ansible modules to those hosts. These programs are used to put the system in

a specific desired state. Any modules that are pushed are removed when Ansible is finished with

its tasks. You can start using Ansible almost immediately because no special agents need to be

approved for use and then deployed to the managed hosts. Because there are no agents and no

additional custom security infrastructure, Ansible is more efficient and more secure than other

alternatives.

Ansible has a number of important strengths:

• Cross platform support: Ansible provides agentless support for Linux, Windows, UNIX, and

network devices, in physical, virtual, cloud, and container environments.

• Human-readable automation: Ansible Playbooks, written as YAML text files, are easy to read and

help ensure that everyone understands what they will do.

RH294-RHEL8.4-en-1-20210818 3

Chapter 1 | Introducing Ansible

• Perfect description of applications: Every change can be made by Ansible Playbooks, and every

aspect of your application environment can be described and documented.

• Easy to manage in version control: Ansible Playbooks and projects are plain text. They can be

treated like source code and placed in your existing version control system.

• Support for dynamic inventories: The list of machines that Ansible manages can be dynamically

updated from external sources in order to capture the correct, current list of all managed servers

all the time, regardless of infrastructure or location.

• Orchestration that integrates easily with other systems: HP SA, Puppet, Jenkins, Red Hat

Satellite, and other systems that exist in your environment can be leveraged and integrated into

your Ansible workflow.

Ansible: The Language of DevOps

Figure 1.1: Ansible across the application life cycle

Communication is the key to DevOps. Ansible is the first automation language that can be read

and written across IT. It is also the only automation engine that can automate the application life

cycle and continuous delivery pipeline from start to finish.

Ansible Concepts and Architecture
There are two types of machines in the Ansible architecture: control nodes and managed hosts.

Ansible is installed and run from a control node, and this machine also has copies of your Ansible

project files. A control node could be an administrator's laptop, a system shared by a number of

administrators, or a server running Red Hat Ansible Tower.

Managed hosts are listed in an inventory, which also organizes those systems into groups for

easier collective management. The inventory can be defined in a static text file, or dynamically

determined by scripts that get information from external sources.

Instead of writing complex scripts, Ansible users create high-level plays to ensure a host or group

of hosts are in a particular state. A play performs a series of tasks on the hosts, in the order

specified by the play. These plays are expressed in YAML format in a text file. A file that contains

one or more plays is called a playbook.

Each task runs a module, a small piece of code (written in Python, PowerShell, or some other

language), with specific arguments. Each module is essentially a tool in your toolkit. Ansible ships

with hundreds of useful modules that can perform a wide variety of automation tasks. They can act

on system files, install software, or make API calls.

4 RH294-RHEL8.4-en-1-20210818

Chapter 1 | Introducing Ansible

When used in a task, a module generally ensures that some particular aspect of the machine is

in a particular state. For example, a task using one module might ensure that a file exists and has

particular permissions and contents, while a task using a different module might make certain

that a particular file system is mounted. If the system is not in that state, the task should put it in

that state. If the system is already in that state, it does nothing. If a task fails, the default Ansible

behavior is to abort the rest of the playbook for the hosts that had a failure.

Tasks, plays, and playbooks are designed to be idempotent. This means that you can safely run

a playbook on the same hosts multiple times. When your systems are in the correct state, the

playbook makes no changes when you run it. This means that you should be able to run a playbook

on the same hosts multiple times safely. When your systems are in the correct state the playbook

should make no changes when you run it. There are a handful of modules that you can use to run

arbitrary commands. However, you must use those modules with care to ensure that they run in an

idempotent way.

Ansible also uses plug-ins. Plug-ins are code that you can add to Ansible to extend it and adapt it

to new uses and platforms.

The Ansible architecture is agentless. Typically, when an administrator runs an Ansible Playbook

or an ad hoc command, the control node connects to the managed host using SSH (by default)

or WinRM. This means that clients do not need to have an Ansible-specific agent installed on

managed hosts, and do not need to permit special network traffic to some nonstandard port.

Getting Support for Ansible
Red Hat Ansible Automation Platform is a fully supported version of Ansible that allows enterprises

to manage their automation at scale.

It provides:

• Official support for the core Ansible toolset.

• Certified content collections to help you accelerate adoption of Ansible automation with

supported code.

• Cloud services to help you discover certified Ansible content, facilitate team collaboration, and

provide operational analytics to automate mixed, hybrid environments.

• On-premise tools to help you centralize management of automation tasks.

For example, the automation controller component (formerly called Red Hat Ansible Tower) is an

enterprise framework that you can use to control who has access to run playbooks on which hosts,

share the use of SSH credentials without allowing users to transfer them or see their contents, log

all of your Ansible jobs, and manage inventory, among many other things.

It provides a browser-based user interface (web UI) and a RESTful API. The upstream Ansible

community does not automatically include this with core Ansible, but it is developed as open

source and is provided and supported as part of the Red Hat Ansible Automation Platform

product.

RH294-RHEL8.4-en-1-20210818 5

Chapter 1 | Introducing Ansible

Figure 1.2: Ansible architecture

The Ansible Way

Complexity Kills Productivity

Simpler is better. Ansible is designed so that its tools are simple to use and automation is simple to

write and read. You should take advantage of this to strive for simplification in how you create your

automation.

Optimize For Readability

The Ansible automation language is built around simple, declarative, text-based files that are

easy for humans to read. Written properly, Ansible Playbooks can clearly document your workflow

automation.

Think Declaratively

Ansible is a desired-state engine. It approaches the problem of how to automate IT deployments

by expressing them in terms of the state that you want your systems to be in. Ansible's goal is to

put your systems into the desired state, only making changes that are necessary. Trying to treat

Ansible like a scripting language is not the right approach.

6 RH294-RHEL8.4-en-1-20210818

Chapter 1 | Introducing Ansible

Figure 1.3: Ansible provides complete automation

Use Cases
Unlike some other tools, Ansible combines and unites orchestration with configuration

management, provisioning, and application deployment in one easy-to-use platform.

Some use cases for Ansible include:

Configuration Management
Centralizing configuration file management and deployment is a common use case for

Ansible, and it is how many power users are first introduced to the Ansible automation

platform.

Application Deployment
When you define your application with Ansible, and manage the deployment with Red Hat

Ansible Tower, teams can effectively manage the entire application life cycle from

development to production.

Provisioning
Applications have to be deployed or installed on systems. Ansible and Red Hat Ansible Tower

can help streamline the process of provisioning systems, whether you are PXE booting and

kickstarting bare-metal servers or virtual machines, or creating virtual machines or cloud

instances from templates. Applications have to be deployed or installed on systems.

Continuous Delivery
Creating a CI/CD pipeline requires coordination and buy-in from numerous teams. You cannot

do it without a simple automation platform that everyone in your organization can use. Ansible

Playbooks keep your applications properly deployed and managed throughout their entire life

cycle.

RH294-RHEL8.4-en-1-20210818 7

Chapter 1 | Introducing Ansible

Security and Compliance
When your security policy is defined in Ansible Playbooks, scanning and remediation of site-

wide security policies can be integrated into other automated processes.

Instead of being an afterthought, it is an integral part of everything that is deployed.

Orchestration
Configurations alone do not define your environment. You need to define how multiple

configurations interact, and ensure that the disparate pieces can be managed as a whole.

References

Ansible

https://www.ansible.com

How Ansible Works

https://www.ansible.com/how-ansible-works

8 RH294-RHEL8.4-en-1-20210818

https://www.ansible.com
https://www.ansible.com/how-ansible-works

Chapter 1 | Introducing Ansible

Quiz

Automating Linux Administration with
Ansible

Choose the correct answer to the following questions:

 1. Which of the following terms best describes the Ansible architecture?

a. Agentless

b. Client/Server

c. Event-driven

d. Stateless

 2. Which network protocol does Ansible use by default to communicate with managed

nodes?

a. HTTP

b. HTTPS

c. SNMP

d. SSH

 3. Which of the following files defines the actions that Ansible performs on managed

nodes?

a. Host inventory

b. Manifest

c. Playbook

d. Script

 4. What syntax is used to define Ansible Playbooks?

a. Bash

b. Perl

c. Python

d. YAML

RH294-RHEL8.4-en-1-20210818 9

Chapter 1 | Introducing Ansible

Solution

Automating Linux Administration with
Ansible

Choose the correct answer to the following questions:

 1. Which of the following terms best describes the Ansible architecture?

a. Agentless

b. Client/Server

c. Event-driven

d. Stateless

 2. Which network protocol does Ansible use by default to communicate with managed

nodes?

a. HTTP

b. HTTPS

c. SNMP

d. SSH

 3. Which of the following files defines the actions that Ansible performs on managed

nodes?

a. Host inventory

b. Manifest

c. Playbook

d. Script

 4. What syntax is used to define Ansible Playbooks?

a. Bash

b. Perl

c. Python

d. YAML

10 RH294-RHEL8.4-en-1-20210818

Chapter 1 | Introducing Ansible

Installing Ansible

Objectives
After completing this section, you should be able to install Ansible on a control node and describe

the distinction between community Ansible and Red Hat Ansible Automation Platform.

Ansible and Red Hat Ansible Automation Platform
Red Hat provides a fully supported version of Ansible through Red Hat Ansible Automation

Platform. Ansible Automation Platform provides the core Ansible toolset plus additional certified

and supported content, tools, and cloud services. Customers with a valid subscription can use

the available repository, install the additional tools, and consume certified content from the cloud

services.

This course is currently based on Red Hat Ansible Automation Platform 1.2, which includes

Ansible 2.9.

Note

Earlier versions of Red Hat Ansible Automation Platform refer to the included

version of Ansible as "Red Hat Ansible Engine", and you will see this terminology

used in some documentation.

The upstream development community also provides an unsupported version of Ansible. This used

to be provided as RPM packages, but is transitioning to be provided only from the Python Package

Index (PyPI).

Control Nodes
Ansible is simple to install. The Ansible software only needs to be installed on the control node

(or nodes) from which Ansible will be run. Hosts that are managed by Ansible do not need to have

Ansible installed.

Installing the core Ansible toolset involves relatively few steps and has minimal requirements. On

the other hand, installing the additional components that Red Hat Ansible Automation Platform

provides, such as the automation controller (formerly called Red Hat Ansible Tower), requires a

Red Hat Enterprise Linux 8.2 or later system, with a minimum of two CPUs, 4 GiB of RAM, and

20 GiB of available disk space.

Python 3 (version 3.5 or later) or Python 2 (version 2.7 or later) needs to be installed on the

control node.

RH294-RHEL8.4-en-1-20210818 11

Chapter 1 | Introducing Ansible

Important

If you are running Red Hat Enterprise Linux 8, Ansible can automatically use the

platform-python package that supports system utilities that use Python. You do not

need to install the python36 or python27 package from AppStream.

[root@controlnode ~]# yum list installed platform-python
Installed Packages
platform-python.x86_64 3.6.8-37.el @anaconda

You need a valid Red Hat Ansible Automation Platform subscription to install the core toolset on

your control node. The installation process is as follows:

If you have activated Simple Content Access for your organization in the Red Hat Customer Portal,

then you do not need to attach the subscription to your system. The installation process is as

follows:

Warning

You do not need to run these steps in your classroom environment.

• Register your system to Red Hat Subscription Manager.

[root@host ~]# subscription-manager register

• Enable the Red Hat Ansible Engine repository.

[root@host ~]# subscription-manager repos \
> --enable ansible-2-for-rhel-8-x86_64-rpms

• Install Red Hat Ansible Engine.

[root@host ~]# yum install ansible

Managed Hosts
One of the benefits of Ansible is that managed hosts do not need to have a special agent installed.

The Ansible control node connects to managed hosts using a standard network protocol to ensure

that the systems are in the specified state.

Managed hosts might have some requirements depending on how the control node connects to

them and what modules it will run on them.

Linux and UNIX managed hosts need to have Python 2 (version 2.6 or later) or Python 3

(version 3.5 or later) installed for most modules to work.

For Red Hat Enterprise Linux 8, you may be able to depend on the platform-python package. You

can also enable and install the python36 application stream (or the python27 application stream).

12 RH294-RHEL8.4-en-1-20210818

Chapter 1 | Introducing Ansible

[root@host ~]# yum module install python36

If SELinux is enabled on the managed hosts, ensure that the python3-libselinux package is

installed before using modules that are related to any copy, file, or template functions. (Note

that if the other Python components are installed, you can use Ansible modules such as yum or

package to ensure that this package is also installed.)

Important

Some package names may be different in Red Hat Enterprise Linux 7 and earlier

because of the ongoing migration to Python 3.

For Red Hat Enterprise Linux 7 and earlier, install the python package, which

provides Python 2. Instead of python3-libselinux, install libselinux-python instead.

Some modules might have their own additional requirements. For example, the dnf module, which

can be used to install packages on current Fedora systems, requires the python3-dnf package

(python-dnf in RHEL 7).

Note

Some modules do not need Python. For example, arguments passed to the Ansible

raw module are run directly through the configured remote shell instead of going

through the module subsystem. This can be useful for managing devices that do not

have Python available or cannot have Python installed, or for bootstrapping Python

onto a system that does not have it.

However, the raw module is difficult to use in a safely idempotent way. If you can

use a normal module instead, it is generally better to avoid using raw and similar

command modules. This is discussed further later in the course.

Microsoft Windows-based Managed Hosts

Ansible includes a number of modules that are specifically designed for Microsoft Windows

systems. These are listed in the Windows modules [https://docs.ansible.com/ansible/2.9/

modules/list_of_windows_modules.html] section of the Ansible module index.

Most of the modules specifically designed for Microsoft Windows managed hosts require

PowerShell 3.0 or later on the managed host rather than Python. In addition, the managed hosts

need to have Windows PowerShell remoting configured. Ansible also requires at least .NET

Framework 4.0 or later to be installed on Windows managed hosts.

This course uses Linux-based managed hosts in its examples, and does not go into great depth

on the specific differences and adjustments needed when managing Microsoft Windows-based

managed hosts. More information is available on the Ansible web site at https://docs.ansible.com/

ansible/2.9/user_guide/windows.html.

Managed Network Devices

You can also use Ansible automation to configure managed network devices such as routers and

switches. Ansible includes a large number of modules specifically designed for this purpose. This

includes support for Cisco IOS, IOS XR, and NX-OS; Juniper Junos; Arista EOS; and VyOS-based

networking devices, among others.

RH294-RHEL8.4-en-1-20210818 13

https://docs.ansible.com/ansible/2.9/modules/list_of_windows_modules.html
https://docs.ansible.com/ansible/2.9/modules/list_of_windows_modules.html
https://docs.ansible.com/ansible/2.9/modules/list_of_windows_modules.html
https://docs.ansible.com/ansible/2.9/user_guide/windows.html
https://docs.ansible.com/ansible/2.9/user_guide/windows.html

Chapter 1 | Introducing Ansible

You can write Ansible Playbooks for network devices using the same basic techniques that you

use when writing playbooks for servers. Because most network devices cannot run Python,

Ansible runs network modules on the control node, not on the managed hosts. Special connection

methods are also used to communicate with network devices, typically using either CLI over SSH,

XML over SSH, or API over HTTP(S).

This course does not cover automation of network device management in any depth. For more

information on this topic, see Ansible for Network Automation [https://docs.ansible.com/

ansible/2.9/network/index.html] on the Ansible community website, or attend our alternative

course Ansible for Network Automation (DO457) [https://www.redhat.com/en/services/training/

do457-ansible-network-automation].

Preparing for Changes to Ansible Release Methods
Both the upstream Ansible community and Red Hat Ansible Automation Platform are going

through a transition in how Ansible is packaged and distributed to users.

Ansible 2.9, Ansible in Red Hat Ansible Automation Platform 1.2, and earlier versions of both were

provided as an RPM package (ansible). This package also included all Ansible modules and plug-

ins.

In future versions of Red Hat Ansible Automation Platform, the code that runs automation will be

moved to a new package, ansible-core, and supported modules and plug-ins will be provided using

a new feature, content collections. Content collections will be discussed in more detail later in this

course. In addition, Ansible Automation Platform 2 will also include enhanced tools and features

to run your playbooks, new cloud services features, and enhanced versions of the automation

controller (formerly known as Red Hat Ansible Tower) and automation hub.

Future versions of community-built Ansible will provide the executables and a selected set of

content through the Python Package Index (PyPI), from which the pip install ansible
command can install them. However, this selected set of content might be different from what

Red Hat supports and certifies in Red Hat Ansible Automation Platform.

The automation code, tools, and techniques you will learn in this course apply directly to future

versions of Ansible with little or no modification.

14 RH294-RHEL8.4-en-1-20210818

https://docs.ansible.com/ansible/2.9/network/index.html
https://docs.ansible.com/ansible/2.9/network/index.html
https://docs.ansible.com/ansible/2.9/network/index.html
https://www.redhat.com/en/services/training/do457-ansible-network-automation
https://www.redhat.com/en/services/training/do457-ansible-network-automation
https://www.redhat.com/en/services/training/do457-ansible-network-automation

Chapter 1 | Introducing Ansible

References

ansible-doc(1) man page

Knowledgebase: "How Do I Download and Install Red Hat Ansible Engine?"

https://access.redhat.com/articles/3174981

Simple Content Access

https://access.redhat.com/articles/simple-content-access

Product Documentation for Red Hat Ansible Automation Platform 1.2

https://access.redhat.com/documentation/en-us/

red_hat_ansible_automation_platform/1.2/

Windows Guides — Ansible Documentation

https://docs.ansible.com/ansible/2.9/user_guide/windows.html

Ansible for Networking Automation — Ansible Documentation

https://docs.ansible.com/ansible/2.9/network/index.html

RH294-RHEL8.4-en-1-20210818 15

https://access.redhat.com/articles/3174981
https://access.redhat.com/articles/simple-content-access
https://access.redhat.com/documentation/en-us/red_hat_ansible_automation_platform/1.2/
https://access.redhat.com/documentation/en-us/red_hat_ansible_automation_platform/1.2/
https://docs.ansible.com/ansible/2.9/user_guide/windows.html
https://docs.ansible.com/ansible/2.9/network/index.html

Chapter 1 | Introducing Ansible

Guided Exercise

Installing Ansible

In this exercise, you will install Ansible on a control node running Red Hat Enterprise Linux.

Outcomes
You should be able to install Ansible on a control node.

Before You Begin
Log in to workstation as student using student as the password, and run the lab
intro-install start command. This command configures the control node.

[student@workstation ~]$ lab intro-install start

Instructions

 1. Install Ansible on workstation so that you can use that machine as your control node.

[student@workstation ~]$ sudo yum install ansible
[sudo] password for student: student
Last metadata expiration check: 0:00:44 ago on Thu 22 Jul 2021 01:27:41 AM EDT.
Dependencies resolved.
...output omitted...
Is this ok [y/d/N]: y
...output omitted...

 2. Verify that Ansible is installed on the system. Execute the ansible command with the --
version option.

[student@workstation ~]$ ansible --version
ansible 2.9.15
 config file = /etc/ansible/ansible.cfg
 configured module search path = ['/home/student/.ansible/plugins/modules', '/
usr/share/ansible/plugins/modules']
 ansible python module location = /usr/lib/python3.6/site-packages/ansible
 executable location = /usr/bin/ansible
 python version = 3.6.8 (default, Mar 18 2021, 08:58:41) [GCC 8.4.1 20200928 (Red
 Hat 8.4.1-1)]

 3. Invoke the setup module on the local host to retrieve the value of the

ansible_python_version fact.

[student@workstation ~]$ ansible -m setup localhost | grep ansible_python_version
 "ansible_python_version": "3.6.8",

16 RH294-RHEL8.4-en-1-20210818

Chapter 1 | Introducing Ansible

Finish

On workstation, run the lab intro-install finish script to clean up this exercise.

[student@workstation ~]$ lab intro-install finish

This concludes the guided exercise.

RH294-RHEL8.4-en-1-20210818 17

Chapter 1 | Introducing Ansible

Summary

In this chapter, you learned:

• Automation is a key tool to mitigate human error and quickly ensure that your IT infrastructure is

in a consistent, correct state.

• Ansible is an open source automation platform that can adapt to many different workflows and

environments.

• Ansible can be used to manage many different types of systems, including servers running

Linux, Microsoft Windows, or UNIX, and network devices.

• Ansible Playbooks are human-readable text files that describe the desired state of an IT

infrastructure.

• Ansible is built around an agentless architecture in which Ansible is installed on a control node

and clients do not need any special agent software.

• Ansible connects to managed hosts using standard network protocols such as SSH, and runs

code or commands on the managed hosts to ensure that they are in the state specified by

Ansible.

18 RH294-RHEL8.4-en-1-20210818

Chapter 2

Implementing an Ansible
Playbook

Goal Create an inventory of managed hosts, write a
simple Ansible Playbook, and run the playbook to
automate tasks on those hosts.

Objectives • Describe Ansible inventory concepts and
manage a static inventory file.

• Describe where Ansible configuration files are
located, how Ansible selects them, and edit
them to apply changes to default settings.

• Run a single Ansible automation task using an
ad hoc command and explain some use cases
for ad hoc commands.

• Write a basic Ansible Playbook and run it using
the ansible-playbook command.

• Write a playbook that uses multiple plays and
per-play privilege escalation, and effectively
use ansible-doc to learn how to use new
modules to implement tasks for a play.

Sections • Building an Ansible Inventory (and Guided
Exercise)

• Managing Ansible Configuration Files (and
Guided Exercise)

• Running Ad Hoc Commands (and Guided
Exercise)

• Writing and Running Playbooks (and Guided
Exercise)

• Implementing Multiple Plays (and Guided
Exercise)

Lab • Implementing Playbooks

RH294-RHEL8.4-en-1-20210818 19

Chapter 2 | Implementing an Ansible Playbook

Building an Ansible Inventory

Objectives
After completing this section, you should be able to describe Ansible inventory concepts and

manage a static inventory file.

Defining the Inventory
An inventory defines a collection of hosts that Ansible will manage. These hosts can also be

assigned to groups, which can be managed collectively. Groups can contain child groups, and

hosts can be members of multiple groups. The inventory can also set variables that apply to the

hosts and groups that it defines.

Host inventories can be defined in two different ways. A static host inventory can be defined by a

text file. A dynamic host inventory can be generated by a script or other program as needed, using

external information providers.

Specifying Managed Hosts with a Static Inventory
A static inventory file is a text file that specifies the managed hosts that Ansible targets. You

can write this file using a number of different formats, including INI-style or YAML. The INI-style

format is very common and will be used for most examples in this course.

Note

There are multiple static inventory formats supported by Ansible. In this section, we

are focusing on the most common one, INI-style format.

In its simplest form, an INI-style static inventory file is a list of host names or IP addresses of

managed hosts, each on a single line:

web1.example.com
web2.example.com
db1.example.com
db2.example.com
192.0.2.42

Normally, however, you organize managed hosts into host groups. Host groups allow you to more

effectively run Ansible against a collection of systems. In this case, each section starts with a host

group name enclosed in square brackets ([]). This is followed by the host name or an IP address

for each managed host in the group, each on a single line.

In the following example, the host inventory defines two host groups: webservers and db-
servers.

20 RH294-RHEL8.4-en-1-20210818

Chapter 2 | Implementing an Ansible Playbook

[webservers]
web1.example.com
web2.example.com
192.0.2.42

[db-servers]
db1.example.com
db2.example.com

Hosts can be in multiple groups. In fact, recommended practice is to organize your hosts into

multiple groups, possibly organized in different ways depending on the role of the host, its physical

location, whether it is in production or not, and so on. This allows you to easily apply Ansible plays

to specific hosts.

[webservers]
web1.example.com
web2.example.com
192.0.2.42

[db-servers]
db1.example.com
db2.example.com

[east-datacenter]
web1.example.com
db1.example.com

[west-datacenter]
web2.example.com
db2.example.com

[production]
web1.example.com
web2.example.com
db1.example.com
db2.example.com

[development]
192.0.2.42

Important

Two host groups always exist:

• The all host group contains every host explicitly listed in the inventory.

• The ungrouped host group contains every host explicitly listed in the inventory

that is not a member of any other group.

RH294-RHEL8.4-en-1-20210818 21

Chapter 2 | Implementing an Ansible Playbook

Defining Nested Groups

Ansible host inventories can include groups of host groups. This is accomplished by creating a

host group name with the :children suffix. The following example creates a new group called

north-america, which includes all hosts from the usa and canada groups.

[usa]
washington1.example.com
washington2.example.com

[canada]
ontario01.example.com
ontario02.example.com

[north-america:children]
canada
usa

A group can have both managed hosts and child groups as members. For example, in the previous

inventory you could add a [north-america] section that has its own list of managed hosts. That

list of hosts would be merged with the additional hosts that the north-america group inherits

from its child groups.

Simplifying Host Specifications with Ranges

You can specify ranges in the host names or IP addresses to simplify Ansible host inventories. You

can specify either numeric or alphabetic ranges. Ranges have the following syntax:

[START:END]

Ranges match all values from START to END, inclusively. Consider the following examples:

• 192.168.[4:7].[0:255] matches all IPv4 addresses in the 192.168.4.0/22 network (192.168.4.0

through 192.168.7.255).

• server[01:20].example.com matches all hosts named server01.example.com through

server20.example.com.

• [a:c].dns.example.com matches hosts named a.dns.example.com, b.dns.example.com, and

c.dns.example.com.

• 2001:db8::[a:f] matches all IPv6 addresses from 2001:db8::a through 2001:db8::f.

If leading zeros are included in numeric ranges, they are used in the pattern. The second example

above does not match server1.example.com but does match server07.example.com.

To illustrate this, the following example uses ranges to simplify the [usa] and [canada] group

definitions from the earlier example:

[usa]
washington[1:2].example.com

[canada]
ontario[01:02].example.com

22 RH294-RHEL8.4-en-1-20210818

Chapter 2 | Implementing an Ansible Playbook

Verifying the Inventory

When in doubt, use the ansible command to verify a machine's presence in the inventory:

[user@controlnode ~]$ ansible washington1.example.com --list-hosts
 hosts (1):
 washington1.example.com
[user@controlnode ~]$ ansible washington01.example.com --list-hosts
 [WARNING]: provided hosts list is empty, only localhost is available

 hosts (0):

You can run the following command to list all hosts in a group:

[user@controlnode ~]$ ansible canada --list-hosts
 hosts (2):
 ontario01.example.com
 ontario02.example.com

Important

If the inventory contains a host and a host group with the same name, the ansible
command prints a warning and targets the host. The host group is ignored.

There are various ways to deal with this situation, the easiest being to ensure that

host groups do not use the same names as hosts in the inventory.

Overriding the Location of the Inventory

The /etc/ansible/hosts file is considered the system's default static inventory file. However,

normal practice is not to use that file but to define a different location for inventory files in your

Ansible configuration file. This is covered in the next section.

The ansible and ansible-playbook commands that you use to run Ansible ad hoc commands

and playbooks later in the course can also specify the location of an inventory file on the command

line with the --inventory PATHNAME or -i PATHNAME option, where PATHNAME is the path to

the desired inventory file.

Defining Variables in the Inventory

Values for variables used by playbooks can be specified in host inventory files. These variables

only apply to specific hosts or host groups. Normally it is better to define these inventory variables

in special directories and not directly in the inventory file. This topic is discussed in more depth

elsewhere in the course.

Describing a Dynamic Inventory
Ansible inventory information can also be dynamically generated, using information provided

by external databases. The open source community has written a number of dynamic inventory

scripts that are available from the upstream Ansible project. If those scripts do not meet your

needs, you can also write your own.

For example, a dynamic inventory program could contact your Red Hat Satellite server or Amazon

EC2 account, and use information stored there to construct an Ansible inventory. Because the

RH294-RHEL8.4-en-1-20210818 23

Chapter 2 | Implementing an Ansible Playbook

program does this when you run Ansible, it can populate the inventory with up-to-date information

provided by the service as new hosts are added and old hosts are removed.

References

Inventory: Ansible Documentation

http://docs.ansible.com/ansible/2.9/user_guide/intro_inventory.html

24 RH294-RHEL8.4-en-1-20210818

http://docs.ansible.com/ansible/2.9/user_guide/intro_inventory.html

Chapter 2 | Implementing an Ansible Playbook

Guided Exercise

Building an Ansible Inventory

In this exercise, you will create a new static inventory containing hosts and groups.

Outcomes
You should be able to create default and custom static inventories.

Before You Begin
Log in to workstation as student using student as the password.

On workstation, run the lab deploy-inventory start command. This start

script ensures that the managed hosts, servera, serverb, serverc, and serverd, are

reachable on the network.

[student@workstation ~]$ lab deploy-inventory start

Instructions

 1. Modify /etc/ansible/hosts to include servera.lab.example.com as a managed

host.

1.1. Add servera.lab.example.com to the end of the default inventory file, /etc/
ansible/hosts.

[student@workstation ~]$ sudo vim /etc/ansible/hosts
...output omitted...
db-[99:101]-node.example.com

servera.lab.example.com

1.2. Continue editing the /etc/ansible/hosts inventory file by adding a

[webservers] group to the bottom of the file with serverb.lab.example.com
server as a group member. Save and exit when complete.

...output omitted...
db-[99:101]-node.example.com

servera.lab.example.com

[webservers]
serverb.lab.example.com

 2. Verify the managed hosts in the /etc/ansible/hosts inventory file.

2.1. Use the ansible all --list-hosts command to list all managed hosts in the

default inventory file.

RH294-RHEL8.4-en-1-20210818 25

Chapter 2 | Implementing an Ansible Playbook

[student@workstation ~]$ ansible all --list-hosts
 hosts (2):
 servera.lab.example.com
 serverb.lab.example.com

2.2. Use the ansible ungrouped --list-hosts command to list only managed

hosts that do not belong to a group.

[student@workstation ~]$ ansible ungrouped --list-hosts
 hosts (1):
 servera.lab.example.com

2.3. Use the ansible webservers --list-hosts command to list only managed

hosts that belong to the webservers group.

[student@workstation ~]$ ansible webservers --list-hosts
 hosts (1):
 serverb.lab.example.com

 3. Create a custom static inventory file named inventory in the /home/student/deploy-
inventory working directory.

Information about your four managed hosts is listed in the following table. You will assign

each host to multiple groups for management purposes based on the purpose of the host,

the city where it is located, and the deployment environment to which it belongs.

In addition, groups for US cities (Raleigh and Mountain View) must be set up as children of

the group us so that hosts in the United States can be managed as a group.

Server Inventory Specifications

Host name Purpose Location Environment

servera.lab.example.com Web server Raleigh Development

serverb.lab.example.com Web server Raleigh Testing

serverc.lab.example.com Web server Mountain View Production

serverd.lab.example.com Web server London Production

3.1. Create the /home/student/deploy-inventory working directory, and change

into it.

[student@workstation ~]$ mkdir ~/deploy-inventory
[student@workstation ~]$ cd ~/deploy-inventory
[student@workstation deploy-inventory]$

3.2. Create an inventory file in the /home/student/deploy-inventory working

directory. Use the Server Inventory Specifications table as a guide. Edit the

inventory file and add the following content:

26 RH294-RHEL8.4-en-1-20210818

Chapter 2 | Implementing an Ansible Playbook

[webservers]
server[a:d].lab.example.com

[raleigh]
servera.lab.example.com
serverb.lab.example.com

[mountainview]
serverc.lab.example.com

[london]
serverd.lab.example.com

[development]
servera.lab.example.com

[testing]
serverb.lab.example.com

[production]
serverc.lab.example.com
serverd.lab.example.com

[us:children]
raleigh
mountainview

 4. Use variations of the ansible host-or-group -i inventory --list-hosts
command to verify the managed hosts and groups in the custom /home/student/
deploy-inventory/inventory inventory file.

Important

Your ansible command must include the -i inventory option. This makes

ansible use your inventory file in the current working directory instead of the

system /etc/ansible/hosts inventory file.

4.1. Use the ansible all -i inventory --list-hosts command to list all

managed hosts.

[student@workstation deploy-inventory]$ ansible all -i inventory --list-hosts
 hosts (4):
 servera.lab.example.com
 serverb.lab.example.com
 serverc.lab.example.com
 serverd.lab.example.com

4.2. Use the ansible ungrouped -i inventory --list-hosts command to list

all managed hosts listed in the inventory file but are not part of a group. There are no

ungrouped managed hosts in this inventory file.

RH294-RHEL8.4-en-1-20210818 27

Chapter 2 | Implementing an Ansible Playbook

[student@workstation deploy-inventory]$ ansible ungrouped -i inventory \
> --list-hosts
 [WARNING]: No hosts matched, nothing to do

 hosts (0):

4.3. Use the ansible development -i inventory --list-hosts command to

list all managed hosts listed in the development group.

[student@workstation deploy-inventory]$ ansible development -i inventory \
> --list-hosts
 hosts (1):
 servera.lab.example.com

4.4. Use the ansible testing -i inventory --list-hosts command to list all

managed hosts listed in the testing group.

[student@workstation deploy-inventory]$ ansible testing -i inventory \
> --list-hosts
 hosts (1):
 serverb.lab.example.com

4.5. Use the ansible production -i inventory --list-hosts command to list

all managed hosts listed in the production group.

[student@workstation deploy-inventory]$ ansible production -i inventory \
> --list-hosts
 hosts (2):
 serverc.lab.example.com
 serverd.lab.example.com

4.6. Use the ansible us -i inventory --list-hosts command to list all

managed hosts listed in the us group.

[student@workstation deploy-inventory]$ ansible us -i inventory --list-hosts
 hosts (3):
 servera.lab.example.com
 serverb.lab.example.com
 serverc.lab.example.com

4.7. You are encouraged to experiment with other variations to confirm managed host

entries in the custom inventory file.

Finish

On workstation, run the lab deploy-inventory finish script to clean up this exercise.

[student@workstation ~]$ lab deploy-inventory finish

This concludes the guided exercise.

28 RH294-RHEL8.4-en-1-20210818

Chapter 2 | Implementing an Ansible Playbook

Managing Ansible Configuration Files

Objectives
After completing this section, you should be able to describe where Ansible configuration files are

located, how Ansible selects them, and edit them to apply changes to default settings.

Configuring Ansible
The behavior of an Ansible installation can be customized by modifying settings in the Ansible

configuration file. Ansible chooses its configuration file from one of several possible locations on

the control node.

Using /etc/ansible/ansible.cfg

The ansible package provides a base configuration file located at /etc/ansible/ansible.cfg.

This file is used if no other configuration file is found.

Using ~/.ansible.cfg

Ansible looks for a .ansible.cfg file in the user's home directory. This configuration is used

instead of the /etc/ansible/ansible.cfg if it exists and if there is no ansible.cfg file in

the current working directory.

Using ./ansible.cfg

If an ansible.cfg file exists in the directory in which the ansible command is executed, it is

used instead of the global file or the user's personal file. This allows administrators to create a

directory structure where different environments or projects are stored in separate directories,

with each directory containing a configuration file tailored with a unique set of settings.

Important

The recommended practice is to create an ansible.cfg file in a directory from

which you run Ansible commands. This directory would also contain any files used

by your Ansible project, such as an inventory and a playbook. This is the most

common location used for the Ansible configuration file. It is unusual to use a

~/.ansible.cfg or /etc/ansible/ansible.cfg file in practice.

Using the ANSIBLE_CONFIG environment variable

You can use different configuration files by placing them in different directories and then

executing Ansible commands from the appropriate directory, but this method can be restrictive

and hard to manage as the number of configuration files grows. A more flexible option is to define

the location of the configuration file with the ANSIBLE_CONFIG environment variable. When this

variable is defined, Ansible uses the configuration file that the variable specifies instead of any of

the previously mentioned configuration files.

RH294-RHEL8.4-en-1-20210818 29

Chapter 2 | Implementing an Ansible Playbook

Configuration File Precedence
The search order for a configuration file is the reverse of the preceding list. The first file located in

the search order is the one that Ansible selects. Ansible only uses configuration settings from the

first file that it finds.

Any file specified by the ANSIBLE_CONFIG environment variable overrides all other configuration

files. If that variable is not set, the directory in which the ansible command was run is then

checked for an ansible.cfg file. If that file is not present, the user's home directory is checked

for a .ansible.cfg file. The global /etc/ansible/ansible.cfg file is only used if no other

configuration file is found. If the /etc/ansible/ansible.cfg configuration file is not present,

Ansible contains defaults which it uses.

Because of the multitude of locations in which Ansible configuration files can be placed, it can be

confusing which configuration file is being used by Ansible. You can run the ansible --version
command to clearly identify which version of Ansible is installed, and which configuration file is

being used.

[user@controlnode ~]$ ansible --version
ansible 2.9.21
 config file = /etc/ansible/ansible.cfg
...output omitted...

Another way to display the active Ansible configuration file is to use the -v option when executing

Ansible commands on the command line.

[user@controlnode ~]$ ansible servers --list-hosts -v
Using /etc/ansible/ansible.cfg as config file
...output omitted...

Ansible only uses settings from the configuration file with the highest precedence. Even if other

files with lower precedence exist, their settings are ignored and not combined with those in the

selected configuration file. Therefore, if you choose to create your own configuration file in favor

of the global /etc/ansible/ansible.cfg configuration file, you need to duplicate all desired

settings from that file to your own user-level configuration file. Settings not defined in the user-

level configuration file remain set to the built-in defaults, even if they are set to some other value

by the global configuration file.

Managing Settings in the Configuration File
The Ansible configuration file consists of several sections, with each section containing settings

defined as key-value pairs. Section titles are enclosed in square brackets. For basic operation use

the following two sections:

• [defaults] sets defaults for Ansible operation

• [privilege_escalation] configures how Ansible performs privilege escalation on managed

hosts

For example, the following is a typical ansible.cfg file:

[defaults]
inventory = ./inventory
remote_user = user
ask_pass = false

30 RH294-RHEL8.4-en-1-20210818

Chapter 2 | Implementing an Ansible Playbook

[privilege_escalation]
become = true
become_method = sudo
become_user = root
become_ask_pass = false

The directives in this file are explained in the following table:

Ansible Configuration

Directive Description

inventory Specifies the path to the inventory file.

remote_user The name of the user to log in as on the managed hosts. If

not specified, the current user's name is used.

ask_pass Whether or not to prompt for an SSH password. Can be

false if using SSH public key authentication.

become Whether to automatically switch user on the managed

host (typically to root) after connecting. This can also be

specified by a play.

become_method How to switch user (typically sudo, which is the default,

but su is an option).

become_user The user to switch to on the managed host (typically

root, which is the default).

become_ask_pass Whether to prompt for a password for your

become_method. Defaults to false.

Configuring Connections
Ansible needs to know how to communicate with its managed hosts. One of the most common

reasons to change the configuration file is to control which methods and users Ansible uses to

administer managed hosts. Some of the information needed includes:

• The location of the inventory that lists the managed hosts and host groups

• Which connection protocol to use to communicate with the managed hosts (by default, SSH),

and whether or not a nonstandard network port is needed to connect to the server

• Which remote user to use on the managed hosts; this could be root or it could be an

unprivileged user

• If the remote user is unprivileged, Ansible needs to know if it should try to escalate privileges to

root and how to do it (for example, by using sudo)

• Whether or not to prompt for an SSH password or sudo password to log in or gain privileges

Inventory Location

In the [defaults] section, the inventory directive can point directly to a static inventory file,

or to a directory containing multiple static inventory files and dynamic inventory scripts.

RH294-RHEL8.4-en-1-20210818 31

Chapter 2 | Implementing an Ansible Playbook

[defaults]
inventory = ./inventory

Connection Settings

By default, Ansible connects to managed hosts using the SSH protocol. The most important

parameters that control how Ansible connects to the managed hosts are set in the [defaults]
section.

By default, Ansible attempts to connect to the managed host using the same user name

as the local user running the Ansible commands. To specify a different remote user, set the

remote_user parameter to that user name.

If the local user running Ansible has private SSH keys configured that allow them to authenticate

as the remote user on the managed hosts, Ansible automatically logs in. If that is not the case,

you can configure Ansible to prompt the local user for the password used by the remote user by

setting the directive ask_pass = true.

[defaults]
inventory = ./inventory

remote_user = root
ask_pass = true

Assuming that you are using a Linux control node and OpenSSH on your managed hosts, if you

can log in as the remote user with a password then you can probably set up SSH key-based

authentication, which would allow you to set ask_pass = false.

The first step is to make sure that the user on the control node has an SSH key pair configured in

~/.ssh. You can run the ssh-keygen command to accomplish this.

For a single existing managed host, you can install your public key on the managed host and use

the ssh-copy-id command to populate your local ~/.ssh/known_hosts file with its host key,

as follows:

[user@controlnode ~]$ ssh-copy-id root@web1.example.com
The authenticity of host 'web1.example.com (192.168.122.181)' can't be
 established.
ECDSA key fingerprint is 70:9c:03:cd:de:ba:2f:11:98:fa:a0:b3:7c:40:86:4b.
Are you sure you want to continue connecting (yes/no)? yes
/usr/bin/ssh-copy-id: INFO: attempting to log in with the new key(s), to filter
 out any that are already installed
/usr/bin/ssh-copy-id: INFO: 1 key(s) remain to be installed -- if you are prompted
 now it is to install the new keys
root@web1.example.com's password:

Number of key(s) added: 1

Now try logging into the machine, with: "ssh 'root@web1.example.com'"
and check to make sure that only the key(s) you wanted were added.

32 RH294-RHEL8.4-en-1-20210818

Chapter 2 | Implementing an Ansible Playbook

Note

You can also use an Ansible Playbook to deploy your public key to the

remote_user account on all managed hosts using the authorized_key module.

This course has not covered Ansible Playbooks in detail yet. A play that ensures that

your public key is deployed to the managed hosts' root accounts might read as

follows:

- name: Public key is deployed to managed hosts for Ansible
 hosts: all

 tasks:
 - name: Ensure key is in root's ~/.ssh/authorized_hosts
 authorized_key:
 user: root
 state: present
 key: '{{ item }}'
 with_file:
 - ~/.ssh/id_rsa.pub

Because the managed host would not have SSH key-based authentication

configured yet, you would have to run the playbook using the ansible-playbook
command with the --ask-pass option in order for the command to authenticate

as the remote user.

Escalating Privileges

For security and auditing reasons, Ansible might need to connect to remote hosts as an

unprivileged user before escalating privileges to get administrative access as root. This can be

set up in the [privilege_escalation] section of the Ansible configuration file.

To enable privilege escalation by default, set the directive become = true in the configuration

file. Even if this is set by default, there are various ways to override it when running ad hoc

commands or Ansible Playbooks. (For example, there might be times when you want to run a task

or play that does not escalate privileges.)

The become_method directive specifies how to escalate privileges. Several options are available,

but the default is to use sudo. Likewise, the become_user directive specifies which user to

escalate to, but the default is root.

If the become_method mechanism chosen requires the user to enter a password to escalate

privileges, you can set the become_ask_pass = true directive in the configuration file.

RH294-RHEL8.4-en-1-20210818 33

Chapter 2 | Implementing an Ansible Playbook

Note

On Red Hat Enterprise Linux 7, the default configuration of /etc/sudoers grants

all users in the wheel group the ability to use sudo to become root after entering

their password.

One way to enable a user (someuser in the following example) to use sudo to

become root without a password is to install a file with the appropriate directives

into the /etc/sudoers.d directory (owned by root, with octal permissions

0400):

password-less sudo for Ansible user
someuser ALL=(ALL) NOPASSWD:ALL

Think through the security implications of whatever approach you choose for

privilege escalation. Different organizations and deployments might have different

trade-offs to consider.

The following example ansible.cfg file assumes that you can connect to the managed hosts

as someuser using SSH key-based authentication, and that someuser can use sudo to run

commands as root without entering a password:

[defaults]
inventory = ./inventory
remote_user = someuser
ask_pass = false

[privilege_escalation]
become = true
become_method = sudo
become_user = root
become_ask_pass = false

Non-SSH Connections

The protocol used by Ansible to connect to managed hosts is set by default to smart, which

determines the most efficient way to use SSH. This can be set to other values in a number of ways.

For example, there is one exception to the rule that SSH is used by default. If you do not have

localhost in your inventory, Ansible sets up an implicit localhost entry to allow you to run ad hoc

commands and playbooks that target localhost. This special inventory entry is not included in

the all or ungrouped host groups. In addition, instead of using the smart SSH connection type,

Ansible connects to it using the special local connection type by default.

[user@controlnode ~]$ ansible localhost --list-hosts
[WARNING]: provided hosts list is empty, only localhost is available

 hosts (1):
 localhost

The local connection type ignores the remote_user setting and runs commands directly on

the local system. If privilege escalation is being used, it runs sudo from the user account that

34 RH294-RHEL8.4-en-1-20210818

Chapter 2 | Implementing an Ansible Playbook

ran the Ansible command, not remote_user. This can lead to confusion if the two users have

different sudo privileges.

If you want to make sure that you connect to localhost using SSH like other managed hosts,

one approach is to list it in your inventory. But, this includes it in the all and ungrouped groups,

which you may not want to do.

Another approach is to change the protocol used to connect to localhost. The best way to do

this is to set the ansible_connection host variable for localhost. To do this, in the directory

from which you run Ansible commands, create a host_vars subdirectory. In that subdirectory,

create a file named localhost, containing the line ansible_connection: smart. This

ensures that the smart (SSH) connection protocol is used instead of local for localhost.

You can use this the other way around as well. If you have 127.0.0.1 listed in your inventory, by

default you will connect to it using smart. You can also create a host_vars/127.0.0.1 file

containing the line ansible_connection: local and it will use local instead.

Host variables are covered in more detail later in the course.

Note

You can also use group variables to change the connection type for an entire

host group. This can be done by placing files with the same name as the group in

a group_vars directory, and ensuring that those files contain settings for the

connection variables.

For example, you might want all your Microsoft Windows managed hosts to use

the winrm protocol and port 5986 for connections. To configure this, you could

put all of those managed hosts in group windows, and then create a file named

group_vars/windows containing the following lines:

ansible_connection: winrm
ansible_port: 5986

Configuration File Comments
There are two comment characters allowed by Ansible configuration files: the hash or number sign

(#) and the semicolon (;).

The number sign at the start of a line comments out the entire line. It must not be on the same line

with a directive.

The semicolon character comments out everything to the right of it on the line. It can be on the

same line as a directive, as long as that directive is to its left.

References

ansible(1), ansible-config(1), ssh-keygen(1), and ssh-copy-id(1) man

pages

Configuration file: Ansible Documentation

https://docs.ansible.com/ansible/2.9/installation_guide/intro_configuration.html

RH294-RHEL8.4-en-1-20210818 35

https://docs.ansible.com/ansible/2.9/installation_guide/intro_configuration.html

Chapter 2 | Implementing an Ansible Playbook

Guided Exercise

Managing Ansible Configuration Files

In this exercise, you will customize your Ansible environment by editing an Ansible

configuration file.

Outcomes
You should be able to create a configuration file to configure your Ansible environment with

persistent custom settings.

Before You Begin
Log in to workstation as student using student as the password.

On workstation, run the lab deploy-manage start command. This script ensures

that the managed host, servera, is reachable on the network.

[student@workstation ~]$ lab deploy-manage start

Instructions

 1. Create the /home/student/deploy-manage directory, which will contain the files for

this exercise. Change to this newly created directory.

[student@workstation ~]$ mkdir ~/deploy-manage
[student@workstation ~]$ cd ~/deploy-manage
[student@workstation deploy-manage]$

 2. In your /home/student/deploy-manage directory, use a text editor to start editing a

new file, ansible.cfg.

Create a [defaults] section in that file. In that section, add a line which uses the

inventory directive to specify the ./inventory file as the default inventory.

[defaults]
inventory = ./inventory

Save your work and exit the text editor.

 3. In the /home/student/deploy-manage directory, use a text editor to start editing the

new static inventory file, inventory.

The static inventory should contain four host groups:

• [myself] should contain the host localhost.

• [intranetweb] should contain the host servera.lab.example.com.

• [internetweb] should contain the host serverb.lab.example.com.

• [web] should contain the intranetweb and internetweb host groups.

36 RH294-RHEL8.4-en-1-20210818

Chapter 2 | Implementing an Ansible Playbook

3.1. In /home/student/deploy-manage/inventory, create the myself host group

by adding the following lines:

[myself]
localhost

3.2. In /home/student/deploy-manage/inventory, create the intranetweb host

group by adding the following lines:

[intranetweb]
servera.lab.example.com

3.3. In /home/student/deploy-manage/inventory, create the internetweb host

group by adding the following lines:

[internetweb]
serverb.lab.example.com

3.4. In /home/student/deploy-manage/inventory, create the web host group by

adding the following lines:

[web:children]
intranetweb
internetweb

3.5. Confirm that your final inventory file looks like the following:

[myself]
localhost

[intranetweb]
servera.lab.example.com

[internetweb]
serverb.lab.example.com

[web:children]
intranetweb
internetweb

Save your work and exit the text editor.

 4. Use the ansible command with the --list-hosts option to test the configuration of

your inventory file's host groups. This does not actually connect to those hosts.

[student@workstation deploy-manage]$ ansible myself --list-hosts
 hosts (1):
 localhost
[student@workstation deploy-manage]$ ansible intranetweb --list-hosts
 hosts (1):
 servera.lab.example.com
[student@workstation deploy-manage]$ ansible internetweb --list-hosts

RH294-RHEL8.4-en-1-20210818 37

Chapter 2 | Implementing an Ansible Playbook

 hosts (1):
 serverb.lab.example.com
[student@workstation deploy-manage]$ ansible web --list-hosts
 hosts (2):
 servera.lab.example.com
 serverb.lab.example.com
[student@workstation deploy-manage]$ ansible all --list-hosts
 hosts (3):
 localhost
 servera.lab.example.com
 serverb.lab.example.com

 5. Open the /home/student/deploy-manage/ansible.cfg file in a text editor. Add a

[privilege_escalation] section to configure Ansible to automatically use the sudo
command to switch from student to root when running tasks on the managed hosts.

Ansible should also be configured to prompt you for the password that student uses for

the sudo command.

5.1. Create the [privilege_escalation] section in the /home/student/deploy-
manage/ansible.cfg configuration file by adding the following entry:

[privilege_escalation]

5.2. Enable privilege escalation by setting the become directive to true.

become = true

5.3. Set the privilege escalation to use the sudo command by setting the

become_method directive to sudo.

become_method = sudo

5.4. Set the privilege escalation user by setting the become_user directive to root.

become_user = root

5.5. Enable prompting for the privilege escalation password by setting the

become_ask_pass directive to true.

become_ask_pass = true

5.6. Confirm that the complete ansible.cfg file looks like the following:

[defaults]
inventory = ./inventory

[privilege_escalation]
become = true
become_method = sudo
become_user = root
become_ask_pass = true

38 RH294-RHEL8.4-en-1-20210818

Chapter 2 | Implementing an Ansible Playbook

Save your work and exit the text editor.

 6. Run the ansible --list-hosts command again to verify that you are now prompted for

the sudo password.

When prompted for the sudo password, enter student, even though it is not used for this

dry run.

[student@workstation deploy-manage]$ ansible intranetweb --list-hosts
BECOME password: student
 hosts (1):
 servera.lab.example.com

Finish

On workstation, run the lab deploy-manage finish script to clean up this exercise.

[student@workstation ~]$ lab deploy-manage finish

This concludes the guided exercise.

RH294-RHEL8.4-en-1-20210818 39

Chapter 2 | Implementing an Ansible Playbook

Running Ad Hoc Commands

Objectives
After completing this section, you should be able to run a single Ansible automation task using an

ad hoc command and explain some use cases for ad hoc commands.

Running Ad Hoc Commands with Ansible
An ad hoc command is a way of executing a single Ansible task quickly, one that you do not need

to save to run again later. They are simple, online operations that can be run without writing a

playbook.

Ad hoc commands are useful for quick tests and changes. For example, you can use an ad hoc

command to make sure that a certain line exists in the /etc/hosts file on a group of servers. You

could use another ad hoc command to efficiently restart a service on many different machines, or

to ensure that a particular software package is up-to-date.

Ad hoc commands are very useful for quickly performing simple tasks with Ansible. They do

have their limits, and in general you will want to use Ansible Playbooks to realize the full power of

Ansible. In many situations, however, ad hoc commands are exactly the tool you need to perform

simple tasks quickly.

Running Ad Hoc Commands

Use the ansible command to run ad hoc commands:

ansible host-pattern -m module [-a 'module arguments'] [-i inventory]

The host-pattern argument is used to specify the managed hosts on which the ad hoc command

should be run. It could be a specific managed host or host group in the inventory. You have already

seen this used in conjunction with the --list-hosts option, which shows you which hosts are

matched by a particular host pattern. You have also already seen that you can use the -i option to

specify a different inventory location to use than the default in the current Ansible configuration

file.

The -m option takes as an argument the name of the module that Ansible should run on the

targeted hosts. Modules are small programs that are executed to implement your task. Some

modules need no additional information, but others need additional arguments to specify the

details of their operation. The -a option takes a list of those arguments as a quoted string.

One of the simplest ad hoc commands uses the ping module. This module does not do an ICMP

ping, but checks to see if you can run Python-based modules on managed hosts. For example,

the following ad hoc command determines whether all managed hosts in the inventory can run

standard modules:

40 RH294-RHEL8.4-en-1-20210818

Chapter 2 | Implementing an Ansible Playbook

[user@controlnode ~]$ ansible all -m ping
servera.lab.example.com | SUCCESS => {
 "ansible_facts": {
 "discovered_interpreter_python": "/usr/libexec/platform-python"
 },
 "changed": false,
 "ping": "pong"
}

Performing Tasks with Modules Using Ad Hoc Commands

Modules are the tools that ad hoc commands use to accomplish tasks. Ansible provides hundreds

of modules which do different things. You can usually find a tested, special-purpose module that

does what you need as part of the standard installation.

The ansible-doc -l command lists all modules installed on a system. You can use ansible-
doc to view the documentation of particular modules by name, and find information about

what arguments the modules take as options. For example, the following command displays

documentation for the ping module:

[user@controlnode ~]$ ansible-doc ping
> PING (/usr/lib/python3.6/site-packages/ansible/modules/system/ping.py)

 A trivial test module, this module always returns `pong' on successful
 contact. It does not make sense in playbooks, but it is useful from `/usr/bin/
ansible' to
 verify the ability to login and that a usable Python is configured. This
 is NOT ICMP ping, this is just a trivial test module that requires Python on the
 remote-node. For Windows targets, use the [win_ping] module instead. For
 Network targets, use the [net_ping] module instead.

 * This module is maintained by The Ansible Core Team
OPTIONS (= is mandatory):

- data
 Data to return for the `ping' return value.
 If this parameter is set to `crash', the module will cause an exception.
 [Default: pong]
 type: str

SEE ALSO:
 * Module net_ping
 The official documentation on the net_ping module.
 https://docs.ansible.com/ansible/2.9/modules/net_ping_module.html
 * Module win_ping
 The official documentation on the win_ping module.
 https://docs.ansible.com/ansible/2.9/modules/win_ping_module.html

AUTHOR: Ansible Core Team, Michael DeHaan
 METADATA:
 status:
 - stableinterface

RH294-RHEL8.4-en-1-20210818 41

Chapter 2 | Implementing an Ansible Playbook

 supported_by: core

EXAMPLES:

Test we can logon to 'webservers' and execute python with json lib.
ansible webservers -m ping

Example from an Ansible Playbook
- ping:

Induce an exception to see what happens
- ping:
 data: crash

RETURN VALUES:

ping:
 description: value provided with the data parameter
 returned: success
 type: str
 sample: pong

To learn more about modules, access the online Ansible documentation at http://

docs.ansible.com/ansible/2.9/modules/modules_by_category.html.

The following table lists a number of useful modules as examples. Many others exist.

Ansible Modules

Module category Modules

Files modules • copy: Copy a local file to the managed host

• file: Set permissions and other properties of files

• lineinfile: Ensure a particular line is or is not in a file

• synchronize: Synchronize content using rsync

Software package

modules

• package: Manage packages using autodetected package

manager native to the operating system

• yum: Manage packages using the YUM package manager

• apt: Manage packages using the APT package manager

• dnf: Manage packages using the DNF package manager

• gem: Manage Ruby gems

• pip: Manage Python packages from PyPI

System modules • firewalld: Manage arbitrary ports and services using

firewalld
• reboot: Reboot a machine

• service: Manage services

• user: Add, remove, and manage user accounts

42 RH294-RHEL8.4-en-1-20210818

http://docs.ansible.com/ansible/2.9/modules/modules_by_category.html
http://docs.ansible.com/ansible/2.9/modules/modules_by_category.html

Chapter 2 | Implementing an Ansible Playbook

Module category Modules

Net Tools modules • get_url: Download files over HTTP, HTTPS, or FTP

• nmcli: Manage networking

• uri: Interact with web services

Most modules take arguments. You can find the list of arguments available for a module in

the module's documentation. Ad hoc commands pass arguments to modules using the -a
option. When no argument is needed, omit the -a option from the ad hoc command. If multiple

arguments need to be specified, supply them as a quoted space-separated list.

For example, the following ad hoc command uses the user module to ensure that the newbie
user exists and has UID 4000 on servera.lab.example.com:

[user@controlnode ~]$ ansible -m user -a 'name=newbie uid=4000 state=present' \
> servera.lab.example.com
servera.lab.example.com | SUCCESS => {
 "ansible_facts": {
 "discovered_interpreter_python": "/usr/libexec/platform-python"
 },
 "changed": true,
 "comment": "",
 "createhome": true,
 "group": 4000,
 "home": "/home/newbie",
 "name": "newbie",
 "shell": "/bin/bash",
 "state": "present",
 "system": false,
 "uid": 4000
}

Most modules are idempotent, which means that they can be run safely multiple times, and if the

system is already in the correct state, they do nothing. For example, if you run the previous ad hoc

command again, it should report no change:

[user@controlnode ~]$ ansible -m user -a 'name=newbie uid=4000 state=present' \
> servera.lab.example.com
servera.lab.example.com | SUCCESS => {
 "ansible_facts": {
 "discovered_interpreter_python": "/usr/libexec/platform-python"
 },
 "append": false,
 "changed": false
 "comment": "",
 "group": 4000,
 "home": "/home/newbie",
 "move_home": false,
 "name": "newbie",
 "shell": "/bin/bash",
 "state": "present",
 "uid": 4000
}

RH294-RHEL8.4-en-1-20210818 43

Chapter 2 | Implementing an Ansible Playbook

Running Arbitrary Commands on Managed Hosts

The command module allows administrators to run arbitrary commands on the command line of

managed hosts. The command to be run is specified as an argument to the module using the -a
option. For example, the following command runs the hostname command on the managed hosts

referenced by the mymanagedhosts host pattern.

[user@controlnode ~]$ ansible mymanagedhosts -m command -a /usr/bin/hostname
host1.lab.example.com | CHANGED | rc=0 >>
host1.lab.example.com
host2.lab.example.com | CHANGED | rc=0 >>
host2.lab.example.com

The previous ad hoc command example returned two lines of output for each managed host.

The first line is a status report, showing the name of the managed host that the ad hoc operation

ran on, as well as the outcome of the operation. The second line is the output of the command

executed remotely using the Ansible command module.

For better readability and parsing of ad hoc command output, administrators might find it useful to

have a single line of output for each operation performed on a managed host. Use the -o option

to display the output of Ansible ad hoc commands in a single line format.

[user@controlnode ~]$ ansible mymanagedhosts -m command -a /usr/bin/hostname -o
host1.lab.example.com | CHANGED | rc=0 >> (stdout) host1.lab.example.com
host2.lab.example.com | CHANGED | rc=0 >> (stdout) host2.lab.example.com

The command module allows administrators to quickly execute remote commands on managed

hosts. These commands are not processed by the shell on the managed hosts. As such, they

cannot access shell environment variables or perform shell operations, such as redirection and

piping.

Note

If an ad hoc command does not specify which module to use with the -m option,

Ansible uses the command module by default.

For situations where commands require shell processing, administrators can use the shell
module. Like the command module, you pass the commands to be executed as arguments

to the module in an ad hoc command. Ansible then executes the command remotely on the

managed hosts. Unlike the command module, the commands are processed through a shell on the

managed hosts. Therefore, shell environment variables are accessible and shell operations such as

redirection and piping are also available for use.

The following example illustrates the difference between the command and shell modules. If you

try to execute the built-in Bash command set with these two modules, it only succeeds with the

shell module.

[user@controlnode ~]$ ansible localhost -m command -a set
localhost | FAILED | rc=2 >>
[Errno 2] No such file or directory
[user@controlnode ~]$ ansible localhost -m shell -a set
localhost | CHANGED | rc=0 >>
BASH=/bin/sh

44 RH294-RHEL8.4-en-1-20210818

Chapter 2 | Implementing an Ansible Playbook

BASHOPTS=cmdhist:extquote:force_fignore:hostcomplete:interact
ive_comments:progcomp:promptvars:sourcepath
BASH_ALIASES=()
...output omitted...

Both command and shell modules require a working Python installation on the managed host.

A third module, raw, can run commands directly using the remote shell, bypassing the module

subsystem. This is useful when managing systems that cannot have Python installed (for example,

a network router). It can also be used to install Python on a host.

Important

In most circumstances, it is a recommended practice that you avoid the command,

shell, and raw "run command" modules.

Most other modules are idempotent and can perform change tracking automatically.

They can test the state of systems and do nothing if those systems are already in

the correct state. By contrast, it is much more complicated to use "run command"

modules in a way that is idempotent. Depending upon them makes it harder for you

to be confident that rerunning an ad hoc command or playbook would not cause an

unexpected failure. When a shell or command module runs, it typically reports a

CHANGED status based on whether it thinks it affected machine state.

There are times when "run command" modules are valuable tools and a good

solution to a problem. If you do need to use them, it is probably best to try to use

the command module first, resorting to shell or raw modules only if you need their

special features.

Configuring Connections for Ad Hoc Commands
The directives for managed host connections and privilege escalation can be configured in the

Ansible configuration file, and they can also be defined using options in ad hoc commands. When

defined using options in ad hoc commands, they take precedence over the directive configured in

the Ansible configuration file. The following table shows the analogous command-line options for

each configuration file directive.

Ansible Command-line Options

Configuration file directives Command-line option

inventory -i

remote_user -u

become --become, -b

become_method --become-method

become_user --become-user

become_ask_pass --ask-become-pass, -K

Before configuring these directives using command-line options, their currently defined values can

be determined by consulting the output of ansible --help.

RH294-RHEL8.4-en-1-20210818 45

Chapter 2 | Implementing an Ansible Playbook

[user@controlnode ~]$ ansible --help
...output omitted...
 -b, --become run operations with become (nopasswd implied)
 --become-method=BECOME_METHOD
 privilege escalation method to use (default=sudo),
 valid choices: [sudo | su | pbrun | pfexec | runas |
 doas]
 --become-user=BECOME_USER
...output omitted...
 -u REMOTE_USER, --user=REMOTE_USER
 connect as this user (default=None)

References

ansible(1) man page

Working with Patterns: Ansible Documentation

https://docs.ansible.com/ansible/2.9/user_guide/intro_patterns.html

Introduction to Ad-Hoc Commands: Ansible Documentation

http://docs.ansible.com/ansible/2.9/user_guide/intro_adhoc.html

Module Index: Ansible Documentation

http://docs.ansible.com/ansible/2.9/modules/modules_by_category.html

command - Executes a command on a remote node: Ansible Documentation

http://docs.ansible.com/ansible/2.9/modules/command_module.html

shell - Execute commands in nodes: Ansible Documentation

http://docs.ansible.com/ansible/2.9/modules/shell_module.html

46 RH294-RHEL8.4-en-1-20210818

https://docs.ansible.com/ansible/2.9/user_guide/intro_patterns.html
http://docs.ansible.com/ansible/2.9/user_guide/intro_adhoc.html
http://docs.ansible.com/ansible/2.9/modules/modules_by_category.html
http://docs.ansible.com/ansible/2.9/modules/command_module.html
http://docs.ansible.com/ansible/2.9/modules/shell_module.html

Chapter 2 | Implementing an Ansible Playbook

Guided Exercise

Running Ad Hoc Commands

In this exercise, you will execute ad hoc commands on multiple managed hosts.

Outcomes
You should be able to execute commands on managed hosts on an ad hoc basis using

privilege escalation.

You will execute ad hoc commands on workstation and servera using the devops
user account. This account has the same sudo configuration on both workstation and

servera.

Before You Begin
Log in to workstation as student using student as the password.

On workstation, run the lab deploy-adhoc start command. This script ensures that

the managed host servera is reachable on the network. It also creates and populates the /
home/student/deploy-adhoc working directory with materials used in this exercise.

[student@workstation ~]$ lab deploy-adhoc start

Instructions

 1. Determine the sudo configuration for the devops account on both workstation and

servera.

1.1. Determine the sudo configuration for the devops account that was configured

when workstation was built. Enter student if prompted for the password for the

student account.

[student@workstation ~]$ sudo -l -U devops
...output omitted...
User devops may run the following commands on workstation:
 (ALL) NOPASSWD: ALL

Note that the user has full sudo privileges but does not require password

authentication.

1.2. Determine the sudo configuration for the devops account that was configured when

servera was built.

[student@workstation ~]$ ssh devops@servera.lab.example.com
[devops@servera ~]$ sudo -l
...output omitted...
User devops may run the following commands on servera:
 (ALL) NOPASSWD: ALL
[devops@servera ~]$ exit

RH294-RHEL8.4-en-1-20210818 47

Chapter 2 | Implementing an Ansible Playbook

Note that the user has full sudo privileges but does not require password

authentication.

 2. Change directory to /home/student/deploy-adhoc and examine the contents of the

ansible.cfg and inventory files.

[student@workstation ~]$ cd ~/deploy-adhoc
[student@workstation deploy-adhoc]$ cat ansible.cfg
[defaults]
inventory=inventory
[student@workstation deploy-adhoc]$ cat inventory
[control_node]
localhost

[intranetweb]
servera.lab.example.com

The configuration file uses the directory's inventory file as the Ansible inventory. Note

that Ansible is not yet configured to use privilege escalation.

 3. Using the all host group and the ping module, execute an ad hoc command that ensures

all managed hosts can run Ansible modules using Python.

[student@workstation deploy-adhoc]$ ansible all -m ping
servera.lab.example.com | SUCCESS => {
 "ansible_facts": {
 "discovered_interpreter_python": "/usr/libexec/platform-python"
 },
 "changed": false,
 "ping": "pong"
}
localhost | SUCCESS => {
 "ansible_facts": {
 "discovered_interpreter_python": "/usr/libexec/platform-python"
 },
 "changed": false,
 "ping": "pong"
}

 4. Using the command module, execute an ad hoc command on workstation to identify

the user account that Ansible uses to perform operations on managed hosts. Use the

localhost host pattern to connect to workstation for the ad hoc command execution.

Because you are connecting locally, workstation is both the control node and managed

host.

[student@workstation deploy-adhoc]$ ansible localhost -m command -a 'id'
localhost | CHANGED | rc=0 >>
uid=1000(student) gid=1000(student) groups=1000(student),10(wheel)
 context=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

Notice that the ad hoc command was performed on the managed host as the student
user.

48 RH294-RHEL8.4-en-1-20210818

Chapter 2 | Implementing an Ansible Playbook

 5. Execute the previous ad hoc command on workstation but connect and perform the

operation with the devops user account by using the -u option.

[student@workstation deploy-adhoc]$ ansible localhost -m command -a 'id' -u devops
localhost | CHANGED | rc=0 >>
uid=1001(devops) gid=1001(devops) groups=1001(devops)
 context=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

Notice that the ad hoc command was performed on the managed host as the devops user.

 6. Using the copy module, execute an ad hoc command on workstation to change the

contents of the /etc/motd file so that it consists of the string "Managed by Ansible"

followed by a newline. Execute the command using the devops account, but do not use

the --become option to switch to root. The ad hoc command should fail due to lack of

permissions.

[student@workstation deploy-adhoc]$ ansible localhost -m copy \
> -a 'content="Managed by Ansible\n" dest=/etc/motd' -u devops
localhost | FAILED! => {
 "ansible_facts": {
 "discovered_interpreter_python": "/usr/libexec/platform-python"
 },
 "changed": false,
 "checksum": "4458b979ede3c332f8f2128385df4ba305e58c27",
 "msg": "Destination /etc not writable"
}

The ad hoc command failed because the devops user does not have permission to write to

the file.

 7. Run the command again using privilege escalation. You could fix the settings in the

ansible.cfg file, but for this example just use appropriate command-line options of the

ansible command.

Using the copy module, execute the previous command on workstation to change

the contents of the /etc/motd file so that it consists of the string "Managed by Ansible"

followed by a newline. Use the devops user to make the connection to the managed host,

but perform the operation as the root user using the --become option. The use of the --
become option is sufficient because the default value for the become_user directive is set

to root in the /etc/ansible/ansible.cfg file.

[student@workstation deploy-adhoc]$ ansible localhost -m copy \
> -a 'content="Managed by Ansible\n" dest=/etc/motd' -u devops --become
localhost | CHANGED => {
 "ansible_facts": {
 "discovered_interpreter_python": "/usr/libexec/platform-python"
 },
 "changed": true,
 "checksum": "4458b979ede3c332f8f2128385df4ba305e58c27",
 "dest": "/etc/motd",
 "gid": 0,
 "group": "root",
 "md5sum": "65a4290ee5559756ad04e558b0e0c4e3",
 "mode": "0644",
 "owner": "root",

RH294-RHEL8.4-en-1-20210818 49

Chapter 2 | Implementing an Ansible Playbook

 "secontext": "system_u:object_r:etc_t:s0",
 "size": 19,
 "src": "/home/devops/.ansible/tmp/ansible-
tmp-1558954193.0260043-131348380629718/source",
 "state": "file",
 "uid": 0
}

Note that the command succeeded this time because the ad hoc command was executed

with privilege escalation.

 8. Run the previous ad hoc command again on all hosts using the all host group. This

ensures that /etc/motd on both workstation and servera consist of the text "

Managed by Ansible ".

[student@workstation deploy-adhoc]$ ansible all -m copy \
> -a 'content="Managed by Ansible\n" dest=/etc/motd' -u devops --become
servera.lab.example.com | CHANGED => {
 "ansible_facts": {
 "discovered_interpreter_python": "/usr/libexec/platform-python"
 },
 "changed": true,
 "checksum": "4458b979ede3c332f8f2128385df4ba305e58c27",
 "dest": "/etc/motd",
 "gid": 0,
 "group": "root",
 "md5sum": "65a4290ee5559756ad04e558b0e0c4e3",
 "mode": "0644",
 "owner": "root",
 "secontext": "system_u:object_r:etc_t:s0",
 "size": 19,
 "src": "/home/devops/.ansible/tmp/ansible-
tmp-1558954250.7893758-136255396678462/source",
 "state": "file",
 "uid": 0
}
localhost | SUCCESS => {
 "ansible_facts": {
 "discovered_interpreter_python": "/usr/libexec/platform-python"
 },
 "changed": false,
 "checksum": "4458b979ede3c332f8f2128385df4ba305e58c27",
 "dest": "/etc/motd",
 "gid": 0,
 "group": "root",
 "mode": "0644",
 "owner": "root",
 "path": "/etc/motd",
 "secontext": "system_u:object_r:etc_t:s0",

50 RH294-RHEL8.4-en-1-20210818

Chapter 2 | Implementing an Ansible Playbook

 "size": 19,
 "state": "file",
 "uid": 0
}

You should see SUCCESS for localhost and CHANGED for servera. However,

localhost should report "changed": false because the file is already in the correct

state. Conversely, servera should report "changed": true because the ad hoc

command updated the file to the correct state.

 9. Using the command module, execute an ad hoc command to run cat /etc/motd to

verify that the contents of the file have been successfully modified on both workstation
and servera. Use the all host group and the devops user to specify and make the

connection to the managed hosts. You do not need privilege escalation for this command

to work.

[student@workstation deploy-adhoc]$ ansible all -m command \
> -a 'cat /etc/motd' -u devops
servera.lab.example.com | CHANGED | rc=0 >>
Managed by Ansible

localhost | CHANGED | rc=0 >>
Managed by Ansible

Finish

On workstation, run the lab deploy-adhoc finish script to clean up this exercise.

[student@workstation ~]$ lab deploy-adhoc finish

This concludes the guided exercise.

RH294-RHEL8.4-en-1-20210818 51

Chapter 2 | Implementing an Ansible Playbook

Writing and Running Playbooks

Objectives
After completing this section, you should be able to write a basic Ansible Playbook and run it using

the ansible-playbook command.

Ansible Playbooks and Ad Hoc Commands
Ad hoc commands can run a single, simple task against a set of targeted hosts as a one-time

command. The real power of Ansible, however, is in learning how to use playbooks to run multiple,

complex tasks against a set of targeted hosts in an easily repeatable manner.

A task is the application of a module to perform a specific unit of work. A play is a sequence of

tasks to be applied, in order, to one or more hosts selected from your inventory. A playbook is a

text file containing a list of one or more plays to run in a specific order.

Plays allow you to change a lengthy, complex set of manual administrative tasks into an easily

repeatable routine with predictable and successful outcomes. In a playbook, you can save the

sequence of tasks in a play into a human-readable and immediately runnable form. The tasks

themselves, because of the way in which they are written, document the steps needed to deploy

your application or infrastructure.

Formatting an Ansible Playbook
To help you understand the format of a playbook, review this ad hoc command from a previous

chapter:

[student@workstation ~]$ ansible -m user -a "name=newbie uid=4000 state=present" \
> servera.lab.example.com

This can be rewritten as a single task play and saved in a playbook. The resulting playbook appears

as follows:

- name: Configure important user consistently
 hosts: servera.lab.example.com
 tasks:
 - name: newbie exists with UID 4000
 user:
 name: newbie
 uid: 4000
 state: present

A playbook is a text file written in YAML format, and is normally saved with the extension yml. The

playbook uses indentation with space characters to indicate the structure of its data. YAML does

not place strict requirements on how many spaces are used for the indentation, but there are two

basic rules.

52 RH294-RHEL8.4-en-1-20210818

Chapter 2 | Implementing an Ansible Playbook

• Data elements at the same level in the hierarchy (such as items in the same list) must have the

same indentation.

• Items that are children of another item must be indented more than their parents.

You can also add blank lines for readability.

Important

Only the space character can be used for indentation; tab characters are not

allowed.

If you use the vi text editor, you can apply some settings which might make it

easier to edit your playbooks. For example, you can add the following line to your

$HOME/.vimrc file, and when vi detects that you are editing a YAML file, it

performs a 2-space indentation when you press the Tab key and autoindents

subsequent lines.

autocmd FileType yaml setlocal ai ts=2 sw=2 et

A playbook begins with a line consisting of three dashes (---) as a start of document marker. It

may end with three dots (...) as an end of document marker, although in practice this is often

omitted.

In between those markers, the playbook is defined as a list of plays. An item in a YAML list starts

with a single dash followed by a space. For example, a YAML list might appear as follows:

- apple
- orange
- grape

In the preceding playbook example, the line after --- begins with a dash and starts the first (and

only) play in the list of plays.

The play itself is a collection of key-value pairs. Keys in the same play should have the same

indentation. The following example shows a YAML snippet with three keys. The first two keys have

simple values. The third has a list of three items as a value.

 name: just an example
 hosts: webservers
 tasks:
 - first
 - second
 - third

The original example play has three keys, name, hosts, and tasks, because these keys all have

the same indentation.

The first line of the example play starts with a dash and a space (indicating the play is the first

item of a list), and then the first key, the name attribute. The name key associates an arbitrary

string with the play as a label. This identifies what the play is for. The name key is optional, but

is recommended because it helps to document your playbook. This is especially useful when a

playbook contains multiple plays.

RH294-RHEL8.4-en-1-20210818 53

Chapter 2 | Implementing an Ansible Playbook

- name: Configure important user consistently

The second key in the play is a hosts attribute, which specifies the hosts against which the play's

tasks are run. Like the argument for the ansible command, the hosts attribute takes a host

pattern as a value, such as the names of managed hosts or groups in the inventory.

 hosts: servera.lab.example.com

Finally, the last key in the play is the tasks attribute, whose value specifies a list of tasks to run for

this play. This example has a single task, which runs the user module with specific arguments (to

ensure user newbie exists and has UID 4000).

 tasks:
 - name: newbie exists with UID 4000
 user:
 name: newbie
 uid: 4000
 state: present

The tasks attribute is the part of the play that actually lists, in order, the tasks to be run on the

managed hosts. Each task in the list is itself a collection of key-value pairs.

In this example, the only task in the play has two keys:

• name is an optional label documenting the purpose of the task. It is a good idea to name all your

tasks to help document the purpose of each step of the automation process.

• user is the module to run for this task. Its arguments are passed as a collection of key-value

pairs, which are children of the module (name, uid, and state).

The following is another example of a tasks attribute with multiple tasks, using the service
module to ensure that several network services are enabled to start at boot:

 tasks:
 - name: web server is enabled
 service:
 name: httpd
 enabled: true

 - name: NTP server is enabled
 service:
 name: chronyd
 enabled: true

 - name: Postfix is enabled
 service:
 name: postfix
 enabled: true

54 RH294-RHEL8.4-en-1-20210818

Chapter 2 | Implementing an Ansible Playbook

Important

The order in which the plays and tasks are listed in a playbook is important, because

Ansible runs them in the same order.

The playbooks you have seen so far are basic examples, and you will see more sophisticated

examples of what you can do with plays and tasks as this course continues.

Running Playbooks
The ansible-playbook command is used to run playbooks. The command is executed on the

control node and the name of the playbook to be run is passed as an argument:

[student@workstation ~]$ ansible-playbook site.yml

When you run the playbook, output is generated to show the play and tasks being executed. The

output also reports the results of each task executed.

The following example shows the contents of a simple playbook, and then the result of running it.

[student@workstation playdemo]$ cat webserver.yml

- name: play to setup web server
 hosts: servera.lab.example.com
 tasks:
 - name: latest httpd version installed
 yum:
 name: httpd
 state: latest
...output omitted...
[student@workstation playdemo]$ ansible-playbook webserver.yml

PLAY [play to setup web server] **

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

TASK [latest httpd version installed] **
changed: [servera.lab.example.com]

PLAY RECAP ***
servera.lab.example.com : ok=2 changed=1 unreachable=0 failed=0

The value of the name key for each play and task is displayed when the playbook is run. (The

Gathering Facts task is a special task that the setup module usually runs automatically at

the start of a play. This is covered later in the course.) For playbooks with multiple plays and tasks,

setting name attributes makes it easier to monitor the progress of a playbook's execution.

You should also see that the latest httpd version installed task is changed for

servera.lab.example.com. This means that the task changed something on that host to

ensure its specification was met. In this case, it means that the httpd package probably was not

installed or was not the latest version.

RH294-RHEL8.4-en-1-20210818 55

Chapter 2 | Implementing an Ansible Playbook

In general, tasks in Ansible Playbooks are idempotent, and it is safe to run a playbook multiple

times. If the targeted managed hosts are already in the correct state, no changes should be made.

For example, assume that the playbook from the previous example is run again:

[student@workstation playdemo]$ ansible-playbook webserver.yml

PLAY [play to setup web server] **

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

TASK [latest httpd version installed] **
ok: [servera.lab.example.com]

PLAY RECAP ***
servera.lab.example.com : ok=2 changed=0 unreachable=0 failed=0

This time, all tasks passed with status ok and no changes were reported.

Increasing Output Verbosity

The default output provided by the ansible-playbook command does not provide detailed

task execution information. The ansible-playbook -v command provides additional

information, with up to four total levels.

Configuring the Output Verbosity of Playbook Execution

Option Description

-v The task results are displayed.

-vv Both task results and task configuration are displayed

-vvv Includes information about connections to managed hosts

-vvvv Adds extra verbosity options to the connection plug-ins, including

users being used in the managed hosts to execute scripts, and

what scripts have been executed

Syntax Verification

Prior to executing a playbook, it is good practice to perform a verification to ensure that the

syntax of its contents is correct. The ansible-playbook command offers a --syntax-check
option that you can use to verify the syntax of a playbook. The following example shows the

successful syntax verification of a playbook.

[student@workstation ~]$ ansible-playbook --syntax-check webserver.yml

playbook: webserver.yml

When syntax verification fails, a syntax error is reported. The output also includes the approximate

location of the syntax issue in the playbook. The following example shows the failed syntax

verification of a playbook where the space separator is missing after the name attribute for the

play.

56 RH294-RHEL8.4-en-1-20210818

Chapter 2 | Implementing an Ansible Playbook

[student@workstation ~]$ ansible-playbook --syntax-check webserver.yml
ERROR! Syntax Error while loading YAML.
 mapping values are not allowed in this context

The error appears to have been in ...output omitted... line 3, column 8, but may
be elsewhere in the file depending on the exact syntax problem.

The offending line appears to be:

- name:play to setup web server
 hosts: servera.lab.example.com
 ^ here

Executing a Dry Run

You can use the -C option to perform a dry run of the playbook execution. This causes Ansible to

report what changes would have occurred if the playbook were executed, but does not make any

actual changes to managed hosts.

The following example shows the dry run of a playbook containing a single task for ensuring that

the latest version of httpd package is installed on a managed host. Note that the dry run reports

that the task would effect a change on the managed host.

[student@workstation ~]$ ansible-playbook -C webserver.yml

PLAY [play to setup web server] **

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

TASK [latest httpd version installed] **
changed: [servera.lab.example.com]

PLAY RECAP ***
servera.lab.example.com : ok=2 changed=1 unreachable=0 failed=0

References

ansible-playbook(1) man page

Intro to Playbooks — Ansible Documentation

https://docs.ansible.com/ansible/2.9/user_guide/playbooks_intro.html

Playbooks — Ansible Documentation

https://docs.ansible.com/ansible/2.9/user_guide/playbooks.html

Check Mode ("Dry Run") — Ansible Documentation

https://docs.ansible.com/ansible/2.9/user_guide/playbooks_checkmode.html

RH294-RHEL8.4-en-1-20210818 57

https://docs.ansible.com/ansible/2.9/user_guide/playbooks_intro.html
https://docs.ansible.com/ansible/2.9/user_guide/playbooks.html
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_checkmode.html

Chapter 2 | Implementing an Ansible Playbook

Guided Exercise

Writing and Running Playbooks

In this exercise, you will write and run an Ansible Playbook.

Outcomes
You should be able to write a playbook using basic YAML syntax and Ansible Playbook

structure, and successfully run it with the ansible-playbook command.

Before You Begin
Log in to workstation as student using student as the password.

On workstation, run the lab playbook-basic start command. This

function ensures that the managed hosts, serverc.lab.example.com and

serverd.lab.example.com are reachable on the network. It also ensures that the correct

Ansible configuration file and inventory file are installed on the control node.

[student@workstation ~]$ lab playbook-basic start

Instructions

The /home/student/playbook-basic working directory has been created on workstation
for this exercise. This directory has already been populated with an ansible.cfg configuration

file, and also an inventory inventory file, which defines a web group that includes both managed

hosts listed above as members.

In this directory, use a text editor to create a playbook named site.yml. This playbook contains

one play, which should target members of the web host group. The playbook should use tasks to

ensure that the following conditions are met on the managed hosts:

• The httpd package is present, using the yum module.

• The local files/index.html file is copied to /var/www/html/index.html on each

managed host, using the copy module.

• The httpd service is started and enabled, using the service module.

You can use the ansible-doc command to help you understand the keywords needed for each

of the modules.

After the playbook is written, verify its syntax and then use ansible-playbook to run the

playbook to implement the configuration.

 1. Change to the /home/student/playbook-basic directory.

[student@workstation ~]$ cd ~/playbook-basic
[student@workstation playbook-basic]$

58 RH294-RHEL8.4-en-1-20210818

Chapter 2 | Implementing an Ansible Playbook

 2. Use a text editor to create a new playbook called /home/student/playbook-basic/
site.yml. Start writing a play that targets the hosts in the web host group.

2.1. Create and open ~/playbook-basic/site.yml. The first line of the file should be

three dashes to indicate the start of the playbook.

2.2. The next line starts the play. It needs to start with a dash and a space before the first

keyword in the play. Name the play with an arbitrary string documenting the play's

purpose, using the name keyword.

- name: Install and start Apache HTTPD

2.3. Add a hosts keyword-value pair to specify that the play run on hosts in the

inventory's web host group. Make sure that the hosts keyword is indented two

spaces so it aligns with the name keyword in the preceding line.

The complete site.yml file should now appear as follows:

- name: Install and start Apache HTTPD
 hosts: web

 3. Continue to edit the /home/student/playbook-basic/site.yml file, and add a

tasks keyword and the three tasks for your play that were specified in the instructions.

3.1. Add a tasks keyword indented by two spaces (aligned with the hosts keyword) to

start the list of tasks. Your file should now appear as follows:

- name: Install and start Apache HTTPD
 hosts: web
 tasks:

3.2. Add the first task. Indent by four spaces, and start the task with a dash and a space,

and then give the task a name, such as httpd package is present. Use the

yum module for this task. Indent the module keywords two more spaces; set the

package name to httpd and the package state to present. The task should appear

as follows:

 - name: httpd package is present
 yum:
 name: httpd
 state: present

3.3. Add the second task. Match the format of the previous task, and give the task a

name, such as correct index.html is present. Use the copy module. The

module keywords should set the src key to files/index.html and the dest key

to /var/www/html/index.html. The task should appear as follows:

RH294-RHEL8.4-en-1-20210818 59

Chapter 2 | Implementing an Ansible Playbook

 - name: correct index.html is present
 copy:
 src: files/index.html
 dest: /var/www/html/index.html

3.4. Add the third task to start and enable the httpd service. Match the format of the

previous two tasks, and give the new task a name, such as httpd is started. Use

the service module for this task. Set the name key of the service to httpd, the

state key to started, and the enabled key to true. The task should appear as

follows:

 - name: httpd is started
 service:
 name: httpd
 state: started
 enabled: true

3.5. Your entire site.yml Ansible Playbook should match the following example. Make

sure that the indentation of your play's keywords, the list of tasks, and each task's

keywords are all correct.

- name: Install and start Apache HTTPD
 hosts: web
 tasks:
 - name: httpd package is present
 yum:
 name: httpd
 state: present

 - name: correct index.html is present
 copy:
 src: files/index.html
 dest: /var/www/html/index.html

 - name: httpd is started
 service:
 name: httpd
 state: started
 enabled: true

Save the file and exit your text editor.

 4. Before running your playbook, run the ansible-playbook --syntax-check
site.yml command to verify that its syntax is correct. If it reports any errors, correct them

before moving to the next step. You should see output similar to the following:

[student@workstation playbook-basic]$ ansible-playbook --syntax-check site.yml

playbook: site.yml

60 RH294-RHEL8.4-en-1-20210818

Chapter 2 | Implementing an Ansible Playbook

 5. Run your playbook. Read through the output generated to ensure that all tasks completed

successfully.

[student@workstation playbook-basic]$ ansible-playbook site.yml

PLAY [Install and start Apache HTTPD] **

TASK [Gathering Facts] ***
ok: [serverd.lab.example.com]
ok: [serverc.lab.example.com]

TASK [httpd package is present] **
changed: [serverd.lab.example.com]
changed: [serverc.lab.example.com]

TASK [correct index.html is present] ***
changed: [serverd.lab.example.com]
changed: [serverc.lab.example.com]

TASK [httpd is started] **
changed: [serverd.lab.example.com]
changed: [serverc.lab.example.com]

PLAY RECAP ***
serverc.lab.example.com : ok=4 changed=3 unreachable=0 failed=0
serverd.lab.example.com : ok=4 changed=3 unreachable=0 failed=0

 6. If all went well, you should be able to run the playbook a second time and see all tasks

complete with no changes to the managed hosts.

[student@workstation playbook-basic]$ ansible-playbook site.yml

PLAY [Install and start Apache HTTPD] **

TASK [Gathering Facts] ***
ok: [serverd.lab.example.com]
ok: [serverc.lab.example.com]

TASK [httpd package is present] **
ok: [serverd.lab.example.com]
ok: [serverc.lab.example.com]

TASK [correct index.html is present] ***
ok: [serverc.lab.example.com]
ok: [serverd.lab.example.com]

TASK [httpd is started] **
ok: [serverd.lab.example.com]
ok: [serverc.lab.example.com]

PLAY RECAP ***
serverc.lab.example.com : ok=4 changed=0 unreachable=0 failed=0
serverd.lab.example.com : ok=4 changed=0 unreachable=0 failed=0

RH294-RHEL8.4-en-1-20210818 61

Chapter 2 | Implementing an Ansible Playbook

 7. Use the curl command to verify that both serverc and serverd are configured as an

HTTPD server.

[student@workstation playbook-basic]$ curl serverc.lab.example.com
This is a test page.
[student@workstation playbook-basic]$ curl serverd.lab.example.com
This is a test page.

Finish

On workstation, run the lab playbook-basic finish script to clean up the resources

created in this exercise.

[student@workstation ~]$ lab playbook-basic finish

This concludes the guided exercise.

62 RH294-RHEL8.4-en-1-20210818

Chapter 2 | Implementing an Ansible Playbook

Implementing Multiple Plays

Objectives
After completing this section, you should be able to write a playbook that uses multiple plays and

per-play privilege escalation, and effectively use ansible-doc to learn how to use new modules

to implement tasks for a play

Writing Multiple Plays
A playbook is a YAML file containing a list of one or more plays. Remember that a single play is an

ordered list of tasks to execute against hosts selected from the inventory. Therefore, if a playbook

contains multiple plays, each play may apply its tasks to a separate set of hosts.

This can be very useful when orchestrating a complex deployment which may involve different

tasks on different hosts. You can write a playbook that runs one play against one set of hosts, and

when that finishes runs another play against another set of hosts.

Writing a playbook that contains multiple plays is very straightforward. Each play in the playbook

is written as a top-level list item in the playbook. Each play is a list item containing the usual play

keywords.

The following example shows a simple playbook with two plays. The first play runs against

web.example.com, and the second play runs against database.example.com.

This is a simple playbook with two plays

- name: first play
 hosts: web.example.com
 tasks:
 - name: first task
 yum:
 name: httpd
 status: present

 - name: second task
 service:
 name: httpd
 enabled: true

- name: second play
 hosts: database.example.com
 tasks:
 - name: first task
 service:
 name: mariadb
 enabled: true

RH294-RHEL8.4-en-1-20210818 63

Chapter 2 | Implementing an Ansible Playbook

Remote Users and Privilege Escalation in Plays
Plays can use different remote users or privilege escalation settings for a play than what is

specified by the defaults in the configuration file. These are set in the play itself at the same level

as the hosts or tasks keywords.

User Attributes

Tasks in playbooks are normally executed through a network connection to the managed hosts. As

with ad hoc commands, the user account used for task execution depends on various keywords in

the Ansible configuration file, /etc/ansible/ansible.cfg. The user that runs the tasks can be

defined by the remote_user keyword. However, if privilege escalation is enabled, other keywords

such as become_user can also have an impact.

If the remote user defined in the Ansible configuration for task execution is not suitable, it can be

overridden by using the remote_user keyword within a play.

remote_user: remoteuser

Privilege Escalation Attributes

Additional keywords are also available to define privilege escalation parameters from within a

playbook. The become boolean keyword can be used to enable or disable privilege escalation

regardless of how it is defined in the Ansible configuration file. It can take yes or true to enable

privilege escalation, or no or false to disable it.

become: true

If privilege escalation is enabled, the become_method keyword can be used to define the

privilege escalation method to use during a specific play. The example below specifies that sudo
be used for privilege escalation.

become_method: sudo

Additionally, with privilege escalation enabled, the become_user keyword can define the user

account to use for privilege escalation within the context of a specific play.

become_user: privileged_user

The following example demonstrates the use of these keywords in a play:

- name: /etc/hosts is up to date
 hosts: datacenter-west
 remote_user: automation
 become: yes

 tasks:
 - name: server.example.com in /etc/hosts
 lineinfile:
 path: /etc/hosts
 line: '192.0.2.42 server.example.com server'
 state: present

64 RH294-RHEL8.4-en-1-20210818

Chapter 2 | Implementing an Ansible Playbook

Finding Modules for Tasks

Module Documentation

The large number of modules packaged with Ansible provides administrators with many tools

for common administrative tasks. Earlier in this course, we discussed the Ansible documentation

website at http://docs.ansible.com. The Module Index on the website is an easy way to browse the

list of modules shipped with Ansible. For example, modules for user and service management can

be found under Systems Modules and modules for database administration can be found under

Database Modules.

For each module, the Ansible documentation website provides a summary of its functions and

instructions on how each specific function can be invoked with options to the module. The

documentation also provides useful examples that show you how to use each module and how to

set their keywords in a task.

You have already worked with the ansible-doc command to look up information about modules

installed on the local system. As a review, to see a list of the modules available on a control node,

run the ansible-doc -l command. This displays a list of module names and a synopsis of their

functions.

[student@workstation modules]$ ansible-doc -l
a10_server Manage A10 Networks ... devices' server object.
a10_server_axapi3 Manage A10 Networks ... devices
a10_service_group Manage A10 Networks ... devices' service groups.
a10_virtual_server Manage A10 Networks ... devices' virtual servers.
...output omitted...
zfs_facts Gather facts about ZFS datasets.
znode Create, ... and update znodes using ZooKeeper
zpool_facts Gather facts about ZFS pools.
zypper Manage packages on SUSE and openSUSE
zypper_repository Add and remove Zypper repositories

Use the ansible-doc [module name] command to display detailed documentation for

a module. Like the Ansible documentation website, the command provides a synopsis of the

module's function, details of its various options, and examples. The following example shows the

documentation displayed for the yum module.

[student@workstation modules]$ ansible-doc yum
> YUM (/usr/lib/python3.6/site-packages/ansible/modules/packaging/os/yum.py)

 Installs, upgrade, downgrades, removes, and lists packages and groups with
 the `yum' package manager. This module only works on Python 2. If you require
 Python
 3 support see the [dnf] module.

 * This module is maintained by The Ansible Core Team
 * note: This module has a corresponding action plugin.

OPTIONS (= is mandatory):

- allow_downgrade
 Specify if the named package and version is allowed to downgrade a maybe
 already installed higher version of that package. Note that setting

RH294-RHEL8.4-en-1-20210818 65

http://docs.ansible.com

Chapter 2 | Implementing an Ansible Playbook

 allow_downgrade=True can make this module behave in a non-idempotent way.
 The task could end up with a set of packages that does not match the complete
 list of
 specified packages to install (because dependencies between the downgraded
 package and others can cause changes to the packages which were in the earlier
 transaction).
 [Default: no]
 type: bool
 version_added: 2.4

- autoremove
 If `yes', removes all "leaf" packages from the system that were originally
 installed as dependencies of user-installed packages but which are no longer
 required
 by any such package. Should be used alone or when state is `absent'
 NOTE: This feature requires yum >= 3.4.3 (RHEL/CentOS 7+)
 [Default: no]
 type: bool
 version_added: 2.7

- bugfix
 If set to `yes', and `state=latest' then only installs updates that have
 been marked bugfix related.
 [Default: no]
 version_added: 2.6

- conf_file
 The remote yum configuration file to use for the transaction.
 [Default: (null)]
 version_added: 0.6

- disable_excludes
 Disable the excludes defined in YUM config files.
 If set to `all', disables all excludes.
 If set to `main', disable excludes defined in [main] in yum.conf.
 If set to `repoid', disable excludes defined for given repo id.
 [Default: (null)]
 version_added: 2.7

- disable_gpg_check
 Whether to disable the GPG checking of signatures of packages being
 installed. Has an effect only if state is `present' or `latest'.
 [Default: no]
 type: bool
 version_added: 1.2

- disable_plugin
 `Plugin' name to disable for the install/update operation. The disabled
 plugins will not persist beyond the transaction.
 [Default: (null)]
 version_added: 2.5

- disablerepo

66 RH294-RHEL8.4-en-1-20210818

Chapter 2 | Implementing an Ansible Playbook

 `Repoid' of repositories to disable for the install/update operation.
 These repos will not persist beyond the transaction. When specifying multiple
 repos,
 separate them with a `","'.
 As of Ansible 2.7, this can alternatively be a list instead of `","'
 separated string
 [Default: (null)]

The ansible-doc command also offers the -s option, which produces example output that

can serve as a model for how to use a particular module in a playbook. This output can serve as a

starter template, which can be included in a playbook to implement the module for task execution.

Comments are included in the output to remind administrators of the use of each option. The

following example shows this output for the yum module.

[student@workstation ~]$ ansible-doc -s yum
- name: Manages packages with the `yum' package manager
 yum:
 allow_downgrade: # Specify if the named package ...
 autoremove: # If `yes', removes all "leaf" packages ...
 bugfix: # If set to `yes', ...
 conf_file: # The remote yum configuration file ...
 disable_excludes: # Disable the excludes ...
 disable_gpg_check: # Whether to disable the GPG ...
 disable_plugin: # `Plugin' name to disable ...
 disablerepo: # `Repoid' of repositories ...
 download_only: # Only download the packages, ...
 enable_plugin: # `Plugin' name to enable ...
 enablerepo: # `Repoid' of repositories to enable ...
 exclude: # Package name(s) to exclude ...
 installroot: # Specifies an alternative installroot, ...
 list: # Package name to run ...
 name: # A package name or package specifier ...
 releasever: # Specifies an alternative release ...
 security: # If set to `yes', ...
 skip_broken: # Skip packages with ...
 state: # Whether to install ... or remove ... a package.
 update_cache: # Force yum to check if cache ...
 update_only: # When using latest, only update ...
 use_backend: # This module supports `yum' ...
 validate_certs: # This only applies if using a https url ...

Module Maintenance

Ansible ships with a large number of modules that can be used for many tasks. The upstream

community is very active, and these modules may be in different stages of development. The

ansible-doc documentation for the module is expected to specify who maintains that module

in the upstream Ansible community, and what its development status is. This is indicated in the

METADATA section at the end of the output of ansible-doc for that module.

The status field records the development status of the module:

• stableinterface: The module's keywords are stable, and every effort will be made not to

remove keywords or change their meaning.

RH294-RHEL8.4-en-1-20210818 67

Chapter 2 | Implementing an Ansible Playbook

• preview: The module is in technology preview, and might be unstable, its keywords might

change, or it might require libraries or web services that are themselves subject to incompatible

changes.

• deprecated: The module is deprecated, and will no longer be available in some future release.

• removed: The module has been removed from the release, but a stub exists for documentation

purposes to help former users migrate to new modules.

Note

The stableinterface status only indicates that a module's interface is stable, it

does not rate the module's code quality.

The supported_by field records who maintains the module in the upstream Ansible community.

Possible values are:

• core: Maintained by the "core" Ansible developers upstream, and always included with Ansible.

• curated: Modules submitted and maintained by partners or companies in the community.

Maintainers of these modules must watch for any issues reported or pull requests raised against

the module. Upstream "core" developers review proposed changes to curated modules after

the community maintainers have approved the changes. Core committers also ensure that any

issues with these modules due to changes in the Ansible engine are remediated. These modules

are currently included with Ansible, but might be packaged separately at some point in the

future.

• community: Modules not supported by the core upstream developers, partners, or companies,

but maintained entirely by the general open source community. Modules in this category are still

fully usable, but the response rate to issues is purely up to the community. These modules are

also currently included with Ansible, but will be packaged separately at some point in the future.

The upstream Ansible community has an issue tracker for Ansible and its integrated modules at

https://github.com/ansible/ansible/issues.

Sometimes, a module does not exist for something you want to do. As an end user, you can also

write your own private modules, or get modules from a third party. Ansible searches for custom

modules in the location specified by the ANSIBLE_LIBRARY environment variable, or if that is

not set, by a library keyword in the current Ansible configuration file. Ansible also searches for

custom modules in the ./library directory relative to the playbook currently being run.

library = /usr/share/my_modules

Information on writing modules is beyond the scope of this course. Documentation on how to do

this is available at https://docs.ansible.com/ansible/2.9/dev_guide/developing_modules.html.

68 RH294-RHEL8.4-en-1-20210818

https://github.com/ansible/ansible/issues
https://docs.ansible.com/ansible/2.9/dev_guide/developing_modules.html

Chapter 2 | Implementing an Ansible Playbook

Important

Use the ansible-doc command to find and learn how to use modules for your

tasks.

When possible, try to avoid the command, shell, and raw modules in playbooks,

even though they might seem simple to use. Because these take arbitrary

commands, it is very easy to write non-idempotent playbooks with these modules.

For example, the following task using the shell module is not idempotent. Every

time the play is run, it rewrites /etc/resolv.conf even if it already consists of the

line nameserver 192.0.2.1.

- name: Non-idempotent approach with shell module
 shell: echo "nameserver 192.0.2.1" > /etc/resolv.conf

There are several ways to write tasks using the shell module idempotently, and

sometimes making those changes and using shell is the best approach. A quicker

solution may be to use ansible-doc to discover the copy module and use that to

get the desired effect.

The following example does not rewrite the /etc/resolv.conf file if it already

consists of the correct content:

- name: Idempotent approach with copy module
 copy:
 dest: /etc/resolv.conf
 content: "nameserver 192.0.2.1\n"

The copy module tests to see if the state has already been met, and if so, it makes

no changes. The shell module allows a lot of flexibility, but also requires more

attention to ensure that it runs idempotently.

Idempotent playbooks can be run repeatedly to ensure systems are in a particular

state without disrupting those systems if they already are.

Playbook Syntax Variations
The last part of this chapter investigates some variations of YAML or Ansible Playbook syntax that

you might encounter.

YAML Comments

Comments can also be used to aid readability. In YAML, everything to the right of the number or

hash symbol (#) is a comment. If there is content to the left of the comment, precede the number

symbol with a space.

This is a YAML comment

some data # This is also a YAML comment

RH294-RHEL8.4-en-1-20210818 69

Chapter 2 | Implementing an Ansible Playbook

YAML Strings

Strings in YAML do not normally need to be put in quotation marks even if there are spaces

contained in the string. You can enclose strings in either double quotes or single quotes.

this is a string

'this is another string'

"this is yet another a string"

There are two ways to write multiline strings. You can use the vertical bar (|) character to denote

that newline characters within the string are to be preserved.

include_newlines: |
 Example Company
 123 Main Street
 Atlanta, GA 30303

You can also write multiline strings using the greater-than (>) character to indicate that newline

characters are to be converted to spaces and that leading white spaces in the lines are to be

removed. This method is often used to break long strings at space characters so that they can

span multiple lines for better readability.

fold_newlines: >
 This is an example
 of a long string,
 that will become
 a single sentence once folded.

YAML Dictionaries

You have seen collections of key-value pairs written as an indented block, as follows:

 name: svcrole
 svcservice: httpd
 svcport: 80

Dictionaries can also be written in an inline block format enclosed in curly braces, as follows:

 {name: svcrole, svcservice: httpd, svcport: 80}

In most cases the inline block format should be avoided because it is harder to read. However,

there is at least one situation in which it is more commonly used. The use of roles is discussed later

in this course. When a playbook includes a list of roles, it is more common to use this syntax to

make it easier to distinguish roles included in a play from the variables being passed to a role.

YAML Lists

You have also seen lists written with the normal single-dash syntax:

70 RH294-RHEL8.4-en-1-20210818

Chapter 2 | Implementing an Ansible Playbook

 hosts:
 - servera
 - serverb
 - serverc

Lists also have an inline format enclosed in square braces, as follows:

hosts: [servera, serverb, serverc]

You should avoid this syntax because it is usually harder to read.

Obsolete key=value Playbook Shorthand

Some playbooks might use an older shorthand method to define tasks by putting the key-value

pairs for the module on the same line as the module name. For example, you might see this syntax:

 tasks:
 - name: shorthand form
 service: name=httpd enabled=true state=started

Normally you would write the same task as follows:

 tasks:
 - name: normal form
 service:
 name: httpd
 enabled: true
 state: started

You should generally avoid the shorthand form and use the normal form.

The normal form has more lines, but it is easier to work with. The task's keywords are stacked

vertically and easier to differentiate. Your eyes can run straight down the play with less left-

to-right motion. Also, the normal syntax is native YAML; the shorthand form is not. Syntax

highlighting tools in modern text editors can help you more effectively if you use the normal

format than if you use the shorthand format.

You might see this syntax in documentation and older playbooks from other people, and the

syntax does still function.

RH294-RHEL8.4-en-1-20210818 71

Chapter 2 | Implementing an Ansible Playbook

References

ansible-playbook(1) and ansible-doc(1) man pages

Intro to Playbooks — Ansible Documentation

https://docs.ansible.com/ansible/2.9/user_guide/playbooks_intro.html

Playbooks — Ansible Documentation

https://docs.ansible.com/ansible/2.9/user_guide/playbooks.html

Developing Modules — Ansible Documentation

https://docs.ansible.com/ansible/2.9/dev_guide/developing_modules.html

Module Support — Ansible Documentation

https://docs.ansible.com/ansible/2.9/user_guide/modules_support.html

YAML Syntax — Ansible Documentation

https://docs.ansible.com/ansible/2.9/reference_appendices/YAMLSyntax.html

72 RH294-RHEL8.4-en-1-20210818

https://docs.ansible.com/ansible/2.9/user_guide/playbooks_intro.html
https://docs.ansible.com/ansible/2.9/user_guide/playbooks.html
https://docs.ansible.com/ansible/2.9/dev_guide/developing_modules.html
https://docs.ansible.com/ansible/2.9/user_guide/modules_support.html
https://docs.ansible.com/ansible/2.9/reference_appendices/YAMLSyntax.html

Chapter 2 | Implementing an Ansible Playbook

Guided Exercise

Implementing Multiple Plays

In this exercise, you will create a playbook containing multiple plays, then use it to perform

configuration tasks on managed hosts.

Outcomes
You should be able to construct and execute a playbook to manage configuration and

perform administration of a managed host.

Before You Begin
Log in to workstation as student using student as the password.

On workstation, run the lab playbook-multi start command. This function

ensures that the managed host, servera.lab.example.com, is reachable on the network.

It also ensures that the correct Ansible configuration file and inventory file are installed on

the control node.

[student@workstation ~]$ lab playbook-multi start

Instructions

 1. A working directory, /home/student/playbook-multi, has been created on

workstation for the Ansible project. The directory has already been populated

with an ansible.cfg configuration file and an inventory file, inventory. The

managed host, servera.lab.example.com, is already defined in this inventory

file. Create a new playbook, /home/student/playbook-multi/intranet.yml,

and add the lines needed to start the first play. It should target the managed host

servera.lab.example.com and enable privilege escalation.

1.1. Change directory into the /home/student/playbook-multi working directory.

[student@workstation ~]$ cd ~/playbook-multi
[student@workstation playbook-multi]$

1.2. Create and open a new playbook, /home/student/playbook-multi/
intranet.yml, and add a line consisting of three dashes to the beginning of the file

to indicate the start of the YAML file.

1.3. Add the following line to the /home/student/playbook-multi/intranet.yml
file to denote the start of a play with a name of Enable intranet services.

- name: Enable intranet services

RH294-RHEL8.4-en-1-20210818 73

Chapter 2 | Implementing an Ansible Playbook

1.4. Add the following line to indicate that the play applies to the

servera.lab.example.com managed host. Be sure to indent the line with two

spaces (aligning with the name keyword above it) to indicate that it is part of the first

play.

 hosts: servera.lab.example.com

1.5. Add the following line to enable privilege escalation. Be sure to indent the line with

two spaces (aligning with the keywords above it) to indicate it is part of the first play.

 become: yes

1.6. Add the following line to define the beginning of the tasks list. Indent the line with

two spaces (aligning with the keywords above it) to indicate that it is part of the first

play.

 tasks:

 2. As the first task in the first play, define a task that ensures that the httpd and firewalld

packages are up to date.

Be sure to indent the first line of the task with four spaces. Under the tasks keyword in the

first play, add the following lines.

 - name: latest version of httpd and firewalld installed
 yum:
 name:
 - httpd
 - firewalld
 state: latest

The first line provides a descriptive name for the task. The second line is indented with

six spaces and calls the yum module. The next line is indented eight spaces and is a name
keyword. It specifies which packages the yum module should ensure are up-to-date. The

yum module's name keyword (which is different from the task name) can take a list of

packages, which is indented ten spaces on the two following lines. After the list, the 8-

space indented state keyword specifies that the yum module should ensure that the latest

version of the packages is installed.

 3. Add a task to the first play's list that ensures that the correct content is in /var/www/
html/index.html.

Add the following lines to define the content for /var/www/html/index.html. Be sure

to indent the first line with four spaces.

 - name: test html page is installed
 copy:
 content: "Welcome to the example.com intranet!\n"
 dest: /var/www/html/index.html

The first entry provides a descriptive name for the task. The second entry is indented with

six spaces and calls the copy module. The remaining entries are indented with eight spaces

and pass the necessary arguments to ensure that the correct content is in the web page.

74 RH294-RHEL8.4-en-1-20210818

Chapter 2 | Implementing an Ansible Playbook

 4. Define two more tasks in the play to ensure that the firewalld service is running and will

start on boot, and will allow connections to the httpd service.

4.1. Add the following lines to ensure that the firewalld service is enabled and running.

Be sure to indent the first line with four spaces.

 - name: firewalld enabled and running
 service:
 name: firewalld
 enabled: true
 state: started

The first entry provides a descriptive name for the task. The second entry is indented

with eight spaces and calls the service module. The remaining entries are indented

with ten spaces and pass the necessary arguments to ensure that the firewalld service

is enabled and started.

4.2. Add the following lines to ensure that firewalld allows HTTP connections from

remote systems. Be sure to indent the first line with four spaces.

 - name: firewalld permits access to httpd service
 firewalld:
 service: http
 permanent: true
 state: enabled
 immediate: yes

The first entry provides a descriptive name for the task. The second entry is indented

with six spaces and calls the firewalld module. The remaining entries are indented

with eight spaces and pass the necessary arguments to ensure that remote HTTP

connections are permanently allowed.

 5. Add a final task to the first play that ensures that the httpd service is running and will start

at boot.

Add the following lines to ensure that the httpd service is enabled and running. Be sure to

indent the first line with four spaces.

 - name: httpd enabled and running
 service:
 name: httpd
 enabled: true
 state: started

The first entry provides a descriptive name for the task. The second entry is indented with

six spaces and calls the service module. The remaining entries are indented with eight

spaces and pass the necessary arguments to ensure that the httpd service is enabled and

running.

 6. In /home/student/playbook-multi/intranet.yml, define a second play targeted at

localhost which will test the intranet web server. It does not need privilege escalation.

6.1. Add the following line to define the start of a second play. Note that there is no

indentation.

RH294-RHEL8.4-en-1-20210818 75

Chapter 2 | Implementing an Ansible Playbook

- name: Test intranet web server

6.2. Add the following line to indicate that the play applies to the localhost managed

host. Be sure to indent the line with two spaces to indicate that it is contained by the

second play.

 hosts: localhost

6.3. Add the following line to disable privilege escalation. Be sure to align the indentation

with the hosts keyword above it.

 become: no

6.4. Add the following line to the /home/student/playbook-multi/intranet.yml
file to define the beginning of the tasks list. Be sure to indent the line with two

spaces to indicate that it is contained by the second play.

 tasks:

 7. Add a single task to the second play, and use the uri module to request content from

http://servera.lab.example.com. The task should verify a return HTTP status code

of 200. Configure the task to place the returned content in the task results variable.

Add the following lines to create the task for verifying the web service from the control

node. Be sure to indent the first line with four spaces.

 - name: connect to intranet web server
 uri:
 url: http://servera.lab.example.com
 return_content: yes
 status_code: 200

The first line provides a descriptive name for the task. The second line is indented with six

spaces and calls the uri module. The remaining lines are indented with eight spaces and

pass the necessary arguments to execute a query for web content from the control node

to the managed host and verify the status code received. The return_content keyword

ensures that the server's response is added to the task results.

 8. Verify that the final /home/student/playbook-multi/intranet.yml playbook

reflects the following structured content, then save and close the file.

- name: Enable intranet services
 hosts: servera.lab.example.com
 become: yes
 tasks:
 - name: latest version of httpd and firewalld installed
 yum:
 name:
 - httpd
 - firewalld

76 RH294-RHEL8.4-en-1-20210818

Chapter 2 | Implementing an Ansible Playbook

 state: latest

 - name: test html page is installed
 copy:
 content: "Welcome to the example.com intranet!\n"
 dest: /var/www/html/index.html

 - name: firewalld enabled and running
 service:
 name: firewalld
 enabled: true
 state: started

 - name: firewalld permits access to httpd service
 firewalld:
 service: http
 permanent: true
 state: enabled
 immediate: yes

 - name: httpd enabled and running
 service:
 name: httpd
 enabled: true
 state: started

- name: Test intranet web server
 hosts: localhost
 become: no
 tasks:
 - name: connect to intranet web server
 uri:
 url: http://servera.lab.example.com
 return_content: yes
 status_code: 200

 9. Run the ansible-playbook --syntax-check command to verify the syntax of the /
home/student/playbook-multi/intranet.yml playbook.

[student@workstation playbook-multi]$ ansible-playbook --syntax-check intranet.yml

playbook: intranet.yml

 10. Execute the playbook using the -v option to output detailed results for each task. Read

through the output generated to ensure that all tasks completed successfully. Verify that

an HTTP GET request to http://servera.lab.example.com provides the correct

content.

[student@workstation playbook-multi]$ ansible-playbook -v intranet.yml
...output omitted...

PLAY [Enable intranet services] ***

RH294-RHEL8.4-en-1-20210818 77

Chapter 2 | Implementing an Ansible Playbook

TASK [Gathering Facts] **
ok: [servera.lab.example.com]

TASK [latest version of httpd and firewalld installed] **************************
changed: [servera.lab.example.com] => {"changed": true, ...output omitted...

TASK [test html page is installed] **
changed: [servera.lab.example.com] => {"changed": true, ...output omitted...

TASK [firewalld enabled and running] **
ok: [servera.lab.example.com] => {"changed": false, ...output omitted...

TASK [firewalld permits http service] ***
changed: [servera.lab.example.com] => {"changed": true, ...output omitted...

TASK [httpd enabled and running] **
changed: [servera.lab.example.com] => {"changed": true, ...output omitted...

PLAY [Test intranet web server] ***

TASK [Gathering Facts] **
ok: [localhost]

TASK [connect to intranet web server] ***
ok: [localhost] => {"accept_ranges": "bytes", "changed": false, "connection": "cl
ose", "content": "Welcome to the example.com intranet!\n", "content_length":
 "37", "content_type": "text/html; charset=UTF-8", "cookies": {}, "cookies_string
": "", "date": "...output omitted...", "etag": "\"25-5790ddbcc5a48\"",
 "last_modified": "...output omitted...", "msg": "OK (37 bytes)", "redir
ected": false, "server": "Apache/2.4.6 (Red Hat Enterprise Linux)",
"status": 200, "url": "http://servera.lab.example.com"}

PLAY RECAP **
localhost : ok=2 changed=0 unreachable=0 failed=0
servera.lab.example.com : ok=6 changed=4 unreachable=0 failed=0

The server responded with the desired content, Welcome to the example.com
intranet!\n.

The server responded with an HTTP status code of 200.

Finish

On workstation, run the lab playbook-multi finish command to clean up the resources

created in this exercise.

[student@workstation ~]$ lab playbook-multi finish

This concludes the guided exercise.

78 RH294-RHEL8.4-en-1-20210818

Chapter 2 | Implementing an Ansible Playbook

Lab

Implementing Playbooks

Performance Checklist
In this lab, you will configure and perform administrative tasks on managed hosts using a

playbook.

Outcomes
You should be able to construct and execute a playbook to install, configure, and verify the

status of web and database services on a managed host.

Before You Begin
Log in to workstation as student using student as the password.

On workstation, run the lab playbook-review start command. This function

ensures that the managed host, serverb.lab.example.com, is reachable on the network.

It also ensures that the correct Ansible configuration file and inventory file are installed on

the control node.

[student@workstation ~]$ lab playbook-review start

A working directory, /home/student/playbook-review, has been created on

workstation for the Ansible project. The directory has already been populated

with an ansible.cfg configuration file and an inventory file. The managed host,

serverb.lab.example.com, is already defined in this inventory file.

Instructions

Note

The playbook used by this lab is very similar to the one you wrote in the preceding

guided exercise in this chapter. If you do not want to create this lab's playbook from

scratch, you can use that exercise's playbook as a starting point for this lab.

If you do, be careful to target the correct hosts and change the tasks to match the

instructions for this exercise.

1. Create a new playbook, /home/student/playbook-review/internet.yml, and add

the necessary entries to start a first play named Enable internet services and specify

its intended managed host, serverb.lab.example.com. Add an entry to enable privilege

escalation, and one to start a task list.

2. Add the required entries to the /home/student/playbook-review/internet.yml file

to define a task that installs the latest versions of firewalld, httpd, mariadb-server, php, and

php-mysqlnd packages.

RH294-RHEL8.4-en-1-20210818 79

Chapter 2 | Implementing an Ansible Playbook

3. Add the necessary entries to the /home/student/playbook-review/internet.yml
file to define the firewall configuration tasks. They should ensure that the firewalld service

is enabled and running, and that access is allowed to the http service.

4. Add the necessary tasks to ensure the httpd and mariadb services are enabled and

running.

5. Add the necessary entries to define the final task for generating web content for testing.

Use the get_url module to copy http://materials.example.com/labs/playbook-
review/index.php to /var/www/html/ on the managed host.

6. In /home/student/playbook-review/internet.yml, define another play for the task

to be performed on the control node. This play will test access to the web server that should

be running on the serverb managed host. This play does not require privilege escalation,

and will run on the localhost managed host.

7. Add a task that tests the web service running on serverb from the control node using the

uri module. Check for a return status code of 200.

8. Verify the syntax of the internet.yml playbook.

9. Use the ansible-playbook command to run the playbook. Read through the output

generated to ensure that all tasks completed successfully.

Evaluation

Grade your work by running the lab playbook-review grade command from your

workstation machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab playbook-review grade

Finish

On workstation, run the lab playbook-review finish script to clean up the resources

created in this lab.

[student@workstation ~]$ lab playbook-review finish

This concludes the lab.

80 RH294-RHEL8.4-en-1-20210818

Chapter 2 | Implementing an Ansible Playbook

Solution

Implementing Playbooks

Performance Checklist
In this lab, you will configure and perform administrative tasks on managed hosts using a

playbook.

Outcomes
You should be able to construct and execute a playbook to install, configure, and verify the

status of web and database services on a managed host.

Before You Begin
Log in to workstation as student using student as the password.

On workstation, run the lab playbook-review start command. This function

ensures that the managed host, serverb.lab.example.com, is reachable on the network.

It also ensures that the correct Ansible configuration file and inventory file are installed on

the control node.

[student@workstation ~]$ lab playbook-review start

A working directory, /home/student/playbook-review, has been created on

workstation for the Ansible project. The directory has already been populated

with an ansible.cfg configuration file and an inventory file. The managed host,

serverb.lab.example.com, is already defined in this inventory file.

Instructions

Note

The playbook used by this lab is very similar to the one you wrote in the preceding

guided exercise in this chapter. If you do not want to create this lab's playbook from

scratch, you can use that exercise's playbook as a starting point for this lab.

If you do, be careful to target the correct hosts and change the tasks to match the

instructions for this exercise.

1. Create a new playbook, /home/student/playbook-review/internet.yml, and add

the necessary entries to start a first play named Enable internet services and specify

its intended managed host, serverb.lab.example.com. Add an entry to enable privilege

escalation, and one to start a task list.

1.1. Add the following entry to the beginning of /home/student/playbook-review/
internet.yml to begin the YAML format.

RH294-RHEL8.4-en-1-20210818 81

Chapter 2 | Implementing an Ansible Playbook

1.2. Add the following entry to denote the start of a play with a name of Enable
internet services.

- name: Enable internet services

1.3. Add the following entry to indicate that the play applies to the serverb managed host.

 hosts: serverb.lab.example.com

1.4. Add the following entry to enable privilege escalation.

 become: yes

1.5. Add the following entry to define the beginning of the tasks list.

 tasks:

2. Add the required entries to the /home/student/playbook-review/internet.yml file

to define a task that installs the latest versions of firewalld, httpd, mariadb-server, php, and

php-mysqlnd packages.

 - name: latest version of all required packages installed
 yum:
 name:
 - firewalld
 - httpd
 - mariadb-server
 - php
 - php-mysqlnd
 state: latest

3. Add the necessary entries to the /home/student/playbook-review/internet.yml
file to define the firewall configuration tasks. They should ensure that the firewalld service

is enabled and running, and that access is allowed to the http service.

 - name: firewalld enabled and running
 service:
 name: firewalld
 enabled: true
 state: started

 - name: firewalld permits http service
 firewalld:
 service: http
 permanent: true
 state: enabled
 immediate: yes

4. Add the necessary tasks to ensure the httpd and mariadb services are enabled and

running.

82 RH294-RHEL8.4-en-1-20210818

Chapter 2 | Implementing an Ansible Playbook

 - name: httpd enabled and running
 service:
 name: httpd
 enabled: true
 state: started

 - name: mariadb enabled and running
 service:
 name: mariadb
 enabled: true
 state: started

5. Add the necessary entries to define the final task for generating web content for testing.

Use the get_url module to copy http://materials.example.com/labs/playbook-
review/index.php to /var/www/html/ on the managed host.

 - name: test php page is installed
 get_url:
 url: "http://materials.example.com/labs/playbook-review/index.php"
 dest: /var/www/html/index.php
 mode: 0644

6. In /home/student/playbook-review/internet.yml, define another play for the task

to be performed on the control node. This play will test access to the web server that should

be running on the serverb managed host. This play does not require privilege escalation,

and will run on the localhost managed host.

6.1. Add the following entry to denote the start of a second play with a name of Test
internet web server.

- name: Test internet web server

6.2. Add the following entry to indicate that the play applies to the localhost managed

host.

 hosts: localhost

6.3. Add the following line after the hosts keyword to disable privilege escalation for the

second play.

 become: no

6.4. Add an entry to the /home/student/playbook-review/internet.yml file to

define the beginning of the tasks list.

 tasks:

7. Add a task that tests the web service running on serverb from the control node using the

uri module. Check for a return status code of 200.

RH294-RHEL8.4-en-1-20210818 83

Chapter 2 | Implementing an Ansible Playbook

 - name: connect to internet web server
 uri:
 url: http://serverb.lab.example.com
 status_code: 200

8. Verify the syntax of the internet.yml playbook.

[student@workstation playbook-review]$ ansible-playbook --syntax-check \
> internet.yml

playbook: internet.yml

9. Use the ansible-playbook command to run the playbook. Read through the output

generated to ensure that all tasks completed successfully.

[student@workstation playbook-review]$ ansible-playbook internet.yml
PLAY [Enable internet services] **

TASK [Gathering Facts] ***
ok: [serverb.lab.example.com]

TASK [latest version of all required packages installed] ***********************
changed: [serverb.lab.example.com]

TASK [firewalld enabled and running] ***
ok: [serverb.lab.example.com]

TASK [firewalld permits http service] **
changed: [serverb.lab.example.com]

TASK [httpd enabled and running] ***
changed: [serverb.lab.example.com]

TASK [mariadb enabled and running] ***
changed: [serverb.lab.example.com]

TASK [test php page installed] ***
changed: [serverb.lab.example.com]

PLAY [Test internet web server] **

TASK [Gathering Facts] ***
ok: [localhost]

TASK [connect to internet web server] **
ok: [localhost]

PLAY RECAP ***
localhost : ok=2 changed=0 unreachable=0 failed=0
serverb.lab.example.com : ok=7 changed=5 unreachable=0 failed=0

84 RH294-RHEL8.4-en-1-20210818

Chapter 2 | Implementing an Ansible Playbook

Evaluation

Grade your work by running the lab playbook-review grade command from your

workstation machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab playbook-review grade

Finish

On workstation, run the lab playbook-review finish script to clean up the resources

created in this lab.

[student@workstation ~]$ lab playbook-review finish

This concludes the lab.

RH294-RHEL8.4-en-1-20210818 85

Chapter 2 | Implementing an Ansible Playbook

Summary

In this chapter, you learned:

• A play is an ordered list of tasks, which runs against hosts selected from the inventory.

• A playbook is a text file that contains a list of one or more plays to run in order.

• Ansible Playbooks are written in YAML format.

• YAML files are structured using space indentation to represent the data hierarchy.

• Tasks are implemented using standardized code packaged as Ansible modules.

• The ansible-doc command can list installed modules, and provide documentation and

example code snippets of how to use them in playbooks.

• The ansible-playbook command is used to verify playbook syntax and run playbooks.

86 RH294-RHEL8.4-en-1-20210818

Chapter 3

Managing Variables and Facts

Goal Write playbooks that use variables to simplify
management of the playbook and facts to
reference information about managed hosts.

Objectives • Create and reference variables that affect
particular hosts or host groups, the play, or the
global environment, and describe how variable
precedence works.

• Encrypt sensitive variables using Ansible
Vault, and run playbooks that reference Vault-
encrypted variable files.

• Reference data about managed hosts using
Ansible facts, and configure custom facts on
managed hosts.

Sections • Managing Variables (and Guided Exercise)

• Managing Secrets (and Guided Exercise)

• Managing Facts (and Guided Exercise)

Lab • Managing Variables and Facts

RH294-RHEL8.4-en-1-20210818 87

Chapter 3 | Managing Variables and Facts

Managing Variables

Objectives
After completing this section, you should be able to create and reference variables that affect

particular hosts or host groups, the play, or the global environment, and describe how variable

precedence works.

Introduction to Ansible Variables
Ansible supports variables that can be used to store values that can then be reused throughout

files in an Ansible project. This can simplify the creation and maintenance of a project and reduce

the number of errors.

Variables provide a convenient way to manage dynamic values for a given environment in your

Ansible project. Examples of values that variables might contain include:

• Users to create

• Packages to install

• Services to restart

• Files to remove

• Archives to retrieve from the internet

Naming Variables
Variable names must start with a letter, and they can only contain letters, numbers, and

underscores.

The following table illustrates the difference between invalid and valid variable names.

Examples of Invalid and Valid Ansible Variable Names

Invalid variable names Valid variable names

web server web_server

remote.file remote_file

1st file file_1

file1

remoteserver$1 remote_server_1

remote_server1

88 RH294-RHEL8.4-en-1-20210818

Chapter 3 | Managing Variables and Facts

Defining Variables
Variables can be defined in a variety of places in an Ansible project. If a variable is set using the

same name in two places, and those settings have different values, precedence determines which

value is used.

You can set a variable that affects a group of hosts or only individual hosts. Some variables are

facts that can be set by Ansible based on the configuration of a system. Other variables can be set

inside the playbook, and affect one play in that playbook, or only one task in that play. You can also

set extra variables on the ansible-playbook command line by using the --extra-vars or -e
option and specifying those variables, and they override all other values for that variable name.

Here is a simplified list of ways to define a variable, ordered from lowest precedence to highest:

• Group variables defined in the inventory.

• Group variables defined in files in a group_vars subdirectory in the same directory as the

inventory or the playbook.

• Host variables defined in the inventory.

• Host variables defined in files in a host_vars subdirectory in the same directory as the

inventory or the playbook.

• Host facts, discovered at runtime.

• Play variables in the playbook (vars and vars_files).

• Task variables.

• Extra variables defined on the command line.

For example, a variable that is set to affect the all host group will be overridden by a variable that

has the same name and is set to affect a single host.

One recommended practice is to choose globally unique variable names so you do not have to

consider precedence rules. However, sometimes you might want to use precedence to cause

different hosts or host groups to get different settings than your defaults.

If the same variable name is defined at more than one level, the level with the highest precedence

wins. A narrow scope, such as a host variable or a task variable, takes precedence over a wider

scope, such as a group variable or a play variable. Variables defined by the inventory are

overridden by variables defined by the playbook. Extra variables defined on the command line with

the --extra-vars, or -e, option have the highest precedence.

A detailed and more precise discussion of variable precedence is available in the Ansible

documentation at Variable Precedence: Where Should I Put A Variable? [https://docs.ansible.com/

ansible/2.9/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-

variable].

Variables in Playbooks
Variables play an important role in Ansible Playbooks because they ease the management of

variable data in a playbook.

RH294-RHEL8.4-en-1-20210818 89

https://docs.ansible.com/ansible/2.9/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable

Chapter 3 | Managing Variables and Facts

Defining Variables in Playbooks

When writing playbooks, you can define your own variables and then invoke those values in a task.

For example, a variable named web_package can be defined with a value of httpd. A task can

then call the variable using the yum module to install the httpd package.

Playbook variables can be defined in multiple ways. One common method is to place a variable in a

vars block at the beginning of a playbook:

- hosts: all
 vars:
 user: joe
 home: /home/joe

It is also possible to define playbook variables in external files. In this case, instead of using a vars
block in the playbook, the vars_files directive may be used, followed by a list of names for

external variable files relative to the location of the playbook:

- hosts: all
 vars_files:
 - vars/users.yml

The playbook variables are then defined in that file or those files in YAML format:

user: joe
home: /home/joe

Using Variables in Playbooks

After variables have been declared, administrators can use the variables in tasks. Variables are

referenced by placing the variable name in double curly braces ({{ }}). Ansible substitutes the

variable with its value when the task is executed.

vars:
 user: joe

tasks:
 # This line will read: Creates the user joe
 - name: Creates the user {{ user }}
 user:
 # This line will create the user named Joe
 name: "{{ user }}"

90 RH294-RHEL8.4-en-1-20210818

Chapter 3 | Managing Variables and Facts

Important

When a variable is used as the first element to start a value, quotes are mandatory.

This prevents Ansible from interpreting the variable reference as starting a YAML

dictionary. The following message appears if quotes are missing:

yum:
 name: {{ service }}
 ^ here
We could be wrong, but this one looks like it might be an issue with
missing quotes. Always quote template expression brackets when they
start a value. For instance:

 with_items:
 - {{ foo }}

Should be written as:

 with_items:
 - "{{ foo }}"

Host Variables and Group Variables
Inventory variables that apply directly to hosts fall into two broad categories: host variables apply

to a specific host, and group variables apply to all hosts in a host group or in a group of host

groups. Host variables take precedence over group variables, but variables defined by a playbook

take precedence over both.

One way to define host variables and group variables is to do it directly in the inventory file. This is

an older approach and not the easiest to work with, but you might still see it used because it does

put all the inventory information and variable settings for hosts and host groups in one file.

• Defining the ansible_user host variable for demo.example.com:

[servers]
demo.example.com ansible_user=joe

• Defining the user group variable for the servers host group.

[servers]
demo1.example.com
demo2.example.com

[servers:vars]
user=joe

• Defining the user group variable for the servers group, which consists of two host groups

each with two servers.

[servers1]
demo1.example.com
demo2.example.com

RH294-RHEL8.4-en-1-20210818 91

Chapter 3 | Managing Variables and Facts

[servers2]
demo3.example.com
demo4.example.com

[servers:children]
servers1
servers2

[servers:vars]
user=joe

Some disadvantages of this approach are that it makes the inventory file more difficult to work

with, it mixes information about hosts and variables in the same file, and uses an obsolete syntax.

Using Directories to Populate Host and Group Variables

The preferred approach to defining variables for hosts and host groups is to create two directories,

group_vars and host_vars, in the same working directory as the inventory file or playbook.

These directories contain files defining group variables and host variables, respectively.

Important

The recommended practice is to define inventory variables using host_vars and

group_vars directories, and not to define them directly in the inventory files.

To define group variables for the servers group, you would create a YAML file named

group_vars/servers, and then the contents of that file would set variables to values using the

same syntax as in a playbook:

user: joe

Likewise, to define host variables for a particular host, create a file with a name matching the host

in the host_vars directory to contain the host variables.

The following examples illustrate this approach in more detail. Consider a scenario where there

are two data centers to manage and the data center hosts are defined in the ~/project/
inventory inventory file:

[admin@station project]$ cat ~/project/inventory
[datacenter1]
demo1.example.com
demo2.example.com

[datacenter2]
demo3.example.com
demo4.example.com

[datacenters:children]
datacenter1
datacenter2

92 RH294-RHEL8.4-en-1-20210818

Chapter 3 | Managing Variables and Facts

• If you need to define a general value for all servers in both data centers, set a group variable for

the datacenters host group:

[admin@station project]$ cat ~/project/group_vars/datacenters
package: httpd

• If the value to define varies for each data center, set a group variable for each data center host

group:

[admin@station project]$ cat ~/project/group_vars/datacenter1
package: httpd
[admin@station project]$ cat ~/project/group_vars/datacenter2
package: apache

• If the value to be defined varies for each host in every data center, then define the variables in

separate host variable files:

[admin@station project]$ cat ~/project/host_vars/demo1.example.com
package: httpd
[admin@station project]$ cat ~/project/host_vars/demo2.example.com
package: apache
[admin@station project]$ cat ~/project/host_vars/demo3.example.com
package: mariadb-server
[admin@station project]$ cat ~/project/host_vars/demo4.example.com
package: mysql-server

The directory structure for the example project, project, if it contained all the example files

above, would appear as follows:

project
├── ansible.cfg
├── group_vars
│ ├── datacenters
│ ├── datacenters1
│ └── datacenters2
├── host_vars
│ ├── demo1.example.com
│ ├── demo2.example.com
│ ├── demo3.example.com
│ └── demo4.example.com
├── inventory
└── playbook.yml

Note

Ansible looks for host_vars and group_vars subdirectories relative to both

the inventory and the playbook. If your inventory and your playbook happen to be

in the same directory, this is simple and Ansible looks in that directory for those

subdirectories. If your inventory and your playbook are in separate directories, then

Ansible will look in both places for host_vars and group_vars subdirectories.

The playbook subdirectories have higher precedence.

RH294-RHEL8.4-en-1-20210818 93

Chapter 3 | Managing Variables and Facts

Overriding Variables from the Command Line
Inventory variables are overridden by variables set in a playbook, but both kinds of variables may

be overridden through arguments passed to the ansible or ansible-playbook commands on

the command line. Variables set on the command line are called extra variables.

Extra variables can be useful when you need to override the defined value for a variable for a one-

off run of a playbook. For example:

[user@demo ~]$ ansible-playbook main.yml -e "package=apache"

Using Arrays as Variables
Instead of assigning configuration data that relates to the same element (a list of packages, a list

of services, a list of users, and so on), to multiple variables, administrators can use arrays. One

consequence of this is that an array can be browsed.

For example, consider the following snippet:

user1_first_name: Bob
user1_last_name: Jones
user1_home_dir: /users/bjones
user2_first_name: Anne
user2_last_name: Cook
user2_home_dir: /users/acook

This could be rewritten as an array called users:

users:
 bjones:
 first_name: Bob
 last_name: Jones
 home_dir: /users/bjones
 acook:
 first_name: Anne
 last_name: Cook
 home_dir: /users/acook

You can then use the following variables to access user data:

Returns 'Bob'
users.bjones.first_name

Returns '/users/acook'
users.acook.home_dir

Because the variable is defined as a Python dictionary, an alternative syntax is available.

94 RH294-RHEL8.4-en-1-20210818

Chapter 3 | Managing Variables and Facts

Returns 'Bob'
users['bjones']['first_name']

Returns '/users/acook'
users['acook']['home_dir']

Important

The dot notation can cause problems if the key names are the same as names of

Python methods or attributes, such as discard, copy, add, and so on. Using the

brackets notation can help avoid conflicts and errors.

Both syntaxes are valid, but to make troubleshooting easier, Red Hat recommends

that you use one syntax consistently in all files throughout any given Ansible project.

Capturing Command Output with Registered Variables
You can use the register statement to capture the output of a command. The output is saved

into a temporary variable that can be used later in the playbook for either debugging purposes or

to achieve something else, such as a particular configuration based on a command's output.

The following playbook demonstrates how to capture the output of a command for debugging

purposes:

- name: Installs a package and prints the result
 hosts: all
 tasks:
 - name: Install the package
 yum:
 name: httpd
 state: installed
 register: install_result

 - debug:
 var: install_result

When you run the playbook, the debug module is used to dump the value of the

install_result registered variable to the terminal.

[user@demo ~]$ ansible-playbook playbook.yml
PLAY [Installs a package and prints the result] ****************************

TASK [setup] ***
ok: [demo.example.com]

TASK [Install the package] ***
ok: [demo.example.com]

TASK [debug] ***
ok: [demo.example.com] => {
 "install_result": {

RH294-RHEL8.4-en-1-20210818 95

Chapter 3 | Managing Variables and Facts

 "changed": false,
 "msg": "",
 "rc": 0,
 "results": [
 "httpd-2.4.6-40.el7.x86_64 providing httpd is already installed"
]
 }
}

PLAY RECAP ***
demo.example.com : ok=3 changed=0 unreachable=0 failed=0

References

Inventory — Ansible Documentation

https://docs.ansible.com/ansible/2.9/user_guide/intro_inventory.html

Variables — Ansible Documentation

https://docs.ansible.com/ansible/2.9/user_guide/playbooks_variables.html

Variable Precedence: Where Should I Put A Variable?

https://docs.ansible.com/ansible/2.9/user_guide/

playbooks_variables.html#variable-precedence-where-should-i-put-a-variable

YAML Syntax — Ansible Documentation

https://docs.ansible.com/ansible/2.9/reference_appendices/YAMLSyntax.html

96 RH294-RHEL8.4-en-1-20210818

https://docs.ansible.com/ansible/2.9/user_guide/intro_inventory.html
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_variables.html
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.ansible.com/ansible/2.9/reference_appendices/YAMLSyntax.html

Chapter 3 | Managing Variables and Facts

Guided Exercise

Managing Variables

In this exercise, you will define and use variables in a playbook.

Outcomes
You should be able to:

• Define variables in a playbook.

• Create tasks that use defined variables.

Before You Begin
Log in to workstation as student using student as the password.

On workstation, run the lab data-variables start command. This function creates

the data-variables working directory, and populates it with an Ansible configuration file

and host inventory.

[student@workstation ~]$ lab data-variables start

Instructions

 1. On workstation, as the student user, change into the /home/student/data-
variables directory.

[student@workstation ~]$ cd ~/data-variables
[student@workstation data-variables]$

 2. Over the next several steps, you will create a playbook that installs the Apache web server

and opens the ports for the service to be reachable. The playbook queries the web server

to ensure it is up and running.

Create the playbook.yml playbook and define the following variables in the vars
section:

RH294-RHEL8.4-en-1-20210818 97

Chapter 3 | Managing Variables and Facts

Variables

Variable Description

web_pkg Web server package to install.

firewall_pkg Firewall package to install.

web_service Web service to manage.

firewall_service Firewall service to manage.

python_pkg Required package for the uri module.

rule The service name to open.

- name: Deploy and start Apache HTTPD service
 hosts: webserver
 vars:
 web_pkg: httpd
 firewall_pkg: firewalld
 web_service: httpd
 firewall_service: firewalld
 python_pkg: python3-PyMySQL
 rule: http

 3. Create the tasks block and create the first task, which should use the yum module to make

sure the latest versions of the required packages are installed.

 tasks:
 - name: Required packages are installed and up to date
 yum:
 name:
 - "{{ web_pkg }}"
 - "{{ firewall_pkg }}"
 - "{{ python_pkg }}"
 state: latest

Note

You can use ansible-doc yum to review the syntax for the yum module. The

syntax shows that its name directive can take a list of packages that the module

should work with, so that you do not need separate tasks to makes sure each

package is up-to-date.

98 RH294-RHEL8.4-en-1-20210818

Chapter 3 | Managing Variables and Facts

 4. Create two tasks to make sure that the httpd and firewalld services are started and

enabled.

 - name: The {{ firewall_service }} service is started and enabled
 service:
 name: "{{ firewall_service }}"
 enabled: true
 state: started

 - name: The {{ web_service }} service is started and enabled
 service:
 name: "{{ web_service }}"
 enabled: true
 state: started

Note

The service module works differently from the yum module, as documented by

ansible-doc service. Its name directive takes the name of exactly one service

to work with.

You can write a single task that ensures both services are started and enabled, using

the loop keyword covered later in this course.

 5. Add a task that ensures specific content exists in the /var/www/html/index.html file.

 - name: Web content is in place
 copy:
 content: "Example web content"
 dest: /var/www/html/index.html

 6. Add a task that uses the firewalld module to ensure the firewall ports are open for the

firewalld service named in the rule variable.

 - name: The firewall port for {{ rule }} is open
 firewalld:
 service: "{{ rule }}"
 permanent: true
 immediate: true
 state: enabled

 7. Create a new play that queries the web service to ensure everything has been correctly

configured. It should run on localhost. Because of that Ansible fact, Ansible does not

have to change identity, so set the become module to false. You can use the uri module

RH294-RHEL8.4-en-1-20210818 99

Chapter 3 | Managing Variables and Facts

to check a URL. For this task, check for a status code of 200 to confirm the web server on

servera.lab.example.com is running and correctly configured.

- name: Verify the Apache service
 hosts: localhost
 become: false
 tasks:
 - name: Ensure the webserver is reachable
 uri:
 url: http://servera.lab.example.com
 status_code: 200

 8. When completed, the playbook should appear as follows. Review the playbook and confirm

that both plays are correct.

- name: Deploy and start Apache HTTPD service
 hosts: webserver
 vars:
 web_pkg: httpd
 firewall_pkg: firewalld
 web_service: httpd
 firewall_service: firewalld
 python_pkg: python3-PyMySQL
 rule: http

 tasks:
 - name: Required packages are installed and up to date
 yum:
 name:
 - "{{ web_pkg }}"
 - "{{ firewall_pkg }}"
 - "{{ python_pkg }}"
 state: latest

 - name: The {{ firewall_service }} service is started and enabled
 service:
 name: "{{ firewall_service }}"
 enabled: true
 state: started

 - name: The {{ web_service }} service is started and enabled
 service:
 name: "{{ web_service }}"
 enabled: true
 state: started

 - name: Web content is in place
 copy:
 content: "Example web content"
 dest: /var/www/html/index.html

 - name: The firewall port for {{ rule }} is open
 firewalld:

100 RH294-RHEL8.4-en-1-20210818

Chapter 3 | Managing Variables and Facts

 service: "{{ rule }}"
 permanent: true
 immediate: true
 state: enabled

- name: Verify the Apache service
 hosts: localhost
 become: false
 tasks:
 - name: Ensure the webserver is reachable
 uri:
 url: http://servera.lab.example.com
 status_code: 200

 9. Before you run the playbook, use the ansible-playbook --syntax-check command

to verify its syntax. If it reports any errors, correct them before moving to the next step. You

should see output similar to the following:

[student@workstation data-variables]$ ansible-playbook --syntax-check playbook.yml

playbook: playbook.yml

 10. Use the ansible-playbook command to run the playbook. Watch the output as Ansible

installs the packages, starts and enables the services, and ensures the web server is

reachable.

[student@workstation data-variables]$ ansible-playbook playbook.yml

PLAY [Deploy and start Apache HTTPD service] ***********************************

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

TASK [Required packages are installed and up to date] **************************
changed: [servera.lab.example.com]

TASK [The firewalld service is started and enabled] ****************************
ok: [servera.lab.example.com]

TASK [The httpd service is started and enabled] ********************************
changed: [servera.lab.example.com]

TASK [Web content is in place] ***
changed: [servera.lab.example.com]

TASK [The firewall port for http is open] **************************************
changed: [servera.lab.example.com]

PLAY [Verify the Apache service] ***

TASK [Gathering Facts] ***
ok: [localhost]

RH294-RHEL8.4-en-1-20210818 101

Chapter 3 | Managing Variables and Facts

TASK [Ensure the webserver is reachable] ***************************************
ok: [localhost]

PLAY RECAP ***
localhost : ok=2 changed=0 unreachable=0 failed=0
servera.lab.example.com : ok=6 changed=4 unreachable=0 failed=0

Finish

On workstation, run the lab data-variables finish script to clean up this exercise.

[student@workstation ~]$ lab data-variables finish

This concludes the guided exercise.

102 RH294-RHEL8.4-en-1-20210818

Chapter 3 | Managing Variables and Facts

Managing Secrets

Objectives
After completing this section, you should be able to encrypt sensitive variables using Ansible Vault,

and run playbooks that reference Vault-encrypted variable files.

Introducing Ansible Vault
Ansible may need access to sensitive data such as passwords or API keys in order to configure

managed hosts. Normally, this information might be stored as plain text in inventory variables

or other Ansible files. In that case, however, any user with access to the Ansible files or a version

control system which stores the Ansible files would have access to this sensitive data. This poses

an obvious security risk.

Ansible Vault, which is included with Ansible, can be used to encrypt and decrypt any structured

data file used by Ansible. To use Ansible Vault, a command-line tool named ansible-vault is

used to create, edit, encrypt, decrypt, and view files. Ansible Vault can encrypt any structured data

file used by Ansible. This might include inventory variables, included variable files in a playbook,

variable files passed as arguments when executing the playbook, or variables defined in Ansible

roles.

Important

Ansible Vault does not implement its own cryptographic functions but rather uses

an external Python toolkit. Files are protected with symmetric encryption using

AES256 with a password as the secret key. Note that the way this is done has not

been formally audited by a third party.

Creating an Encrypted File

To create a new encrypted file, use the ansible-vault create filename command. The

command prompts for the new vault password and then opens a file using the default editor, vi.

You can set and export the EDITOR environment variable to specify a different default editor by

setting and exporting. For example, to set the default editor to nano, export EDITOR=nano.

[student@demo ~]$ ansible-vault create secret.yml
New Vault password: redhat
Confirm New Vault password: redhat

Instead of entering the vault password through standard input, you can use a vault password file

to store the vault password. You need to carefully protect this file using file permissions and other

means.

[student@demo ~]$ ansible-vault create --vault-password-file=vault-pass secret.yml

The cipher used to protect files is AES256 in recent versions of Ansible, but files encrypted with

older versions may still use 128-bit AES.

RH294-RHEL8.4-en-1-20210818 103

Chapter 3 | Managing Variables and Facts

Viewing an Encrypted File

You can use the ansible-vault view filename command to view an Ansible Vault-

encrypted file without opening it for editing.

[student@demo ~]$ ansible-vault view secret1.yml
Vault password: secret
my_secret: "yJJvPqhsiusmmPPZdnjndkdnYNDjdj782meUZcw"

Editing an Existing Encrypted File

To edit an existing encrypted file, Ansible Vault provides the ansible-vault edit filename
command. This command decrypts the file to a temporary file and allows you to edit it. When

saved, it copies the content and removes the temporary file.

[student@demo ~]$ ansible-vault edit secret.yml
Vault password: redhat

Note

The edit subcommand always rewrites the file, so you should only use it when

making changes. This can have implications when the file is kept under version

control. You should always use the view subcommand to view the file's contents

without making changes.

Encrypting an Existing File

To encrypt a file that already exists, use the ansible-vault encrypt filename command.

This command can take the names of multiple files to be encrypted as arguments.

[student@demo ~]$ ansible-vault encrypt secret1.yml secret2.yml
New Vault password: redhat
Confirm New Vault password: redhat
Encryption successful

Use the --output=OUTPUT_FILE option to save the encrypted file with a new name. You can

only use one input file with the --output option.

Decrypting an Existing File

An existing encrypted file can be permanently decrypted by using the ansible-vault decrypt
filename command. When decrypting a single file, you can use the --output option to save the

decrypted file under a different name.

[student@demo ~]$ ansible-vault decrypt secret1.yml --output=secret1-decrypted.yml
Vault password: redhat
Decryption successful

104 RH294-RHEL8.4-en-1-20210818

Chapter 3 | Managing Variables and Facts

Changing the Password of an Encrypted File

You can use the ansible-vault rekey filename command to change the password of an

encrypted file. This command can rekey multiple data files at once. It prompts for the original

password and then the new password.

[student@demo ~]$ ansible-vault rekey secret.yml
Vault password: redhat
New Vault password: RedHat
Confirm New Vault password: RedHat
Rekey successful

When using a vault password file, use the --new-vault-password-file option:

[student@demo ~]$ ansible-vault rekey \
> --new-vault-password-file=NEW_VAULT_PASSWORD_FILE secret.yml

Playbooks and Ansible Vault
To run a playbook that accesses files encrypted with Ansible Vault, you need to provide the

encryption password to the ansible-playbook command. If you do not provide the password,

the playbook returns an error:

[student@demo ~]$ ansible-playbook site.yml
ERROR: A vault password must be specified to decrypt vars/api_key.yml

To provide the vault password to the playbook, use the --vault-id option. For example, to

provide the vault password interactively, use --vault-id @prompt as illustrated in the following

example:

[student@demo ~]$ ansible-playbook --vault-id @prompt site.yml
Vault password (default): redhat

Important

If you are using a release of Ansible earlier than version 2.4, you need to use the --
ask-vault-pass option to interactively provide the vault password. You can still

use this option if all vault-encrypted files used by the playbook were encrypted with

the same password.

[student@demo ~]$ ansible-playbook --ask-vault-pass site.yml
Vault password: redhat

Alternatively, you can use the --vault-password-file option to specify a file that stores the

encryption password in plain text. The password should be a string stored as a single line in the file.

Because that file contains the sensitive plain text password, it is vital that it be protected through

file permissions and other security measures.

[student@demo ~]$ ansible-playbook --vault-password-file=vault-pw-file site.yml

RH294-RHEL8.4-en-1-20210818 105

Chapter 3 | Managing Variables and Facts

You can also use the ANSIBLE_VAULT_PASSWORD_FILE environment variable to specify the

default location of the password file.

Important

Starting with Ansible 2.4, you can use multiple Ansible Vault passwords with

ansible-playbook. To use multiple passwords, pass multiple --vault-id or --
vault-password-file options to the ansible-playbook command.

[student@demo ~]$ ansible-playbook \
> --vault-id one@prompt --vault-id two@prompt site.yml
Vault password (one):
Vault password (two):
...output omitted...

The vault IDs one and two preceding @prompt can be anything and you can even

omit them entirely. If you use the --vault-id id option when you encrypt a file

with ansible-vault command, however, when you run ansible-playbook then

the password for the matching ID is tried before any others. If it does not match, the

other passwords you provided will be tried next. The vault ID @prompt with no ID is

actually shorthand for default@prompt, which means to prompt for the password

for vault ID default.

Recommended Practices for Variable File Management

To simplify management, it makes sense to set up your Ansible project so that sensitive variables

and all other variables are kept in separate files. The files containing sensitive variables can then be

protected with the ansible-vault command.

Remember that the preferred way to manage group variables and host variables is to create

directories at the playbook level. The group_vars directory normally contains variable files with

names matching host groups to which they apply. The host_vars directory normally contains

variable files with names matching host names of managed hosts to which they apply.

However, instead of using files in group_vars or host_vars, you also can use directories for

each host group or managed host. Those directories can then contain multiple variable files, all of

which are used by the host group or managed host. For example, in the following project directory

for playbook.yml, members of the webservers host group uses variables in the group_vars/
webservers/vars file, and demo.example.com uses the variables in both host_vars/
demo.example.com/vars and host_vars/demo.example.com/vault:

.
├── ansible.cfg
├── group_vars
│ └── webservers
│ └── vars
├── host_vars
│ └── demo.example.com
│ ├── vars
│ └── vault
├── inventory
└── playbook.yml

106 RH294-RHEL8.4-en-1-20210818

Chapter 3 | Managing Variables and Facts

In this scenario, the advantage is that most variables for demo.example.com can be placed in

the vars file, but sensitive variables can be kept secret by placing them separately in the vault
file. Then the administrator can use ansible-vault to encrypt the vault file, while leaving the

vars file as plain text.

There is nothing special about the file names being used in this example inside the host_vars/
demo.example.com directory. That directory could contain more files, some encrypted by

Ansible Vault and some which are not.

Playbook variables (as opposed to inventory variables) can also be protected with Ansible Vault.

Sensitive playbook variables can be placed in a separate file which is encrypted with Ansible

Vault and which is included in the playbook through a vars_files directive. This can be useful,

because playbook variables take precedence over inventory variables.

If you are using multiple vault passwords with your playbook, make sure that each encrypted file

is assigned a vault ID, and that you enter the matching password with that vault ID when running

the playbook. This ensures that the correct password is selected first when decrypting the vault-

encrypted file, which is faster than forcing Ansible to try all the vault passwords you provided until

it finds the right one.

References

ansible-playbook(1) and ansible-vault(1) man pages

Encrypting content with Ansible Vault — Ansible Documentation

https://docs.ansible.com/ansible/2.9/user_guide/vault.html

Keep vaulted variables safely visible — Ansible Documentation

https://docs.ansible.com/ansible/2.9/user_guide/

playbooks_best_practices.html#keep-vaulted-variables-safely-visible

RH294-RHEL8.4-en-1-20210818 107

https://docs.ansible.com/ansible/2.9/user_guide/vault.html
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_best_practices.html#keep-vaulted-variables-safely-visible
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_best_practices.html#keep-vaulted-variables-safely-visible

Chapter 3 | Managing Variables and Facts

Guided Exercise

Managing Secrets

In this exercise, you will encrypt sensitive variables with Ansible Vault to protect them, and

then run a playbook that uses those variables.

Outcomes
You should be able to:

• Execute a playbook using variables defined in an encrypted file.

Before You Begin
Log in to workstation as student using student as the password.

On workstation, run the lab data-secret start command. This script ensures

that Ansible is installed on workstation and creates a working directory for this exercise.

This directory includes an inventory file that points to servera.lab.example.com as a

managed host, which is part of the devservers group.

[student@workstation ~]$ lab data-secret start

Instructions

 1. On workstation, as the student user, change to the /home/student/data-secret
working directory.

[student@workstation ~]$ cd ~/data-secret
[student@workstation data-secret]$

 2. Edit the contents of the provided encrypted file, secret.yml. The file can be decrypted

using redhat as the password. Uncomment the username and pwhash variable entries.

2.1. Edit the encrypted file /home/student/data-secret/secret.yml. Provide a

password of redhat for the vault when prompted. The encrypted file opens in the

default editor, vim.

[student@workstation data-secret]$ ansible-vault edit secret.yml
Vault password: redhat

2.2. Uncomment the two variable entries, then save the file and exit the editor. They

should appear as follows:

username: ansibleuser1
pwhash: 6jf...uxhP1

108 RH294-RHEL8.4-en-1-20210818

Chapter 3 | Managing Variables and Facts

 3. Create a playbook named /home/student/data-secret/create_users.yml
that uses the variables defined in the /home/student/data-secret/secret.yml
encrypted file.

Configure the playbook to use the devservers host group. Run this playbook as

the devops user on the remote managed host. Configure the playbook to create the

ansibleuser1 user defined by the username variable. Set the user's password using the

password hash stored in the pwhash variable.

- name: create user accounts for all our servers
 hosts: devservers
 become: True
 remote_user: devops
 vars_files:
 - secret.yml
 tasks:
 - name: Creating user from secret.yml
 user:
 name: "{{ username }}"
 password: "{{ pwhash }}"

 4. Use the ansible-playbook --syntax-check command to verify the syntax of the

create_users.yml playbook. Use the --ask-vault-pass option to prompt for

the vault password, which decrypts secret.yml. Resolve any syntax errors before you

continue.

[student@workstation data-secret]$ ansible-playbook --syntax-check \
> --ask-vault-pass create_users.yml
Vault password (default): redhat

playbook: create_users.yml

Note

Instead of using --ask-vault-pass, you can use the newer --vault-id
@prompt option to do the same thing.

 5. Create a password file named vault-pass to use for the playbook execution instead of

asking for a password. The file must contain the plain text redhat as the vault password.

Change the permissions of the file to 0600.

[student@workstation data-secret]$ echo 'redhat' > vault-pass
[student@workstation data-secret]$ chmod 0600 vault-pass

RH294-RHEL8.4-en-1-20210818 109

Chapter 3 | Managing Variables and Facts

 6. Execute the Ansible Playbook using the vault-pass file, to create the ansibleuser1
user on a remote system using the passwords stored as variables in the secret.yml
Ansible Vault encrypted file.

[student@workstation data-secret]$ ansible-playbook \
> --vault-password-file=vault-pass create_users.yml

PLAY [create user accounts for all our servers] ********************************

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

TASK [Creating users from secret.yml] **
changed: [servera.lab.example.com]

PLAY RECAP ***
servera.lab.example.com : ok=2 changed=1 unreachable=0 failed=0

 7. Verify that the playbook ran correctly. The user ansibleuser1 should exist and have the

correct password on servera.lab.example.com. Test this by using ssh to log in as that

user on servera.lab.example.com. The password for ansibleuser1 is redhat. To

make sure that SSH only tries to authenticate by password and not by an SSH key, use the -
o PreferredAuthentications=password option when you log in.

Log off from servera when you have successfully logged in.

[student@workstation data-secret]$ ssh -o PreferredAuthentications=password \
> ansibleuser1@servera.lab.example.com
ansibleuser1@servera.lab.example.com's password: redhat
Activate the web console with: systemctl enable --now cockpit.socket

[ansibleuser1@servera ~]$ exit
logout
Connection to servera.lab.example.com closed.

Finish

On workstation, run the lab data-secret finish script to clean up this exercise.

[student@workstation ~]$ lab data-secret finish

This concludes the guided exercise.

110 RH294-RHEL8.4-en-1-20210818

Chapter 3 | Managing Variables and Facts

Managing Facts

Objectives
After completing this section, you should be able to reference data about managed hosts using

Ansible facts, and configure custom facts on managed hosts.

Describing Ansible Facts
Ansible facts are variables that are automatically discovered by Ansible on a managed host. Facts

contain host-specific information that can be used just like regular variables in plays, conditionals,

loops, or any other statement that depends on a value collected from a managed host.

Some of the facts gathered for a managed host might include:

• The host name

• The kernel version

• The network interfaces

• The IP addresses

• The version of the operating system

• Various environment variables

• The number of CPUs

• The available or free memory

• The available disk space

Facts are a convenient way to retrieve the state of a managed host and to determine what action

to take based on that state. For example:

• A server can be restarted by a conditional task which is run based on a fact containing the

managed host's current kernel version.

• The MySQL configuration file can be customized depending on the available memory reported

by a fact.

• The IPv4 address used in a configuration file can be set based on the value of a fact.

Normally, every play runs the setup module automatically before the first task in order to gather

facts. This is reported as the Gathering Facts task in Ansible 2.3 and later, or simply as setup
in older versions of Ansible. By default, you do not need to have a task to run setup in your play. It

is normally run automatically for you.

One way to see what facts are gathered for your managed hosts is to run a short playbook that

gathers facts and uses the debug module to print the value of the ansible_facts variable.

RH294-RHEL8.4-en-1-20210818 111

Chapter 3 | Managing Variables and Facts

- name: Fact dump
 hosts: all
 tasks:
 - name: Print all facts
 debug:
 var: ansible_facts

When you run the playbook, the facts are displayed in the job output:

[user@demo ~]$ ansible-playbook facts.yml

PLAY [Fact dump] ***

TASK [Gathering Facts] ***
ok: [demo1.example.com]

TASK [Print all facts] ***
ok: [demo1.example.com] => {
 "ansible_facts": {
 "all_ipv4_addresses": [
 "172.25.250.10"
],
 "all_ipv6_addresses": [
 "fe80::5054:ff:fe00:fa0a"
],
 "ansible_local": {},
 "apparmor": {
 "status": "disabled"
 },
 "architecture": "x86_64",
 "bios_date": "01/01/2011",
 "bios_version": "0.5.1",
 "cmdline": {
 "BOOT_IMAGE": "/boot/vmlinuz-3.10.0-327.el7.x86_64",
 "LANG": "en_US.UTF-8",
 "console": "ttyS0,115200n8",
 "crashkernel": "auto",
 "net.ifnames": "0",
 "no_timer_check": true,
 "ro": true,
 "root": "UUID=2460ab6e-e869-4011-acae-31b2e8c05a3b"
 },
...output omitted...

The playbook displays the content of the ansible_facts variable in JSON format as a hash/

dictionary of variables. You can browse the output to see what facts are gathered, to find facts

that you might want to use in your plays.

The following table shows some facts which might be gathered from a managed node and may be

useful in a playbook:

112 RH294-RHEL8.4-en-1-20210818

Chapter 3 | Managing Variables and Facts

Examples of Ansible Facts

Fact Variable

Short host name ansible_facts['hostname']

Fully qualified domain name ansible_facts['fqdn']

Main IPv4 address (based on

routing)

ansible_facts['default_ipv4']['address']

List of the names of all

network interfaces

ansible_facts['interfaces']

Size of the /dev/vda1 disk

partition

ansible_facts['devices']['vda']['partitions']
['vda1']['size']

List of DNS servers ansible_facts['dns']['nameservers']

Version of the currently

running kernel

ansible_facts['kernel']

Note

Remember that when a variable's value is a hash/dictionary, there are two syntaxes

that can be used to retrieve the value. To take two examples from the preceding

table:

• ansible_facts['default_ipv4']['address'] can also be written

ansible_facts.default_ipv4.address

• ansible_facts['dns']['nameservers'] can also be written

ansible_facts.dns.nameservers

When a fact is used in a playbook, Ansible dynamically substitutes the variable name for the fact

with the corresponding value:

- hosts: all
 tasks:
 - name: Prints various Ansible facts
 debug:
 msg: >
 The default IPv4 address of {{ ansible_facts.fqdn }}
 is {{ ansible_facts.default_ipv4.address }}

The following output shows how Ansible was able to query the managed node and dynamically use

the system information to update the variable. Facts can also be used to create dynamic groups of

hosts that match particular criteria.

[user@demo ~]$ ansible-playbook playbook.yml
PLAY ***

TASK [Gathering Facts] ***

RH294-RHEL8.4-en-1-20210818 113

Chapter 3 | Managing Variables and Facts

ok: [demo1.example.com]

TASK [Prints various Ansible facts] **
ok: [demo1.example.com] => {
 "msg": "The default IPv4 address of demo1.example.com is
 172.25.250.10"
}

PLAY RECAP ***
demo1.example.com : ok=2 changed=0 unreachable=0 failed=0

Ansible Facts Injected as Variables
Before Ansible 2.5, facts were injected as individual variables prefixed with the string

ansible_ instead of being part of the ansible_facts variable. For example, the

ansible_facts['distribution'] fact would have been called ansible_distribution.

Many older playbooks still use facts injected as variables instead of the new syntax that is

namespaced under the ansible_facts variable. You can use an ad hoc command to run the

setup module to print the value of all facts in this form. In the following example, an ad hoc

command is used to run the setup module on the managed host demo1.example.com:

[user@demo ~]$ ansible demo1.example.com -m setup
demo1.example.com | SUCCESS => {
 "ansible_facts": {
 "ansible_all_ipv4_addresses": [
 "172.25.250.10"
],
 "ansible_all_ipv6_addresses": [
 "fe80::5054:ff:fe00:fa0a"
],
 "ansible_apparmor": {
 "status": "disabled"
 },
 "ansible_architecture": "x86_64",
 "ansible_bios_date": "01/01/2011",
 "ansible_bios_version": "0.5.1",
 "ansible_cmdline": {
 "BOOT_IMAGE": "/boot/vmlinuz-3.10.0-327.el7.x86_64",
 "LANG": "en_US.UTF-8",
 "console": "ttyS0,115200n8",
 "crashkernel": "auto",
 "net.ifnames": "0",
 "no_timer_check": true,
 "ro": true,
 "root": "UUID=2460ab6e-e869-4011-acae-31b2e8c05a3b"
 }
...output omitted...

The following table compares the old and new fact names.

114 RH294-RHEL8.4-en-1-20210818

Chapter 3 | Managing Variables and Facts

Comparison of Selected Ansible Fact Names

ansible_facts form Old fact variable form

ansible_facts['hostname'] ansible_hostname

ansible_facts['fqdn'] ansible_fqdn

ansible_facts['default_ipv4']
['address']

ansible_default_ipv4['address']

ansible_facts['interfaces'] ansible_interfaces

ansible_facts['devices']['vda']
['partitions']['vda1']['size']

ansible_devices['vda']
['partitions']['vda1']['size']

ansible_facts['dns']
['nameservers']

ansible_dns['nameservers']

ansible_facts['kernel'] ansible_kernel

Important

Currently, Ansible recognizes both the new fact naming system (using

ansible_facts) and the old pre-2.5 "facts injected as separate variables" naming

system.

You can turn off the old naming system by setting the inject_facts_as_vars
parameter in the [default] section of the Ansible configuration file to false. The

default setting is currently true.

The default value of inject_facts_as_vars will probably change to false
in a future version of Ansible. If it is set to false, you can only reference Ansible

facts using the new ansible_facts.* naming system. In that case, attempts to

reference facts through the old namespace results in the following error:

...output omitted...
TASK [Show me the facts] ***
fatal: [demo.example.com]: FAILED! => {"msg": "The task includes an option
 with an undefined variable. The error was: 'ansible_distribution' is
 undefined\n\nThe error appears to have been in
 '/home/student/demo/playbook.yml': line 5, column 7, but may\nbe elsewhere in
 the file depending on the exact syntax problem.\n\nThe offending line appears
 to be:\n\n tasks:\n - name: Show me the facts\n ^ here\n"}
...output omitted...

Turning Off Fact Gathering
Sometimes, you do not want to gather facts for your play. There are a couple of reasons why this

might be the case. It might be that you are not using any facts and want to speed up the play or

reduce load caused by the play on the managed hosts. It might be that the managed hosts cannot

run the setup module for some reason, or need to install some prerequisite software before

gathering facts.

RH294-RHEL8.4-en-1-20210818 115

Chapter 3 | Managing Variables and Facts

To disable fact gathering for a play, set the gather_facts keyword to no:

- name: This play gathers no facts automatically
 hosts: large_farm
 gather_facts: no

Even if gather_facts: no is set for a play, you can manually gather facts at any time by running

a task that uses the setup module:

 tasks:
 - name: Manually gather facts
 setup:
...output omitted...

Creating Custom Facts
Administrators can create custom facts which are stored locally on each managed host. These

facts are integrated into the list of standard facts gathered by the setup module when it runs on

the managed host. These allow the managed host to provide arbitrary variables to Ansible which

can be used to adjust the behavior of plays.

Custom facts can be defined in a static file, formatted as an INI file or using JSON. They can also

be executable scripts which generate JSON output.

Custom facts allow administrators to define certain values for managed hosts, which plays might

use to populate configuration files or conditionally run tasks. Dynamic custom facts allow the

values for these facts, or even which facts are provided, to be determined programmatically when

the play is run.

By default, the setup module loads custom facts from files and scripts in each managed host's

/etc/ansible/facts.d directory. The name of each file or script must end in .fact in

order to be used. Dynamic custom fact scripts must output JSON-formatted facts and must be

executable.

This is an example of a static custom facts file written in INI format. An INI-formatted custom facts

file contains a top level defined by a section, followed by the key-value pairs of the facts to define:

[packages]
web_package = httpd
db_package = mariadb-server

[users]
user1 = joe
user2 = jane

The same facts could be provided in JSON format. The following JSON facts are equivalent to the

facts specified by the INI format in the preceding example. The JSON data could be stored in a

static text file or printed to standard output by an executable script:

{
 "packages": {
 "web_package": "httpd",

116 RH294-RHEL8.4-en-1-20210818

Chapter 3 | Managing Variables and Facts

 "db_package": "mariadb-server"
 },
 "users": {
 "user1": "joe",
 "user2": "jane"
 }
}

Note

Custom fact files cannot be in YAML format like a playbook. JSON format is the

closest equivalent.

Custom facts are stored by the setup module in the ansible_facts['ansible_local']
variable. Facts are organized based on the name of the file that defined them. For

example, assume that the preceding custom facts are produced by a file saved as /etc/
ansible/facts.d/custom.fact on the managed host. In that case, the value of

ansible_facts['ansible_local']['custom']['users']['user1'] is joe.

You can inspect the structure of your custom facts by running the setup module on the managed

hosts with an ad hoc command.

[user@demo ~]$ ansible demo1.example.com -m setup
demo1.example.com | SUCCESS => {
 "ansible_facts": {
...output omitted...
 "ansible_local": {
 "custom": {
 "packages": {
 "db_package": "mariadb-server",
 "web_package": "httpd"
 },
 "users": {
 "user1": "joe",
 "user2": "jane"
 }
 }
 },
...output omitted...
 },
 "changed": false
}

Custom facts can be used the same way as default facts in playbooks:

[user@demo ~]$ cat playbook.yml

- hosts: all
 tasks:
 - name: Prints various Ansible facts
 debug:
 msg: >
 The package to install on {{ ansible_facts['fqdn'] }}

RH294-RHEL8.4-en-1-20210818 117

Chapter 3 | Managing Variables and Facts

 is {{ ansible_facts['ansible_local']['custom']['packages']
['web_package'] }}

[user@demo ~]$ ansible-playbook playbook.yml
PLAY ***

TASK [Gathering Facts] ***
ok: [demo1.example.com]

TASK [Prints various Ansible facts] **
ok: [demo1.example.com] => {
 "msg": "The package to install on demo1.example.com is httpd"
}

PLAY RECAP ***
demo1.example.com : ok=2 changed=0 unreachable=0 failed=0

Using Magic Variables
Some variables are not facts or configured through the setup module, but are also automatically

set by Ansible. These magic variables can also be useful to get information specific to a particular

managed host.

Four of the most useful are:

hostvars
Contains the variables for managed hosts, and can be used to get the values for another

managed host's variables. It does not include the managed host's facts if they have not yet

been gathered for that host.

group_names
Lists all groups the current managed host is in.

groups
Lists all groups and hosts in the inventory.

inventory_hostname
Contains the host name for the current managed host as configured in the inventory. This may

be different from the host name reported by facts for various reasons.

There are a number of other "magic variables" as well. For more information, see https://

docs.ansible.com/ansible/2.9/user_guide/playbooks_variables.html#variable-precedence-where-

should-i-put-a-variable. One way to get insight into their values is to use the debug module to

report on the contents of the hostvars variable for a particular host:

[user@demo ~]$ ansible localhost -m debug -a 'var=hostvars["localhost"]'
localhost | SUCCESS => {
 "hostvars[\"localhost\"]": {
 "ansible_check_mode": false,
 "ansible_connection": "local",
 "ansible_diff_mode": false,
 "ansible_facts": {},
 "ansible_forks": 5,
 "ansible_inventory_sources": [
 "/home/student/demo/inventory"
],

118 RH294-RHEL8.4-en-1-20210818

https://docs.ansible.com/ansible/2.9/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable

Chapter 3 | Managing Variables and Facts

 "ansible_playbook_python": "/usr/bin/python2",
 "ansible_python_interpreter": "/usr/bin/python2",
 "ansible_verbosity": 0,
 "ansible_version": {
 "full": "2.7.0",
 "major": 2,
 "minor": 7,
 "revision": 0,
 "string": "2.7.0"
 },
 "group_names": [],
 "groups": {
 "all": [
 "serverb.lab.example.com"
],
 "ungrouped": [],
 "webservers": [
 "serverb.lab.example.com"
]
 },
 "inventory_hostname": "localhost",
 "inventory_hostname_short": "localhost",
 "omit": "__omit_place_holder__18d132963728b2cbf7143dd49dc4bf5745fe5ec3",
 "playbook_dir": "/home/student/demo"
 }
}

References

setup - Gathers facts about remote hosts — Ansible Documentation

https://docs.ansible.com/ansible/2.9/modules/setup_module.html

Variables discovered from systems: Facts — Ansible Documentation

https://docs.ansible.com/ansible/2.9/user_guide/

playbooks_variables.html#variables-discovered-from-systems-facts

RH294-RHEL8.4-en-1-20210818 119

https://docs.ansible.com/ansible/2.9/modules/setup_module.html
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_variables.html#variables-discovered-from-systems-facts
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_variables.html#variables-discovered-from-systems-facts

Chapter 3 | Managing Variables and Facts

Guided Exercise

Managing Facts

In this exercise, you will gather Ansible facts from a managed host and use them in plays.

Outcomes
You should be able to:

• Gather facts from a host.

• Create tasks that use the gathered facts.

Before You Begin
Log in to workstation as student using student as the password.

On workstation, run the lab data-facts start command. This script creates the

working directory, data-facts, and populates it with an Ansible configuration file and host

inventory.

[student@workstation ~]$ lab data-facts start

Instructions

 1. On workstation, as the student user, change into the /home/student/data-facts
directory.

[student@workstation ~]$ cd ~/data-facts
[student@workstation data-facts]$

 2. The Ansible setup module retrieves facts from systems. Run an ad hoc command to

retrieve the facts for all servers in the webserver group. The output displays all the facts

gathered for servera.lab.example.com in JSON format. Review some of the variables

displayed.

[student@workstation data-facts]$ ansible webserver -m setup
...output omitted...
servera.lab.example.com | SUCCESS => {
 "ansible_facts": {
 "ansible_all_ipv4_addresses": [
 "172.25.250.10"
],
 "ansible_all_ipv6_addresses": [
 "fe80::2937:3aa3:ea8d:d3b1"
],
...output omitted...

120 RH294-RHEL8.4-en-1-20210818

Chapter 3 | Managing Variables and Facts

 3. On workstation, create a fact file named /home/student/data-facts/
custom.fact. The fact file defines the package to install and the service to start on

servera. The file should read as follows:

[general]
package = httpd
service = httpd
state = started
enabled = true

 4. Create the setup_facts.yml playbook to make the /etc/ansible/facts.d remote

directory and to save the custom.fact file to that directory.

- name: Install remote facts
 hosts: webserver
 vars:
 remote_dir: /etc/ansible/facts.d
 facts_file: custom.fact
 tasks:
 - name: Create the remote directory
 file:
 state: directory
 recurse: yes
 path: "{{ remote_dir }}"
 - name: Install the new facts
 copy:
 src: "{{ facts_file }}"
 dest: "{{ remote_dir }}"

 5. Run an ad hoc command with the setup module. Search for the ansible_local section

in the output. There should not be any custom facts at this point.

[student@workstation data-facts]$ ansible webserver -m setup
servera.lab.example.com | SUCCESS => {
 "ansible_facts": {
...output omitted...
 "ansible_local": {}
...output omitted...
 },
 "changed": false
}

 6. Before running the playbook, verify its syntax is correct by running ansible-playbook
--syntax-check. If it reports any errors, correct them before moving to the next step.

You should see output similar to the following:

[student@workstation data-facts]$ ansible-playbook --syntax-check setup_facts.yml

playbook: setup_facts.yml

RH294-RHEL8.4-en-1-20210818 121

Chapter 3 | Managing Variables and Facts

 7. Run the setup_facts.yml playbook.

[student@workstation data-facts]$ ansible-playbook setup_facts.yml

PLAY [Install remote facts] **

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

TASK [Create the remote directory] ***
changed: [servera.lab.example.com]

TASK [Install the new facts] ***
changed: [servera.lab.example.com]

PLAY RECAP ***
servera.lab.example.com : ok=3 changed=2 unreachable=0 failed=0

 8. It is now possible to create the main playbook that uses both default and user facts to

configure servera. Over the next several steps, you will add to the playbook file. Create

the playbook playbook.yml with the following:

- name: Install Apache and starts the service
 hosts: webserver

 9. Continue editing the playbook.yml file by creating the first task that installs the httpd

package. Use the user fact for the name of the package.

 tasks:
 - name: Install the required package
 yum:
 name: "{{ ansible_facts['ansible_local']['custom']['general']
['package'] }}"
 state: latest

 10. Create another task that uses the custom fact to start the httpd service.

 - name: Start the service
 service:
 name: "{{ ansible_facts['ansible_local']['custom']['general']
['service'] }}"
 state: "{{ ansible_facts['ansible_local']['custom']['general']
['state'] }}"
 enabled: "{{ ansible_facts['ansible_local']['custom']['general']
['enabled'] }}"

122 RH294-RHEL8.4-en-1-20210818

Chapter 3 | Managing Variables and Facts

 11. When completed with all the tasks, the full playbook should look like the following. Review

the playbook and ensure all the tasks are defined.

- name: Install Apache and starts the service
 hosts: webserver

 tasks:
 - name: Install the required package
 yum:
 name: "{{ ansible_facts['ansible_local']['custom']['general']
['package'] }}"
 state: latest

 - name: Start the service
 service:
 name: "{{ ansible_facts['ansible_local']['custom']['general']
['service'] }}"
 state: "{{ ansible_facts['ansible_local']['custom']['general']
['state'] }}"
 enabled: "{{ ansible_facts['ansible_local']['custom']['general']
['enabled'] }}"

 12. Before running the playbook, use an ad hoc command to verify the httpd service is not

currently running on servera.

[student@workstation data-facts]$ ansible servera.lab.example.com -m command \
> -a 'systemctl status httpd'
servera.lab.example.com | FAILED | rc=4 >>
Unit httpd.service could not be found.non-zero return code

 13. Verify the syntax of the playbook by running ansible-playbook --syntax-check. If

it reports any errors, correct them before moving to the next step. You should see output

similar to the following:

[student@workstation data-facts]$ ansible-playbook --syntax-check playbook.yml

playbook: playbook.yml

 14. Run the playbook using the ansible-playbook command. Watch the output as Ansible

installs the package and then enables the service.

[student@workstation data-facts]$ ansible-playbook playbook.yml

PLAY [Install Apache and start the service] ************************************

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

TASK [Install the required package] **
changed: [servera.lab.example.com]

RH294-RHEL8.4-en-1-20210818 123

Chapter 3 | Managing Variables and Facts

TASK [Start the service] ***
changed: [servera.lab.example.com]

PLAY RECAP ***
servera.lab.example.com : ok=3 changed=2 unreachable=0 failed=0

 15. Use an ad hoc command to execute systemctl to determine whether the httpd service

is now running on servera.

[student@workstation data-facts]$ ansible servera.lab.example.com -m command \
> -a 'systemctl status httpd'
servera.lab.example.com | CHANGED | rc=0 >>
● httpd.service - The Apache HTTP Server
 Loaded: loaded (/usr/lib/systemd/system/httpd.service; enabled; vendor preset:
 disabled)
 Active: active (running) since Mon 2019-05-27 07:50:55 EDT; 50s ago
 Docs: man:httpd.service(8)
 Main PID: 11603 (httpd)
 Status: "Running, listening on: port 80"
 Tasks: 213 (limit: 4956)
 Memory: 24.1M
 CGroup: /system.slice/httpd.service
...output omitted...

Finish

On workstation, run the lab data-facts finish script to clean up this exercise.

[student@workstation ~]$ lab data-facts finish

This concludes the guided exercise.

124 RH294-RHEL8.4-en-1-20210818

Chapter 3 | Managing Variables and Facts

Lab

Managing Variables and Facts

Performance Checklist
In this lab, you will write and run an Ansible Playbook that uses variables, secrets, and facts.

Outcomes
You should be able to define variables and use facts in a playbook, as well as use variables

defined in an encrypted file.

Before You Begin
Log in to workstation as student using student as the password.

On workstation, run the lab data-review start command. The script creates

the /home/student/data-review working directory and populates it with an Ansible

configuration file and host inventory. The managed host serverb.lab.example.com
is defined in this inventory as a member of the webserver host group. A developer has

asked you to write an Ansible Playbook to automate the setup of a web server environment

on serverb.lab.example.com, which controls user access to its website using basic

authentication.

The files subdirectory contains:

• A httpd.conf configuration file for the Apache web service for basic authentication

• A .htaccess file, used to control access to the web server's document root directory

• A htpasswd file containing credentials for permitted users

[student@workstation ~]$ lab data-review start

Instructions

1. In the working directory, create the playbook.yml playbook and add the webserver host

group as the managed host. Define the following play variables:

RH294-RHEL8.4-en-1-20210818 125

Chapter 3 | Managing Variables and Facts

Variables

Variable Values

firewall_pkg firewalld

firewall_svc firewalld

web_pkg httpd

web_svc httpd

ssl_pkg mod_ssl

httpdconf_src files/httpd.conf

httpdconf_dest /etc/httpd/conf/httpd.conf

htaccess_src files/.htaccess

secrets_dir /etc/httpd/secrets

secrets_src files/htpasswd

secrets_dest "{{ secrets_dir }}/htpasswd"

web_root /var/www/html

2. Add a tasks section to the play. Write a task that ensures the latest version of the necessary

packages are installed. These packages are defined by the firewall_pkg, web_pkg, and

ssl_pkg variables.

3. Add a second task to the playbook that ensures that the file specified by the

httpdconf_src variable has been copied (with the copy module) to the location specified

by the httpdconf_dest variable on the managed host. The file should be owned by the

root user and the root group. Also set 0644 as the file permissions.

4. Add a third task that uses the file module to create the directory specified by the

secrets_dir variable on the managed host. This directory holds the password files used

for the basic authentication of web services. The file should be owned by the apache user

and the apache group. Set 0500 as the file permissions.

5. Add a fourth task that uses the copy module to place a htpasswd file, used for basic

authentication of web users. The source should be defined by the secrets_src variable.

The destination should be defined by the secrets_dest variable. The file should be owned

by the apache user and group. Set 0400 as the file permissions.

6. Add a fifth task that uses the copy module to create a .htaccess file in the document

root directory of the web server. Copy the file specified by the htaccess_src variable to

{{ web_root }}/.htaccess. The file should be owned by the apache user and the

apache group. Set 0400 as the file permissions.

7. Add a sixth task that uses the copy module to create the web content file index.html
in the directory specified by the web_root variable. The file should contain the message

"HOSTNAME (IPADDRESS) has been customized by Ansible.", where HOSTNAME is the fully-

qualified host name of the managed host and IPADDRESS is its IPv4 IP address. Use the

126 RH294-RHEL8.4-en-1-20210818

Chapter 3 | Managing Variables and Facts

content option to the copy module to specify the content of the file, and Ansible facts to

specify the host name and IP address.

8. Add a seventh task that uses the service module to enable and start the firewall service on

the managed host.

9. Add an eighth task that uses the firewalld module to allow the https service needed for

users to access web services on the managed host. This firewall change should be permanent

and should take place immediately.

10. Add a final task that uses the service module to enable and start the web service on the

managed host for all configuration changes to take effect. The name of the web service is

defined by the web_svc variable.

11. Define a second play targeted at localhost which will test authentication to the web server.

It does not need privilege escalation. Define a variable named web_user with the value

guest.

12. Add a directive to the play that adds additional variables from a variable file named vars/
secret.yml. This file contains a variable named web_pass that specifies the password for

the web user. You will create this file later in the lab.

Define the start of the task list.

13. Add two tasks to the second play.

The first uses the uri module to request content from https://
serverb.lab.example.com using basic authentication. Use the web_user and

web_pass variables to authenticate to the web server. Note that the certificate presented by

serverb will not be trusted, so you will need to avoid certificate validation. The task should

verify a return HTTP status code of 200. Configure the task to place the returned content in

the task results variable. Register the task result in a variable.

The second task uses the debug module to print the content returned from the web server.

14. Create a file encrypted with Ansible Vault, named vars/secret.yml. Use the password

redhat to encrypt it. It should set the web_pass variable to redhat, which will be the web

user's password.

15. Run the playbook.yml playbook. Verify that content is successfully returned from the web

server, and that it matches what was configured in an earlier task.

Evaluation

Run the lab data-review grade command on workstation to confirm success on this exercise.

Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab data-review grade

Finish

On workstation, run the lab data-review finish command to clean up this exercise.

[student@workstation ~]$ lab data-review finish

This concludes the lab.

RH294-RHEL8.4-en-1-20210818 127

Chapter 3 | Managing Variables and Facts

Solution

Managing Variables and Facts

Performance Checklist
In this lab, you will write and run an Ansible Playbook that uses variables, secrets, and facts.

Outcomes
You should be able to define variables and use facts in a playbook, as well as use variables

defined in an encrypted file.

Before You Begin
Log in to workstation as student using student as the password.

On workstation, run the lab data-review start command. The script creates

the /home/student/data-review working directory and populates it with an Ansible

configuration file and host inventory. The managed host serverb.lab.example.com
is defined in this inventory as a member of the webserver host group. A developer has

asked you to write an Ansible Playbook to automate the setup of a web server environment

on serverb.lab.example.com, which controls user access to its website using basic

authentication.

The files subdirectory contains:

• A httpd.conf configuration file for the Apache web service for basic authentication

• A .htaccess file, used to control access to the web server's document root directory

• A htpasswd file containing credentials for permitted users

[student@workstation ~]$ lab data-review start

Instructions

1. In the working directory, create the playbook.yml playbook and add the webserver host

group as the managed host. Define the following play variables:

128 RH294-RHEL8.4-en-1-20210818

Chapter 3 | Managing Variables and Facts

Variables

Variable Values

firewall_pkg firewalld

firewall_svc firewalld

web_pkg httpd

web_svc httpd

ssl_pkg mod_ssl

httpdconf_src files/httpd.conf

httpdconf_dest /etc/httpd/conf/httpd.conf

htaccess_src files/.htaccess

secrets_dir /etc/httpd/secrets

secrets_src files/htpasswd

secrets_dest "{{ secrets_dir }}/htpasswd"

web_root /var/www/html

1.1. Change to the /home/student/data-review working directory.

[student@workstation ~]$ cd ~/data-review
[student@workstation data-review]$

1.2. Create the playbook.yml playbook file and edit it in a text editor. The beginning of

the file should appear as follows:

- name: install and configure webserver with basic auth
 hosts: webserver
 vars:
 firewall_pkg: firewalld
 firewall_svc: firewalld
 web_pkg: httpd
 web_svc: httpd
 ssl_pkg: mod_ssl
 httpdconf_src: files/httpd.conf
 httpdconf_dest: /etc/httpd/conf/httpd.conf
 htaccess_src: files/.htaccess
 secrets_dir: /etc/httpd/secrets
 secrets_src: files/htpasswd
 secrets_dest: "{{ secrets_dir }}/htpasswd"
 web_root: /var/www/html

RH294-RHEL8.4-en-1-20210818 129

Chapter 3 | Managing Variables and Facts

2. Add a tasks section to the play. Write a task that ensures the latest version of the necessary

packages are installed. These packages are defined by the firewall_pkg, web_pkg, and

ssl_pkg variables.

2.1. Define the beginning of the tasks section by adding the following line to the

playbook:

 tasks:

2.2. Add the following lines to the playbook to define a task that uses the yum module to

install the required packages.

 - name: latest version of necessary packages installed
 yum:
 name:
 - "{{ firewall_pkg }}"
 - "{{ web_pkg }}"
 - "{{ ssl_pkg }}"
 state: latest

3. Add a second task to the playbook that ensures that the file specified by the

httpdconf_src variable has been copied (with the copy module) to the location specified

by the httpdconf_dest variable on the managed host. The file should be owned by the

root user and the root group. Also set 0644 as the file permissions.

Add the following lines to the playbook to define a task that uses the copy module to copy

the contents of the file defined by the httpdconf_src variable to the location specified by

the httpdconf_dest variable.

 - name: configure web service
 copy:
 src: "{{ httpdconf_src }}"
 dest: "{{ httpdconf_dest }}"
 owner: root
 group: root
 mode: 0644

4. Add a third task that uses the file module to create the directory specified by the

secrets_dir variable on the managed host. This directory holds the password files used

for the basic authentication of web services. The file should be owned by the apache user

and the apache group. Set 0500 as the file permissions.

Add the following lines to the playbook to define a task that uses the file module to create

the directory defined by the secrets_dir variable.

 - name: secrets directory exists
 file:
 path: "{{ secrets_dir }}"
 state: directory
 owner: apache
 group: apache
 mode: 0500

5. Add a fourth task that uses the copy module to place a htpasswd file, used for basic

authentication of web users. The source should be defined by the secrets_src variable.

130 RH294-RHEL8.4-en-1-20210818

Chapter 3 | Managing Variables and Facts

The destination should be defined by the secrets_dest variable. The file should be owned

by the apache user and group. Set 0400 as the file permissions.

 - name: htpasswd file exists
 copy:
 src: "{{ secrets_src }}"
 dest: "{{ secrets_dest }}"
 owner: apache
 group: apache
 mode: 0400

6. Add a fifth task that uses the copy module to create a .htaccess file in the document

root directory of the web server. Copy the file specified by the htaccess_src variable to

{{ web_root }}/.htaccess. The file should be owned by the apache user and the

apache group. Set 0400 as the file permissions.

Add the following lines to the playbook to define a task which uses the copy module to

create the .htaccess file using the file defined by the htaccess_src variable.

 - name: .htaccess file installed in docroot
 copy:
 src: "{{ htaccess_src }}"
 dest: "{{ web_root }}/.htaccess"
 owner: apache
 group: apache
 mode: 0400

7. Add a sixth task that uses the copy module to create the web content file index.html
in the directory specified by the web_root variable. The file should contain the message

"HOSTNAME (IPADDRESS) has been customized by Ansible.", where HOSTNAME is the fully-

qualified host name of the managed host and IPADDRESS is its IPv4 IP address. Use the

content option to the copy module to specify the content of the file, and Ansible facts to

specify the host name and IP address.

Add the following lines to the playbook to define a task that uses the copy module

to create the index.html file in the directory defined by the web_root variable.

Populate the file with the content specified using the ansible_facts['fqdn'] and

ansible_facts['default_ipv4']['address'] Ansible facts retrieved from the

managed host.

 - name: create index.html
 copy:
 content: "{{ ansible_facts['fqdn'] }} ({{ ansible_facts['default_ipv4']
['address'] }}) has been customized by Ansible.\n"
 dest: "{{ web_root }}/index.html"

RH294-RHEL8.4-en-1-20210818 131

Chapter 3 | Managing Variables and Facts

8. Add a seventh task that uses the service module to enable and start the firewall service on

the managed host.

Add the following lines to the playbook to define a task that uses the service module to

enable and start the firewall service.

 - name: firewall service enabled and started
 service:
 name: "{{ firewall_svc }}"
 state: started
 enabled: true

9. Add an eighth task that uses the firewalld module to allow the https service needed for

users to access web services on the managed host. This firewall change should be permanent

and should take place immediately.

Add the following lines to the playbook to define a task that uses the firewalld module to

open the HTTPS port for the web service.

 - name: open the port for the web server
 firewalld:
 service: https
 state: enabled
 immediate: true
 permanent: true

10. Add a final task that uses the service module to enable and start the web service on the

managed host for all configuration changes to take effect. The name of the web service is

defined by the web_svc variable.

 - name: web service enabled and started
 service:
 name: "{{ web_svc }}"
 state: started
 enabled: true

11. Define a second play targeted at localhost which will test authentication to the web server.

It does not need privilege escalation. Define a variable named web_user with the value

guest.

11.1. Add the following line to define the start of a second play. Note that there is no

indentation.

- name: test web server with basic auth

11.2. Add the following line to indicate that the play applies to the localhost managed

host.

 hosts: localhost

11.3. Add the following line to disable privilege escalation.

 become: no

132 RH294-RHEL8.4-en-1-20210818

Chapter 3 | Managing Variables and Facts

11.4. Add the following lines to define a variables list and the web_user variable.

 vars:
 web_user: guest

12. Add a directive to the play that adds additional variables from a variable file named vars/
secret.yml. This file contains a variable named web_pass that specifies the password for

the web user. You will create this file later in the lab.

Define the start of the task list.

12.1. Using the vars_files keyword, add the following lines to the playbook to instruct

Ansible to use variables found in the vars/secret.yml variable file.

 vars_files:
 - vars/secret.yml

12.2. Add the following line to define the beginning of the tasks list.

 tasks:

13. Add two tasks to the second play.

The first uses the uri module to request content from https://
serverb.lab.example.com using basic authentication. Use the web_user and

web_pass variables to authenticate to the web server. Note that the certificate presented by

serverb will not be trusted, so you will need to avoid certificate validation. The task should

verify a return HTTP status code of 200. Configure the task to place the returned content in

the task results variable. Register the task result in a variable.

The second task uses the debug module to print the content returned from the web server.

13.1. Add the following lines to create the task for verifying the web service from the control

node. Be sure to indent the first line with four spaces.

 - name: connect to web server with basic auth
 uri:
 url: https://serverb.lab.example.com
 validate_certs: no
 force_basic_auth: yes
 user: "{{ web_user }}"
 password: "{{ web_pass }}"
 return_content: yes
 status_code: 200
 register: auth_test

13.2. Create the second task using the debug module. The content returned from the web

server is added to the registered variable as the key content.

 - debug:
 var: auth_test.content

13.3. The completed playbook should appear as follows:

RH294-RHEL8.4-en-1-20210818 133

Chapter 3 | Managing Variables and Facts

- name: install and configure webserver with basic auth
 hosts: webserver
 vars:
 firewall_pkg: firewalld
 firewall_svc: firewalld
 web_pkg: httpd
 web_svc: httpd
 ssl_pkg: mod_ssl
 httpdconf_src: files/httpd.conf
 httpdconf_dest: /etc/httpd/conf/httpd.conf
 htaccess_src: files/.htaccess
 secrets_dir: /etc/httpd/secrets
 secrets_src: files/htpasswd
 secrets_dest: "{{ secrets_dir }}/htpasswd"
 web_root: /var/www/html
 tasks:
 - name: latest version of necessary packages installed
 yum:
 name:
 - "{{ firewall_pkg }}"
 - "{{ web_pkg }}"
 - "{{ ssl_pkg }}"
 state: latest

 - name: configure web service
 copy:
 src: "{{ httpdconf_src }}"
 dest: "{{ httpdconf_dest }}"
 owner: root
 group: root
 mode: 0644

 - name: secrets directory exists
 file:
 path: "{{ secrets_dir }}"
 state: directory
 owner: apache
 group: apache
 mode: 0500

 - name: htpasswd file exists
 copy:
 src: "{{ secrets_src }}"
 dest: "{{ secrets_dest }}"
 owner: apache
 group: apache
 mode: 0400

 - name: .htaccess file installed in docroot
 copy:
 src: "{{ htaccess_src }}"
 dest: "{{ web_root }}/.htaccess"

134 RH294-RHEL8.4-en-1-20210818

Chapter 3 | Managing Variables and Facts

 owner: apache
 group: apache
 mode: 0400

 - name: create index.html
 copy:
 content: "{{ ansible_facts['fqdn'] }} ({{ ansible_facts['default_ipv4']
['address'] }}) has been customized by Ansible.\n"
 dest: "{{ web_root }}/index.html"

 - name: firewall service enable and started
 service:
 name: "{{ firewall_svc }}"
 state: started
 enabled: true

 - name: open the port for the web server
 firewalld:
 service: https
 state: enabled
 immediate: true
 permanent: true

 - name: web service enabled and started
 service:
 name: "{{ web_svc }}"
 state: started
 enabled: true

- name: test web server with basic auth
 hosts: localhost
 become: no
 vars:
 - web_user: guest
 vars_files:
 - vars/secret.yml
 tasks:
 - name: connect to web server with basic auth
 uri:
 url: https://serverb.lab.example.com
 validate_certs: no
 force_basic_auth: yes
 user: "{{ web_user }}"
 password: "{{ web_pass }}"
 return_content: yes
 status_code: 200
 register: auth_test

 - debug:
 var: auth_test.content

13.4. Save and close the playbook.yml file.

RH294-RHEL8.4-en-1-20210818 135

Chapter 3 | Managing Variables and Facts

14. Create a file encrypted with Ansible Vault, named vars/secret.yml. Use the password

redhat to encrypt it. It should set the web_pass variable to redhat, which will be the web

user's password.

14.1. Create a subdirectory named vars in the working directory.

[student@workstation data-review]$ mkdir vars

14.2. Create the encrypted variable file, vars/secret.yml, using Ansible Vault. Set the

password for the encrypted file to redhat.

[student@workstation data-review]$ ansible-vault create vars/secret.yml
New Vault password: redhat
Confirm New Vault password: redhat

14.3. Add the following variable definition to the file.

web_pass: redhat

14.4. Save and close the file.

15. Run the playbook.yml playbook. Verify that content is successfully returned from the web

server, and that it matches what was configured in an earlier task.

15.1. Before running the playbook, verify that its syntax is correct by running ansible-
playbook --syntax-check. Use the --ask-vault-pass to be prompted for

the vault password. Enter redhat when prompted for the password. If it reports any

errors, correct them before moving to the next step. You should see output similar to

the following:

[student@workstation data-review]$ ansible-playbook --syntax-check \
> --ask-vault-pass playbook.yml
Vault password: redhat

playbook: playbook.yml

15.2. Using the ansible-playbook command, run the playbook with the --ask-vault-
pass option. Enter redhat when prompted for the password.

[student@workstation data-review]$ ansible-playbook playbook.yml --ask-vault-pass
Vault password: redhat
PLAY [Install and configure webserver with basic auth] *********************

...output omitted...

TASK [connect to web server with basic auth] ***********************************
ok: [localhost]

TASK [debug] ***
ok: [localhost] => {
 "auth_test.content": "serverb.lab.example.com (172.25.250.11) has been
 customized by Ansible.\n"

136 RH294-RHEL8.4-en-1-20210818

Chapter 3 | Managing Variables and Facts

}

PLAY RECAP ***
localhost : ok=3 changed=0 unreachable=0 failed=0
serverb.lab.example.com : ok=10 changed=8 unreachable=0 failed=0

Evaluation

Run the lab data-review grade command on workstation to confirm success on this exercise.

Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab data-review grade

Finish

On workstation, run the lab data-review finish command to clean up this exercise.

[student@workstation ~]$ lab data-review finish

This concludes the lab.

RH294-RHEL8.4-en-1-20210818 137

Chapter 3 | Managing Variables and Facts

Summary

In this chapter, you learned:

• Ansible variables allow administrators to reuse values across files in an entire Ansible project.

• Variables can be defined for hosts and host groups in the inventory file.

• Variables can be defined for playbooks by using facts and external files. They can also be

defined on the command line.

• The register keyword can be used to capture the output of a command in a variable.

• Ansible Vault is one way to protect sensitive data such as password hashes and private keys for

deployment using Ansible Playbooks.

• Ansible facts are variables that are automatically discovered by Ansible from a managed host.

138 RH294-RHEL8.4-en-1-20210818

Chapter 4

Implementing Task Control

Goal Manage task control, handlers, and task errors in
Ansible Playbooks.

Objectives • Use loops to write efficient tasks and use
conditions to control when to run tasks.

• Implement a task that runs only when another
task changes the managed host.

• Control what happens when a task fails, and
what conditions cause a task to fail.

Sections • Writing Loops and Conditional Tasks (and
Guided Exercise)

• Implementing Handlers (and Guided Exercise)

• Handling Task Failure (and Guided Exercise)

Lab • Implementing Task Control

RH294-RHEL8.4-en-1-20210818 139

Chapter 4 | Implementing Task Control

Writing Loops and Conditional Tasks

Objectives
After completing this section, you should be able to use loops to write efficient tasks and use

conditions to control when to run tasks.

Task Iteration with Loops
Using loops saves administrators from the need to write multiple tasks that use the same module.

For example, instead of writing five tasks to ensure five users exist, you can write one task that

iterates over a list of five users to ensure they all exist.

Ansible supports iterating a task over a set of items using the loop keyword. You can configure

loops to repeat a task using each item in a list, the contents of each of the files in a list, a

generated sequence of numbers, or using more complicated structures. This section covers simple

loops that iterate over a list of items. Consult the documentation for more advanced looping

scenarios.

Simple Loops

A simple loop iterates a task over a list of items. The loop keyword is added to the task, and takes

as a value the list of items over which the task should be iterated. The loop variable item holds the

value used during each iteration.

Consider the following snippet that uses the service module twice in order to ensure two

network services are running:

- name: Postfix is running
 service:
 name: postfix
 state: started

- name: Dovecot is running
 service:
 name: dovecot
 state: started

These two tasks can be rewritten to use a simple loop so that only one task is needed to ensure

both services are running:

- name: Postfix and Dovecot are running
 service:
 name: "{{ item }}"
 state: started
 loop:
 - postfix
 - dovecot

140 RH294-RHEL8.4-en-1-20210818

Chapter 4 | Implementing Task Control

The list used by loop can be provided by a variable. In the following example, the variable

mail_services contains the list of services that need to be running.

vars:
 mail_services:
 - postfix
 - dovecot

tasks:
 - name: Postfix and Dovecot are running
 service:
 name: "{{ item }}"
 state: started
 loop: "{{ mail_services }}"

Loops over a List of Hashes or Dictionaries

The loop list does not need to be a list of simple values. In the following example, each item in the

list is actually a hash or a dictionary. Each hash or dictionary in the example has two keys, name
and groups, and the value of each key in the current item loop variable can be retrieved with the

item.name and item.groups variables, respectively.

- name: Users exist and are in the correct groups
 user:
 name: "{{ item.name }}"
 state: present
 groups: "{{ item.groups }}"
 loop:
 - name: jane
 groups: wheel
 - name: joe
 groups: root

The outcome of the preceding task is that the user jane is present and a member of the group

wheel, and that the user joe is present and a member of the group root.

Earlier-Style Loop Keywords

Before Ansible 2.5, most playbooks used a different syntax for loops. Multiple loop keywords were

provided, which were prefixed with with_, followed by the name of an Ansible look-up plug-in (an

advanced feature not covered in detail in this course). This syntax for looping is very common in

existing playbooks, but will probably be deprecated at some point in the future.

A few examples are listed in the table below:

RH294-RHEL8.4-en-1-20210818 141

Chapter 4 | Implementing Task Control

Earlier-Style Ansible Loops

Loop keyword Description

with_items Behaves the same as the loop keyword for simple lists, such as a

list of strings or a list of hashes/dictionaries. Unlike loop, if lists of

lists are provided to with_items, they are flattened into a single-

level list. The loop variable item holds the list item used during

each iteration.

with_file This keyword requires a list of control node file names. The loop

variable item holds the content of a corresponding file from the

file list during each iteration.

with_sequence Instead of requiring a list, this keyword requires parameters to

generate a list of values based on a numeric sequence. The loop

variable item holds the value of one of the generated items in the

generated sequence during each iteration.

An example of with_items in a playbook is shown below:

 vars:
 data:
 - user0
 - user1
 - user2
 tasks:
 - name: "with_items"
 debug:
 msg: "{{ item }}"
 with_items: "{{ data }}"

Important

Since Ansible 2.5, the recommended way to write loops is to use the loop keyword.

However, you should still understand the old syntax, especially with_items,

because it is widely used in existing playbooks. You are likely to encounter playbooks

and roles that continue to use with_* keywords for looping.

Any task using the old syntax can be converted to use loop in conjunction with Ansible filters.

You do not need to know how to use Ansible filters to do this. There is a good reference on how to

convert the old loops to the new syntax, as well as examples of how to loop over items that are not

simple lists, in the Ansible documentation in the section Migrating from with_X to loop [https://

docs.ansible.com/ansible/2.9/user_guide/playbooks_loops.html#migrating-from-with-x-to-loop]

of the Ansible User Guide.

You will likely encounter tasks from older playbooks that contain with_* keywords.

Advanced looping techniques are beyond the scope of this course. All iteration tasks in this course

can be implemented with either the with_items or the loop keyword.

142 RH294-RHEL8.4-en-1-20210818

https://docs.ansible.com/ansible/2.9/user_guide/playbooks_loops.html#migrating-from-with-x-to-loop
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_loops.html#migrating-from-with-x-to-loop
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_loops.html#migrating-from-with-x-to-loop

Chapter 4 | Implementing Task Control

Using Register Variables with Loops

The register keyword can also capture the output of a task that loops. The following snippet

shows the structure of the register variable from a task that loops:

[student@workstation loopdemo]$ cat loop_register.yml

- name: Loop Register Test
 gather_facts: no
 hosts: localhost
 tasks:
 - name: Looping Echo Task
 shell: "echo This is my item: {{ item }}"
 loop:
 - one
 - two
 register: echo_results

 - name: Show echo_results variable
 debug:
 var: echo_results

The echo_results variable is registered.

The contents of the echo_results variable are displayed to the screen.

Running the above playbook yields the following output:

[student@workstation loopdemo]$ ansible-playbook loop_register.yml
PLAY [Loop Register Test] **

TASK [Looping Echo Task] ***
...output omitted...
TASK [Show echo_results variable] **
ok: [localhost] => {
 "echo_results": {
 "changed": true,
 "msg": "All items completed",
 "results": [
 {
 "_ansible_ignore_errors": null,
 ...output omitted...
 "changed": true,
 "cmd": "echo This is my item: one",
 "delta": "0:00:00.011865",
 "end": "2018-11-01 16:32:56.080433",
 "failed": false,
 ...output omitted...
 "item": "one",
 "rc": 0,
 "start": "2018-11-01 16:32:56.068568",
 "stderr": "",
 "stderr_lines": [],
 "stdout": "This is my item: one",

RH294-RHEL8.4-en-1-20210818 143

Chapter 4 | Implementing Task Control

 "stdout_lines": [
 "This is my item: one"
]
 },
 {
 "_ansible_ignore_errors": null,
 ...output omitted...
 "changed": true,
 "cmd": "echo This is my item: two",
 "delta": "0:00:00.011142",
 "end": "2018-11-01 16:32:56.828196",
 "failed": false,
 ...output omitted...
 "item": "two",
 "rc": 0,
 "start": "2018-11-01 16:32:56.817054",
 "stderr": "",
 "stderr_lines": [],
 "stdout": "This is my item: two",
 "stdout_lines": [
 "This is my item: two"
]
 }
]
 }
}
...output omitted...

The { character indicates that the start of the echo_results variable is composed of key-

value pairs.

The results key contains the results from the previous task. The [character indicates the

start of a list.

The start of task metadata for the first item (indicated by the item key). The output of the

echo command is found in the stdout key.

The start of task result metadata for the second item.

The] character indicates the end of the results list.

In the above, the results key contains a list. Below, the playbook is modified such that the

second task iterates over this list:

[student@workstation loopdemo]$ cat new_loop_register.yml

- name: Loop Register Test
 gather_facts: no
 hosts: localhost
 tasks:
 - name: Looping Echo Task
 shell: "echo This is my item: {{ item }}"
 loop:
 - one
 - two

144 RH294-RHEL8.4-en-1-20210818

Chapter 4 | Implementing Task Control

 register: echo_results

 - name: Show stdout from the previous task.
 debug:
 msg: "STDOUT from previous task: {{ item.stdout }}"
 loop: "{{ echo_results['results'] }}"

After executing the above playbook, the output is:

PLAY [Loop Register Test] **

TASK [Looping Echo Task] ***
...output omitted...

TASK [Show stdout from the previous task.] ***********************************
ok: [localhost] => (item={...output omitted...}) => {
 "msg": "STDOUT from previous task: This is my item: one"
}
ok: [localhost] => (item={...output omitted...}) => {
 "msg": "STDOUT from previous task: This is my item: two"
}
...output omitted...

Running Tasks Conditionally
Ansible can use conditionals to execute tasks or plays when certain conditions are met. For

example, a conditional can be used to determine available memory on a managed host before

Ansible installs or configures a service.

Conditionals allow administrators to differentiate between managed hosts and assign them

functional roles based on the conditions that they meet. Playbook variables, registered variables,

and Ansible facts can all be tested with conditionals. Operators to compare strings, numeric data,

and Boolean values are available.

The following scenarios illustrate the use of conditionals in Ansible:

• A hard limit can be defined in a variable (for example, min_memory) and compared against the

available memory on a managed host.

• The output of a command can be captured and evaluated by Ansible to determine whether or

not a task completed before taking further action. For example, if a program fails, then a batch is

skipped.

• Use Ansible facts to determine the managed host network configuration and decide which

template file to send (for example, network bonding or trunking).

• The number of CPUs can be evaluated to determine how to properly tune a web server.

• Compare a registered variable with a predefined variable to determine if a service changed. For

example, test the MD5 checksum of a service configuration file to see if the service is changed.

Conditional Task Syntax

The when statement is used to run a task conditionally. It takes as a value the condition to test. If

the condition is met, the task runs. If the condition is not met, the task is skipped.

RH294-RHEL8.4-en-1-20210818 145

Chapter 4 | Implementing Task Control

One of the simplest conditions that can be tested is whether a Boolean variable is true or false.

The when statement in the following example causes the task to run only if run_my_task is true:

- name: Simple Boolean Task Demo
 hosts: all
 vars:
 run_my_task: true

 tasks:
 - name: httpd package is installed
 yum:
 name: httpd
 when: run_my_task

The next example is a bit more sophisticated, and tests whether the my_service variable has

a value. If it does, the value of my_service is used as the name of the package to install. If the

my_service variable is not defined, then the task is skipped without an error.

- name: Test Variable is Defined Demo
 hosts: all
 vars:
 my_service: httpd

 tasks:
 - name: "{{ my_service }} package is installed"
 yum:
 name: "{{ my_service }}"
 when: my_service is defined

The following table shows some of the operations that administrators can use when working with

conditionals:

Example Conditionals

Operation Example

Equal (value is a string) ansible_machine == "x86_64"

Equal (value is numeric) max_memory == 512

Less than min_memory < 128

Greater than min_memory > 256

Less than or equal to min_memory <= 256

Greater than or equal to min_memory >= 512

Not equal to min_memory != 512

Variable exists min_memory is defined

146 RH294-RHEL8.4-en-1-20210818

Chapter 4 | Implementing Task Control

Operation Example

Variable does not exist min_memory is not defined

Boolean variable is true. The

values of 1, True, or yes
evaluate to true.

memory_available

Boolean variable is false.

The values of 0, False, or no
evaluate to false.

not memory_available

First variable's value is present

as a value in second variable's

list

ansible_distribution in supported_distros

The last entry in the preceding table might be confusing at first. The following example illustrates

how it works.

In the example, the ansible_distribution variable is a fact determined during

the Gathering Facts task, and identifies the managed host's operating system

distribution. The variable supported_distros was created by the playbook author, and

contains a list of operating system distributions that the playbook supports. If the value of

ansible_distribution is in the supported_distros list, the conditional passes and the

task runs.

- name: Demonstrate the "in" keyword
 hosts: all
 gather_facts: yes
 vars:
 supported_distros:
 - RedHat
 - Fedora
 tasks:
 - name: Install httpd using yum, where supported
 yum:
 name: http
 state: present
 when: ansible_distribution in supported_distros

Important

Notice the indentation of the when statement. Because the when statement is not a

module variable, it must be placed outside the module by being indented at the top

level of the task.

A task is a YAML hash/dictionary, and the when statement is simply one more key in

the task like the task's name and the module it uses. A common convention places

any when keyword that might be present after the task's name and the module (and

module arguments).

RH294-RHEL8.4-en-1-20210818 147

Chapter 4 | Implementing Task Control

Testing Multiple Conditions

One when statement can be used to evaluate multiple conditionals. To do so, conditionals can be

combined with either the and or or keywords, and grouped with parentheses.

The following snippets show some examples of how to express multiple conditions.

• If a conditional statement should be met when either condition is true, then you should use

the or statement. For example, the following condition is met if the machine is running either

Red Hat Enterprise Linux or Fedora:

when: ansible_distribution == "RedHat" or ansible_distribution == "Fedora"

• With the and operation, both conditions have to be true for the entire conditional statement

to be met. For example, the following condition is met if the remote host is a Red Hat

Enterprise Linux 7.5 host, and the installed kernel is the specified version:

when: ansible_distribution_version == "7.5" and ansible_kernel ==
 "3.10.0-327.el7.x86_64"

The when keyword also supports using a list to describe a list of conditions. When a list is

provided to the when keyword, all of the conditionals are combined using the and operation.

The example below demonstrates another way to combine multiple conditional statements

using the and operator:

when:
 - ansible_distribution_version == "7.5"
 - ansible_kernel == "3.10.0-327.el7.x86_64"

This format improves readability, a key goal of well-written Ansible Playbooks.

• More complex conditional statements can be expressed by grouping conditions with

parentheses. This ensures that they are correctly interpreted.

For example, the following conditional statement is met if the machine is running either Red Hat

Enterprise Linux 7 or Fedora 28. This example uses the greater-than character (>) so that the

long conditional can be split over multiple lines in the playbook, to make it easier to read.

when: >
 (ansible_distribution == "RedHat" and
 ansible_distribution_major_version == "7")
 or
 (ansible_distribution == "Fedora" and
 ansible_distribution_major_version == "28")

Combining Loops and Conditional Tasks
You can combine loops and conditionals.

In the following example, the mariadb-server package is installed by the yum module if there is

a file system mounted on / with more than 300 MB free. The ansible_mounts fact is a list of

dictionaries, each one representing facts about one mounted file system. The loop iterates over

each dictionary in the list, and the conditional statement is not met unless a dictionary is found

representing a mounted file system where both conditions are true.

148 RH294-RHEL8.4-en-1-20210818

Chapter 4 | Implementing Task Control

- name: install mariadb-server if enough space on root
 yum:
 name: mariadb-server
 state: latest
 loop: "{{ ansible_mounts }}"
 when: item.mount == "/" and item.size_available > 300000000

Important

When you use when with loop for a task, the when statement is checked for each

item.

Here is another example that combines conditionals and register variables. The following

annotated playbook restarts the httpd service only if the postfix service is running:

- name: Restart HTTPD if Postfix is Running
 hosts: all
 tasks:
 - name: Get Postfix server status
 command: /usr/bin/systemctl is-active postfix
 ignore_errors: yes
 register: result

 - name: Restart Apache HTTPD based on Postfix status
 service:
 name: httpd
 state: restarted
 when: result.rc == 0

Is Postfix running or not?

If it is not running and the command fails, do not stop processing.

Saves information on the module's result in a variable named result.

Evaluates the output of the Postfix task. If the exit code of the systemctl command is 0,

then Postfix is active and this task restarts the httpd service.

RH294-RHEL8.4-en-1-20210818 149

Chapter 4 | Implementing Task Control

References

Loops — Ansible Documentation

https://docs.ansible.com/ansible/2.9/user_guide/playbooks_loops.html

Tests — Ansible Documentation

https://docs.ansible.com/ansible/2.9/user_guide/playbooks_tests.html

Conditionals — Ansible Documentation

https://docs.ansible.com/ansible/2.9/user_guide/playbooks_conditionals.html

What Makes A Valid Variable Name — Variables — Ansible Documentation

https://docs.ansible.com/ansible/2.9/user_guide/playbooks_variables.html#what-

makes-a-valid-variable-name

150 RH294-RHEL8.4-en-1-20210818

https://docs.ansible.com/ansible/2.9/user_guide/playbooks_loops.html
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_tests.html
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_conditionals.html
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_variables.html#what-makes-a-valid-variable-name
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_variables.html#what-makes-a-valid-variable-name

Chapter 4 | Implementing Task Control

Guided Exercise

Writing Loops and Conditional Tasks

In this exercise, you will write a playbook containing tasks that have conditionals and loops.

Outcomes
You should be able to:

• Implement Ansible conditionals using the when keyword.

• Implement task iteration using the loop keyword in conjunction with conditionals.

Before You Begin
Log in to workstation as student using student as the password.

On workstation, run the lab control-flow start command. This script creates the

working directory, /home/student/control-flow.

[student@workstation ~]$ lab control-flow start

Instructions

 1. On workstation.lab.example.com, change to the /home/student/control-flow
project directory.

[student@workstation ~]$ cd ~/control-flow
[student@workstation control-flow]$

 2. The lab script created an Ansible configuration file as well as an inventory file. This inventory

file contains the server servera.lab.example.com in the database_dev host group,

and the serverb.lab.example.com in the database_prod host group. Review the file

before proceeding.

[student@workstation control-flow]$ cat inventory
[database_dev]
servera.lab.example.com

[database_prod]
serverb.lab.example.com

 3. Create the playbook.yml playbook, which contains a play with two tasks. Use the

database_dev host group. The first task installs the MariaDB required packages, and the

second task ensures that the MariaDB service is running.

3.1. Open the playbook in a text editor. Define the variable mariadb_packages with two

values: mariadb-server, and python3-PyMySQL. The playbook uses the variable

to install the required packages. The file should read as follows:

RH294-RHEL8.4-en-1-20210818 151

Chapter 4 | Implementing Task Control

- name: MariaDB server is running
 hosts: database_dev
 vars:
 mariadb_packages:
 - mariadb-server
 - python3-PyMySQL

3.2. Define a task that uses the yum module and the variable mariadb_packages. The

task installs the required packages. The task should read as follows:

 tasks:
 - name: MariaDB packages are installed
 yum:
 name: "{{ item }}"
 state: present
 loop: "{{ mariadb_packages }}"

3.3. Define a second task to start the mariadb service. The task should read as follows:

 - name: Start MariaDB service
 service:
 name: mariadb
 state: started
 enabled: true

 4. Run the playbook and watch the output of the play.

[student@workstation control-flow]$ ansible-playbook playbook.yml

PLAY [MariaDB server is running] ***

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

TASK [MariaDB packages are installed] **
changed: [servera.lab.example.com] => (item=mariadb-server)
changed: [servera.lab.example.com] => (item=python3-PyMySQL)

TASK [Start MariaDB service] **
changed: [servera.lab.example.com]

PLAY RECAP ***
servera.lab.example.com : ok=3 changed=2 unreachable=0 failed=0

 5. Update the first task to execute only if the managed host uses Red Hat Enterprise Linux

as its operating system. Update the play to use the database_prod host group. The task

should read as follows:

152 RH294-RHEL8.4-en-1-20210818

Chapter 4 | Implementing Task Control

- name: MariaDB server is running
 hosts: database_prod
 vars:
...output omitted...
 tasks:
 - name: MariaDB packages are installed
 yum:
 name: "{{ item }}"
 state: present
 loop: "{{ mariadb_packages }}"
 when: ansible_distribution == "RedHat"

 6. Verify that the managed hosts in the database_prod host group use Red Hat

Enterprise Linux as its operating system.

[student@workstation control-flow]$ ansible database_prod -m command \
> -a 'cat /etc/redhat-release' -u devops --become
serverb.lab.example.com | CHANGED | rc=0 >>
Red Hat Enterprise Linux release 8.4 (Ootpa)

 7. Run the playbook again and watch the output of the play.

[student@workstation control-flow]$ ansible-playbook playbook.yml

PLAY [MariaDB server is running] ***

TASK [Gathering Facts] ***
ok: [serverb.lab.example.com]

TASK [MariaDB packages are installed] **
changed: [serverb.lab.example.com] => (item=mariadb-server)
changed: [serverb.lab.example.com] => (item=python3-PyMySQL)

TASK [Start MariaDB service] ***
changed: [serverb.lab.example.com]

PLAY RECAP ***
serverb.lab.example.com : ok=3 changed=2 unreachable=0 failed=0

Ansible executes the task because serverb.lab.example.com uses Red Hat

Enterprise Linux.

Finish

On workstation, run the lab control-flow finish script to clean up the resources created

in this exercise.

[student@workstation ~]$ lab control-flow finish

This concludes the guided exercise.

RH294-RHEL8.4-en-1-20210818 153

Chapter 4 | Implementing Task Control

Implementing Handlers

Objectives
After completing this section, you should be able to implement a task that runs only when another

task changes the managed host.

Ansible Handlers
Ansible modules are designed to be idempotent. This means that in a properly written playbook,

the playbook and its tasks can be run multiple times without changing the managed host unless

they need to make a change to get the managed host to the desired state.

However, sometimes when a task does make a change to the system, a further task may need to

be run. For example, a change to a service's configuration file may then require that the service be

reloaded so that the changed configuration takes effect.

Handlers are tasks that respond to a notification triggered by other tasks. Tasks only notify their

handlers when the task changes something on a managed host. Each handler is triggered by its

name after the play's block of tasks. If no task notifies the handler by name then the handler will

not run. If one or more tasks notify the handler, the handler will run exactly once after all other

tasks in the play have completed. Because handlers are tasks, administrators can use the same

modules in handlers that they would use for any other task. Normally, handlers are used to reboot

hosts and restart services.

Note

Use unique names for your handlers. When multiple handlers are defined with the

same name, only the last handler defined with the shared name will run.

Handlers can be considered as inactive tasks that only get triggered when explicitly invoked using

a notify statement. The following snippet shows how the Apache server is only restarted by the

restart apache handler when a configuration file is updated and notifies it:

tasks:
 - name: copy demo.example.conf configuration template
 template:
 src: /var/lib/templates/demo.example.conf.template
 dest: /etc/httpd/conf.d/demo.example.conf
 notify:
 - restart apache

handlers:
 - name: restart apache
 service:
 name: httpd
 state: restarted

The task that notifies the handler.

154 RH294-RHEL8.4-en-1-20210818

Chapter 4 | Implementing Task Control

The notify statement indicates the task needs to trigger a handler.

The name of the handler to run.

The handlers keyword indicates the start of the list of handler tasks.

The name of the handler invoked by tasks.

The module to use for the handler.

In the previous example, the restart apache handler triggers when notified by the template
task that a change happened. A task may call more than one handler in its notify section. Ansible

treats the notify statement as an array and iterates over the handler names:

tasks:
 - name: copy demo.example.conf configuration template
 template:
 src: /var/lib/templates/demo.example.conf.template
 dest: /etc/httpd/conf.d/demo.example.conf
 notify:
 - restart mysql
 - restart apache

handlers:
 - name: restart mysql
 service:
 name: mariadb
 state: restarted

 - name: restart apache
 service:
 name: httpd
 state: restarted

Describing the Benefits of Using Handlers
As discussed in the Ansible documentation, there are some important things to remember about

using handlers:

• Handlers always run in the order specified by the handlers section of the play. They do not

run in the order in which they are listed by notify statements in a task, or in the order in which

tasks notify them.

• Handlers normally run after all other tasks in the play complete. A handler called by a task in the

tasks part of the playbook will not run until all tasks under tasks have been processed. (There

are some minor exceptions to this.)

• Handler names exist in a per-play namespace. If two handlers are incorrectly given the same

name, only one will run.

• Even if more than one task notifies a handler, the handler only runs once. If no tasks notify it, a

handler will not run.

• If a task that includes a notify statement does not report a changed result (for example, a

package is already installed and the task reports ok), the handler is not notified. The handler

is skipped unless another task notifies it. Ansible notifies handlers only if the task reports the

changed status.

RH294-RHEL8.4-en-1-20210818 155

Chapter 4 | Implementing Task Control

Important

Handlers are meant to perform an extra action when a task makes a change to a

managed host. They should not be used as a replacement for normal tasks.

References

Intro to Playbooks — Ansible Documentation

https://docs.ansible.com/ansible/2.9/user_guide/playbooks_intro.html

156 RH294-RHEL8.4-en-1-20210818

https://docs.ansible.com/ansible/2.9/user_guide/playbooks_intro.html

Chapter 4 | Implementing Task Control

Guided Exercise

Implementing Handlers

In this exercise, you will implement handlers in playbooks.

Outcomes
You should be able to define handlers in playbooks and notify them for configuration change.

Before You Begin
Run lab control-handlers start on workstation to configure the environment

for the exercise. This script creates the /home/student/control-handlers project

directory and downloads the Ansible configuration file and the host inventory file needed

for the exercise. The project directory also contains a partially complete playbook,

configure_db.yml.

[student@workstation ~]$ lab control-handlers start

Instructions

 1. On workstation.lab.example.com, open a new terminal and change to the /home/
student/control-handlers project directory.

[student@workstation ~]$ cd ~/control-handlers
[student@workstation control-handlers]$

 2. In that directory, use a text editor to edit the configure_db.yml playbook file. This

playbook installs and configures a database server. When the database server configuration

changes, the playbook triggers a restart of the database service and configures the

database administrative password.

2.1. Using a text editor, review the configure_db.yml playbook. It begins with the

initialization of some variables:

- name: MariaDB server is installed
 hosts: databases
 vars:
 db_packages:
 - mariadb-server
 - python3-PyMySQL
 db_service: mariadb
 resources_url: http://materials.example.com/labs/control-handlers
 config_file_url: "{{ resources_url }}/my.cnf.standard"
 config_file_dst: /etc/my.cnf
 tasks:

RH294-RHEL8.4-en-1-20210818 157

Chapter 4 | Implementing Task Control

db_packages defines the name of the packages to install for the database

service.

db_service defines the name of the database service.

resources_url represents the URL for the resource directory where remote

configuration files are located.

config_file_url represents the URL of the database configuration file to

install.

config_file_dst: Location of the installed configuration file on the managed

hosts.

2.2. In the configure_db.yml file, define a task that uses the yum module to install the

required database packages as defined by the db_packages variable. If the task

changes the system, the database was not installed, and you need to notify the set
db password handler to set your initial database user and password. Remember

that the handler task, if it is notified, will not run until every task in the tasks section

has run.

The task should read as follows:

 tasks:
 - name: "{{ db_packages }} packages are installed"
 yum:
 name: "{{ db_packages }}"
 state: present
 notify:
 - set db password

2.3. 2.3)

Add a task to start and enable the database service. The task should read as follows:

 - name: Make sure the database service is running
 service:
 name: "{{ db_service }}"
 state: started
 enabled: true

2.4. Add a task to download my.cnf.standard to /etc/my.cnf on the managed host,

using the get_url module. Add a condition that notifies the restart db service
handler to restart the database service after a configuration file change. The task

should read:

 - name: The {{ config_file_dst }} file has been installed
 get_url:
 url: "{{ config_file_url }}"
 dest: "{{ config_file_dst }}"
 owner: mysql
 group: mysql

158 RH294-RHEL8.4-en-1-20210818

Chapter 4 | Implementing Task Control

 force: yes
 notify:
 - restart db service

2.5. Add the handlers keyword to define the start of the handler tasks. Define the first

handler, restart db service, which restarts the mariadb service. It should read

as follows:

 handlers:
 - name: restart db service
 service:
 name: "{{ db_service }}"
 state: restarted

2.6. Define the second handler, set db password, which sets the administrative

password for the database service. The handler uses the mysql_user module to

perform the command. The handler should read as follows:

 - name: set db password
 mysql_user:
 name: root
 password: redhat

When completed, the playbook should appear as follows:

- name: MariaDB server is installed
 hosts: databases
 vars:
 db_packages:
 - mariadb-server
 - python3-PyMySQL
 db_service: mariadb
 resources_url: http://materials.example.com/labs/control-handlers
 config_file_url: "{{ resources_url }}/my.cnf.standard"
 config_file_dst: /etc/my.cnf
 tasks:
 - name: "{{ db_packages }} packages are installed"
 yum:
 name: "{{ db_packages }}"
 state: present
 notify:
 - set db password

 - name: Make sure the database service is running
 service:
 name: "{{ db_service }}"
 state: started
 enabled: true

 - name: The {{ config_file_dst }} file has been installed
 get_url:
 url: "{{ config_file_url }}"

RH294-RHEL8.4-en-1-20210818 159

Chapter 4 | Implementing Task Control

 dest: "{{ config_file_dst }}"
 owner: mysql
 group: mysql
 force: yes
 notify:
 - restart db service

 handlers:
 - name: restart db service
 service:
 name: "{{ db_service }}"
 state: restarted

 - name: set db password
 mysql_user:
 name: root
 password: redhat

 3. Before running the playbook, verify that its syntax is correct by running ansible-
playbook with the --syntax-check option. If it reports any errors, correct them before

moving to the next step. You should see output similar to the following:

[student@workstation control-handlers]$ ansible-playbook configure_db.yml \
> --syntax-check

playbook: configure_db.yml

 4. Run the configure_db.yml playbook. The output shows that the handlers are being

executed.

[student@workstation control-handlers]$ ansible-playbook configure_db.yml

PLAY [Installing MariaDB server] ***

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

TASK [['mariadb-server', 'python3-PyMySQL'] packages are installed] **********
changed: [servera.lab.example.com]

TASK [Make sure the database service is running] *****************************
changed: [servera.lab.example.com]

TASK [The /etc/my.cnf file has been installed] *******************************
changed: [servera.lab.example.com]

RUNNING HANDLER [restart db service] ***
changed: [servera.lab.example.com]

RUNNING HANDLER [set db password] **

160 RH294-RHEL8.4-en-1-20210818

Chapter 4 | Implementing Task Control

changed: [servera.lab.example.com]

PLAY RECAP ***
servera.lab.example.com : ok=6 changed=5 unreachable=0 failed=0

 5. Run the playbook again.

[student@workstation control-handlers]$ ansible-playbook configure_db.yml

PLAY [Installing MariaDB server] ***

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

TASK [['mariadb-server', 'python3-PyMySQL'] packages are installed] **********
ok: [servera.lab.example.com]

TASK [Make sure the database service is running] *****************************
ok: [servera.lab.example.com]

TASK [The /etc/my.cnf file has been installed] *******************************
ok: [servera.lab.example.com]

PLAY RECAP ***
servera.lab.example.com : ok=4 changed=0 unreachable=0 failed=0

This time the handlers are skipped. In the event that the remote configuration file is

changed in the future, executing the playbook would trigger the restart db service
handler but not the set db password handler.

Finish

On workstation, run the lab control-handlers finish script to clean up the resources

created in this exercise.

[student@workstation ~]$ lab control-handlers finish

This concludes the guided exercise.

RH294-RHEL8.4-en-1-20210818 161

Chapter 4 | Implementing Task Control

Handling Task Failure

Objectives
After completing this section, you should be able to control what happens when a task fails, and

what conditions cause a task to fail.

Managing Task Errors in Plays
Ansible evaluates the return code of each task to determine whether the task succeeded or failed.

Normally, when a task fails Ansible immediately aborts the rest of the play on that host, skipping all

subsequent tasks.

However, sometimes you might want to have play execution continue even if a task fails. For

example, you might expect that a particular task could fail, and you might want to recover by

running some other task conditionally. There are a number of Ansible features that can be used to

manage task errors.

Ignoring Task Failure

By default, if a task fails, the play is aborted. However, this behavior can be overridden by ignoring

failed tasks. You can use the ignore_errors keyword in a task to accomplish this.

The following snippet shows how to use ignore_errors in a task to continue playbook execution

on the host even if the task fails. For example, if the notapkg package does not exist then the yum

module fails, but having ignore_errors set to yes allows execution to continue.

- name: Latest version of notapkg is installed
 yum:
 name: notapkg
 state: latest
 ignore_errors: yes

Forcing Execution of Handlers after Task Failure

Normally when a task fails and the play aborts on that host, any handlers that had been notified by

earlier tasks in the play will not run. If you set the force_handlers: yes keyword on the play,

then notified handlers are called even if the play aborted because a later task failed.

The following snippet shows hows to use the force_handlers keyword in a play to force

execution of the handler even if a task fails:

- hosts: all
 force_handlers: yes
 tasks:
 - name: a task which always notifies its handler
 command: /bin/true
 notify: restart the database

162 RH294-RHEL8.4-en-1-20210818

Chapter 4 | Implementing Task Control

 - name: a task which fails because the package doesn't exist
 yum:
 name: notapkg
 state: latest

 handlers:
 - name: restart the database
 service:
 name: mariadb
 state: restarted

Note

Remember that handlers are notified when a task reports a changed result but are

not notified when it reports an ok or failed result.

Specifying Task Failure Conditions

You can use the failed_when keyword on a task to specify which conditions indicate that

the task has failed. This is often used with command modules that may successfully execute a

command, but the command's output indicates a failure.

For example, you can run a script that outputs an error message and use that message to define

the failed state for the task. The following snippet shows how the failed_when keyword can be

used in a task:

tasks:
 - name: Run user creation script
 shell: /usr/local/bin/create_users.sh
 register: command_result
 failed_when: "'Password missing' in command_result.stdout"

The fail module can also be used to force a task failure. The above scenario can alternatively be

written as two tasks:

tasks:
 - name: Run user creation script
 shell: /usr/local/bin/create_users.sh
 register: command_result
 ignore_errors: yes

 - name: Report script failure
 fail:
 msg: "The password is missing in the output"
 when: "'Password missing' in command_result.stdout"

You can use the fail module to provide a clear failure message for the task. This approach also

enables delayed failure, allowing you to run intermediate tasks to complete or roll back other

changes.

RH294-RHEL8.4-en-1-20210818 163

Chapter 4 | Implementing Task Control

Specifying When a Task Reports "Changed" Results

When a task makes a change to a managed host, it reports the changed state and notifies

handlers. When a task does not need to make a change, it reports ok and does not notify handlers.

The changed_when keyword can be used to control when a task reports that it has changed.

For example, the shell module in the next example is being used to get a Kerberos credential

which will be used by subsequent tasks. It normally would always report changed when it runs. To

suppress that change, changed_when: false is set so that it only reports ok or failed.

 - name: get Kerberos credentials as "admin"
 shell: echo "{{ krb_admin_pass }}" | kinit -f admin
 changed_when: false

The following example uses the shell module to report changed based on the output of the

module that is collected by a registered variable:

tasks:
 - shell:
 cmd: /usr/local/bin/upgrade-database
 register: command_result
 changed_when: "'Success' in command_result.stdout"
 notify:
 - restart_database

handlers:
 - name: restart_database
 service:
 name: mariadb
 state: restarted

Ansible Blocks and Error Handling

In playbooks, blocks are clauses that logically group tasks, and can be used to control how tasks

are executed. For example, a task block can have a when keyword to apply a conditional to multiple

tasks:

- name: block example
 hosts: all
 tasks:
 - name: installing and configuring Yum versionlock plugin
 block:
 - name: package needed by yum
 yum:
 name: yum-plugin-versionlock
 state: present
 - name: lock version of tzdata
 lineinfile:
 dest: /etc/yum/pluginconf.d/versionlock.list
 line: tzdata-2016j-1
 state: present
 when: ansible_distribution == "RedHat"

164 RH294-RHEL8.4-en-1-20210818

Chapter 4 | Implementing Task Control

Blocks also allow for error handling in combination with the rescue and always statements. If

any task in a block fails, tasks in its rescue block are executed in order to recover. After the tasks

in the block clause run, as well as the tasks in the rescue clause if there was a failure, then tasks in

the always clause run. To summarize:

• block: Defines the main tasks to run.

• rescue: Defines the tasks to run if the tasks defined in the block clause fail.

• always: Defines the tasks that will always run independently of the success or failure of tasks

defined in the block and rescue clauses.

The following example shows how to implement a block in a playbook. Even if tasks defined in the

block clause fail, tasks defined in the rescue and always clauses are executed.

 tasks:
 - name: Upgrade DB
 block:
 - name: upgrade the database
 shell:
 cmd: /usr/local/lib/upgrade-database
 rescue:
 - name: revert the database upgrade
 shell:
 cmd: /usr/local/lib/revert-database
 always:
 - name: always restart the database
 service:
 name: mariadb
 state: restarted

The when condition on a block clause also applies to its rescue and always clauses if present.

References

Error Handling in Playbooks — Ansible Documentation

https://docs.ansible.com/ansible/2.9/user_guide/playbooks_error_handling.html

Error Handling — Blocks — Ansible Documentation

https://docs.ansible.com/ansible/2.9/user_guide/playbooks_blocks.html#blocks-

error-handling

RH294-RHEL8.4-en-1-20210818 165

https://docs.ansible.com/ansible/2.9/user_guide/playbooks_error_handling.html
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_blocks.html#blocks-error-handling
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_blocks.html#blocks-error-handling

Chapter 4 | Implementing Task Control

Guided Exercise

Handling Task Failure

In this exercise, you will explore different ways to handle task failure in an Ansible Playbook.

Outcomes
You should be able to:

• Ignore failed commands during the execution of playbooks.

• Force execution of handlers.

• Override what constitutes a failure in tasks.

• Override the changed state for tasks.

• Implement block, rescue, and always in playbooks.

Before You Begin
On workstation, run the lab start script to confirm the environment is ready for the lab to

begin. This script creates the working directory, /home/student/control-errors.

[student@workstation ~]$ lab control-errors start

Instructions

 1. On workstation.lab.example.com, change to the /home/student/control-
errors project directory.

[student@workstation ~]$ cd ~/control-errors
[student@workstation control-errors]$

 2. The lab script created an Ansible configuration file as well as an inventory file that contains

the server servera.lab.example.com in the databases group. Review the file before

proceeding.

 3. Create the playbook.yml playbook, which contains a play with two tasks. Write the first

task with a deliberate error to cause failure.

3.1. Open the playbook in a text editor. Define three variables: web_package with a value

of http, db_package with a value of mariadb-server, and db_service with a

value of mariadb. These variables will be used to install the required packages and

start the server.

The http value is an intentional error in the package name. The file should read as

follows:

166 RH294-RHEL8.4-en-1-20210818

Chapter 4 | Implementing Task Control

- name: Task Failure Exercise
 hosts: databases
 vars:
 web_package: http
 db_package: mariadb-server
 db_service: mariadb

3.2. Define two tasks that use the yum module and the two variables, web_package and

db_package. The tasks will install the required packages. The tasks should read as

follows:

 tasks:
 - name: Install {{ web_package }} package
 yum:
 name: "{{ web_package }}"
 state: present

 - name: Install {{ db_package }} package
 yum:
 name: "{{ db_package }}"
 state: present

 4. Run the playbook and watch the output of the play.

[student@workstation control-errors]$ ansible-playbook playbook.yml

PLAY [Task Failure Exercise] ***

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

TASK [Install http package] **
fatal: [servera.lab.example.com]: FAILED! => {"changed": false, "failures":
 ["No package http available."], "msg": "Failed to install some of the specified
 packages", "rc": 1, "results": []}

PLAY RECAP ***
servera.lab.example.com : ok=1 changed=0 unreachable=0 failed=1

The task failed because there is no existing package called http. Because the first task

failed, the second task was not run.

 5. Update the first task to ignore any errors by adding the ignore_errors keyword. The

tasks should read as follows:

 tasks:
 - name: Install {{ web_package }} package
 yum:
 name: "{{ web_package }}"
 state: present
 ignore_errors: yes

RH294-RHEL8.4-en-1-20210818 167

Chapter 4 | Implementing Task Control

 - name: Install {{ db_package }} package
 yum:
 name: "{{ db_package }}"
 state: present

 6. Run the playbook again and watch the output of the play.

[student@workstation control-errors]$ ansible-playbook playbook.yml

PLAY [Task Failure Exercise] ***

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

TASK [Install http package] **
fatal: [servera.lab.example.com]: FAILED! => {"changed": false, "failures":
 ["No package http available."], "msg": "Failed to install some of the specified
 packages", "rc": 1, "results": []}
...ignoring

TASK [Install mariadb-server package] **
changed: [servera.lab.example.com]

PLAY RECAP ***
servera.lab.example.com : ok=3 changed=1 unreachable=0 failed=0

Despite the fact that the first task failed, Ansible executed the second one.

 7. In this step, you will set up a block keyword so you can experiment with how they work.

7.1. Update the playbook by nesting the first task in a block clause. Remove the line that

sets ignore_errors: yes. The block should read as follows:

 - name: Attempt to set up a webserver
 block:
 - name: Install {{ web_package }} package
 yum:
 name: "{{ web_package }}"
 state: present

7.2. Nest the task that installs the mariadb-server package in a rescue clause. The task

will execute if the task listed in the block clause fails. The block clause should read as

follows:

 rescue:
 - name: Install {{ db_package }} package
 yum:
 name: "{{ db_package }}"
 state: present

7.3. Finally, add an always clause to start the database server upon installation using the

service module. The clause should read as follows:

168 RH294-RHEL8.4-en-1-20210818

Chapter 4 | Implementing Task Control

 always:
 - name: Start {{ db_service }} service
 service:
 name: "{{ db_service }}"
 state: started

7.4. The completed task section should read as follows:

 tasks:
 - name: Attempt to set up a webserver
 block:
 - name: Install {{ web_package }} package
 yum:
 name: "{{ web_package }}"
 state: present
 rescue:
 - name: Install {{ db_package }} package
 yum:
 name: "{{ db_package }}"
 state: present
 always:
 - name: Start {{ db_service }} service
 service:
 name: "{{ db_service }}"
 state: started

 8. Now run the playbook again and observe the output.

8.1. Run the playbook. The task in the block that makes sure web_package is installed

fails, which causes the task in the rescue block to run. Then the task in the always
block runs.

[student@workstation control-errors]$ ansible-playbook playbook.yml

PLAY [Task Failure Exercise] ***

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

TASK [Install http package] **
fatal: [servera.lab.example.com]: FAILED! => {"changed": false, "failures":
 ["No package http available."], "msg": "Failed to install some of the specified
 packages", "rc": 1, "results": []}

TASK [Install mariadb-server package] **
ok: [servera.lab.example.com]

TASK [Start mariadb service] ***
changed: [servera.lab.example.com]

PLAY RECAP ***
servera.lab.example.com : ok=3 changed=1 unreachable=0 failed=1

RH294-RHEL8.4-en-1-20210818 169

Chapter 4 | Implementing Task Control

8.2. Edit the playbook, correcting the value of the web_package variable to read httpd.

That will cause the task in the block to succeed the next time you run the playbook.

 vars:
 web_package: httpd
 db_package: mariadb-server
 db_service: mariadb

8.3. Run the playbook again. This time, the task in the block does not fail. This causes the

task in the rescue section to be ignored. The task in the always will still run.

[student@workstation control-errors]$ ansible-playbook playbook.yml

PLAY [Task Failure Exercise] ***

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

TASK [Install httpd package] ***
changed: [servera.lab.example.com]

TASK [Start mariadb service] ***
ok: [servera.lab.example.com]

PLAY RECAP ***
servera.lab.example.com : ok=3 changed=1 unreachable=0 failed=0

 9. This step explores how to control the condition that causes a task to be reported as

"changed" to the managed host.

9.1. Edit the playbook to add two tasks to the start of the play, preceding the block. The

first task uses the command module to run the date command and register the result

in the command_result variable. The second task uses the debug module to print

the standard output of the first task's command.

 tasks:
 - name: Check local time
 command: date
 register: command_result

 - name: Print local time
 debug:
 var: command_result.stdout

9.2. Run the playbook. You should see that the first task, which runs the command module,

reports changed, even though it did not change the remote system; it only collected

information about the time. That is because the command module cannot tell the

difference between a command that collects data and a command that changes

state.

[student@workstation control-errors]$ ansible-playbook playbook.yml

PLAY [Task Failure Exercise] ***

170 RH294-RHEL8.4-en-1-20210818

Chapter 4 | Implementing Task Control

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

TASK [Check local time] **
changed: [servera.lab.example.com]

TASK [Print local time] **
ok: [servera.lab.example.com] => {
 "command_result.stdout": "mié mar 27 08:07:08 EDT 2019"
}

TASK [Install httpd package] ***
ok: [servera.lab.example.com]

TASK [Start mariadb service] ***
ok: [servera.lab.example.com]

PLAY RECAP ***
servera.lab.example.com : ok=5 changed=1 unreachable=0 failed=0

If you run the playbook again, the Check local time task returns changed again.

9.3. That command task should not report changed every time it runs because it is not

changing the managed host. Because you know that the task will never change a

managed host, add the line changed_when: false to the task to suppress the

change.

 tasks:
 - name: Check local time
 command: date
 register: command_result
 changed_when: false

 - name: Print local time
 debug:
 var: command_result.stdout

9.4. Run the playbook again and notice that the task now reports ok, but the task is still

being run and is still saving the time in the variable.

[student@workstation control-errors]$ ansible-playbook playbook.yml

PLAY [Task Failure Exercise] ***

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

TASK [Check local time] **
ok: [servera.lab.example.com]

TASK [Print local time] **
ok: [servera.lab.example.com] => {
 "command_result.stdout": "mié mar 27 08:08:36 EDT 2019"

RH294-RHEL8.4-en-1-20210818 171

Chapter 4 | Implementing Task Control

}

TASK [Install httpd package] ***
ok: [servera.lab.example.com]

TASK [Start mariadb service] ***
ok: [servera.lab.example.com]

PLAY RECAP ***
servera.lab.example.com : ok=5 changed=0 unreachable=0 failed=0

 10. As a final exercise, edit the playbook to explore how the failed_when keyword interacts

with tasks.

10.1. Edit the Install {{ web_package }} package task so that it reports as having

failed when web_package has the value httpd. Because this is the case, the task will

report failure when you run the play.

Be careful with your indentation to make sure the keyword is correctly set on the task.

 - block:
 - name: Install {{ web_package }} package
 yum:
 name: "{{ web_package }}"
 state: present
 failed_when: web_package == "httpd"

10.2. Run the playbook.

[student@workstation control-errors]$ ansible-playbook playbook.yml

PLAY [Task Failure Exercise] ***

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

TASK [Check local time] **
ok: [servera.lab.example.com]

TASK [Print local time] **
ok: [servera.lab.example.com] => {
 "command_result.stdout": "mié mar 27 08:09:35 EDT 2019"
}

TASK [Install httpd package] ***
fatal: [servera.lab.example.com]: FAILED! => {"changed": false,
 "failed_when_result": true, "msg": "Nothing to do", "rc": 0, "results":
 ["Installed: httpd"]}

TASK [Install mariadb-server package] **
ok: [servera.lab.example.com]

TASK [Start mariadb service] ***
ok: [servera.lab.example.com]

172 RH294-RHEL8.4-en-1-20210818

Chapter 4 | Implementing Task Control

PLAY RECAP ***
servera.lab.example.com : ok=5 changed=0 unreachable=0 failed=1

Look carefully at the output. The Install httpd package task reports that

it failed, but it actually ran and made sure the package is installed first. The

failed_when keyword changes the status the task reports after the task runs; it

does not change the behavior of the task itself.

However, the reported failure might change the behavior of the rest of the play.

Because that task was in a block and reported that it failed, the Install mariadb-
server package task in the block's rescue section was run.

Finish

On workstation, run the lab control-errors finish script to clean up the resources

created in this exercise.

[student@workstation ~]$ lab control-errors finish

This concludes the guided exercise.

RH294-RHEL8.4-en-1-20210818 173

Chapter 4 | Implementing Task Control

Lab

Implementing Task Control

Performance Checklist
In this lab, you will install the Apache web server and secure it using mod_ssl. You will use

conditions, handlers, and task failure handling in your playbook to deploy the environment.

Outcomes
You should be able to define conditionals in Ansible Playbooks, set up loops that iterate over

elements, define handlers in playbooks, and handle task errors.

Before You Begin
Log in as the student user on workstation and run lab control-review start. This

script ensures that the managed host, serverb, is reachable on the network. It also ensures

that the correct Ansible configuration file and inventory are installed on the control node.

[student@workstation ~]$ lab control-review start

Instructions

1. On workstation, change to the /home/student/control-review project directory.

2. The project directory contains a partially completed playbook, playbook.yml. Using a text

editor, add a task that uses the fail module under the #Fail Fast Message comment.

Be sure to provide an appropriate name for the task. This task should only be executed when

the remote system does not meet the minimum requirements.

The minimum requirements for the remote host are listed below:

• Has at least the amount of RAM specified by the min_ram_mb variable. The min_ram_mb
variable is defined in the vars.yml file and has a value of 256.

• Is running Red Hat Enterprise Linux.

3. Add a single task to the playbook under the #Install all Packages comment to

install the latest version of any missing packages. Required packages are specified by the

packages variable, which is defined in the vars.yml file.

The task name should be Ensure required packages are present.

4. Add a single task to the playbook under the #Enable and start services comment

to start all services. All services specified by the services variable, which is defined in the

vars.yml file, should be started and enabled. Be sure to provide an appropriate name for

the task.

5. Add a task block to the playbook under the #Block of config tasks comment. This

block contains two tasks:

• A task to ensure the directory specified by the ssl_cert_dir variable exists on the

remote host. This directory stores the web server's certificates.

174 RH294-RHEL8.4-en-1-20210818

Chapter 4 | Implementing Task Control

• A task to copy all files specified by the web_config_files variable to the remote

host. Examine the structure of the web_config_files variable in the vars.yml file.

Configure the task to copy each file to the correct destination on the remote host.

This task should trigger the restart web service handler if any of these files are

changed on the remote server.

Additionally, a debug task is executed if either of the two tasks above fail. In this case, the

task prints the message: One or more of the configuration changes failed,
but the web service is still active.

Be sure to provide an appropriate name for all tasks.

6. The playbook configures the remote host to listen for standard HTTPS requests. Add a

single task to the playbook under the #Configure the firewall comment to configure

firewalld.

This task should ensure that the remote host allows standard HTTP and HTTPS connections.

These configuration changes should be effective immediately and persist after a system

reboot. Be sure to provide an appropriate name for the task.

7. Define the restart web service handler.

When triggered, this task should restart the web service defined by the web_service
variable, defined in the vars.yml file.

8. From the project directory, ~/control-review, run the playbook.yml playbook. The

playbook should execute without errors, and trigger the execution of the handler task.

9. Verify that the web server now responds to HTTPS requests, using the self-signed custom

certificate to encrypt the connection. The web server response should match the string

Configured for both HTTP and HTTPS.

Evaluation

Run the lab control-review grade command on workstation to confirm success on this

exercise. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab control-review grade

Finish

Run the lab control-review finish command to clean up after the lab.

[student@workstation ~]$ lab control-review finish

This concludes the lab.

RH294-RHEL8.4-en-1-20210818 175

Chapter 4 | Implementing Task Control

Solution

Implementing Task Control

Performance Checklist
In this lab, you will install the Apache web server and secure it using mod_ssl. You will use

conditions, handlers, and task failure handling in your playbook to deploy the environment.

Outcomes
You should be able to define conditionals in Ansible Playbooks, set up loops that iterate over

elements, define handlers in playbooks, and handle task errors.

Before You Begin
Log in as the student user on workstation and run lab control-review start. This

script ensures that the managed host, serverb, is reachable on the network. It also ensures

that the correct Ansible configuration file and inventory are installed on the control node.

[student@workstation ~]$ lab control-review start

Instructions

1. On workstation, change to the /home/student/control-review project directory.

[student@workstation ~]$ cd ~/control-review
[student@workstation control-review]$

2. The project directory contains a partially completed playbook, playbook.yml. Using a text

editor, add a task that uses the fail module under the #Fail Fast Message comment.

Be sure to provide an appropriate name for the task. This task should only be executed when

the remote system does not meet the minimum requirements.

The minimum requirements for the remote host are listed below:

• Has at least the amount of RAM specified by the min_ram_mb variable. The min_ram_mb
variable is defined in the vars.yml file and has a value of 256.

• Is running Red Hat Enterprise Linux.

The completed task matches:

 tasks:
 #Fail Fast Message
 - name: Show Failed System Requirements Message
 fail:
 msg: "The {{ inventory_hostname }} did not meet minimum reqs."
 when: >
 ansible_memtotal_mb < min_ram_mb or
 ansible_distribution != "RedHat"

176 RH294-RHEL8.4-en-1-20210818

Chapter 4 | Implementing Task Control

3. Add a single task to the playbook under the #Install all Packages comment to

install the latest version of any missing packages. Required packages are specified by the

packages variable, which is defined in the vars.yml file.

The task name should be Ensure required packages are present.

The completed task matches:

 #Install all Packages
 - name: Ensure required packages are present
 yum:
 name: "{{ packages }}"
 state: latest

4. Add a single task to the playbook under the #Enable and start services comment

to start all services. All services specified by the services variable, which is defined in the

vars.yml file, should be started and enabled. Be sure to provide an appropriate name for

the task.

The completed task matches:

 #Enable and start services
 - name: Ensure services are started and enabled
 service:
 name: "{{ item }}"
 state: started
 enabled: yes
 loop: "{{ services }}"

5. Add a task block to the playbook under the #Block of config tasks comment. This

block contains two tasks:

• A task to ensure the directory specified by the ssl_cert_dir variable exists on the

remote host. This directory stores the web server's certificates.

• A task to copy all files specified by the web_config_files variable to the remote

host. Examine the structure of the web_config_files variable in the vars.yml file.

Configure the task to copy each file to the correct destination on the remote host.

This task should trigger the restart web service handler if any of these files are

changed on the remote server.

Additionally, a debug task is executed if either of the two tasks above fail. In this case, the

task prints the message: One or more of the configuration changes failed,
but the web service is still active.

Be sure to provide an appropriate name for all tasks.

The completed task block matches below:

 #Block of config tasks
 - name: Setting up the SSL cert directory and config files
 block:
 - name: Create SSL cert directory
 file:
 path: "{{ ssl_cert_dir }}"
 state: directory

RH294-RHEL8.4-en-1-20210818 177

Chapter 4 | Implementing Task Control

 - name: Copy Config Files
 copy:
 src: "{{ item.src }}"
 dest: "{{ item.dest }}"
 loop: "{{ web_config_files }}"
 notify: restart web service

 rescue:
 - name: Configuration Error Message
 debug:
 msg: >
 One or more of the configuration
 changes failed, but the web service
 is still active.

6. The playbook configures the remote host to listen for standard HTTPS requests. Add a

single task to the playbook under the #Configure the firewall comment to configure

firewalld.

This task should ensure that the remote host allows standard HTTP and HTTPS connections.

These configuration changes should be effective immediately and persist after a system

reboot. Be sure to provide an appropriate name for the task.

The completed task matches:

 #Configure the firewall
 - name: ensure web server ports are open
 firewalld:
 service: "{{ item }}"
 immediate: true
 permanent: true
 state: enabled
 loop:
 - http
 - https

7. Define the restart web service handler.

When triggered, this task should restart the web service defined by the web_service
variable, defined in the vars.yml file.

A handlers section is added to the end of the playbook:

 handlers:
 - name: restart web service
 service:
 name: "{{ web_service }}"
 state: restarted

The completed playbook contains:

- name: Playbook Control Lab
 hosts: webservers
 vars_files: vars.yml
 tasks:
 #Fail Fast Message

178 RH294-RHEL8.4-en-1-20210818

Chapter 4 | Implementing Task Control

 - name: Show Failed System Requirements Message
 fail:
 msg: "The {{ inventory_hostname }} did not meet minimum reqs."
 when: >
 ansible_memtotal_mb < min_ram_mb or
 ansible_distribution != "RedHat"

 #Install all Packages
 - name: Ensure required packages are present
 yum:
 name: "{{ packages }}"
 state: latest

 #Enable and start services
 - name: Ensure services are started and enabled
 service:
 name: "{{ item }}"
 state: started
 enabled: yes
 loop: "{{ services }}"

 #Block of config tasks
 - name: Setting up the SSL cert directory and config files
 block:
 - name: Create SSL cert directory
 file:
 path: "{{ ssl_cert_dir }}"
 state: directory

 - name: Copy Config Files
 copy:
 src: "{{ item.src }}"
 dest: "{{ item.dest }}"
 loop: "{{ web_config_files }}"
 notify: restart web service

 rescue:
 - name: Configuration Error Message
 debug:
 msg: >
 One or more of the configuration
 changes failed, but the web service
 is still active.

 #Configure the firewall
 - name: ensure web server ports are open
 firewalld:
 service: "{{ item }}"
 immediate: true
 permanent: true
 state: enabled
 loop:
 - http
 - https

RH294-RHEL8.4-en-1-20210818 179

Chapter 4 | Implementing Task Control

 #Add handlers
 handlers:
 - name: restart web service
 service:
 name: "{{ web_service }}"
 state: restarted

8. From the project directory, ~/control-review, run the playbook.yml playbook. The

playbook should execute without errors, and trigger the execution of the handler task.

[student@workstation control-review]$ ansible-playbook playbook.yml

PLAY [Playbook Control Lab] **

TASK [Gathering Facts] ***
ok: [serverb.lab.example.com]

TASK [Show Failed System Requirements Message] *******************************
skipping: [serverb.lab.example.com]

TASK [Ensure required packages are present] **********************************
changed: [serverb.lab.example.com]

TASK [Ensure services are started and enabled] *******************************
changed: [serverb.lab.example.com] => (item=httpd)
ok: [serverb.lab.example.com] => (item=firewalld)

TASK [Create SSL cert directory] ***
changed: [serverb.lab.example.com]

TASK [Copy Config Files] ***
changed: [serverb.lab.example.com] => (item={'src': 'server.key', 'dest': '/etc/
httpd/conf.d/ssl'})
changed: [serverb.lab.example.com] => (item={'src': 'server.crt', 'dest': '/etc/
httpd/conf.d/ssl'})
changed: [serverb.lab.example.com] => (item={'src': 'ssl.conf', 'dest': '/etc/
httpd/conf.d'})
changed: [serverb.lab.example.com] => (item={'src': 'index.html', 'dest': '/var/
www/html'})

TASK [ensure web server ports are open] **************************************
changed: [serverb.lab.example.com] => (item=http)
changed: [serverb.lab.example.com] => (item=https)

RUNNING HANDLER [restart web service] **
changed: [serverb.lab.example.com]

PLAY RECAP ***
serverb.lab.example.com : ok=7 changed=6 unreachable=0 failed=0

180 RH294-RHEL8.4-en-1-20210818

Chapter 4 | Implementing Task Control

9. Verify that the web server now responds to HTTPS requests, using the self-signed custom

certificate to encrypt the connection. The web server response should match the string

Configured for both HTTP and HTTPS.

[student@workstation control-review]$ curl -k -vvv https://serverb.lab.example.com
* About to connect() to serverb.lab.example.com port 443 (#0)
* Trying 172.25.250.11...
* Connected to serverb.lab.example.com (172.25.250.11) port 443 (#0)
* Initializing NSS with certpath: sql:/etc/pki/nssdb
* skipping SSL peer certificate verification
* SSL connection using TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
* Server certificate:
...output omitted...
* start date: Nov 13 15:52:18 2018 GMT
* expire date: Aug 09 15:52:18 2021 GMT
* common name: serverb.lab.example.com
...output omitted...
< Accept-Ranges: bytes
< Content-Length: 36
< Content-Type: text/html; charset=UTF-8
<
Configured for both HTTP and HTTPS.
* Connection #0 to host serverb.lab.example.com left intact

Evaluation

Run the lab control-review grade command on workstation to confirm success on this

exercise. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab control-review grade

Finish

Run the lab control-review finish command to clean up after the lab.

[student@workstation ~]$ lab control-review finish

This concludes the lab.

RH294-RHEL8.4-en-1-20210818 181

Chapter 4 | Implementing Task Control

Summary

In this chapter, you learned:

• Loops are used to iterate over a set of values, for example, a simple list of strings, or a list of

either hashes or dictionaries.

• Conditionals are used to execute tasks or plays only when certain conditions have been met.

• Handlers are special tasks that execute at the end of the play if notified by other tasks.

• Handlers are only notified when a task reports that it changed something on a managed host.

• Tasks are configured to handle error conditions by ignoring task failure, forcing handlers to be

called even if the task failed, mark a task as failed when it succeeded, or override the behavior

that causes a task to be marked as changed.

• Blocks are used to group tasks as a unit and to execute other tasks depending upon whether or

not all the tasks in the block succeed.

182 RH294-RHEL8.4-en-1-20210818

Chapter 5

Deploying Files to Managed
Hosts

Goal Deploy, manage, and adjust files on hosts managed
by Ansible.

Objectives • Create, install, edit, and remove files on
managed hosts, and manage permissions,
ownership, SELinux context, and other
characteristics of those files.

• Deploy files to managed hosts that are
customized by using Jinja2 templates.

Sections • Modifying and Copying Files to Hosts (and
Guided Exercise)

• Deploying Custom Files with Jinja2 Templates
(and Guided Exercise)

Lab • Deploying Files to Managed Hosts

RH294-RHEL8.4-en-1-20210818 183

Chapter 5 | Deploying Files to Managed Hosts

Modifying and Copying Files to Hosts

Objectives
After completing this section, you should be able to create, install, edit, and remove files on

managed hosts, and manage permissions, ownership, SELinux context, and other characteristics

of those files.

Describing Files Modules
Red Hat Ansible Automation Platform ships with a large collection of modules (the "module

library") that are developed as part of the upstream Ansible project. To make it easier to

organize, document, and manage them, they are organized into groups based on function in the

documentation and when installed on a system.

The Files modules library includes modules allowing you to accomplish most tasks related to

Linux file management, such as creating, copying, editing, and modifying permissions and other

attributes of files. The following table provides a list of frequently used file management modules:

Commonly Used Files Modules

Module name Module description

blockinfile Insert, update, or remove a block of multiline text surrounded by

customizable marker lines.

copy Copy a file from the local or remote machine to a location on a

managed host. Similar to the file module, the copy module can

also set file attributes, including SELinux context.

fetch This module works like the copy module, but in reverse. This module

is used for fetching files from remote machines to the control node

and storing them in a file tree, organized by host name.

file Set attributes such as permissions, ownership, SELinux contexts,

and time stamps of regular files, symlinks, hard links, and directories.

This module can also create or remove regular files, symlinks,

hard links, and directories. A number of other file-related modules

support the same options to set attributes as the file module,

including the copy module.

lineinfile Ensure that a particular line is in a file, or replace an existing line

using a back-reference regular expression. This module is primarily

useful when you want to change a single line in a file.

stat Retrieve status information for a file, similar to the Linux stat
command.

184 RH294-RHEL8.4-en-1-20210818

Chapter 5 | Deploying Files to Managed Hosts

Module name Module description

synchronize A wrapper around the rsync command to make common tasks

quick and easy. The synchronize module is not intended to

provide access to the full power of the rsync command, but does

make the most common invocations easier to implement. You may

still need to call the rsync command directly via the run command
module depending on your use case.

Automation Examples with Files Modules
Creating, copying, editing, and removing files on managed hosts are common tasks that you can

implement using modules from the Files modules library. The following examples show ways that

you can use these modules to automate common file management tasks.

Ensuring a File Exists on Managed Hosts

Use the file module to touch a file on managed hosts. This works like the touch command,

creating an empty file if it does not exist, and updating its modification time if it does exist. In

this example, in addition to touching the file, Ansible ensures that the owning user, group, and

permissions of the file are set to specific values.

- name: Touch a file and set permissions
 file:
 path: /path/to/file
 owner: user1
 group: group1
 mode: 0640
 state: touch

Example outcome:

[user@host ~]$ ls -l file
-rw-r-----. user1 group1 0 Nov 25 08:00 file

Modifying File Attributes

You can use the file module to ensure that a new or existing file has the correct permissions or

SELinux type as well.

For example, the following file has retained the default SELinux context relative to a user's home

directory, which is not the desired context.

[user@host ~]$ ls -Z samba_file
-rw-r--r--. owner group unconfined_u:object_r:user_home_t:s0 samba_file

The following task ensures that the SELinux context type attribute of the samba_file file is the

desired samba_share_t type. This behavior is similar to the Linux chcon command.

RH294-RHEL8.4-en-1-20210818 185

Chapter 5 | Deploying Files to Managed Hosts

- name: SELinux type is set to samba_share_t
 file:
 path: /path/to/samba_file
 setype: samba_share_t

Example outcome:

[user@host ~]$ ls -Z samba_file
-rw-r--r--. owner group unconfined_u:object_r:samba_share_t:s0 samba_file

Note

File attribute parameters are available in multiple file management modules. Run

the ansible-doc file and ansible-doc copy commands for additional

information.

Making SELinux File Context Changes Persistent

The file module acts like chcon when setting file contexts. Changes made with that module

could be unexpectedly undone by running restorecon. After using file to set the context, you

can use sefcontext from the collection of System modules to update the SELinux policy like

semanage fcontext.

- name: SELinux type is persistently set to samba_share_t
 sefcontext:
 target: /path/to/samba_file
 setype: samba_share_t
 state: present

Example outcome:

[user@host ~]$ ls -Z samba_file
-rw-r--r--. owner group unconfined_u:object_r:samba_share_t:s0 samba_file

Important

The sefcontext module updates the default context for the target in the SELinux

policy, but does not change the context on existing files.

Copying and Editing Files on Managed Hosts

In this example, the copy module is used to copy a file located in the Ansible working directory on

the control node to selected managed hosts.

By default this module assumes that force: yes is set. That forces the module to overwrite the

remote file if it exists but contains different contents from the file being copied. If force: no is

set, then it only copies the file to the managed host if it does not already exist.

186 RH294-RHEL8.4-en-1-20210818

Chapter 5 | Deploying Files to Managed Hosts

- name: Copy a file to managed hosts
 copy:
 src: file
 dest: /path/to/file

To retrieve files from managed hosts use the fetch module. This could be used to retrieve a file

such as an SSH public key from a reference system before distributing it to other managed hosts.

- name: Retrieve SSH key from reference host
 fetch:
 src: "/home/{{ user }}/.ssh/id_rsa.pub
 dest: "files/keys/{{ user }}.pub"

To ensure a specific single line of text exists in an existing file, use the lineinfile module:

- name: Add a line of text to a file
 lineinfile:
 path: /path/to/file
 line: 'Add this line to the file'
 state: present

To add a block of text to an existing file, use the blockinfile module:

- name: Add additional lines to a file
 blockinfile:
 path: /path/to/file
 block: |
 First line in the additional block of text
 Second line in the additional block of text
 state: present

Note

When using the blockinfile module, commented block markers are inserted at

the beginning and end of the block to ensure idempotency.

BEGIN ANSIBLE MANAGED BLOCK
First line in the additional block of text
Second line in the additional block of text
END ANSIBLE MANAGED BLOCK

You can use the marker parameter to the module to help ensure that the right

comment character or text is being used for the file in question.

Removing a File from Managed Hosts

A basic example to remove a file from managed hosts is to use the file module with the state:
absent parameter. The state parameter is optional to many modules. You should always make

your intentions clear whether you want state: present or state: absent for several

reasons. Some modules support other options as well. It is possible that the default could change

RH294-RHEL8.4-en-1-20210818 187

Chapter 5 | Deploying Files to Managed Hosts

at some point, but perhaps most importantly, it makes it easier to understand the state the system

should be in based on your task.

- name: Make sure a file does not exist on managed hosts
 file:
 dest: /path/to/file
 state: absent

Retrieving the Status of a File on Managed Hosts

The stat module retrieves facts for a file, similar to the Linux stat command. Parameters

provide the functionality to retrieve file attributes, determine the checksum of a file, and more.

The stat module returns a hash dictionary of values containing the file status data, which allows

you to refer to individual pieces of information using separate variables.

The following example registers the results of a stat module and then prints the MD5 checksum

of the file that it checked. (The more modern SHA256 algorithm is also available; MD5 is being

used here for easier legibility.)

- name: Verify the checksum of a file
 stat:
 path: /path/to/file
 checksum_algorithm: md5
 register: result

- debug
 msg: "The checksum of the file is {{ result.stat.checksum }}"

The outcome should be similar to the following:

TASK [Get md5 checksum of a file] ***
ok: [hostname]

TASK [debug] **
ok: [hostname] => {
 "msg": "The checksum of the file is 5f76590425303022e933c43a7f2092a3"
}

Information about the values returned by the stat module are documented by ansible-doc, or

you can register a variable and display its contents to see what is available:

- name: Examine all stat output of /etc/passwd
 hosts: localhost

 tasks:
 - name: stat /etc/passwd
 stat:
 path: /etc/passwd
 register: results

188 RH294-RHEL8.4-en-1-20210818

Chapter 5 | Deploying Files to Managed Hosts

 - name: Display stat results
 debug:
 var: results

Synchronizing Files Between the Control Node and Managed
Hosts

The synchronize module is a wrapper around the rsync tool, which simplifies common file

management tasks in your playbooks. The rsync tool must be installed on both the local and

remote host. By default, when using the synchronize module, the "local host" is the host that

the synchronize task originates on (usually the control node), and the "destination host" is the host

that synchronize connects to.

The following example synchronizes a file located in the Ansible working directory to the managed

hosts:

- name: synchronize local file to remote files
 synchronize:
 src: file
 dest: /path/to/file

There are many ways to use the synchronize module and its many parameters, including

synchronizing directories. Run the ansible-doc synchronize command for additional

parameters and playbook examples.

References

ansible-doc(1), chmod(1), chown(1), rsync(1), stat(1) and touch(1) man pages

Files modules

https://docs.ansible.com/ansible/2.9/modules/list_of_files_modules.html

RH294-RHEL8.4-en-1-20210818 189

https://docs.ansible.com/ansible/2.9/modules/list_of_files_modules.html

Chapter 5 | Deploying Files to Managed Hosts

Guided Exercise

Modifying and Copying Files to Hosts

In this exercise, you will use standard Ansible modules to create, install, edit, and remove files

on managed hosts and manage the permissions, ownership, and SELinux contexts of those

files.

Outcomes
You should be able to:

• Retrieve files from managed hosts, by host name, and store them locally.

• Create playbooks that use common file management modules such as copy, file,

lineinfile, and blockinfile.

Before You Begin
Log in to workstation as student using student as the password.

On workstation, run the lab file-manage start command. The script creates the

file-manage project directory, and downloads the Ansible configuration file and the host

inventory file needed for the exercise.

[student@workstation ~]$ lab file-manage start

Instructions

 1. As the student user on workstation, change to the /home/student/file-manage
working directory. Create a playbook called secure_log_backups.yml in the current

working directory. Configure the playbook to use the fetch module to retrieve the /
var/log/secure log file from each of the managed hosts and store them on the control

node. The playbook should create the secure-backups directory with subdirectories

named after the host name of each managed host. Store the backup files in their respective

subdirectories.

1.1. Navigate to the /home/student/file-manage working directory.

[student@workstation ~]$ cd ~/file-manage
[student@workstation file-manage]$

1.2. Create the secure_log_backups.yml playbook with initial content:

- name: Use the fetch module to retrieve secure log files
 hosts: all
 remote_user: root

1.3. Add a task to the secure_log_backups.yml playbook that retrieves the /var/
log/secure log file from the managed hosts and stores it in the ~/file-manage/

190 RH294-RHEL8.4-en-1-20210818

Chapter 5 | Deploying Files to Managed Hosts

secure-backups directory. The fetch module creates the ~/file-manage/
secure-backups directory if it does not exist. Use the flat: no parameter to

ensure the default behavior of appending the host name, path, and file name to the

destination:

 tasks:
 - name: Fetch the /var/log/secure log file from managed hosts
 fetch:
 src: /var/log/secure
 dest: secure-backups
 flat: no

1.4. Before running the playbook, run the ansible-playbook --syntax-check
secure_log_backups.yml command to verify its syntax. Correct any errors before

moving to the next step.

[student@workstation file-manage]$ ansible-playbook --syntax-check \
> secure_log_backups.yml

playbook: secure_log_backups.yml

1.5. Run ansible-playbook secure_log_backups.yml to execute the playbook:

[student@workstation file-manage]$ ansible-playbook secure_log_backups.yml
PLAY [Use the fetch module to retrieve secure log files] ******************

TASK [Gathering Facts] **
ok: [servera.lab.example.com]
ok: [serverb.lab.example.com]

TASK [Fetch the /var/log/secure file from managed hosts] ******************
changed: [serverb.lab.example.com]
changed: [servera.lab.example.com]

PLAY RECAP **
servera.lab.example.com : ok=2 changed=1 unreachable=0 failed=0
serverb.lab.example.com : ok=2 changed=1 unreachable=0 failed=0

1.6. Verify the playbook results:

[student@workstation file-manage]$ tree -F secure-backups
secure-backups
├── servera.lab.example.com/
│ └── var/
│ └── log/
│ └── secure
└── serverb.lab.example.com/
 └── var/
 └── log/
 └── secure

RH294-RHEL8.4-en-1-20210818 191

Chapter 5 | Deploying Files to Managed Hosts

 2. Create the copy_file.yml playbook in the current working directory. Configure the

playbook to copy the /home/student/file-manage/files/users.txt file to all

managed hosts as the root user.

2.1. Add the following initial content to the copy_file.yml playbook:

- name: Using the copy module
 hosts: all
 remote_user: root

2.2. Add a task to use the copy module to copy the /home/student/file-manage/
files/users.txt file to all managed hosts. Use the copy module to set the

following parameters for the users.txt file:

Parameter Values

src files/users.txt

dest /home/devops/users.txt

owner devops

group devops

mode u+rw,g-wx,o-rwx

setype samba_share_t

 tasks:
 - name: Copy a file to managed hosts and set attributes
 copy:
 src: files/users.txt
 dest: /home/devops/users.txt
 owner: devops
 group: devops
 mode: u+rw,g-wx,o-rwx
 setype: samba_share_t

2.3. Use the ansible-playbook --syntax-check copy_file.yml command to

verify the syntax of the copy_file.yml playbook.

[student@workstation file-manage]$ ansible-playbook --syntax-check copy_file.yml

playbook: copy_file.yml

2.4. Run the playbook:

[student@workstation file-manage]$ ansible-playbook copy_file.yml
PLAY [Using the copy module] ***

TASK [Gathering Facts] ***

192 RH294-RHEL8.4-en-1-20210818

Chapter 5 | Deploying Files to Managed Hosts

ok: [serverb.lab.example.com]
ok: [servera.lab.example.com]

TASK [Copy a file to managed hosts and set attributes] *****************
changed: [servera.lab.example.com]
changed: [serverb.lab.example.com]

PLAY RECAP ***
servera.lab.example.com : ok=2 changed=1 unreachable=0 failed=0
serverb.lab.example.com : ok=2 changed=1 unreachable=0 failed=0

2.5. Use an ad hoc command to execute the ls -Z command as user devops to verify

the attributes of the users.txt file on the managed hosts.

[student@workstation file-manage]$ ansible all -m command -a 'ls -Z' -u devops
servera.lab.example.com | CHANGED | rc=0 >>
unconfined_u:object_r:samba_share_t:s0 users.txt

serverb.lab.example.com | CHANGED | rc=0 >>
unconfined_u:object_r:samba_share_t:s0 users.txt

 3. In a previous step, the samba_share_t SELinux type field was set for the users.txt file.

However, it is now determined that default values should be set for the SELinux file context.

Create a playbook called selinux_defaults.yml in the current working directory.

Configure the playbook to use the file module to ensure the default SELinux context for

user, role, type, and level fields.

Note

In the real world you would also edit copy_file.yml and remove the setype
keyword.

3.1. Create the selinux_defaults.yml playbook:

- name: Using the file module to ensure SELinux file context
 hosts: all
 remote_user: root
 tasks:
 - name: SELinux file context is set to defaults
 file:
 path: /home/devops/users.txt
 seuser: _default
 serole: _default
 setype: _default
 selevel: _default

3.2. Use the ansible-playbook --syntax-check selinux_defaults.yml
command to verify the syntax of the selinux_defaults.yml playbook.

RH294-RHEL8.4-en-1-20210818 193

Chapter 5 | Deploying Files to Managed Hosts

[student@workstation file-manage]$ ansible-playbook --syntax-check \
> selinux_defaults.yml

playbook: selinux_defaults.yml

3.3. Run the playbook:

[student@workstation file-manage]$ ansible-playbook selinux_defaults.yml
PLAY [Using the file module to ensure SELinux file context] ************

TASK [Gathering Facts] ***
ok: [serverb.lab.example.com]
ok: [servera.lab.example.com]

TASK [SELinux file context is set to defaults] *************************
changed: [serverb.lab.example.com]
changed: [servera.lab.example.com]

PLAY RECAP ***
servera.lab.example.com : ok=2 changed=1 unreachable=0 failed=0
serverb.lab.example.com : ok=2 changed=1 unreachable=0 failed=0

3.4. Use an ad hoc command to execute the ls -Z command as user devops to verify

the default file attributes of unconfined_u:object_r:user_home_t:s0.

[student@workstation file-manage]$ ansible all -m command -a 'ls -Z' -u devops
servera.lab.example.com | CHANGED | rc=0 >>
unconfined_u:object_r:user_home_t:s0 users.txt

serverb.lab.example.com | CHANGED | rc=0 >>
unconfined_u:object_r:user_home_t:s0 users.txt

 4. Create a playbook called add_line.yml in the current working directory. Configure the

playbook to use the lineinfile module to append the line This line was added
by the lineinfile module. to the /home/devops/users.txt file on all managed

hosts.

4.1. Create the add_line.yml playbook:

- name: Add text to an existing file
 hosts: all
 remote_user: devops
 tasks:
 - name: Add a single line of text to a file
 lineinfile:
 path: /home/devops/users.txt
 line: This line was added by the lineinfile module.
 state: present

4.2. Use ansible-playbook --syntax-check add_line.yml command to verify

the syntax of the add_line.yml playbook.

194 RH294-RHEL8.4-en-1-20210818

Chapter 5 | Deploying Files to Managed Hosts

[student@workstation file-manage]$ ansible-playbook --syntax-check add_line.yml

playbook: add_line.yml

4.3. Run the playbook:

[student@workstation file-manage]$ ansible-playbook add_line.yml
PLAY [Add text to an existing file] ************************************

TASK [Gathering Facts] ***
ok: [serverb.lab.example.com]
ok: [servera.lab.example.com]

TASK [Add a single line of text to a file] *****************************
changed: [servera.lab.example.com]
changed: [serverb.lab.example.com]

PLAY RECAP ***
servera.lab.example.com : ok=2 changed=1 unreachable=0 failed=0
serverb.lab.example.com : ok=2 changed=1 unreachable=0 failed=0

4.4. Use the command module with the cat option, as the devops user, to verify the

content of the users.txt file on the managed hosts.

[student@workstation file-manage]$ ansible all -m command \
> -a 'cat users.txt' -u devops
serverb.lab.example.com | CHANGED | rc=0 >>
This line was added by the lineinfile module.

servera.lab.example.com | CHANGED | rc=0 >>
This line was added by the lineinfile module.

 5. Create a playbook called add_block.yml in the current working directory. Configure the

playbook to use the blockinfile module to append the following block of text to the /
home/devops/users.txt file on all managed hosts.

This block of text consists of two lines.
They have been added by the blockinfile module.

5.1. Create the add_block.yml playbook:

- name: Add block of text to a file
 hosts: all
 remote_user: devops
 tasks:
 - name: Add a block of text to an existing file
 blockinfile:
 path: /home/devops/users.txt
 block: |

RH294-RHEL8.4-en-1-20210818 195

Chapter 5 | Deploying Files to Managed Hosts

 This block of text consists of two lines.
 They have been added by the blockinfile module.
 state: present

5.2. Use the ansible-playbook --syntax-check add_block.yml command to

verify the syntax of the add_block.yml playbook.

[student@workstation file-manage]$ ansible-playbook --syntax-check add_block.yml

playbook: add_block.yml

5.3. Run the playbook:

[student@workstation file-manage]$ ansible-playbook add_block.yml

PLAY [Add block of text to a file] **

TASK [Gathering Facts] **
ok: [serverb.lab.example.com]
ok: [servera.lab.example.com]

TASK [Add a block of text to an existing file] ****************************
changed: [servera.lab.example.com]
changed: [serverb.lab.example.com]

PLAY RECAP **
servera.lab.example.com : ok=2 changed=1 unreachable=0 failed=0
serverb.lab.example.com : ok=2 changed=1 unreachable=0 failed=0

5.4. Use the command module with the cat command to verify the correct content of the

/home/devops/users.txt file on the managed host.

[student@workstation file-manage]$ ansible all -m command \
> -a 'cat users.txt' -u devops
serverb.lab.example.com | CHANGED | rc=0 >>
This line was added by the lineinfile module.
BEGIN ANSIBLE MANAGED BLOCK
This block of text consists of two lines.
They have been added by the blockinfile module.
END ANSIBLE MANAGED BLOCK

servera.lab.example.com | CHANGED | rc=0 >>
This line was added by the lineinfile module.
BEGIN ANSIBLE MANAGED BLOCK
This block of text consists of two lines.
They have been added by the blockinfile module.
END ANSIBLE MANAGED BLOCK

 6. Create a playbook called remove_file.yml in the current working directory. Configure

the playbook to use the file module to remove the /home/devops/users.txt file

from all managed hosts.

6.1. Create the remove_file.yml playbook:

196 RH294-RHEL8.4-en-1-20210818

Chapter 5 | Deploying Files to Managed Hosts

- name: Use the file module to remove a file
 hosts: all
 remote_user: devops
 tasks:
 - name: Remove a file from managed hosts
 file:
 path: /home/devops/users.txt
 state: absent

6.2. Use the ansible-playbook --syntax-check remove_file.yml command to

verify the syntax of the remove_file.yml playbook.

[student@workstation file-manage]$ ansible-playbook --syntax-check remove_file.yml

playbook: remove_file.yml

6.3. Run the playbook:

[student@workstation file-manage]$ ansible-playbook remove_file.yml
PLAY [Use the file module to remove a file] *******************************

TASK [Gathering Facts] **
ok: [serverb.lab.example.com]
ok: [servera.lab.example.com]

TASK [Remove a file from managed hosts] ***********************************
changed: [serverb.lab.example.com]
changed: [servera.lab.example.com]

PLAY RECAP **
servera.lab.example.com : ok=2 changed=1 unreachable=0 failed=0
serverb.lab.example.com : ok=2 changed=1 unreachable=0 failed=0

6.4. Use an ad hoc command to execute the ls -l command to confirm that the

users.txt file no longer exists on the managed hosts.

[student@workstation file-manage]$ ansible all -m command -a 'ls -l' -u devops
serverb.lab.example.com | CHANGED | rc=0 >>
total 0

servera.lab.example.com | CHANGED | rc=0 >>
total 0

Finish

On workstation, run the lab file-manage finish script to clean up this exercise.

[student@workstation ~]$ lab file-manage finish

This concludes the guided exercise.

RH294-RHEL8.4-en-1-20210818 197

Chapter 5 | Deploying Files to Managed Hosts

Deploying Custom Files with Jinja2
Templates

Objectives
After completing this section, you should be able to deploy files to managed hosts that are

customized by using Jinja2 templates.

Templating Files
Red Hat Ansible Automation Platform has a number of modules that can be used to modify

existing files. These include lineinfile and blockinfile, among others. However, they are

not always easy to use effectively and correctly.

A much more powerful way to manage files is to template them. With this method, you can write a

template configuration file that is automatically customized for the managed host when the file is

deployed, using Ansible variables and facts. This can be easier to control and is less error-prone.

Introduction to Jinja2
Ansible uses the Jinja2 templating system for template files. Ansible also uses Jinja2 syntax to

reference variables in playbooks, so you already know a little bit about how to use it.

Using Delimiters

Variables and logic expressions are placed between tags, or delimiters. For example, Jinja2

templates use {% EXPR %} for expressions or logic (for example, loops), while {{ EXPR }} are

used for outputting the results of an expression or a variable to the end user. The latter tag, when

rendered, is replaced with a value or values, and are seen by the end user. Use {# COMMENT #}
syntax to enclose comments that should not appear in the final file.

In the following example, the first line includes a comment that will not be included in the final file.

The variable references in the second line are replaced with the values of the system facts being

referenced.

{# /etc/hosts line #}
{{ ansible_facts['default_ipv4']['address'] }} {{ ansible_facts['hostname'] }}

Building a Jinja2 template
A Jinja2 template is composed of multiple elements: data, variables, and expressions. Those

variables and expressions are replaced with their values when the Jinja2 template is rendered. The

variables used in the template can be specified in the vars section of the playbook. It is possible

to use the managed hosts' facts as variables on a template.

Note

Remember that the facts associated with a managed host can be obtained using

the ansible system_hostname -i inventory_file -m setup command.

198 RH294-RHEL8.4-en-1-20210818

Chapter 5 | Deploying Files to Managed Hosts

The following example shows how to create a template for /etc/ssh/sshd_config with

variables and facts retrieved by Ansible from managed hosts. When the associated playbook is

executed, any facts are replaced by their values in the managed host being configured.

Note

A file containing a Jinja2 template does not need to have any specific file extension

(for example, .j2). However, providing such a file extension may make it easier for

you to remember that it is a template file.

{{ ansible_managed }}
DO NOT MAKE LOCAL MODIFICATIONS TO THIS FILE AS THEY WILL BE LOST

Port {{ ssh_port }}
ListenAddress {{ ansible_facts['default_ipv4']['address'] }}

HostKey /etc/ssh/ssh_host_rsa_key
HostKey /etc/ssh/ssh_host_ecdsa_key
HostKey /etc/ssh/ssh_host_ed25519_key

SyslogFacility AUTHPRIV

PermitRootLogin {{ root_allowed }}
AllowGroups {{ groups_allowed }}

AuthorizedKeysFile /etc/.rht_authorized_keys .ssh/authorized_keys

PasswordAuthentication {{ passwords_allowed }}

ChallengeResponseAuthentication no

GSSAPIAuthentication yes
GSSAPICleanupCredentials no

UsePAM yes

X11Forwarding yes
UsePrivilegeSeparation sandbox

AcceptEnv LANG LC_CTYPE LC_NUMERIC LC_TIME LC_COLLATE LC_MONETARY LC_MESSAGES
AcceptEnv LC_PAPER LC_NAME LC_ADDRESS LC_TELEPHONE LC_MEASUREMENT
AcceptEnv LC_IDENTIFICATION LC_ALL LANGUAGE
AcceptEnv XMODIFIERS

Subsystem sftp /usr/libexec/openssh/sftp-server

Deploying Jinja2 Templates
Jinja2 templates are a powerful tool to customize configuration files to be deployed on the

managed hosts. When the Jinja2 template for a configuration file has been created, it can be

deployed to the managed hosts using the template module, which supports the transfer of a

local file on the control node to the managed hosts.

RH294-RHEL8.4-en-1-20210818 199

Chapter 5 | Deploying Files to Managed Hosts

To use the template module, use the following syntax. The value associated with the src key

specifies the source Jinja2 template, and the value associated with the dest key specifies the file

to be created on the destination hosts.

tasks:
 - name: template render
 template:
 src: /tmp/j2-template.j2
 dest: /tmp/dest-config-file.txt

Note

The template module also allows you to specify the owner (the user that owns the

file), group, permissions, and SELinux context of the deployed file, just like the file
module. It can also take a validate option to run an arbitrary command (such

as visudo -c) to check the syntax of a file for correctness before copying it into

place.

For more details, see ansible-doc template.

Managing Templated Files
To avoid having system administrators modify files deployed by Ansible, it is a good practice to

include a comment at the top of the template to indicate that the file should not be manually

edited.

One way to do this is to use the "Ansible managed" string set in the ansible_managed directive.

This is not a normal variable but can be used as one in a template. The ansible_managed
directive is set in the ansible.cfg file:

ansible_managed = Ansible managed

To include the ansible_managed string inside a Jinja2 template, use the following syntax:

{{ ansible_managed }}

Control Structures
You can use Jinja2 control structures in template files to reduce repetitive typing, to enter entries

for each host in a play dynamically, or conditionally insert text into a file.

Using Loops

Jinja2 uses the for statement to provide looping functionality. In the following example, the user
variable is replaced with all the values included in the users variable, one value per line.

{% for user in users %}
 {{ user }}
{% endfor %}

The following example template uses a for statement to run through all the values in the users
variable, replacing myuser with each value, except when the value is root.

200 RH294-RHEL8.4-en-1-20210818

Chapter 5 | Deploying Files to Managed Hosts

{# for statement #}
{% for myuser in users if not myuser == "root" %}
User number {{ loop.index }} - {{ myuser }}
{% endfor %}

The loop.index variable expands to the index number that the loop is currently on. It has a value

of 1 the first time the loop executes, and it increments by 1 through each iteration.

As another example, this template also uses a for statement, and assumes a myhosts variable

has been defined in the inventory file being used. This variable would contain a list of hosts to be

managed. With the following for statement, all hosts in the myhosts group from the inventory

would be listed in the file.

{% for myhost in groups['myhosts'] %}
{{ myhost }}
{% endfor %}

For a more practical example, you can use this to generate an /etc/hosts file from host facts

dynamically. Assume that you have the following playbook:

- name: /etc/hosts is up to date
 hosts: all
 gather_facts: yes
 tasks:
 - name: Deploy /etc/hosts
 template:
 src: templates/hosts.j2
 dest: /etc/hosts

The following three-line templates/hosts.j2 template constructs the file from all hosts in the

group all. (The middle line is extremely long in the template due to the length of the variable

names.) It iterates over each host in the group to get three facts for the /etc/hosts file.

{% for host in groups['all'] %}
{{ hostvars[host]['ansible_facts']['default_ipv4']['address'] }} {{ hostvars[host]
['ansible_facts']['fqdn'] }} {{ hostvars[host]['ansible_facts']['hostname'] }}
{% endfor %}

Using Conditionals

Jinja2 uses the if statement to provide conditional control. This allows you to put a line in a

deployed file if certain conditions are met.

In the following example, the value of the result variable is placed in the deployed file only if the

value of the finished variable is True.

{% if finished %}
{{ result }}
{% endif %}

RH294-RHEL8.4-en-1-20210818 201

Chapter 5 | Deploying Files to Managed Hosts

Important

You can use Jinja2 loops and conditionals in Ansible templates, but not in Ansible

Playbooks.

Variable Filters
Jinja2 provides filters which change the output format for template expressions (for example, to

JSON). There are filters available for languages such as YAML and JSON. The to_json filter

formats the expression output using JSON, and the to_yaml filter formats the expression output

using YAML.

{{ output | to_json }}
{{ output | to_yaml }}

Additional filters are available, such as the to_nice_json and to_nice_yaml filters, which

format the expression output in either JSON or YAML human readable format.

{{ output | to_nice_json }}
{{ output | to_nice_yaml }}

Both the from_json and from_yaml filters expect strings in either JSON or YAML format,

respectively, to parse them.

{{ output | from_json }}
{{ output | from_yaml }}

Variable Tests
The expressions used with when clauses in Ansible Playbooks are Jinja2 expressions. Built-in

Ansible tests used to test return values include failed, changed, succeeded, and skipped.

The following task shows how tests can be used inside of conditional expressions.

tasks:
...output omitted...
 - debug: msg="the execution was aborted"
 when: returnvalue is failed

References

template - Templates a file out to a remote server — Ansible Documentation

https://docs.ansible.com/ansible/2.9/modules/template_module.html

Variables — Ansible Documentation

https://docs.ansible.com/ansible/2.9/user_guide/playbooks_variables.html

Filters — Ansible Documentation

https://docs.ansible.com/ansible/2.9/user_guide/playbooks_filters.html

202 RH294-RHEL8.4-en-1-20210818

https://docs.ansible.com/ansible/2.9/modules/template_module.html
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_variables.html
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_filters.html

Chapter 5 | Deploying Files to Managed Hosts

Guided Exercise

Deploying Custom Files with Jinja2
Templates

In this exercise, you will create a simple template file that your playbook will use to install a

customized Message of the Day file on each managed host.

Outcomes
You should be able to:

• Build a template file.

• Use the template file in a playbook.

Before You Begin
Log in to workstation as student using student as the password.

On workstation, run the lab file-template start command. This script ensures

that Ansible is installed on workstation, creates the /home/student/file-template
directory, and downloads the ansible.cfg file into that directory.

[student@workstation ~]$ lab file-template start

Note

All the files used during this exercise are available for reference on

workstation in the /home/student/file-template/files directory.

Instructions

 1. On workstation, navigate to the /home/student/file-template working directory.

Review the inventory file in the current working directory. This file configures two

groups: webservers and workstations. The servera.lab.example.com system is

in the webservers group, and the workstation.lab.example.com system is in the

workstations group.

1.1. Navigate to the /home/student/file-template working directory.

[student@workstation ~]$ cd ~/file-template
[student@workstation file-template]$

1.2. Display the content of the inventory file.

RH294-RHEL8.4-en-1-20210818 203

Chapter 5 | Deploying Files to Managed Hosts

[webservers]
servera.lab.example.com

[workstations]
workstation.lab.example.com

 2. Create a template for the Message of the Day and include it in the motd.j2 file in the

current working directory. Include the following variables and facts in the template:

• ansible_facts['fqdn'], to insert the FQDN of the managed host.

• ansible_facts['distribution'] and

ansible_facts['distribution_version'], to provide distribution information.

• system_owner, for the system owner's email. This variable needs to be defined with an

appropriate value in the vars section of the playbook template.

This is the system {{ ansible_facts['fqdn'] }}.
This is a {{ ansible_facts['distribution'] }} version
 {{ ansible_facts['distribution_version'] }} system.
Only use this system with permission.
Please report issues to: {{ system_owner }}.

 3. Create a playbook file named motd.yml in the current working directory. Define the

system_owner variable in the vars section, and include a task for the template module

that maps the motd.j2 Jinja2 template to the remote file /etc/motd on the managed

hosts. Set the owner and group to root, and the mode to 0644.

- name: configure SOE
 hosts: all
 remote_user: devops
 become: true
 vars:
 - system_owner: clyde@example.com
 tasks:
 - name: configure /etc/motd
 template:
 src: motd.j2
 dest: /etc/motd
 owner: root
 group: root
 mode: 0644

 4. Before running the playbook, use the ansible-playbook --syntax-check command

to verify the syntax. If it reports any errors, correct them before moving to the next step.

You should see output similar to the following:

[student@workstation file-template]$ ansible-playbook --syntax-check motd.yml

playbook: motd.yml

204 RH294-RHEL8.4-en-1-20210818

Chapter 5 | Deploying Files to Managed Hosts

 5. Run the motd.yml playbook.

[student@workstation file-template]$ ansible-playbook motd.yml
PLAY [all] **

TASK [Gathering Facts] **
ok: [servera.lab.example.com]
ok: [workstation.lab.example.com]

TASK [template] ***
changed: [servera.lab.example.com]
changed: [workstation.lab.example.com]

PLAY RECAP **
servera.lab.example.com : ok=2 changed=1 unreachable=0 failed=0
workstation.lab.example.com : ok=2 changed=1 unreachable=0 failed=0

 6. Log in to servera.lab.example.com as the devops user to verify that the MOTD is

correctly displayed when logged in. Log off when you have finished.

[student@workstation file-template]$ ssh devops@servera.lab.example.com
This is the system servera.lab.example.com.
This is a RedHat version 8.4 system.
Only use this system with permission.
Please report issues to: clyde@example.com.
...output omitted...
[devops@servera ~]# exit
Connection to servera.lab.example.com closed.

Finish

Run the lab file-template finish command to clean up after the exercise.

[student@workstation ~]$ lab file-template finish

This concludes the guided exercise.

RH294-RHEL8.4-en-1-20210818 205

Chapter 5 | Deploying Files to Managed Hosts

Lab

Deploying Files to Managed Hosts

Performance Checklist
In this lab, you will run a playbook that creates a customized file on your managed hosts by

using a Jinja2 template.

Outcomes
You should be able to:

• Build a template file.

• Use the template file in a playbook.

Before You Begin
Log in to workstation as student using student as the password.

On workstation, run the lab file-review start command. This ensures that Ansible

is installed on workstation, creates the /home/student/file-review directory, and

downloads the ansible.cfg file into that directory. It also downloads the motd.yml,

motd.j2, issue, and inventory files into the /home/student/file-review/files
directory.

[student@workstation ~]$ lab file-review start

Note

All files used in this exercise are available on workstation in the /home/
student/file-review/files directory.

Instructions

1. Review the inventory file in the /home/student/file-review directory. This inventory

file defines the servers group, which has the serverb.lab.example.com managed host

associated with it.

2. Identify the facts on serverb.lab.example.com that show the total amount of system

memory, and the number of processors.

3. Create a template for the Message of the Day, named motd.j2, in the current

directory. When the devops user logs in to serverb.lab.example.com, a message

should display that shows the system's total memory and processor count. Use the

ansible_facts['memtotal_mb'] and ansible_facts['processor_count'] facts

to provide the system resource information for the message.

4. Create a new playbook file called motd.yml in the current directory. Using the template
module, configure the motd.j2 Jinja2 template file previously created to map to the file /
etc/motd on the managed hosts. This file has the root user as owner and group, and its

206 RH294-RHEL8.4-en-1-20210818

Chapter 5 | Deploying Files to Managed Hosts

permissions are 0644. Using the stat and debug modules, create tasks to verify that /etc/
motd exists on the managed hosts and displays the file information for /etc/motd. Use the

copy module to place files/issue into the /etc/ directory on the managed host, use the

same ownership and permissions as /etc/motd. Use the file module to ensure that /etc/
issue.net is a symbolic link to /etc/issue on the managed host. Configure the playbook

so that it uses the devops user, and sets the become parameter to true.

5. Run the playbook included in the motd.yml file.

6. Check that the playbook included in the motd.yml file has been executed correctly.

Evaluation

On workstation, run the lab file-review grade script to confirm success on this exercise.

[student@workstation ~]$ lab file-review grade

Finish

On workstation, run the lab file-review finish script to clean up after the lab.

[student@workstation ~]$ lab file-review finish

This concludes the guided exercise.

RH294-RHEL8.4-en-1-20210818 207

Chapter 5 | Deploying Files to Managed Hosts

Solution

Deploying Files to Managed Hosts

Performance Checklist
In this lab, you will run a playbook that creates a customized file on your managed hosts by

using a Jinja2 template.

Outcomes
You should be able to:

• Build a template file.

• Use the template file in a playbook.

Before You Begin
Log in to workstation as student using student as the password.

On workstation, run the lab file-review start command. This ensures that Ansible

is installed on workstation, creates the /home/student/file-review directory, and

downloads the ansible.cfg file into that directory. It also downloads the motd.yml,

motd.j2, issue, and inventory files into the /home/student/file-review/files
directory.

[student@workstation ~]$ lab file-review start

Note

All files used in this exercise are available on workstation in the /home/
student/file-review/files directory.

Instructions

1. Review the inventory file in the /home/student/file-review directory. This inventory

file defines the servers group, which has the serverb.lab.example.com managed host

associated with it.

1.1. On workstation, change to the /home/student/file-review directory.

[student@workstation ~]$ cd ~/file-review/

1.2. Display the content of the inventory file.

[servers]
serverb.lab.example.com

208 RH294-RHEL8.4-en-1-20210818

Chapter 5 | Deploying Files to Managed Hosts

2. Identify the facts on serverb.lab.example.com that show the total amount of system

memory, and the number of processors.

Use the setup module to get a list of all the facts for the serverb.lab.example.com
managed host. The ansible_processor_count and ansible_memtotal_mb facts

provide information about the resource limits of the managed host.

[student@workstation file-review]$ ansible serverb.lab.example.com -m setup
serverb.lab.example.com | SUCCESS => {
 "ansible_facts": {
...output omitted...
 "ansible_processor_count": 1,
...output omitted...
 "ansible_memtotal_mb": 821,
...output omitted...
 },
 "changed": false
}

3. Create a template for the Message of the Day, named motd.j2, in the current

directory. When the devops user logs in to serverb.lab.example.com, a message

should display that shows the system's total memory and processor count. Use the

ansible_facts['memtotal_mb'] and ansible_facts['processor_count'] facts

to provide the system resource information for the message.

System total memory: {{ ansible_facts['memtotal_mb'] }} MiB.
System processor count: {{ ansible_facts['processor_count'] }}

4. Create a new playbook file called motd.yml in the current directory. Using the template
module, configure the motd.j2 Jinja2 template file previously created to map to the file /
etc/motd on the managed hosts. This file has the root user as owner and group, and its

permissions are 0644. Using the stat and debug modules, create tasks to verify that /etc/
motd exists on the managed hosts and displays the file information for /etc/motd. Use the

copy module to place files/issue into the /etc/ directory on the managed host, use the

same ownership and permissions as /etc/motd. Use the file module to ensure that /etc/
issue.net is a symbolic link to /etc/issue on the managed host. Configure the playbook

so that it uses the devops user, and sets the become parameter to true.

- name: Configure system
 hosts: all
 remote_user: devops
 become: true
 tasks:
 - name: Configure a custom /etc/motd
 template:
 src: motd.j2
 dest: /etc/motd
 owner: root
 group: root
 mode: 0644

 - name: Check file exists
 stat:

RH294-RHEL8.4-en-1-20210818 209

Chapter 5 | Deploying Files to Managed Hosts

 path: /etc/motd
 register: motd

 - name: Display stat results
 debug:
 var: motd

 - name: Copy custom /etc/issue file
 copy:
 src: files/issue
 dest: /etc/issue
 owner: root
 group: root
 mode: 0644

 - name: Ensure /etc/issue.net is a symlink to /etc/issue
 file:
 src: /etc/issue
 dest: /etc/issue.net
 state: link
 owner: root
 group: root
 force: yes

5. Run the playbook included in the motd.yml file.

5.1. Before you run the playbook, use the ansible-playbook --syntax-check
command to verify its syntax. If it reports any errors, correct them before moving to the

next step. You should see output similar to the following:

[student@workstation file-review]$ ansible-playbook --syntax-check motd.yml

playbook: motd.yml

5.2. Run the playbook included in the motd.yml file.

[student@workstation file-review]$ ansible-playbook motd.yml

PLAY [Configure system] **

TASK [Gathering Facts] ***
ok: [serverb.lab.example.com]

TASK [Configure a custom /etc/motd] **
changed: [serverb.lab.example.com]

TASK [Check file exists] ***
ok: [serverb.lab.example.com]

TASK [Display stat results] **
ok: [serverb.lab.example.com] => {
 "motd": {
 "changed": false,
 "failed": false,

210 RH294-RHEL8.4-en-1-20210818

Chapter 5 | Deploying Files to Managed Hosts

...output omitted...

TASK [Copy custom /etc/issue file] ***
changed: [serverb.lab.example.com]

TASK [Ensure /etc/issue.net is a symlink to /etc/issue] ********************
changed: [serverb.lab.example.com]

PLAY RECAP ***
serverb.lab.example.com : ok=6 changed=3 unreachable=0 failed=0

6. Check that the playbook included in the motd.yml file has been executed correctly.

Log in to serverb.lab.example.com as the devops user, and verify that the /etc/motd
and /etc/issue contents are displayed when logging in. Log off when you have finished.

[student@workstation file-review]$ ssh devops@serverb.lab.example.com
------------------------------- PRIVATE SYSTEM -----------------------------
* Access to this computer system is restricted to authorised users only. *
* *
* Customer information is confidential and must not be disclosed. *
--
System total memory: 821 MiB.
System processor count: 1
Activate the web console with: systemctl enable --now cockpit.socket

This system is not registered to Red Hat Insights. See https://cloud.redhat.com/
To register this system, run: insights-client --register

Last login: Thu Apr 25 22:09:33 2019 from 172.25.250.9
[devops@serverb ~]$ logout

Evaluation

On workstation, run the lab file-review grade script to confirm success on this exercise.

[student@workstation ~]$ lab file-review grade

Finish

On workstation, run the lab file-review finish script to clean up after the lab.

[student@workstation ~]$ lab file-review finish

This concludes the guided exercise.

RH294-RHEL8.4-en-1-20210818 211

Chapter 5 | Deploying Files to Managed Hosts

Summary

In this chapter, you learned:

• The Files modules library includes modules that allow you to accomplish most tasks related

to file management, such as creating, copying, editing, and modifying permissions and other

attributes of files.

• You can use Jinja2 templates to dynamically construct files for deployment.

• A Jinja2 template is usually composed of two elements: variables and expressions. Those

variables and expressions are replaced with values when the Jinja2 template is rendered.

• Jinja2 filters transform template expressions from one kind or format of data into another.

212 RH294-RHEL8.4-en-1-20210818

Chapter 6

Managing Complex Plays and
Playbooks

Goal Write playbooks for larger, more complex plays and
playbooks.

Objectives • Write sophisticated host patterns to efficiently
select hosts for a play or ad hoc command.

• Manage large playbooks by importing or
including other playbooks or tasks from external
files, either unconditionally or based on a
conditional test.

Sections • Selecting Hosts with Host Patterns (and
Guided Exercise)

• Including and Importing Files (and Guided
Exercise)

Lab • Managing Complex Plays and Playbooks

RH294-RHEL8.4-en-1-20210818 213

Chapter 6 | Managing Complex Plays and Playbooks

Selecting Hosts with Host Patterns

Objectives
After completing this section, you will be able to write sophisticated host patterns to efficiently

select hosts for a play or ad hoc command.

Referencing Inventory Hosts
Host patterns are used to specify the hosts to target by a play or ad hoc command. In its simplest

form, the name of a managed host or a host group in the inventory is a host pattern that specifies

that host or host group.

You have already used host patterns in this course. In a play, the hosts directive specifies the

managed hosts to run the play against. For an ad hoc command, provide the host pattern as a

command line argument to the ansible command.

It is usually easier to control what hosts a play targets by carefully using host patterns and

having appropriate inventory groups, instead of setting complex conditionals on the play's tasks.

Therefore, it is important to have a robust understanding of host patterns.

The following example inventory is used throughout this section to illustrate host patterns.

[student@controlnode ~]$ cat myinventory
web.example.com
data.example.com

[lab]
labhost1.example.com
labhost2.example.com

[test]
test1.example.com
test2.example.com

[datacenter1]
labhost1.example.com
test1.example.com

[datacenter2]
labhost2.example.com
test2.example.com

[datacenter:children]
datacenter1
datacenter2

[new]
192.168.2.1
192.168.2.2

214 RH294-RHEL8.4-en-1-20210818

Chapter 6 | Managing Complex Plays and Playbooks

To demonstrate how host patterns are resolved, you will execute an Ansible Playbook,

playbook.yml, using different host patterns to target different subsets of managed hosts from

this example inventory.

Managed Hosts

The most basic host pattern is the name for a single managed host listed in the inventory. This

specifies that the host will be the only one in the inventory that will be acted upon by the ansible
command.

When the playbook runs, the first Gathering Facts task should run on all managed hosts that

match the host pattern. A failure during this task can cause the managed host to be removed from

the play.

If an IP address is listed explicitly in the inventory, instead of a host name, then it can be used as

a host pattern. If the IP address is not listed in the inventory, then you cannot use it to specify the

host even if the IP address resolves to that host name in the DNS.

The following example shows how a host pattern can be used to reference an IP address contained

in an inventory.

[student@controlnode ~]$ cat playbook.yml

- hosts: 192.168.2.1
...output omitted...

[student@controlnode ~]$ ansible-playbook playbook.yml

PLAY [Test Host Patterns] **

TASK [Gathering Facts] ***
ok: [192.168.2.1]
...output omitted...

Note

One problem with referring to managed hosts by IP address in the inventory is that

it can be hard to remember which IP address matches which host for your plays and

ad hoc commands. However, you may have to specify the host by IP address for

connection purposes if the host does not have a resolvable host name.

It is possible to point an alias at a particular IP address in your inventory by setting

the ansible_host host variable. For example, you could have a host in your

inventory named dummy.example, and then direct connections using that name

to the IP address 192.168.2.1 by creating a host_vars/dummy.example file

containing the following host variable:

ansible_host: 192.168.2.1

Specifying Hosts Using a Group

You have already used inventory host groups as host patterns. When a group name is used as a

host pattern, it specifies that Ansible will act on the hosts that are members of the group.

RH294-RHEL8.4-en-1-20210818 215

Chapter 6 | Managing Complex Plays and Playbooks

[student@controlnode ~]$ cat playbook.yml

- hosts: lab
...output omitted...
[student@controlnode ~]$ ansible-playbook playbook.yml

PLAY [Test Host Patterns] **

TASK [Gathering Facts] ***
ok: [labhost1.example.com]
ok: [labhost2.example.com]
...output omitted...

Remember that there is a special group named all that matches all managed hosts in the

inventory.

[student@controlnode ~]$ cat playbook.yml

- hosts: all
...output omitted...
[student@controlnode ~]$ ansible-playbook playbook.yml

PLAY [Test Host Patterns] **

TASK [Gathering Facts] ***
ok: [labhost2.example.com]
ok: [test2.example.com]
ok: [web.example.com]
ok: [data.example.com]
ok: [labhost1.example.com]
ok: [192.168.2.1]
ok: [test1.example.com]
ok: [192.168.2.2]

There is also a special group named ungrouped, which includes all managed hosts in the

inventory that are not members of any other group:

[student@controlnode ~]$ cat playbook.yml

- hosts: ungrouped
...output omitted...
[student@controlnode ~]$ ansible-playbook playbook.yml

PLAY [Test Host Patterns] **

TASK [Gathering Facts] ***
ok: [web.example.com]
ok: [data.example.com]

216 RH294-RHEL8.4-en-1-20210818

Chapter 6 | Managing Complex Plays and Playbooks

Matching Multiple Hosts with Wildcards

Another method of accomplishing the same thing as the all host pattern is to use the asterisk (*)

wildcard character, which matches any string. If the host pattern is just a quoted asterisk, then all

hosts in the inventory will match.

[student@controlnode ~]$ cat playbook.yml

- hosts: '*'
...output omitted...
[student@controlnode ~]$ ansible-playbook playbook.yml

PLAY [Test Host Patterns] **

TASK [Gathering Facts] ***
ok: [labhost2.example.com]
ok: [test2.example.com]
ok: [web.example.com]
ok: [data.example.com]
ok: [labhost1.example.com]
ok: [192.168.2.1]
ok: [test1.example.com]
ok: [192.168.2.2]

Important

Some characters that are used in host patterns also have meaning for the shell.

This can be a problem when using host patterns to run ad hoc commands from the

command line with ansible. It is a recommended practice to enclose host patterns

used on the command line in single quotes to protect them from unwanted shell

expansion.

Likewise, if you are using any special wildcards or list characters in an Ansible

Playbook, then you must put your host pattern in single quotes to ensure it is parsed

correctly.

 hosts: '!test1.example.com,development'

The asterisk character can also be used to match any managed hosts or groups that contain a

particular substring.

For example, the following wildcard host pattern matches all inventory names that end in

.example.com:

[student@controlnode ~]$ cat playbook.yml

- hosts: '*.example.com'
...output omitted...
[student@controlnode ~]$ ansible-playbook playbook.yml

PLAY [Test Host Patterns] **

RH294-RHEL8.4-en-1-20210818 217

Chapter 6 | Managing Complex Plays and Playbooks

TASK [Gathering Facts] ***
ok: [labhost1.example.com]
ok: [test1.example.com]
ok: [labhost2.example.com]
ok: [test2.example.com]
ok: [web.example.com]
ok: [data.example.com]

The following example uses a wildcard host pattern to match the names of hosts or host groups

that start with 192.168.2.:

[student@controlnode ~]$ cat playbook.yml

- hosts: '192.168.2.*'
...output omitted...
[student@controlnode ~]$ ansible-playbook playbook.yml

PLAY [Test Host Patterns] **

TASK [Gathering Facts] ***
ok: [192.168.2.1]
ok: [192.168.2.2]

The next example uses a wildcard host pattern to match the names of hosts or host groups that

begin with datacenter.

[student@controlnode ~]$ cat playbook.yml

- hosts: 'datacenter*'
...output omitted...
[student@controlnode ~]$ ansible-playbook playbook.yml

PLAY [Test Host Patterns] **

TASK [Gathering Facts] ***
ok: [labhost1.example.com]
ok: [test1.example.com]
ok: [labhost2.example.com]
ok: [test2.example.com]

218 RH294-RHEL8.4-en-1-20210818

Chapter 6 | Managing Complex Plays and Playbooks

Important

The wildcard host patterns match all inventory names, hosts, and host groups. They

do not distinguish between names that are DNS names, IP addresses, or groups,

which can lead to some unexpected matches.

For example, compare the results of specifying the datacenter* host pattern

from the preceding example with the results of the data* host pattern based on

the example inventory:

[student@controlnode ~]$ cat playbook.yml

- hosts: 'data*'
...output omitted...
[student@controlnode ~]$ ansible-playbook playbook.yml

PLAY [Test Host Patterns] **

TASK [Gathering Facts] ***
ok: [labhost1.example.com]
ok: [test1.example.com]
ok: [labhost2.example.com]
ok: [test2.example.com]
ok: [data.example.com]

Lists

Multiple entries in an inventory can be referenced using logical lists. A comma-separated list of

host patterns matches all hosts that match any of those host patterns.

If you provide a comma-separated list of managed hosts, then all those managed hosts will be

targeted:

[student@controlnode ~]$ cat playbook.yml

- hosts: labhost1.example.com,test2.example.com,192.168.2.2
...output omitted...
[student@controlnode ~]$ ansible-playbook playbook.yml

PLAY [Test Host Patterns] **

TASK [Gathering Facts] ***
ok: [labhost1.example.com]
ok: [test2.example.com]
ok: [192.168.2.2]

If you provide a comma-separated list of groups, then all hosts in any of those groups will be

targeted:

[student@controlnode ~]$ cat playbook.yml

- hosts: lab,datacenter1
...output omitted...

RH294-RHEL8.4-en-1-20210818 219

Chapter 6 | Managing Complex Plays and Playbooks

[student@controlnode ~]$ ansible-playbook playbook.yml

PLAY [Test Host Patterns] **

TASK [Gathering Facts] ***
ok: [labhost1.example.com]
ok: [labhost2.example.com]
ok: [test1.example.com]

You can also mix managed hosts, host groups, and wildcards, as shown below:

[student@controlnode ~]$ cat playbook.yml

- hosts: lab,data*,192.168.2.2
...output omitted...
[student@controlnode ~]$ ansible-playbook playbook.yml

PLAY [Test Host Patterns] **

TASK [Gathering Facts] ***
ok: [labhost1.example.com]
ok: [labhost2.example.com]
ok: [test1.example.com]
ok: [test2.example.com]
ok: [data.example.com]
ok: [192.168.2.2]

Note

The colon character (:) can be used instead of a comma. However, the comma is the

preferred separator, especially when working with IPv6 addresses as managed host

names. You may see the colon syntax in older examples.

If an item in a list starts with an ampersand character (&), then hosts must match that item in order

to match the host pattern. It operates similarly to a logical AND.

For example, based on our example inventory, the following host pattern matches machines in the

lab group only if they are also in the datacenter1 group:

[student@controlnode ~]$ cat playbook.yml

- hosts: lab,&datacenter1
...output omitted...
[student@controlnode ~]$ ansible-playbook playbook.yml

PLAY [Test Host Patterns] **

TASK [Gathering Facts] ***
ok: [labhost1.example.com]

You could also specify that machines in the datacenter1 group match only if they are in the lab
group with the host patterns &lab,datacenter1 or datacenter1,&lab.

220 RH294-RHEL8.4-en-1-20210818

Chapter 6 | Managing Complex Plays and Playbooks

You can exclude hosts that match a pattern from a list by using the exclamation point or "bang"

character (!) in front of the host pattern. This operates like a logical NOT.

This example matches all hosts defined in the datacenter group, except test2.example.com
based on the example inventory:

[student@controlnode ~]$ cat playbook.yml

- hosts: datacenter,!test2.example.com
...output omitted...
[student@controlnode ~]$ ansible-playbook playbook.yml

PLAY [Test Host Patterns] **

TASK [Gathering Facts] ***
ok: [labhost1.example.com]
ok: [test1.example.com]
ok: [labhost2.example.com]

The pattern '!test2.example.com,datacenter' could have been used in the preceding

example to achieve the same result.

The final example shows the use of a host pattern that matches all hosts in the test inventory,

except the managed hosts in the datacenter1 group.

[student@controlnode ~]$ cat playbook.yml

- hosts: all,!datacenter1
...output omitted...
[student@controlnode ~]$ ansible-playbook playbook.yml

PLAY [Test Host Patterns] **

TASK [Gathering Facts] ***
ok: [web.example.com]
ok: [data.example.com]
ok: [labhost2.example.com]
ok: [test2.example.com]
ok: [192.168.2.1]
ok: [192.168.2.2]

References

Working with Patterns — Ansible Documentation

https://docs.ansible.com/ansible/2.9/user_guide/intro_patterns.html

Working with Inventory — Ansible Documentation

https://docs.ansible.com/ansible/2.9/user_guide/intro_inventory.html

RH294-RHEL8.4-en-1-20210818 221

https://docs.ansible.com/ansible/2.9/user_guide/intro_patterns.html
https://docs.ansible.com/ansible/2.9/user_guide/intro_inventory.html

Chapter 6 | Managing Complex Plays and Playbooks

Guided Exercise

Selecting Hosts with Host Patterns

In this exercise, you will explore how to use host patterns to specify hosts from the inventory

for plays or ad hoc commands. You will be provided with several example inventories to

explore host patterns.

Outcomes
You will be able to use different host patterns to access various hosts in an inventory.

Before You Begin
Log in to workstation as student using student as the password.

On workstation, run the lab projects-host start command. The script creates the

projects-host project directory, and then downloads the Ansible configuration file and

the host inventory file needed for this exercise.

[student@workstation ~]$ lab projects-host start

Instructions

 1. On workstation, change to the working directory for the exercise, /home/student/
projects-host, and review the contents of the directory.

[student@workstation ~]$ cd ~/projects-host
[student@workstation projects-host]$

1.1. List the contents of the directory.

[student@workstation projects-host]$ ls
ansible.cfg inventory1 inventory2 playbook.yml

1.2. Inspect the example inventory file, inventory1. Notice how the inventory is

organized. Explore which hosts and groups are in the inventory, and which domains

are used.

srv1.example.com
srv2.example.com
s1.lab.example.com
s2.lab.example.com

[web]
jupiter.lab.example.com
saturn.example.com

[db]

222 RH294-RHEL8.4-en-1-20210818

Chapter 6 | Managing Complex Plays and Playbooks

db1.example.com
db2.example.com
db3.example.com

[lb]
lb1.lab.example.com
lb2.lab.example.com

[boston]
db1.example.com
jupiter.lab.example.com
lb2.lab.example.com

[london]
db2.example.com
db3.example.com
file1.lab.example.com
lb1.lab.example.com

[dev]
web1.lab.example.com
db3.example.com

[stage]
file2.example.com
db2.example.com

[prod]
lb2.lab.example.com
db1.example.com
jupiter.lab.example.com

[function:children]
web
db
lb
city

[city:children]
boston
london
environments

[environments:children]
dev
stage
prod
new

[new]
172.25.252.23
172.25.252.44
172.25.252.32

RH294-RHEL8.4-en-1-20210818 223

Chapter 6 | Managing Complex Plays and Playbooks

1.3. Inspect the example inventory file, inventory2. Notice how the inventory is

organized. Explore which hosts and groups are in the inventory, and which domains

are used.

workstation.lab.example.com

[london]
servera.lab.example.com

[berlin]
serverb.lab.example.com

[tokyo]
serverc.lab.example.com

[atlanta]
serverd.lab.example.com

[europe:children]
london
berlin

1.4. Lastly, inspect the contents of the playbook, playbook.yml. Notice how the

playbook uses the debug module to display the name of each managed host.

- name: Resolve host patterns
 hosts:
 tasks:
 - name: Display managed host name
 debug:
 msg: "{{ inventory_hostname }}"

 2. Using an ad hoc command, determine if the db1.example.com server is present in the

inventory1 inventory file.

[student@workstation projects-host]$ ansible db1.example.com -i inventory1 \
> --list-hosts
 hosts (1):
 db1.example.com

 3. Using an ad hoc command, reference an IP address contained in the inventory1
inventory with a host pattern.

[student@workstation projects-host]$ ansible 172.25.252.44 -i inventory1 \
> --list-hosts
 hosts (1):
 172.25.252.44

 4. With an ad hoc command, use the all group to list all managed hosts in the inventory1
inventory file.

224 RH294-RHEL8.4-en-1-20210818

Chapter 6 | Managing Complex Plays and Playbooks

[student@workstation projects-host]$ ansible all -i inventory1 --list-hosts
 hosts (17):
 srv1.example.com
 srv2.example.com
 s1.lab.example.com
 s2.lab.example.com
 jupiter.lab.example.com
 saturn.example.com
 db1.example.com
 db2.example.com
 db3.example.com
 lb1.lab.example.com
 lb2.lab.example.com
 file1.lab.example.com
 web1.lab.example.com
 file2.example.com
 172.25.252.23
 172.25.252.44
 172.25.252.32

 5. With an ad hoc command, use the asterisk (*) character to list all hosts that end in

.example.com in the inventory1 inventory file.

[student@workstation projects-host]$ ansible '*.example.com' -i inventory1 \
> --list-hosts
 hosts (14):
 jupiter.lab.example.com
 saturn.example.com
 db1.example.com
 db2.example.com
 db3.example.com
 lb1.lab.example.com
 lb2.lab.example.com
 file1.lab.example.com
 web1.lab.example.com
 file2.example.com
 srv1.example.com
 srv2.example.com
 s1.lab.example.com
 s2.lab.example.com

 6. As you can see in the output of the preceeding command, there are 14 hosts in the

*.example.com domain. Modify the host pattern in the previous ad hoc command so that

hosts in the *.lab.example.com domain are ignored.

[student@workstation projects-host]$ ansible '*.example.com, !*.lab.example.com' \
> -i inventory1 --list-hosts
 hosts (7):
 saturn.example.com
 db1.example.com
 db2.example.com

RH294-RHEL8.4-en-1-20210818 225

Chapter 6 | Managing Complex Plays and Playbooks

 db3.example.com
 file2.example.com
 srv1.example.com
 srv2.example.com

 7. Without accessing the groups in the inventory1 inventory file, use an ad hoc command

to list these three hosts: lb1.lab.example.com, s1.lab.example.com, and

db1.example.com.

[student@workstation projects-host]$ ansible \
> lb1.lab.example.com,s1.lab.example.com,db1.example.com -i inventory1 \
> --list-hosts
 hosts (3):
 lb1.lab.example.com
 s1.lab.example.com
 db1.example.com

 8. Use a wildcard host pattern in an ad hoc command to list hosts that start with a 172.25. IP

address in the inventory1 inventory file.

[student@workstation projects-host]$ ansible '172.25.*' -i inventory1 --list-hosts
 hosts (3):
 172.25.252.23
 172.25.252.44
 172.25.252.32

 9. Use a host pattern in an ad hoc command to list all hosts in the inventory1 inventory file

that start with the letter "s."

[student@workstation projects-host]$ ansible 's*' -i inventory1 --list-hosts
 hosts (7):
 saturn.example.com
 srv1.example.com
 srv2.example.com
 s1.lab.example.com
 s2.lab.example.com
 file2.example.com
 db2.example.com

Notice the file2.example.com and db2.example.com hosts in the output of the

preceding command. They appear in the list because they are both members of a group

called stage, which also begins with the letter "s."

 10. Using a list and wildcard host patterns in an ad hoc command, list all hosts in the

inventory1 inventory in the prod group, those hosts with an IP address beginning with

172, and hosts that contain lab in their name.

[student@workstation projects-host]$ ansible 'prod,172*,*lab*' -i inventory1 \
> --list-hosts
 hosts (11):
 lb2.lab.example.com
 db1.example.com

226 RH294-RHEL8.4-en-1-20210818

Chapter 6 | Managing Complex Plays and Playbooks

 jupiter.lab.example.com
 172.25.252.23
 172.25.252.44
 172.25.252.32
 lb1.lab.example.com
 file1.lab.example.com
 web1.lab.example.com
 s1.lab.example.com
 s2.lab.example.com

 11. Use an ad hoc command to list all hosts that belong to both the db and london groups.

[student@workstation projects-host]$ ansible 'db,&london' -i inventory1 \
> --list-hosts
 hosts (2):
 db2.example.com
 db3.example.com

 12. Modify the hosts value in the playbook.yml file so that all servers in the london group

are targeted. Execute the playbook using the inventory2 inventory file.

...output omitted...
 hosts: london
...output omitted...

[student@workstation projects-host]$ ansible-playbook -i inventory2 playbook.yml
...output omitted...
TASK [Gathering Facts] **
ok: [servera.lab.example.com]
...output omitted...

 13. Modify the hosts value in the playbook.yml file so that all servers in the europe nested

group are targeted. Execute the playbook using the inventory2 inventory file.

...output omitted...
 hosts: europe
...output omitted...

[student@workstation projects-host]$ ansible-playbook -i inventory2 playbook.yml
...output omitted...
TASK [Gathering Facts] **
ok: [servera.lab.example.com]
ok: [serverb.lab.example.com]
...output omitted...

RH294-RHEL8.4-en-1-20210818 227

Chapter 6 | Managing Complex Plays and Playbooks

 14. Modify the hosts value in the playbook.yml file so that all servers that do not belong to

any group are targeted. Execute the playbook using the inventory2 inventory file.

...output omitted...
 hosts: ungrouped
...output omitted...

[student@workstation projects-hosts]$ ansible-playbook -i inventory2 playbook.yml
...output omitted...
TASK [Gathering Facts] **
ok: [workstation.lab.example.com]
...output omitted...

Finish

On workstation, run the lab projects-host finish script to clean up this exercise.

[student@workstation ~]$ lab projects-host finish

This concludes the guided exercise.

228 RH294-RHEL8.4-en-1-20210818

Chapter 6 | Managing Complex Plays and Playbooks

Including and Importing Files

Objectives
After completing this section, you will be able to manage large playbooks by importing or including

other playbooks or tasks from external files, either unconditionally or based on a conditional test.

Managing Large Playbooks
When a playbook gets long or complex, you can divide it up into smaller files to make it easier to

manage. You can combine multiple playbooks into a main playbook modularly, or insert lists of

tasks from a file into a play. This can make it easier to reuse plays or sequences of tasks in different

projects.

Including or Importing Files
There are two operations that Ansible can use to bring content into a playbook. You can include

content, or you can import content.

When you include content, it is a dynamic operation. Ansible processes included content during

the run of the playbook, as content is reached.

When you import content, it is a static operation. Ansible preprocesses imported content when the

playbook is initially parsed, before the run starts.

Importing Playbooks
The import_playbook directive allows you to import external files containing lists of plays into

a playbook. In other words, you can have a master playbook that imports one or more additional

playbooks.

Because the content being imported is a complete playbook, the import_playbook feature can

only be used at the top level of a playbook and cannot be used inside a play. If you import multiple

playbooks, then they will be imported and run in order.

A simple example of a master playbook that imports two additional playbooks is shown below:

- name: Prepare the web server
 import_playbook: web.yml

- name: Prepare the database server
 import_playbook: db.yml

You can also interleave plays in your master playbook with imported playbooks.

RH294-RHEL8.4-en-1-20210818 229

Chapter 6 | Managing Complex Plays and Playbooks

- name: Play 1
 hosts: localhost
 tasks:
 - debug:
 msg: Play 1

- name: Import Playbook
 import_playbook: play2.yml

In the preceding example, the Play 1 runs first, followed by the plays imported from the

play2.yml playbook.

Importing and Including Tasks
You can import or include a list of tasks from a task file into a play. A task file is a file that contains a

flat list of tasks:

[admin@node ~]$ cat webserver_tasks.yml
- name: Installs the httpd package
 yum:
 name: httpd
 state: latest

- name: Starts the httpd service
 service:
 name: httpd
 state: started

Importing Task Files

You can statically import a task file into a play inside a playbook by using the import_tasks
feature. When you import a task file, the tasks in that file are directly inserted when the playbook is

parsed. The location of import_tasks in the playbook controls where the tasks are inserted and

the order in which multiple imports are run.

- name: Install web server
 hosts: webservers
 tasks:
 - import_tasks: webserver_tasks.yml

When you import a task file, the tasks in that file are directly inserted when the playbook is parsed.

Because import_tasks statically imports the tasks when the playbook is parsed, there are some

effects on how it works.

• When using the import_tasks feature, conditional statements set on the import, such as

when, are applied to each of the tasks that are imported.

• You cannot use loops with the import_tasks feature.

• If you use a variable to specify the name of the file to import, then you cannot use a host or

group inventory variable.

230 RH294-RHEL8.4-en-1-20210818

Chapter 6 | Managing Complex Plays and Playbooks

Including Task Files

You can also dynamically include a task file into a play inside a playbook by using the

include_tasks feature.

- name: Install web server
 hosts: webservers
 tasks:
 - include_tasks: webserver_tasks.yml

The include_tasks feature does not process content in the playbook until the play is running

and that part of the play is reached. The order in which playbook content is processed impacts

how the include tasks feature works.

• When using the include_tasks feature, conditional statements such as when set on the

include determine whether or not the tasks are included in the play at all.

• If you run ansible-playbook --list-tasks to list the tasks in the playbook, then tasks in

the included task files are not displayed. The tasks that include the task files are displayed. By

comparison, the import_tasks feature would not list tasks that import task files, but instead

would list the individual tasks from the imported task files.

• You cannot use ansible-playbook --start-at-task to start playbook execution from a

task that is in an included task file.

• You cannot use a notify statement to trigger a handler name that is in an included task file.

You can trigger a handler in the main playbook that includes an entire task file, in which case all

tasks in the included file will run.

Note

You can find a more detailed discussion of the differences in behavior

between import_tasks and include_tasks when conditionals are

used at "Conditionals" [https://docs.ansible.com/ansible/2.9/user_guide/

playbooks_conditionals.html#applying-when-to-roles-imports-and-includes] in the

Ansible User Guide.

Use Cases for Task Files

Consider the following examples where it might be useful to manage sets of tasks as external files

separate from the playbook:

• If new servers require complete configuration, then administrators could create various sets

of tasks for creating users, installing packages, configuring services, configuring privileges,

setting up access to a shared file system, hardening the servers, installing security updates, and

installing a monitoring agent. Each of these sets of tasks could be managed through a separate

self-contained task file.

• If servers are managed collectively by the developers, the system administrators, and the

database administrators, then every organization can write its own task file which can then be

reviewed and integrated by the system manager.

• If a server requires a particular configuration, then it can be integrated as a set of tasks that are

executed based on a conditional. In other words, including the tasks only if specific criteria are

met.

RH294-RHEL8.4-en-1-20210818 231

https://docs.ansible.com/ansible/2.9/user_guide/playbooks_conditionals.html#applying-when-to-roles-imports-and-includes
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_conditionals.html#applying-when-to-roles-imports-and-includes
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_conditionals.html#applying-when-to-roles-imports-and-includes

Chapter 6 | Managing Complex Plays and Playbooks

• If a group of servers need to run a particular task or set of tasks, then the tasks might only be

run on a server if it is part of a specific host group.

Managing Task Files

You can create a dedicated directory for task files, and save all task files in that directory. Then

your playbook can simply include or import task files from that directory. This allows construction

of a complex playbook while making it easy to manage its structure and components.

Defining Variables for External Plays and Tasks
The incorporation of plays or tasks from external files into playbooks using Ansible's import

and include features greatly enhance the ability to reuse tasks and playbooks across an Ansible

environment. To maximize the possibility of reuse, these task and play files should be as generic as

possible. Variables can be used to parameterize play and task elements to expand the application

of tasks and plays.

For example, the following task file installs the package needed for a web service, and then

enables and starts the necessary service.

 - name: Install the httpd package
 yum:
 name: httpd
 state: latest
 - name: Start the httpd service
 service:
 name: httpd
 enabled: true
 state: started

If you parameterize the package and service elements as shown in the following example, then

the task file can also be used for the installation and administration of other software and their

services, rather than being useful for web service only.

 - name: Install the {{ package }} package
 yum:
 name: "{{ package }}"
 state: latest
 - name: Start the {{ service }} service
 service:
 name: "{{ service }}"
 enabled: true
 state: started

Subsequently, when incorporating the task file into a playbook, define the variables to use for the

task execution as follows:

232 RH294-RHEL8.4-en-1-20210818

Chapter 6 | Managing Complex Plays and Playbooks

...output omitted...
 tasks:
 - name: Import task file and set variables
 import_tasks: task.yml
 vars:
 package: httpd
 service: httpd

Ansible makes the passed variables available to the tasks imported from the external file.

You can use the same technique to make play files more reusable. When incorporating a play file

into a playbook, pass the variables to use for the play execution as follows:

...output omitted...
- name: Import play file and set the variable
 import_playbook: play.yml
 vars:
 package: mariadb

Important

Earlier versions of Ansible used an include feature to include both playbooks and

task files, depending on context. This functionality is being deprecated for a number

of reasons.

Prior to Ansible 2.0, include operated like a static import. In Ansible 2.0 it was

changed to operate dynamically, but this created some limitations. In Ansible 2.1 it

became possible for include to be dynamic or static depending on task settings,

which was confusing and error-prone. There were also issues with ensuring that

include worked correctly in all contexts.

Thus, include was replaced in Ansible 2.4 with new directives such as

include_tasks, import_tasks, and import_playbook. You might find

examples of include in older playbooks, but you should avoid using it in new ones.

References

Including and Importing — Ansible Documentation

https://docs.ansible.com/ansible/2.9/user_guide/playbooks_reuse_includes.html

Creating Reusable Playbooks — Ansible Documentation

https://docs.ansible.com/ansible/2.9/user_guide/playbooks_reuse.html

Conditionals — Ansible Documentation

https://docs.ansible.com/ansible/2.9/user_guide/playbooks_conditionals.html

RH294-RHEL8.4-en-1-20210818 233

https://docs.ansible.com/ansible/2.9/user_guide/playbooks_reuse_includes.html
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_reuse.html
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_conditionals.html

Chapter 6 | Managing Complex Plays and Playbooks

Guided Exercise

Including and Importing Files

In this exercise, you will include and import playbooks and tasks in a top-level Ansible

Playbook.

Outcomes
You will be able to include task and playbook files in playbooks.

Before You Begin
Log in to workstation as student using student as the password.

On workstation, run the lab projects-file start command. The script creates the

working directory, /home/student/projects-file, and associated project files.

[student@workstation ~]$ lab projects-file start

Instructions

 1. On workstation, as the student user, change to the /home/student/projects-
file directory.

[student@workstation ~]$ cd ~/projects-file
[student@workstation projects-file]$

 2. Review the contents of the three files in the tasks subdirectory.

2.1. Review the contents of the tasks/environment.yml file. The file contains tasks

for package installation and service administration.

 - name: Install the {{ package }} package
 yum:
 name: "{{ package }}"
 state: latest
 - name: Start the {{ service }} service
 service:
 name: "{{ service }}"
 enabled: true
 state: started

2.2. Review the contents of the tasks/firewall.yml file. The file contains tasks for

installation, administration, and configuration of firewall software.

234 RH294-RHEL8.4-en-1-20210818

Chapter 6 | Managing Complex Plays and Playbooks

 - name: Install the firewall
 yum:
 name: "{{ firewall_pkg }}"
 state: latest

 - name: Start the firewall
 service:
 name: "{{ firewall_svc }}"
 enabled: true
 state: started

 - name: Open the port for {{ rule }}
 firewalld:
 service: "{{ item }}"
 immediate: true
 permanent: true
 state: enabled
 loop: "{{ rule }}"

2.3. Review the contents of the tasks/placeholder.yml file. This file contains a task

for populating a placeholder web content file.

 - name: Create placeholder file
 copy:
 content: "{{ ansible_facts['fqdn'] }} has been customized using Ansible.\n"
 dest: "{{ file }}"

 3. Review the contents of the test.yml file in the plays subdirectory. This file contains a

play which tests connections to a web service.

- name: Test web service
 hosts: localhost
 become: no
 tasks:
 - name: connect to internet web server
 uri:
 url: "{{ url }}"
 status_code: 200

 4. Create a playbook named playbook.yml. Define the first play with the name Configure
web server. The play should execute against the servera.lab.example.com
managed host defined in the inventory file. The beginning of the file should look like the

following:

- name: Configure web server
 hosts: servera.lab.example.com

RH294-RHEL8.4-en-1-20210818 235

Chapter 6 | Managing Complex Plays and Playbooks

 5. In the playbook.yml playbook, define the tasks section with three sets of tasks. Include

the first set of tasks from the tasks/environment.yml tasks file. Define the necessary

variables to install the httpd package and to enable and start the httpd service. Import

the second set of tasks from the tasks/firewall.yml tasks file. Define the necessary

variables to install the firewalld package to enable and start the firewalld service, and

to allow http connections. Import the third task set from the tasks/placeholder.yml
task file.

5.1. Create the tasks section in the first play by adding the following entry to the

playbook.yml playbook.

 tasks:

5.2. Include the first set of tasks from tasks/environment.yml using the

include_tasks feature. Set the package and service variables to httpd.

 - name: Include the environment task file and set the variables
 include_tasks: tasks/environment.yml
 vars:
 package: httpd
 service: httpd

5.3. Import the second set of tasks from tasks/firewall.yml using the

import_tasks feature. Set the firewall_pkg and firewall_svc variables to

firewalld. Set the rule variable to http.

 - name: Import the firewall task file and set the variables
 import_tasks: tasks/firewall.yml
 vars:
 firewall_pkg: firewalld
 firewall_svc: firewalld
 rule:
 - http
 - https

5.4. Import the last task set from tasks/placeholder.yml using the import_tasks
feature. Set the file variable to /var/www/html/index.html.

 - name: Import the placeholder task file and set the variable
 import_tasks: tasks/placeholder.yml
 vars:
 file: /var/www/html/index.html

 6. Add a second and final play to the playbook.yml playbook using the contents of the

plays/test.yml playbook.

6.1. Add a second play to the playbook.yml playbook to validate the web server

installation. Import the play from plays/test.yml. Set the url variable to

http://servera.lab.example.com.

236 RH294-RHEL8.4-en-1-20210818

Chapter 6 | Managing Complex Plays and Playbooks

- name: Import test play file and set the variable
 import_playbook: plays/test.yml
 vars:
 url: 'http://servera.lab.example.com'

6.2. Your playbook should look like the following after the changes are complete:

- name: Configure web server
 hosts: servera.lab.example.com

 tasks:
 - name: Include the environment task file and set the variables
 include_tasks: tasks/environment.yml
 vars:
 package: httpd
 service: httpd

 - name: Import the firewall task file and set the variables
 import_tasks: tasks/firewall.yml
 vars:
 firewall_pkg: firewalld
 firewall_svc: firewalld
 rule:
 - http
 - https

 - name: Import the placeholder task file and set the variable
 import_tasks: tasks/placeholder.yml
 vars:
 file: /var/www/html/index.html

- name: Import test play file and set the variable
 import_playbook: plays/test.yml
 vars:
 url: 'http://servera.lab.example.com'

6.3. Save the changes to the playbook.yml playbook.

 7. Before running the playbook, verify its syntax is correct by running ansible-playbook
--syntax-check. If errors are reported, correct them before moving to the next step.

[student@workstation projects-file]$ ansible-playbook playbook.yml --syntax-check

playbook: playbook.yml

 8. Execute the playbook.yml playbook. The output of the playbook shows the import of the

task and play files.

RH294-RHEL8.4-en-1-20210818 237

Chapter 6 | Managing Complex Plays and Playbooks

[student@workstation projects-file]$ ansible-playbook playbook.yml

PLAY [Configure web server] ***

TASK [Gathering Facts] **
ok: [servera.lab.example.com]

TASK [Install the httpd package] **
changed: [servera.lab.example.com]

TASK [Start the httpd service] **
changed: [servera.lab.example.com]

TASK [Install the firewall] ***
ok: [servera.lab.example.com]

TASK [Start the firewall] ***
ok: [servera.lab.example.com]

TASK [Open the port for ['http', 'https']] ********************************
changed: [servera.lab.example.com] => (item=http)
changed: [servera.lab.example.com] => (item=https)

TASK [Create placeholder file] **
changed: [servera.lab.example.com]

PLAY [Test web service] ***

TASK [Gathering Facts] **
ok: [localhost]

TASK [connect to internet web server] *************************************
ok: [localhost]

PLAY RECAP **
localhost : ok=2 changed=0 unreachable=0 failed=0
servera.lab.example.com : ok=8 changed=4 unreachable=0 failed=0

Finish

On workstation, run the lab projects-file finish script to clean up this exercise.

[student@workstation ~]$ lab projects-file finish

This concludes the guided exercise.

238 RH294-RHEL8.4-en-1-20210818

Chapter 6 | Managing Complex Plays and Playbooks

Lab

Managing Complex Plays and Playbooks

Performance Checklist
In this lab, you will modify a complex playbook to be easier to manage by using host patterns,

includes, and imports.

Outcomes
You should be able to:

• Simplify host references in a playbook by specifying host patterns.

• Restructure a playbook so that tasks are imported from external task files.

Before You Begin
Log in to workstation as student using student as the password.

On workstation, run the lab projects-review start command. This setup script

ensures that the managed hosts are reachable on the network. It also ensures that the

correct Ansible configuration file, inventory file, and playbook are installed on the control

node in the /home/student/projects-review directory.

[student@workstation ~]$ lab projects-review start

Instructions

You have inherited a playbook from the previous administrator. The playbook is used to

configure a web service on servera.lab.example.com, serverb.lab.example.com,

serverc.lab.example.com, and serverd.lab.example.com. The playbook also configures

the firewall on the four managed hosts so that web traffic is allowed.

Make the following changes to the playbook.yml playbook file so that it is easier to manage.

1. Simplify the list of managed hosts in the /home/student/projects-review/
playbook.yml playbook by using a wildcard host pattern.

2. Restructure the playbook so that the first three tasks in the playbook are kept in an external

task file located at tasks/web_tasks.yml. Use the import_tasks feature to incorporate

this task file into the playbook.

3. Restructure the playbook so that the fourth, fifth, and sixth tasks in the playbook are kept

in an external task file located at tasks/firewall_tasks.yml. Use the import_tasks
feature to incorporate this task file into the playbook.

4. There is some duplication of tasks between the tasks/web_tasks.yml and tasks/
firewall_tasks.yml files. Move the tasks that install packages and enable services into

a new file named tasks/install_and_enable.yml and update them to use variables.

Replace the original tasks with import_tasks statements, passing in appropriate variable

values.

RH294-RHEL8.4-en-1-20210818 239

Chapter 6 | Managing Complex Plays and Playbooks

5. Verify the changes to the playbook.yml playbook were correctly made and then execute

the playbook.

Evaluation

Run the lab projects-review grade command from workstation to confirm success on

this exercise. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab projects-review grade

Finish

On workstation, run the lab projects-review finish script to clean up the resources

created in this lab.

[student@workstation ~]$ lab projects-review finish

This concludes the lab.

240 RH294-RHEL8.4-en-1-20210818

Chapter 6 | Managing Complex Plays and Playbooks

Solution

Managing Complex Plays and Playbooks

Performance Checklist
In this lab, you will modify a complex playbook to be easier to manage by using host patterns,

includes, and imports.

Outcomes
You should be able to:

• Simplify host references in a playbook by specifying host patterns.

• Restructure a playbook so that tasks are imported from external task files.

Before You Begin
Log in to workstation as student using student as the password.

On workstation, run the lab projects-review start command. This setup script

ensures that the managed hosts are reachable on the network. It also ensures that the

correct Ansible configuration file, inventory file, and playbook are installed on the control

node in the /home/student/projects-review directory.

[student@workstation ~]$ lab projects-review start

Instructions

You have inherited a playbook from the previous administrator. The playbook is used to

configure a web service on servera.lab.example.com, serverb.lab.example.com,

serverc.lab.example.com, and serverd.lab.example.com. The playbook also configures

the firewall on the four managed hosts so that web traffic is allowed.

Make the following changes to the playbook.yml playbook file so that it is easier to manage.

1. Simplify the list of managed hosts in the /home/student/projects-review/
playbook.yml playbook by using a wildcard host pattern.

1.1. Change directory to the /home/student/projects-review working directory.

Review the hosts parameter in the playbook.yml file.

[student@workstation ~]$ cd ~/projects-review
[student@workstation projects-review]$ cat playbook.yml

- name: Install and configure web service
 hosts:
 - servera.lab.example.com
 - serverb.lab.example.com

RH294-RHEL8.4-en-1-20210818 241

Chapter 6 | Managing Complex Plays and Playbooks

 - serverc.lab.example.com
 - serverd.lab.example.com
...output omitted...

1.2. Verify that the host pattern server*.lab.example.com correctly identifies the four

managed hosts that are targeted by the playbook.yml playbook.

[student@workstation projects-review]$ ansible server*.lab.example.com \
> --list-hosts
 hosts (4):
 servera.lab.example.com
 serverb.lab.example.com
 serverc.lab.example.com
 serverd.lab.example.com

1.3. Replace the host list in the playbook.yml playbook with the

server*.lab.example.com host pattern.

- name: Install and configure web service
 hosts: server*.lab.example.com
...output omitted...

2. Restructure the playbook so that the first three tasks in the playbook are kept in an external

task file located at tasks/web_tasks.yml. Use the import_tasks feature to incorporate

this task file into the playbook.

2.1. Create the tasks subdirectory.

[student@workstation projects-review]$ mkdir tasks

2.2. Place the contents of the first three tasks in the playbook.yml playbook into the

tasks/web_tasks.yml file. The task file should contain the following content:

- name: Install httpd
 yum:
 name: httpd
 state: latest

- name: Enable and start httpd
 service:
 name: httpd
 enabled: true
 state: started

- name: Tuning configuration installed
 copy:
 src: files/tune.conf
 dest: /etc/httpd/conf.d/tune.conf
 owner: root
 group: root

242 RH294-RHEL8.4-en-1-20210818

Chapter 6 | Managing Complex Plays and Playbooks

 mode: 0644
 notify:
 - restart httpd

2.3. Remove the first three tasks from the playbook.yml playbook and put the following

lines in their place to import the tasks/web_tasks.yml task file.

 - name: Import the web_tasks.yml task file
 import_tasks: tasks/web_tasks.yml

3. Restructure the playbook so that the fourth, fifth, and sixth tasks in the playbook are kept

in an external task file located at tasks/firewall_tasks.yml. Use the import_tasks
feature to incorporate this task file into the playbook.

3.1. Place the contents of the three remaining tasks in the playbook.yml playbook into

the tasks/firewall_tasks.yml file. The task file should contain the following

content.

- name: Install firewalld
 yum:
 name: firewalld
 state: latest

- name: Enable and start the firewall
 service:
 name: firewalld
 enabled: true
 state: started

- name: Open the port for http
 firewalld:
 service: http
 immediate: true
 permanent: true
 state: enabled

3.2. Remove the remaining three tasks from the playbook.yml playbook and put the

following lines in their place to import the tasks/firewall_tasks.yml task file.

 - name: Import the firewall_tasks.yml task file
 import_tasks: tasks/firewall_tasks.yml

4. There is some duplication of tasks between the tasks/web_tasks.yml and tasks/
firewall_tasks.yml files. Move the tasks that install packages and enable services into

a new file named tasks/install_and_enable.yml and update them to use variables.

Replace the original tasks with import_tasks statements, passing in appropriate variable

values.

4.1. Copy the yum and service tasks from tasks/web_tasks.yml into a new file named

tasks/install_and_enable.yml.

RH294-RHEL8.4-en-1-20210818 243

Chapter 6 | Managing Complex Plays and Playbooks

- name: Install httpd
 yum:
 name: httpd
 state: latest

- name: Enable and start httpd
 service:
 name: httpd
 enabled: true
 state: started

4.2. Replace the package and service names in tasks/install_and_enable.yml with

the variables package and service.

- name: Install {{ package }}
 yum:
 name: "{{ package }}"
 state: latest

- name: Enable and start {{ service }}
 service:
 name: "{{ service }}"
 enabled: true
 state: started

4.3. Replace the yum and service tasks in tasks/web_tasks.yml and tasks/
firewall_tasks.yml with import_tasks statements.

- name: Install and start httpd
 import_tasks: install_and_enable.yml
 vars:
 package: httpd
 service: httpd

- name: Install and start firewalld
 import_tasks: install_and_enable.yml
 vars:
 package: firewalld
 service: firewalld

5. Verify the changes to the playbook.yml playbook were correctly made and then execute

the playbook.

5.1. Verify that the playbook.yml playbook contains the following contents.

244 RH294-RHEL8.4-en-1-20210818

Chapter 6 | Managing Complex Plays and Playbooks

- name: Install and configure web service
 hosts: server*.lab.example.com

 tasks:
 - name: Import the web_tasks.yml task file
 import_tasks: tasks/web_tasks.yml

 - name: Import the firewall_tasks.yml task file
 import_tasks: tasks/firewall_tasks.yml

 handlers:
 - name: restart httpd
 service:
 name: httpd
 state: restarted

5.2. Execute the playbook with ansible-playbook --syntax-check to verify

the playbook contains no syntax errors. If errors are present, correct them before

preceding.

[student@workstation projects-review]$ ansible-playbook playbook.yml \
> --syntax-check

playbook: playbook.yml

5.3. Execute the playbook.

[student@workstation projects-review]$ ansible-playbook playbook.yml

PLAY [Install and configure web service] ***********************************

TASK [Gathering Facts] ***
ok: [serverd.lab.example.com]
ok: [serverc.lab.example.com]
ok: [serverb.lab.example.com]
ok: [servera.lab.example.com]

TASK [Install httpd] ***
changed: [serverb.lab.example.com]
changed: [servera.lab.example.com]
changed: [serverd.lab.example.com]
changed: [serverc.lab.example.com]

TASK [Enable and start httpd] **
changed: [servera.lab.example.com]
changed: [serverb.lab.example.com]
changed: [serverd.lab.example.com]
changed: [serverc.lab.example.com]

TASK [Tuning configuration installed] **************************************
changed: [serverd.lab.example.com]

RH294-RHEL8.4-en-1-20210818 245

Chapter 6 | Managing Complex Plays and Playbooks

changed: [serverc.lab.example.com]
changed: [serverb.lab.example.com]
changed: [servera.lab.example.com]

TASK [Install firewalld] ***
ok: [serverb.lab.example.com]
ok: [servera.lab.example.com]
ok: [serverd.lab.example.com]
ok: [serverc.lab.example.com]

TASK [Enable and start firewalld] **
ok: [servera.lab.example.com]
ok: [serverb.lab.example.com]
ok: [serverc.lab.example.com]
ok: [serverd.lab.example.com]

TASK [Open the port for http] **
changed: [serverd.lab.example.com]
changed: [serverb.lab.example.com]
changed: [servera.lab.example.com]
changed: [serverc.lab.example.com]

RUNNING HANDLER [restart httpd] **
changed: [serverd.lab.example.com]
changed: [serverb.lab.example.com]
changed: [serverc.lab.example.com]
changed: [servera.lab.example.com]

PLAY RECAP ***
servera.lab.example.com : ok=8 changed=5 unreachable=0 failed=0
serverb.lab.example.com : ok=8 changed=5 unreachable=0 failed=0
serverc.lab.example.com : ok=8 changed=5 unreachable=0 failed=0
serverd.lab.example.com : ok=8 changed=5 unreachable=0 failed=0

Evaluation

Run the lab projects-review grade command from workstation to confirm success on

this exercise. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab projects-review grade

Finish

On workstation, run the lab projects-review finish script to clean up the resources

created in this lab.

[student@workstation ~]$ lab projects-review finish

This concludes the lab.

246 RH294-RHEL8.4-en-1-20210818

Chapter 6 | Managing Complex Plays and Playbooks

Summary

In this chapter, you learned:

• Host patterns are used to specify the managed hosts to be targeted by plays or ad hoc

commands.

• Dynamic inventory scripts can be used to generate dynamic lists of managed hosts from

directory services or other sources external to Ansible.

• The forks parameter in the Ansible configuration file sets the maximum number of parallel

connections to managed hosts.

• The serial parameter can be used to implement rolling updates across managed hosts by

defining the number of managed hosts in each rolling update batch.

• You can use the import_playbook feature to incorporate external play files into playbooks.

• You can use the include_tasks or import_tasks features to incorporate external task files

into playbooks.

RH294-RHEL8.4-en-1-20210818 247

248 RH294-RHEL8.4-en-1-20210818

Chapter 7

Simplifying Playbooks with
Roles

Goal Use Ansible roles to develop playbooks more
quickly and to reuse Ansible code.

Objectives • Describe what a role is, how it is structured, and
how you can use it in a playbook.

• Write playbooks that take advantage of
Red Hat Enterprise Linux System Roles to
perform standard operations.

• Create a role in a playbook’s project directory
and run it as part of one of the plays in the
playbook.

• Select and retrieve roles from Ansible Galaxy or
other sources such as a Git repository, and use
them in your playbooks.

• Obtain a set of related roles, supplementary
modules, and other content from content
collections, and use them in a playbook.

Sections • Describing Role Structure (and Quiz)

• Reusing Content with System Roles (and
Guided Exercise)

• Creating Roles (and Guided Exercise)

• Deploying Roles with Ansible Galaxy (and
Guided Exercise)

• Getting Roles and Modules from Content
Collections (and Guided Exercise)

Lab • Simplifying Playbooks with Roles

RH294-RHEL8.4-en-1-20210818 249

Chapter 7 | Simplifying Playbooks with Roles

Describing Role Structure

Objectives
After completing this section, you should be able to describe what a role is, how it is structured,

and how you can use it in a playbook.

Structuring Ansible Playbooks with Roles
As you develop more playbooks, you will probably discover that you have many opportunities to

reuse code from playbooks that you have already written. Perhaps a play to configure a MySQL

database for one application could be re-purposed, with different hostnames, passwords, and

users, to configure a MySQL database for another application.

But in the real world, that play might be long and complex, with many included or imported files,

and with tasks and handlers to manage various situations. Copying all that code into another

playbook might be nontrivial work.

Ansible roles provide a way for you to make it easier to reuse Ansible code generically. You can

package, in a standardized directory structure, all the tasks, variables, files, templates, and other

resources needed to provision infrastructure or deploy applications. Copy that role from project to

project simply by copying the directory. You can then simply call that role from a play to execute it.

A well-written role will allow you to pass variables to the role from the playbook that adjust its

behavior, setting all the site-specific hostnames, IP addresses, user names, secrets, or other

locally-specific details you need. For example, a role to deploy a database server might have been

written to support variables which set the hostname, database admin user and password, and

other parameters that need customization for your installation. The author of the role can also

ensure that reasonable default values are set for those variables if you choose not to set them in

the play.

Ansible roles have the following benefits:

• Roles group content, allowing easy sharing of code with others

• Roles can be written that define the essential elements of a system type: web server, database

server, Git repository, or other purpose

• Roles make larger projects more manageable

• Roles can be developed in parallel by different administrators

In addition to writing, using, reusing, and sharing your own roles, you can get roles from other

sources. Some roles are included as part of Red Hat Enterprise Linux, in the rhel-system-roles

package. You can also get numerous community-supported roles from the Ansible Galaxy website.

Later in this chapter, you will learn more about these roles.

Examining the Ansible Role Structure
An Ansible role is defined by a standardized structure of subdirectories and files. The top-level

directory defines the name of the role itself. Files are organized into subdirectories that are

named according to each file's purpose in the role, such as tasks and handlers. The files and

templates subdirectories contain files referenced by tasks in other YAML files.

250 RH294-RHEL8.4-en-1-20210818

Chapter 7 | Simplifying Playbooks with Roles

The following tree command displays the directory structure of the user.example role.

[user@host roles]$ tree user.example
user.example/
├── defaults
│ └── main.yml
├── files
├── handlers
│ └── main.yml
├── meta
│ └── main.yml
├── README.md
├── tasks
│ └── main.yml
├── templates
├── tests
│ ├── inventory
│ └── test.yml
└── vars
 └── main.yml

Ansible role subdirectories

Subdirectory Function

defaults The main.yml file in this directory contains the default values of role

variables that can be overwritten when the role is used. These variables

have low precedence and are intended to be changed and customized in

plays.

files This directory contains static files that are referenced by role tasks.

handlers The main.yml file in this directory contains the role's handler definitions.

meta The main.yml file in this directory contains information about the role,

including author, license, platforms, and optional role dependencies.

tasks The main.yml file in this directory contains the role's task definitions.

templates This directory contains Jinja2 templates that are referenced by role tasks.

tests This directory can contain an inventory and test.yml playbook that can be

used to test the role.

vars The main.yml file in this directory defines the role's variable values. Often

these variables are used for internal purposes within the role. These

variables have high precedence, and are not intended to be changed when

used in a playbook.

Not every role will have all of these directories.

RH294-RHEL8.4-en-1-20210818 251

Chapter 7 | Simplifying Playbooks with Roles

Defining Variables and Defaults
Role variables are defined by creating a vars/main.yml file with key: value pairs in the

role directory hierarchy. They are referenced in the role YAML file like any other variable: {{
VAR_NAME }}. These variables have a high precedence and can not be overridden by inventory

variables. The intent of these variables is that they are used by the internal functioning of the role.

Default variables allow default values to be set for variables that can be used in a play to configure

the role or customize its behavior. They are defined by creating a defaults/main.yml file with

key: value pairs in the role directory hierarchy. Default variables have the lowest precedence of

any variables available. They can be easily overridden by any other variable, including inventory

variables. These variables are intended to provide the person writing a play that uses the role

with a way to customize or control exactly what it is going to do. They can be used to provide

information to the role that it needs to configure or deploy something properly.

Define a specific variable in either vars/main.yml or defaults/main.yml, but not in both

places. Default variables should be used when it is intended that their values will be overridden.

Important

Roles should not have site-specific data in them. They definitely should not contain

any secrets like passwords or private keys.

This is because roles are supposed to be generic, reusable, and freely shareable.

Site-specific details should not be hard coded into them.

Secrets should be provided to the role through other means. This is one reason you

might want to set role variables when calling a role. Role variables set in the play

could provide the secret, or point to an Ansible Vault-encrypted file containing the

secret.

Using Ansible Roles in a Playbook
Using roles in a playbook is straightforward. The following example shows one way to call Ansible

roles.

- hosts: remote.example.com
 roles:
 - role1
 - role2

For each role specified, the role tasks, role handlers, role variables, and role dependencies

will be imported into the playbook, in that order. Any copy, script, template, or

include_tasks/import_tasks tasks in the role can reference the relevant files, templates, or

task files in the role without absolute or relative path names. Ansible looks for them in the role's

files, templates, or tasks subdirectories respectively.

When you use a roles section to import roles into a play, the roles will run first, before any tasks

that you define for that play.

The following example sets values for two role variables of role2, var1 and var2. Any defaults
and vars variables are overridden when role2 is used.

252 RH294-RHEL8.4-en-1-20210818

Chapter 7 | Simplifying Playbooks with Roles

- hosts: remote.example.com
 roles:
 - role: role1
 - role: role2
 var1: val1
 var2: val2

Another equivalent YAML syntax which you might see in this case is:

- hosts: remote.example.com
 roles:
 - role: role1
 - { role: role2, var1: val1, var2: val2 }

There are situations in which this can be harder to read, even though it is more compact.

Important

Role variables set inline (role parameters), as in the preceding examples, have very

high precedence. They will override most other variables.

Be very careful not to reuse the names of any role variables that you set inline

anywhere else in your play, since the values of the role variables will override

inventory variables and any play vars.

Controlling Order of Execution
For each play in a playbook, tasks execute as ordered in the tasks list. After all tasks execute, any

notified handlers are executed.

When a role is added to a play, role tasks are added to the beginning of the tasks list. If a second

role is included in a play, its tasks list is added after the first role.

Role handlers are added to plays in the same manner that role tasks are added to plays. Each play

defines a handlers list. Role handlers are added to the handlers list first, followed by any handlers

defined in the handlers section of the play.

In certain scenarios, it may be necessary to execute some play tasks before the roles. To support

such scenarios, plays can be configured with a pre_tasks section. Any task listed in this section

executes before any roles are executed. If any of these tasks notify a handler, those handler tasks

execute before the roles or normal tasks.

Plays also support a post_tasks keyword. These tasks execute after the play's normal tasks, and

any handlers they notify, are run.

The following play shows an example with pre_tasks, roles, tasks, post_tasks and

handlers. It is unusual that a play would contain all of these sections.

- name: Play to illustrate order of execution
 hosts: remote.example.com
 pre_tasks:

RH294-RHEL8.4-en-1-20210818 253

Chapter 7 | Simplifying Playbooks with Roles

 - debug:
 msg: 'pre-task'
 notify: my handler
 roles:
 - role1
 tasks:
 - debug:
 msg: 'first task'
 notify: my handler
 post_tasks:
 - debug:
 msg: 'post-task'
 notify: my handler
 handlers:
 - name: my handler
 debug:
 msg: Running my handler

In the above example, a debug task executes in each section to notify the my handler handler.

The my handler task is executed three times:

• after all the pre_tasks tasks execute

• after all role tasks and tasks from the tasks section execute

• after all the post_tasks execute

Roles can be added to a play using an ordinary task, not just by including them in the roles
section of a play. Use the include_role module to dynamically include a role, and use the

import_role module to statically import a role.

The following playbook demonstrates how a role can be included using a task with the

include_role module.

- name: Execute a role as a task
 hosts: remote.example.com
 tasks:
 - name: A normal task
 debug:
 msg: 'first task'
 - name: A task to include role2 here
 include_role: role2

Note

The include_role module was added in Ansible 2.3, and the import_role
module in Ansible 2.4.

References

Roles — Ansible Documentation

https://docs.ansible.com/ansible/2.9/user_guide/playbooks_reuse_roles.html

254 RH294-RHEL8.4-en-1-20210818

https://docs.ansible.com/ansible/2.9/user_guide/playbooks_reuse_roles.html

Chapter 7 | Simplifying Playbooks with Roles

Quiz

Describing Role Structure

Choose the correct answer to the following questions:

When you have completed the quiz, click check. If you wish to try again, click reset. Click

show solution to see all of the correct answers.

 1. Which of the following statements best describes roles?

a. Configuration settings that allow specific users to run Ansible Playbooks.

b. Playbooks for a data center.

c. Collection of YAML task files and supporting items arranged in a specific structure for

easy sharing, portability, and reuse.

 2. Which of the following can be specified in roles?

a. Handlers

b. Tasks

c. Templates

d. Variables

e. All of the above

 3. Which file declares role dependencies?

a. The Ansible Playbook that uses the role.

b. The meta/main.yml file inside the role hierarchy.

c. The meta/main.yml file in the project directory.

d. Role dependencies cannot be defined in Ansible.

 4. Which file in a role's directory hierarchy should contain the initial values of variables

that might be used as parameters to the role?

a. defaults/main.yml
b. meta/main.yml
c. vars/main.yml
d. The host inventory file.

RH294-RHEL8.4-en-1-20210818 255

Chapter 7 | Simplifying Playbooks with Roles

Solution

Describing Role Structure

Choose the correct answer to the following questions:

When you have completed the quiz, click check. If you wish to try again, click reset. Click

show solution to see all of the correct answers.

 1. Which of the following statements best describes roles?

a. Configuration settings that allow specific users to run Ansible Playbooks.

b. Playbooks for a data center.

c. Collection of YAML task files and supporting items arranged in a specific structure for

easy sharing, portability, and reuse.

 2. Which of the following can be specified in roles?

a. Handlers

b. Tasks

c. Templates

d. Variables

e. All of the above

 3. Which file declares role dependencies?

a. The Ansible Playbook that uses the role.

b. The meta/main.yml file inside the role hierarchy.

c. The meta/main.yml file in the project directory.

d. Role dependencies cannot be defined in Ansible.

 4. Which file in a role's directory hierarchy should contain the initial values of variables

that might be used as parameters to the role?

a. defaults/main.yml
b. meta/main.yml
c. vars/main.yml
d. The host inventory file.

256 RH294-RHEL8.4-en-1-20210818

Chapter 7 | Simplifying Playbooks with Roles

Reusing Content with System Roles

Objectives
After completing this section, you should be able to write playbooks that take advantage of

Red Hat Enterprise Linux System Roles to perform standard operations.

Red Hat Enterprise Linux System Roles
Beginning with Red Hat Enterprise Linux 7.4, a number of Ansible roles have been provided with

the operating system as part of the rhel-system-roles package. In Red Hat Enterprise Linux 8 the

package is available in the AppStream channel. A brief description of each role:

RHEL System Roles

Name State Role Description

rhel-system-roles.kdump Fully Supported Configures the kdump crash

recovery service.

rhel-system-roles.network Fully Supported Configures network interfaces.

rhel-system-roles.selinux Fully Supported Configures and manages SELinux

customization, including SELinux

mode, file and port contexts,

Boolean settings, and SELinux

users.

rhel-system-roles.timesync Fully Supported Configures time synchronization

using Network Time Protocol or

Precision Time Protocol.

rhel-system-roles.postfix Technology

Preview

Configures each host as a Mail

Transfer Agent using the Postfix

service.

rhel-system-roles.firewall In Development Configures a host's firewall.

rhel-system-roles.tuned In Development Configures the tuned service to

tune system performance.

System roles aim to standardize the configuration of Red Hat Enterprise Linux subsystems across

multiple versions. Use system roles to configure any Red Hat Enterprise Linux, version 6.10 and

onward.

Simplified Configuration Management

As an example, the recommended time synchronization service for Red Hat Enterprise Linux 7

is the chronyd service. In Red Hat Enterprise Linux 6 however, the recommended service is the

ntpd service. In an environment with a mixture of Red Hat Enterprise Linux 6 and 7 hosts, an

administrator must manage the configuration files for both services.

RH294-RHEL8.4-en-1-20210818 257

Chapter 7 | Simplifying Playbooks with Roles

With RHEL System Roles, administrators no longer need to maintain configuration files for

both services. Administrators can use rhel-system-roles.timesync role to configure time

synchronization for both Red Hat Enterprise Linux 6 and 7 hosts. A simplified YAML file containing

role variables defines the configuration of time synchronization for both types of hosts.

Support for RHEL System Roles

RHEL System Roles are derived from the open source Linux System Roles project, found on

Ansible Galaxy. Unlike Linux System Roles, RHEL System Roles are supported by Red Hat as part

of a standard Red Hat Enterprise Linux subscription. RHEL System Roles have the same life cycle

support benefits that come with a Red Hat Enterprise Linux subscription.

Every system role is tested and stable. The Fully Supported system roles also have stable

interfaces. For any Fully Supported system role, Red Hat will endeavour to ensure that role

variables are unchanged in future versions. Playbook refactoring due to system role changes

should be minimal.

The Technology Preview system roles may utilize different role variables in future versions.

Integration testing is recommended for playbooks that incorporate any Technology Preview
role. Playbooks may require refactoring if role variables change in a future version of the role.

Other roles are in development in the upstream Linux System Roles project, but are not yet

available through a RHEL subscription. These roles are available through Ansible Galaxy.

Installing RHEL System Roles
The RHEL System Roles are provided by the rhel-system-roles package, which is available in the

AppStream channel. Install this package on the Ansible control node.

Use the following procedure to install the rhel-system-roles package. The procedure assumes the

control node is registered to a Red Hat Enterprise Linux subscription and that Ansible is installed.

See the section on Installing Ansible for more information.

1. Install RHEL System Roles.

[root@host ~]# yum install rhel-system-roles

After installation, the RHEL System roles are located in the /usr/share/ansible/roles
directory:

[root@host ~]# ls -l /usr/share/ansible/roles/
total 20
...output omitted... linux-system-roles.kdump -> rhel-system-roles.kdump
...output omitted... linux-system-roles.network -> rhel-system-roles.network
...output omitted... linux-system-roles.postfix -> rhel-system-roles.postfix
...output omitted... linux-system-roles.selinux -> rhel-system-roles.selinux
...output omitted... linux-system-roles.timesync -> rhel-system-roles.timesync
...output omitted... rhel-system-roles.kdump
...output omitted... rhel-system-roles.network
...output omitted... rhel-system-roles.postfix
...output omitted... rhel-system-roles.selinux
...output omitted... rhel-system-roles.timesync

The corresponding upstream name of each role is linked to the RHEL System Role. This allows a

role to be referenced in a playbook by either name.

258 RH294-RHEL8.4-en-1-20210818

Chapter 7 | Simplifying Playbooks with Roles

The default roles_path on Red Hat Enterprise Linux includes /usr/share/ansible/roles in

the path, so Ansible should automatically find those roles when referenced by a playbook.

Note

Ansible might not find the system roles if roles_path has been overridden

in the current Ansible configuration file, if the environment variable

ANSIBLE_ROLES_PATH is set, or if there is another role of the same name in a

directory listed earlier in roles_path.

Accessing Documentation for RHEL System Roles

After installation, documentation for the RHEL System Roles is found in the /usr/share/doc/
rhel-system-roles-<version>/ directory. Documentation is organized into subdirectories

by subsystem:

[root@host ~]# ls -l /usr/share/doc/rhel-system-roles/
total 4
drwxr-xr-x. ...output omitted... kdump
drwxr-xr-x. ...output omitted... network
drwxr-xr-x. ...output omitted... postfix
drwxr-xr-x. ...output omitted... selinux
drwxr-xr-x. ...output omitted... timesync

Each role's documentation directory contains a README.md file. The README.md file contains a

description of the role, along with role usage information.

The README.md file also describes role variables that affect the behavior of the role. Often the

README.md file contains a playbook snippet that demonstrates variable settings for a common

configuration scenario.

Some role documentation directories contain example playbooks. When using a role for the first

time, review any additional example playbooks in the documentation directory.

Role documentation for RHEL System Roles matches the documentation for Linux System Roles.

Use a web browser to access role documentation for the upstream roles at the Ansible Galaxy site,

https://galaxy.ansible.com.

Time Synchronization Role Example
Suppose you need to configure NTP time synchronization on your servers. You could write

automation yourself to perform each of the necessary tasks. But RHEL System Roles includes a

role that can do this, rhel-system-roles.timesync.

The role is documented in its README.md in the /usr/share/doc/rhel-system-roles/
timesync directory. The file describes all the variables that affect the role's behavior and

contains three playbook snippets illustrating different time synchronization configurations.

To manually configure NTP servers, the role has a variable named timesync_ntp_servers. It

takes a list of NTP servers to use. Each item in the list is made up of one or more attributes. The

two key attributes are:

RH294-RHEL8.4-en-1-20210818 259

Chapter 7 | Simplifying Playbooks with Roles

timesync_ntp_servers attributes

Attribute Purpose

hostname The hostname of an NTP server with which to synchronize.

iburst A Boolean that enables or disables fast initial synchronization.

Defaults to no in the role, you should normally set this to yes.

Given this information, the following example is a play that uses the rhel-system-
roles.timesync role to configure managed hosts to get time from three NTP servers using fast

initial synchronization. In addition, a task has been added that uses the timezone module to set

the hosts' time zone to UTC.

- name: Time Synchronization Play
 hosts: servers
 vars:
 timesync_ntp_servers:
 - hostname: 0.rhel.pool.ntp.org
 iburst: yes
 - hostname: 1.rhel.pool.ntp.org
 iburst: yes
 - hostname: 2.rhel.pool.ntp.org
 iburst: yes
 timezone: UTC

 roles:
 - rhel-system-roles.timesync

 tasks:
 - name: Set timezone
 timezone:
 name: "{{ timezone }}"

Note

If you want to set a different time zone, you can use the tzselect command to

look up other valid values. You can also use the timedatectl command to check

current clock settings.

This example sets the role variables in a vars section of the play, but a better practice might be to

configure them as inventory variables for hosts or host groups.

Consider a playbook project with the following structure:

260 RH294-RHEL8.4-en-1-20210818

Chapter 7 | Simplifying Playbooks with Roles

[root@host playbook-project]# tree
.
├── ansible.cfg
├── group_vars
│ └── servers
│ └── timesync.yml
├── inventory
└── timesync_playbook.yml

Defines the time synchronization variables overriding the role defaults for hosts in group

servers in the inventory. This file would look something like:

timesync_ntp_servers:
 - hostname: 0.rhel.pool.ntp.org
 iburst: yes
 - hostname: 1.rhel.pool.ntp.org
 iburst: yes
 - hostname: 2.rhel.pool.ntp.org
 iburst: yes
timezone: UTC

The content of the playbook simplifies to:

- name: Time Synchronization Play
 hosts: servers
 roles:
 - rhel-system-roles.timesync
 tasks:
 - name: Set timezone
 timezone:
 name: "{{ timezone }}"

This structure cleanly separates the role, the playbook code, and configuration settings. The

playbook code is simple, easy to read, and should not require complex refactoring. The role

content is maintained and supported by Red Hat. All the settings are handled as inventory

variables.

This structure also supports a dynamic, heterogeneous environment. Hosts with new time

synchronization requirements may be placed in a new host group. Appropriate variables are

defined in a YAML file, and placed in the appropriate group_vars (or host_vars) subdirectory.

SELinux Role Example
As another example, the rhel-system-roles.selinux role simplifies management of

SELinux configuration settings. It is implemented using the SELinux-related Ansible modules.

The advantage of using this role instead of writing your own tasks is that it relieves you from the

responsibility of writing those tasks. Instead, you provide variables to the role to configure it, and

the maintained code in the role will ensure your desired SELinux configuration is applied.

Among the tasks this role can perform:

• Set enforcing or permissive mode

• Run restorecon on parts of the file system hierarchy

RH294-RHEL8.4-en-1-20210818 261

Chapter 7 | Simplifying Playbooks with Roles

• Set SELinux Boolean values

• Set SELinux file contexts persistently

• Set SELinux user mappings

Calling the SELinux Role

Sometimes, the SELinux role must ensure the managed hosts are rebooted in order to completely

apply its changes. However, it does not ever reboot hosts itself. This is so that you can control how

the reboot is handled. But it means that it is a little more complicated than usual to properly use

this role in a play.

The way this works is that the role will set a Boolean variable, selinux_reboot_required, to

true and fail if a reboot is needed. You can use a block/rescue structure to recover from the

failure, by failing the play if that variable is not set to true or rebooting the managed host and

rerunning the role if it is true. The block in your play should look something like this:

 - name: Apply SELinux role
 block:
 - include_role:
 name: rhel-system-roles.selinux
 rescue:
 - name: Check for failure for other reasons than required reboot
 fail:
 when: not selinux_reboot_required

 - name: Restart managed host
 reboot:

 - name: Reapply SELinux role to complete changes
 include_role:
 name: rhel-system-roles.selinux

Configuring the SELinux Role

The variables used to configure the rhel-system-roles.selinux role are documented in its

README.md file. The following examples show some ways to use this role.

The selinux_state variable sets the mode SELinux runs in. It can be set to enforcing,

permissive, or disabled. If it is not set, the mode is not changed.

selinux_state: enforcing

The selinux_booleans variable takes a list of SELinux Boolean values to adjust. Each item in

the list is a hash/dictionary of variables: the name of the Boolean, the state (whether it should be

on or off), and whether the setting should be persistent across reboots.

This example sets httpd_enable_homedirs to on persistently:

selinux_booleans:
 - name: 'httpd_enable_homedirs'
 state: 'on'
 persistent: 'yes'

262 RH294-RHEL8.4-en-1-20210818

Chapter 7 | Simplifying Playbooks with Roles

The selinux_fcontext variable takes a list of file contexts to persistently set (or remove). It

works much like the selinux fcontext command.

The following example ensures the policy has a rule to set the default SELinux type for all files

under /srv/www to httpd_sys_content_t.

selinux_fcontexts:
 - target: '/srv/www(/.*)?'
 setype: 'httpd_sys_content_t'
 state: 'present'

The selinux_restore_dirs variable specifies a list of directories on which to run

restorecon:

selinux_restore_dirs:
 - /srv/www

The selinux_ports variable takes a list of ports that should have a specific SELinux type.

selinux_ports:
 - ports: '82'
 setype: 'http_port_t'
 proto: 'tcp'
 state: 'present'

There are other variables and options for this role. See its README.md file for more information.

References

Red Hat Enterprise Linux (RHEL) System Roles

https://access.redhat.com/articles/3050101

Linux System Roles

https://linux-system-roles.github.io/

RH294-RHEL8.4-en-1-20210818 263

https://access.redhat.com/articles/3050101
https://linux-system-roles.github.io/

Chapter 7 | Simplifying Playbooks with Roles

Guided Exercise

Reusing Content with System Roles

In this exercise, you will use one of the Red Hat Enterprise Linux System Roles in conjunction

with a normal task to configure time synchronization and the time zone on your managed

hosts.

Outcomes
You should be able to:

• Install the Red Hat Enterprise Linux System Roles.

• Find and use the RHEL System Roles documentation.

• Use the rhel-system-roles.timesync role in a playbook to configure time

synchronization on remote hosts.

Scenario Overview
Your organization maintains two data centers: one in the United States (Chicago) and one

in Finland (Helsinki). To aid log analysis of database servers across data centers, ensure the

system clock on each host is synchronized using Network Time Protocol. To aid time-of-day

activity analysis across data centers, ensure each database server has a time zone set that

corresponds to the host's data center location.

Time synchronization has the following requirements:

• Use the NTP server located at classroom.example.com. Enable the iburst option to

accelerate initial time synchronization.

• Use the chrony package for time synchronization.

Before You Begin
Log in to workstation as student using student as the password.

On workstation, run the lab role-system start command. This creates the working

directory, /home/student/role-system, and populates it with an Ansible configuration

file and host inventory.

[student@workstation ~]$ lab role-system start

Instructions

 1. Change to the /home/student/role-system working directory.

[student@workstation ~]$ cd ~/role-system
[student@workstation role-system]$

264 RH294-RHEL8.4-en-1-20210818

Chapter 7 | Simplifying Playbooks with Roles

 2. Install the Red Hat Enterprise Linux system roles on the control node,

workstation.lab.example.com. Verify the installed location of the roles on the control

node.

2.1. Use the ansible-galaxy command to verify that no roles are initially available for

use in the playbook project.

[student@workstation role-system]$ ansible-galaxy list
/home/student/role-system/roles
/usr/share/ansible/roles
/etc/ansible/roles

The ansible-galaxy command searches three directories for roles, as indicated by

the roles_path entry in the ansible.cfg file:

• ./roles

• /usr/share/ansible/roles

• /etc/ansible/roles

The above output indicates there are no roles in any of these directories.

2.2. Install the rhel-system-roles package.

[student@workstation role-system]$ sudo yum install rhel-system-roles

Enter y when prompted to install the package.

2.3. Use the ansible-galaxy command to verify that the system roles are now

available.

[student@workstation role-system]$ ansible-galaxy list
/home/student/role-system/roles
/usr/share/ansible/roles
...output omitted...
- rhel-system-roles.timesync, (unknown version)
- rhel-system-roles.tlog, (unknown version)
/etc/ansible/roles

The roles are located in the /usr/share/ansible/roles directory. Any role

beginning with linux-system-roles is actually a symlink to the corresponding

rhel-system-roles role.

 3. Create a playbook, configure_time.yml, with one play that targets the

database_servers host group. Include the rhel-system-roles.timesync role in the

roles section of the play.

- name: Time Synchronization
 hosts: database_servers

 roles:
 - rhel-system-roles.timesync

RH294-RHEL8.4-en-1-20210818 265

Chapter 7 | Simplifying Playbooks with Roles

 4. The role documentation contains a description of each role variable, including the default

value for the variable. Determine the role variables to override to meet the requirements for

time synchronization.

Place role variable values in a file named timesync.yml. Because these variable values

apply to all hosts in the inventory, place the timesync.yml file in the group_vars/all
subdirectory.

4.1. Review the Role Variables section of the README.md file for the rhel-system-
roles.timesync role.

[student@workstation role-system]$ cat \
> /usr/share/doc/rhel-system-roles/timesync/README.md
...output omitted...
Role Variables

...output omitted...
List of NTP servers
timesync_ntp_servers:
 - hostname: foo.example.com # Hostname or address of the server
 minpoll: 4 # Minimum polling interval (default 6)
 maxpoll: 8 # Maximum polling interval (default 10)
 iburst: yes # Flag enabling fast initial synchronization
 # (default no)
 pool: no # Flag indicating that each resolved address
 # of the hostname is a separate NTP server
 # (default no)
...output omitted...
Name of the package which should be installed and configured for NTP.
Possible values are "chrony" and "ntp". If not defined, the currently active
or enabled service will be configured. If no service is active or enabled, a
package specific to the system and its version will be selected.
timesync_ntp_provider: chrony
...output omitted...

4.2. Create the group_vars/all subdirectory.

[student@workstation role-system]$ mkdir -pv group_vars/all
mkdir: created directory 'group_vars'
mkdir: created directory 'group_vars/all'

4.3. Create a new file group_vars/all/timesync.yml using a text editor. Add

variable definitions to satisfy the time synchronization requirements. The file now

contains:

#rhel-system-roles.timesync variables for all hosts

timesync_ntp_provider: chrony

timesync_ntp_servers:
 - hostname: classroom.example.com
 iburst: yes

266 RH294-RHEL8.4-en-1-20210818

Chapter 7 | Simplifying Playbooks with Roles

 5. Add a task to configure_time.yml, to set the time zone for each host. Ensure the task

uses the timezone module and executes after the rhel-system-roles.timesync
role.

Because hosts do not belong to the same time zone, use a variable (host_timezone) for

the time zone name.

5.1. Review the Examples section of the timezone module documentation.

[student@workstation role-system]$ ansible-doc timezone | grep -A 4 "EXAMPLES"
EXAMPLES:

- name: set timezone to Asia/Tokyo
 timezone:
 name: Asia/Tokyo

5.2. Add a task to the post_tasks section of the play in the configure_time.yml
playbook. Model the task after the example from the documentation, but use the

host_timezone variable for the time zone name.

The documentation in ansible-doc timezone recommends a restart of the Cron

service if the module changes the timezone, to make sure Cron jobs run at the right

times. Since system logging and other services use the system time zone, reboot

each host when the time zone is modified. Add a notify keyword to the task, with an

associated value of reboot host. The post_tasks section of the play should read:

 post_tasks:
 - name: Set timezone
 timezone:
 name: "{{ host_timezone }}"
 notify: reboot host

5.3. Add the reboot host handler to the Time Synchronization play. The complete

playbook now contains:

- name: Time Synchronization
 hosts: database_servers

 roles:
 - rhel-system-roles.timesync

 post_tasks:
 - name: Set timezone
 timezone:
 name: "{{ host_timezone }}"
 notify: reboot host

 handlers:
 - name: reboot host
 reboot:

RH294-RHEL8.4-en-1-20210818 267

Chapter 7 | Simplifying Playbooks with Roles

 6. For each data center, create a file named timezone.yml that contains an appropriate

value for the host_timezone variable. Use the timedatectl list-timezones
command to find the valid time zone string for each data center.

6.1. Create the group_vars subdirectories for the na_datacenter and

europe_datacenter host groups.

[student@workstation role-system]$ mkdir -pv \
> group_vars/{na_datacenter,europe_datacenter}
mkdir: created directory 'group_vars/na_datacenter'
mkdir: created directory 'group_vars/europe_datacenter'

6.2. Use the timedatectl list-timezones command to determine the time zone for

both the US and European data centers:

[student@workstation role-system]$ timedatectl list-timezones | grep Chicago
America/Chicago
[student@workstation role-system]$ timedatectl list-timezones | grep Helsinki
Europe/Helsinki

6.3. Create the timezone.yml for both data centers:

[student@workstation role-system]$ echo "host_timezone: America/Chicago" > \
> group_vars/na_datacenter/timezone.yml
[student@workstation role-system]$ echo "host_timezone: Europe/Helsinki" > \
> group_vars/europe_datacenter/timezone.yml

 7. Run the playbook.

[student@workstation role-system]$ ansible-playbook configure_time.yml

PLAY [Time Synchronization] **

TASK [Gathering Facts] ***
ok: [serverb.lab.example.com]
ok: [servera.lab.example.com]

TASK [rhel-system-roles.timesync : Check if only NTP is needed] **************
ok: [servera.lab.example.com]
ok: [serverb.lab.example.com]

...output omitted...

TASK [rhel-system-roles.timesync : Enable timemaster] ************************
skipping: [servera.lab.example.com]
skipping: [serverb.lab.example.com]

RUNNING HANDLER [rhel-system-roles.timesync : restart chronyd] ***************
changed: [servera.lab.example.com]
changed: [serverb.lab.example.com]

TASK [Set timezone] **
changed: [serverb.lab.example.com]

268 RH294-RHEL8.4-en-1-20210818

Chapter 7 | Simplifying Playbooks with Roles

changed: [servera.lab.example.com]

RUNNING HANDLER [reboot host] **
changed: [serverb.lab.example.com]
changed: [servera.lab.example.com]

servera.lab.example.com : ok=17 changed=6 unreachable=0 failed=0
 skipped=20 rescued=0 ignored=6
serverb.lab.example.com : ok=17 changed=6 unreachable=0 failed=0
 skipped=20 rescued=0 ignored=6

 8. Verify the time zone settings of each server. Use an Ansible ad hoc command to see the

output of the date command on all the database servers.

Note

The actual timezones listed will vary depending on the time of year, and whether

daylight savings is active.

[student@workstation role-system]$ ansible database_servers -m shell -a date
servera.lab.example.com | CHANGED | rc=0 >>
Fri Jul 16 17:38:40 CDT 2021
serverb.lab.example.com | CHANGED | rc=0 >>
Sat Jul 17 01:38:40 EEST 2021

Each server has a time zone setting based on its geographic location.

Finish

Run the lab role-system finish command to cleanup the managed host.

[student@workstation ~]$ lab role-system finish

This concludes the guided exercise.

RH294-RHEL8.4-en-1-20210818 269

Chapter 7 | Simplifying Playbooks with Roles

Creating Roles

Objectives
After completing this section, you should be able to create a role in a playbook's project directory

and run it as part of one of the plays in the playbook.

The Role Creation Process
Creating roles in Ansible requires no special development tools. Creating and using a role is a three

step process:

1. Create the role directory structure.

2. Define the role content.

3. Use the role in a playbook.

Creating the Role Directory Structure
By default, Ansible looks for roles in a subdirectory called roles in the directory containing your

Ansible Playbook. This allows you to store roles with the playbook and other supporting files.

If Ansible cannot find the role there, it looks at the directories specified by the Ansible

configuration setting roles_path, in order. This variable contains a colon-separated list of

directories to search. The default value of this variable is:

~/.ansible/roles:/usr/share/ansible/roles:/etc/ansible/roles

This allows you to install roles on your system that are shared by multiple projects. For example,

you could have your own roles installed your home directory in the ~/.ansible/roles
subdirectory, and the system can have roles installed for all users in the /usr/share/ansible/
roles directory.

Each role has its own directory with a standardized directory structure. For example, the following

directory structure contains the files that define the motd role.

[user@host ~]$ tree roles/
roles/
└── motd
 ├── defaults
 │ └── main.yml
 ├── files
 ├── handlers
 ├── meta
 │ └── main.yml
 ├── README.md
 ├── tasks

270 RH294-RHEL8.4-en-1-20210818

Chapter 7 | Simplifying Playbooks with Roles

 │ └── main.yml
 └── templates
 └── motd.j2

The README.md provides a basic human-readable description of the role, documentation and

examples of how to use it, and any non-Ansible requirements it might have in order to work. The

meta subdirectory contains a main.yml file that specifies information about the author, license,

compatibility, and dependencies for the module. The files subdirectory contains fixed-content

files and the templates subdirectory contains templates that can be deployed by the role when

it is used. The other subdirectories can contain main.yml files that define default variable values,

handlers, tasks, role metadata, or variables, depending on the subdirectory they are in.

If a subdirectory exists but is empty, such as handlers in this example, it is ignored. If a role does

not use a feature, the subdirectory can be omitted altogether. For example, the vars subdirectory

has been omitted from this example.

Creating a Role Skeleton

You can create all the subdirectories and files needed for a new role using standard Linux

commands. Alternatively, command line utilities exist to automate the process of new role

creation.

The ansible-galaxy command line tool (covered in more detail later in this course) is used to

manage Ansible roles, including the creation of new roles. You can run ansible-galaxy init
to create the directory structure for a new role. Specify the name of the role as an argument to the

command, which creates a subdirectory for the new role in the current working directory.

[user@host playbook-project]$ cd roles
[user@host roles]$ ansible-galaxy init my_new_role
- my_new_role was created successfully
[user@host roles]$ ls my_new_role/
defaults files handlers meta README.md tasks templates tests vars

Defining the Role Content
Once you have created the directory structure, you must write the content of the role. A good

place to start is the ROLENAME/tasks/main.yml task file, the main list of tasks run by the role.

The following tasks/main.yml file manages the /etc/motd file on managed hosts. It uses

the template module to deploy the template named motd.j2 to the managed host. Because

the template module is configured within a role task, instead of a playbook task, the motd.j2
template is retrieved from the role's templates subdirectory.

[user@host ~]$ cat roles/motd/tasks/main.yml

tasks file for motd

- name: deliver motd file
 template:
 src: motd.j2
 dest: /etc/motd
 owner: root
 group: root
 mode: 0444

RH294-RHEL8.4-en-1-20210818 271

Chapter 7 | Simplifying Playbooks with Roles

The following command displays the contents of the motd.j2 template of the motd role. It

references Ansible facts and a system_owner variable.

[user@host ~]$ cat roles/motd/templates/motd.j2
This is the system {{ ansible_facts['hostname'] }}.

Today's date is: {{ ansible_facts['date_time']['date'] }}.

Only use this system with permission.
You can ask {{ system_owner }} for access.

The role defines a default value for the system_owner variable. The defaults/main.yml file in

the role's directory structure is where this value is set.

The following defaults/main.yml file sets the system_owner variable to

user@host.example.com. This will be the email address that is written in the /etc/motd file of

managed hosts that this role is applied to.

[user@host ~]$ cat roles/motd/defaults/main.yml

system_owner: user@host.example.com

Recommended Practices for Role Content Development

Roles allow playbooks to be written modularly. To maximize the effectiveness of newly developed

roles, consider implementing the following recommended practices into your role development:

• Maintain each role in its own version control repository. Ansible works well with git-based

repositories.

• Sensitive information, such as passwords or SSH keys, should not be stored in the role

repository. Sensitive values should be parameterized as variables with default values that are

not sensitive. Playbooks that use the role are responsible for defining sensitive variables through

Ansible Vault variable files, environment variables, or other ansible-playbook options.

• Use ansible-galaxy init to start your role, and then remove any directories and files that

you do not need.

• Create and maintain README.md and meta/main.yml files to document what your role is for,

who wrote it, and how to use it.

• Keep your role focused on a specific purpose or function. Instead of making one role do many

things, you might write more than one role.

• Reuse and refactor roles often. Resist creating new roles for edge configurations. If an existing

role accomplishes a majority of the required configuration, refactor the existing role to integrate

the new configuration scenario. Use integration and regression testing techniques to ensure that

the role provides the required new functionality and also does not cause problems for existing

playbooks.

Defining Role Dependencies
Role dependencies allow a role to include other roles as dependencies. For example, a role that

defines a documentation server may depend upon another role that installs and configures a web

server. Dependencies are defined in the meta/main.yml file in the role directory hierarchy.

272 RH294-RHEL8.4-en-1-20210818

Chapter 7 | Simplifying Playbooks with Roles

The following is a sample meta/main.yml file.

dependencies:
 - role: apache
 port: 8080
 - role: postgres
 dbname: serverlist
 admin_user: felix

By default, roles are only added as a dependency to a playbook once. If another role also lists

it as a dependency it will not be run again. This behavior can be overridden by setting the

allow_duplicates variable to yes in the meta/main.yml file.

Important

Limit your role's dependencies on other roles. Dependencies make it harder to

maintain your role, especially if it has many complex dependencies.

Using the Role in a Playbook
To access a role, reference it in the roles: section of a play. The following playbook refers to the

motd role. Because no variables are specified, the role is applied with its default variable values.

[user@host ~]$ cat use-motd-role.yml

- name: use motd role playbook
 hosts: remote.example.com
 remote_user: devops
 become: true
 roles:
 - motd

When the playbook is executed, tasks performed because of a role can be identified by the role

name prefix. The following sample output illustrates this with the motd : prefix in the task name:

[user@host ~]$ ansible-playbook -i inventory use-motd-role.yml

PLAY [use motd role playbook] **

TASK [setup] ***
ok: [remote.example.com]

TASK [motd: deliver motd file] **
changed: [remote.example.com]

PLAY RECAP ***
remote.example.com : ok=2 changed=1 unreachable=0 failed=0

The above scenario assumes that the motd role is located in the roles directory. Later in the

course you will see how to use a role that is remotely located in a version control repository.

RH294-RHEL8.4-en-1-20210818 273

Chapter 7 | Simplifying Playbooks with Roles

Changing a Role's Behavior with Variables

A well-written role uses default variables to alter the role's behavior to match a related

configuration scenario. This helps make the role more generic and reusable in a variety of contexts.

The value of any variable defined in a role's defaults directory will be overwritten if that same

variable is defined:

• in an inventory file, either as a host variable or a group variable.

• in a YAML file under the group_vars or host_vars directories of a playbook project

• as a variable nested in the vars keyword of a play

• as a variable when including the role in roles keyword of a play

The following example shows how to use the motd role with a different value for the

system_owner role variable. The value specified, someone@host.example.com, will replace

the variable reference when the role is applied to a managed host.

[user@host ~]$ cat use-motd-role.yml

- name: use motd role playbook
 hosts: remote.example.com
 remote_user: devops
 become: true
 vars:
 system_owner: someone@host.example.com
 roles:
 - role: motd

When defined in this way, the system_owner variable replaces the value of the default variable of

the same name. Any variable definitions nested within the vars keyword will not replace the value

of the same variable if defined in a role's vars directory.

The following example also shows how to use the motd role with a different value for the

system_owner role variable. The value specified, someone@host.example.com, will replace

the variable reference regardless of being defined in the role's vars or defaults directory.

[user@host ~]$ cat use-motd-role.yml

- name: use motd role playbook
 hosts: remote.example.com
 remote_user: devops
 become: true
 roles:
 - role: motd
 system_owner: someone@host.example.com

274 RH294-RHEL8.4-en-1-20210818

Chapter 7 | Simplifying Playbooks with Roles

Important

Variable precedence can be confusing when working with role variables in a play.

• Almost any other variable will override a role's default variables: inventory

variables, play vars, inline role parameters, and so on.

• Fewer variables can override variables defined in a role's vars directory. Facts,

variables loaded with include_vars, registered variables, and role parameters

are some variables that can do that. Inventory variables and play vars cannot.

This is important because it helps keep your play from accidentally changing the

internal functioning of the role.

• However, variables declared inline as role parameters, like the last of the

preceding examples, have very high precedence. They can override variables

defined in a role's vars directory. If a role parameter has the same name as a

variable set in play vars, a role's vars, or an inventory or playbook variable, the

role parameter overrides the other variable.

References

Using Roles — Ansible Documentation

https://docs.ansible.com/ansible/2.9/user_guide/

playbooks_reuse_roles.html#using-roles

Using Variables — Ansible Documentation

https://docs.ansible.com/ansible/2.9/user_guide/playbooks_variables.html

RH294-RHEL8.4-en-1-20210818 275

https://docs.ansible.com/ansible/2.9/user_guide/playbooks_reuse_roles.html#using-roles
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_reuse_roles.html#using-roles
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_variables.html

Chapter 7 | Simplifying Playbooks with Roles

Guided Exercise

Creating Roles

In this exercise, you will create an Ansible role that uses variables, files, templates, tasks, and

handlers to deploy a network service.

Outcomes
You should be able to create a role that uses variables and parameters.

The myvhost role installs and configures the Apache service on a host. A template named

vhost.conf.j2 is provided that will be used to generate /etc/httpd/conf.d/
vhost.conf.

Before You Begin
Log in to workstation as student using student as the password.

On workstation, run the lab role-create start command. This creates the working

directory, /home/student/role-create, and populates it with an Ansible configuration

file and host inventory.

[student@workstation ~]$ lab role-create start

Instructions

 1. Change to the /home/student/role-create working directory.

[student@workstation ~]$ cd ~/role-create
[student@workstation role-create]$

 2. Create the directory structure for a role called myvhost. The role includes fixed files,

templates, tasks, and handlers.

[student@workstation role-create]$ mkdir -v roles; cd roles
mkdir: created directory 'roles'
[student@workstation roles]$ ansible-galaxy init myvhost
- myvhost was created successfully
[student@workstation roles]$ rm -rvf myvhost/{defaults,vars,tests}
removed 'myvhost/defaults/main.yml'
removed directory: 'myvhost/defaults'
removed 'myvhost/vars/main.yml'
removed directory: 'myvhost/vars'
removed 'myvhost/tests/inventory'
removed 'myvhost/tests/test.yml'
removed directory: 'myvhost/tests'
[student@workstation roles]$ cd ..
[student@workstation role-create]$

276 RH294-RHEL8.4-en-1-20210818

Chapter 7 | Simplifying Playbooks with Roles

 3. Edit the main.yml file in the tasks subdirectory of the role. The role should perform the

following tasks:

• The httpd package is installed

• The httpd service is started and enabled

• The web server configuration file is installed, using a template provided by the role

3.1. Edit the roles/myvhost/tasks/main.yml file. Include code to use the yum
module to install the httpd package. The file contents should look like the following:

tasks file for myvhost

- name: Ensure httpd is installed
 yum:
 name: httpd
 state: latest

3.2. Add additional code to the roles/myvhost/tasks/main.yml file to use the

service module to start and enable the httpd service.

- name: Ensure httpd is started and enabled
 service:
 name: httpd
 state: started
 enabled: true

3.3. Add another stanza to use the template module to create /etc/httpd/conf.d/
vhost.conf on the managed host. It should call a handler to restart the httpd
daemon when this file is updated.

- name: vhost file is installed
 template:
 src: vhost.conf.j2
 dest: /etc/httpd/conf.d/vhost.conf
 owner: root
 group: root
 mode: 0644
 notify:
 - restart httpd

3.4. Save your changes and exit the roles/myvhost/tasks/main.yml file.

 4. Create the handler for restarting the httpd service. Edit the roles/myvhost/
handlers/main.yml file and include code to use the service module, then save and

exit. The file contents should look like the following:

RH294-RHEL8.4-en-1-20210818 277

Chapter 7 | Simplifying Playbooks with Roles

handlers file for myvhost

- name: restart httpd
 service:
 name: httpd
 state: restarted

 5. Move the vhost.conf.j2 template from the project directory to the role's templates
subdirectory.

[student@workstation role-create]$ mv -v vhost.conf.j2 roles/myvhost/templates/
renamed 'vhost.conf.j2' -> 'roles/myvhost/templates/vhost.conf.j2'

 6. Create the HTML content to be served by the web server.

6.1. Create the files/html/ directory to store the content in.

[student@workstation role-create]$ mkdir -pv files/html
mkdir: created directory 'files/html'

6.2. Create an index.html file below that directory with the contents: simple index.

[student@workstation role-create]$ echo \
> 'simple index' > files/html/index.html

 7. Test the myvhost role to make sure it works properly.

7.1. Write a playbook that uses the role, called use-vhost-role.yml. Include a task

to copy the HTML content from files/html/. Use the copy module and include a

trailing slash after the source directory name. It should have the following content:

- name: Use myvhost role playbook
 hosts: webservers
 pre_tasks:
 - name: pre_tasks message
 debug:
 msg: 'Ensure web server configuration.'

 roles:
 - myvhost

 post_tasks:
 - name: HTML content is installed
 copy:
 src: files/html/
 dest: "/var/www/vhosts/{{ ansible_hostname }}"

278 RH294-RHEL8.4-en-1-20210818

Chapter 7 | Simplifying Playbooks with Roles

 - name: post_tasks message
 debug:
 msg: 'Web server is configured.'

Note

The trailing slash causes the source directory and all of its contents to be copied to

the managed host.

7.2. Before running the playbook, verify that its syntax is correct by running ansible-
playbook with the --syntax-check. If it reports any errors, correct them before

moving to the next step. You should see output similar to the following:

[student@workstation role-create]$ ansible-playbook use-vhost-role.yml \
> --syntax-check

playbook: use-vhost-role.yml

7.3. Run the playbook. Review the output to confirm that Ansible performed the actions

on the web server, servera.

[student@workstation role-create]$ ansible-playbook use-vhost-role.yml

PLAY [Use myvhost role playbook] ***

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

TASK [pre_tasks message] ***
ok: [servera.lab.example.com] => {
 "msg": "Ensure web server configuration."
}

TASK [myvhost : Ensure httpd is installed] ***********************************
changed: [servera.lab.example.com]

TASK [myvhost : Ensure httpd is started and enabled] *************************
changed: [servera.lab.example.com]

TASK [myvhost : vhost file is installed] *************************************
changed: [servera.lab.example.com]

RUNNING HANDLER [myvhost : restart httpd] ************************************
changed: [servera.lab.example.com]

TASK [HTML content is installed] ***********************************
changed: [servera.lab.example.com]

TASK [post_tasks message] **
ok: [servera.lab.example.com] => {
 "msg": "Web server is configured."
}

RH294-RHEL8.4-en-1-20210818 279

Chapter 7 | Simplifying Playbooks with Roles

PLAY RECAP ***
servera.lab.example.com : ok=8 changed=5 unreachable=0 failed=0

7.4. Run ad hoc commands to confirm that the role worked. The httpd package should be

installed and the httpd service should be running.

[student@workstation role-create]$ ansible webservers -a \
> 'systemctl is-active httpd'
servera.lab.example.com | CHANGED | rc=0 >>
active

[student@workstation role-create]$ ansible webservers -a \
> 'systemctl is-enabled httpd'
servera.lab.example.com | CHANGED | rc=0 >>
enabled

7.5. The Apache configuration should be installed with template variables expanded.

[student@workstation role-create]$ ansible webservers -a \
> 'cat /etc/httpd/conf.d/vhost.conf'
servera.lab.example.com | CHANGED | rc=0 >>
Ansible managed:

<VirtualHost *:80>
 ServerAdmin webmaster@servera.lab.example.com
 ServerName servera.lab.example.com
 ErrorLog logs/servera-error.log
 CustomLog logs/servera-common.log common
 DocumentRoot /var/www/vhosts/servera/

 <Directory /var/www/vhosts/servera/>
 Options +Indexes +FollowSymlinks +Includes
 Order allow,deny
 Allow from all
 </Directory>
</VirtualHost>

7.6. The HTML content should be found in a directory called /var/www/vhosts/
servera. The index.html file should contain the string "simple index".

[student@workstation role-create]$ ansible webservers -a \
> 'cat /var/www/vhosts/servera/index.html'
servera.lab.example.com | CHANGED | rc=0 >>
simple index

7.7. Use the uri module in an ad hoc command to check that the web content is available

locally. Set the return_content parameter to true to have the content of the

server's response added to the output. The server content should be the string

simple index\n.

280 RH294-RHEL8.4-en-1-20210818

Chapter 7 | Simplifying Playbooks with Roles

[student@workstation role-create]$ ansible webservers -m uri \
> -a 'url=http://localhost return_content=true'
servera.lab.example.com | SUCCESS => {
 "accept_ranges": "bytes",
 "changed": false,
 "connection": "close",
 "content": "simple index\n",
...output omitted...
 "status": 200,
 "url": "http://localhost"
}

7.8. Confirm that the web server content is available to remote clients.

[student@workstation role-create]$ curl http://servera.lab.example.com
simple index

Finish

Run the lab role-create finish command to clean up the managed host.

[student@workstation ~]$ lab role-create finish

This concludes the guided exercise.

RH294-RHEL8.4-en-1-20210818 281

Chapter 7 | Simplifying Playbooks with Roles

Deploying Roles with Ansible Galaxy

Objectives
After completing this section, you should be able to select and retrieve roles from Ansible Galaxy

or other sources such as a Git repository, and use them in your playbooks.

Introducing Ansible Galaxy
Ansible Galaxy [https://galaxy.ansible.com] is a public library of Ansible content written by a

variety of Ansible administrators and users. It contains thousands of Ansible roles and it has a

searchable database that helps Ansible users identify roles that might help them accomplish an

administrative task. Ansible Galaxy includes links to documentation and videos for new Ansible

users and role developers.

Figure 7.1: Ansible Galaxy home page

In addition, the ansible-galaxy command that you use to get and manage roles from

Ansible Galaxy can also be used to get and manage roles your projects need from your own Git

repositories.

Getting Help with Ansible Galaxy

The Documentation tab on the Ansible Galaxy website home page leads to a page that describes

how to use Ansible Galaxy. There is content that describes how to download and use roles from

Ansible Galaxy. Instructions on how to develop roles and upload them to Ansible Galaxy are also

on that page.

Browsing Ansible Galaxy for Roles

The Search tab on the left side of the Ansible Galaxy website home page gives users access to

information about the roles published on Ansible Galaxy. You can search for an Ansible role by

its name, using tags, or by other role attributes. Results are presented in descending order of the

282 RH294-RHEL8.4-en-1-20210818

https://galaxy.ansible.com
https://galaxy.ansible.com

Chapter 7 | Simplifying Playbooks with Roles

Best Match score, which is a computed score based on role quality, role popularity, and search

criteria.

Note

Content Scoring [https://galaxy.ansible.com/docs/contributing/

content_scoring.html] in the documentation has more information on how roles are

scored by Ansible Galaxy.

Figure 7.2: Ansible Galaxy search screen

Ansible Galaxy reports the number of times each role has been downloaded from Ansible Galaxy.

In addition, Ansible Galaxy also reports the number of watchers, forks, and stars the role's GitHub

repository has. Users can use this information to help determine how active development is for a

role and how popular it is in the community.

The following figure shows the search results that Ansible Galaxy displayed after a keyword search

for redis was performed. Notice the first result has a Best Match score of 0.9009.

Figure 7.3: Ansible Galaxy search results example

RH294-RHEL8.4-en-1-20210818 283

https://galaxy.ansible.com/docs/contributing/content_scoring.html
https://galaxy.ansible.com/docs/contributing/content_scoring.html
https://galaxy.ansible.com/docs/contributing/content_scoring.html

Chapter 7 | Simplifying Playbooks with Roles

The Filters pulldown menu to the right of the search box allow searches to be performed on

keywords, author IDs, platform, and tags. Possible platform values include EL for Red Hat

Enterprise Linux (and closely related distributions such as CentOS) and Fedora, among others.

Tags are arbitrary single-word strings set by the role author that describe and categorize the role.

Users can use tags to find relevant roles. Possible tag values include system, development, web,

monitoring, and others. A role can have up to 20 tags in Ansible Galaxy.

Important

In the Ansible Galaxy search interface, keyword searches match words or phrases in

the README file, content name, or content description. Tag searches, by contrast,

specifically match tag values set by the author for the role.

The Ansible Galaxy Command-Line Tool
The ansible-galaxy command line tool can be used to search for, display information about,

install, list, remove, or initialize roles.

Searching for Roles from the Command Line

The ansible-galaxy search subcommand searches Ansible Galaxy for roles. If you specify a

string as an argument, it is used to search Ansible Galaxy for roles by keyword. You can use the --
author, --platforms, and --galaxy-tags options to narrow the search results. You can also

use those options as the main search key. For example, the command ansible-galaxy search
--author geerlingguy will display all roles submitted by the user geerlingguy.

Results are displayed in alphabetical order, not by descending Best Match score. The following

example displays the names of roles that include redis, and are available for the Enterprise Linux

(EL) platform.

[user@host ~]$ ansible-galaxy search 'redis' --platforms EL

Found 124 roles matching your search:

 Name Description
 ---- -----------
 1it.sudo Ansible role for managing sudoers
 AerisCloud.librato Install and configure the Librato Agent
 AerisCloud.redis Installs redis on a server
 AlbanAndrieu.java Manage Java installation
 andrewrothstein.redis builds Redis from src and installs
...output omitted...
 geerlingguy.php-redis PhpRedis support for Linux
 geerlingguy.redis Redis for Linux
 gikoluo.filebeat Filebeat for Linux.
...output omitted...

The ansible-galaxy info subcommand displays more detailed information about a

role. Ansible Galaxy gets this information from a number of places including the role's meta/
main.yml file and its GitHub repository. The following command displays information about the

geerlingguy.redis role, available from Ansible Galaxy.

284 RH294-RHEL8.4-en-1-20210818

Chapter 7 | Simplifying Playbooks with Roles

[user@host ~]$ ansible-galaxy info geerlingguy.redis

Role: geerlingguy.redis
 description: Redis for Linux
 active: True
...output omitted...
 download_count: 146209
 forks_count: 82
 github_branch: master
 github_repo: ansible-role-redis
 github_user: geerlingguy
...output omitted...
 license: license (BSD, MIT)
 min_ansible_version: 2.4
 modified: 2018-11-19T14:53:29.722718Z
 open_issues_count: 11
 path: [u'/etc/ansible/roles', u'/usr/share/ansible/roles']
 role_type: ANS
 stargazers_count: 98
...output omitted...

Installing Roles from Ansible Galaxy

The ansible-galaxy install subcommand downloads a role from Ansible Galaxy, then

installs it locally on the control node.

By default, roles are installed into the first directory that is writable in the user's roles_path.

Based on the default roles_path set for Ansible, normally the role will be installed into the user's

~/.ansible/roles directory. The default roles_path might be overridden by your current

Ansible configuration file or by the environment variable ANSIBLE_ROLES_PATH, which affects

the behavior of ansible-galaxy.

You can also specify a specific directory to install the role into by using the -p DIRECTORY option.

In the following example, ansible-galaxy installs the geerlingguy.redis role into a

playbook project's roles directory. The command's current working directory is /opt/project.

[user@host project]$ ansible-galaxy install geerlingguy.redis -p roles/
- downloading role 'redis', owned by geerlingguy
- downloading role from https://github.com/geerlingguy/...output omitted...
- extracting geerlingguy.redis to /opt/project/roles/geerlingguy.redis
- geerlingguy.redis (1.6.0) was installed successfully
[user@host project]$ ls roles/
geerlingguy.redis

Installing Roles Using a Requirements File

You can also use ansible-galaxy to install a list of roles based on definitions in a text file.

For example, if you have a playbook that needs to have specific roles installed, you can create a

roles/requirements.yml file in the project directory that specifies which roles are needed.

This file acts as a dependency manifest for the playbook project which enables playbooks to be

developed and tested separately from any supporting roles.

For example, a simple requirements.yml to install geerlingguy.redis might read like this:

RH294-RHEL8.4-en-1-20210818 285

Chapter 7 | Simplifying Playbooks with Roles

- src: geerlingguy.redis
 version: "1.5.0"

The src attribute specifies the source of the role, in this case the geerlingguy.redis role from

Ansible Galaxy. The version attribute is optional, and specifies the version of the role to install, in

this case 1.5.0.

Important

You should specify the version of the role in your requirements.yml file,

especially for playbooks in production.

If you do not specify a version, you will get the latest version of the role. If the

upstream author makes changes to the role that are incompatible with your

playbook, it may cause an automation failure or other problems.

To install the roles using a role file, use the -r REQUIREMENTS-FILE option:

[user@host project]$ ansible-galaxy install -r roles/requirements.yml \
> -p roles
- downloading role 'redis', owned by geerlingguy
- downloading role from https://github.com/geerlingguy/ansible-role-redis/
archive/1.6.0.tar.gz
- extracting geerlingguy.redis to /opt/project/roles/geerlingguy.redis
- geerlingguy.redis (1.6.0) was installed successfully

You can use ansible-galaxy to install roles that are not in Ansible Galaxy. You can host your

own proprietary or internal roles in a private Git repository or on a web server. The following

example shows how to configure a requirements file using a variety of remote sources.

[user@host project]$ cat roles/requirements.yml
from Ansible Galaxy, using the latest version
- src: geerlingguy.redis

from Ansible Galaxy, overriding the name and using a specific version
- src: geerlingguy.redis
 version: "1.5.0"
 name: redis_prod

from any Git-based repository, using HTTPS
- src: https://gitlab.com/guardianproject-ops/ansible-nginx-acme.git
 scm: git
 version: 56e00a54
 name: nginx-acme

from any Git-based repository, using SSH
- src: git@gitlab.com:guardianproject-ops/ansible-nginx-acme.git
 scm: git
 version: master
 name: nginx-acme-ssh

from a role tar ball, given a URL;

286 RH294-RHEL8.4-en-1-20210818

Chapter 7 | Simplifying Playbooks with Roles

supports 'http', 'https', or 'file' protocols
- src: file:///opt/local/roles/myrole.tar
 name: myrole

The src keyword specifies the Ansible Galaxy role name. If the role is not hosted on Ansible

Galaxy, the src keyword indicates the role's URL.

If the role is hosted in a source control repository, the scm attribute is required. The ansible-
galaxy command is capable of downloading and installing roles from either a Git-based or

mercurial-based software repository. A Git-based repository requires an scm value of git, while a

role hosted on a mercurial repository requires a value of hg. If the role is hosted on Ansible Galaxy

or as a tar archive on a web server, the scm keyword is omitted.

The name keyword is used to override the local name of the role. The version keyword is used to

specify a role's version. The version keyword can be any value that corresponds to a branch, tag,

or commit hash from the role's software repository.

To install the roles associated with a playbook project, execute the ansible-galaxy install
command:

[user@host project]$ ansible-galaxy install -r roles/requirements.yml \
> -p roles
- downloading role 'redis', owned by geerlingguy
- downloading role from https://github.com/geerlingguy/ansible-role-redis/
archive/1.6.0.tar.gz
- extracting geerlingguy.redis to /opt/project/roles/geerlingguy.redis
- geerlingguy.redis (1.6.0) was installed successfully
- downloading role 'redis', owned by geerlingguy
- downloading role from https://github.com/geerlingguy/ansible-role-redis/
archive/1.5.0.tar.gz
- extracting redis_prod to /opt/project/roles/redis_prod
- redis_prod (1.5.0) was installed successfully
- extracting nginx-acme to /opt/project/roles/nginx-acme
- nginx-acme (56e00a54) was installed successfully
- extracting nginx-acme-ssh to /opt/project/roles/nginx-acme-ssh
- nginx-acme-ssh (master) was installed successfully
- downloading role from file:///opt/local/roles/myrole.tar
- extracting myrole to /opt/project/roles/myrole
- myrole was installed successfully

Managing Downloaded Roles

The ansible-galaxy command can also manage local roles, such as those roles found in the

roles directory of a playbook project. The ansible-galaxy list subcommand lists the roles

that are found locally.

[user@host project]$ ansible-galaxy list
- geerlingguy.redis, 1.6.0
- myrole, (unknown version)
- nginx-acme, 56e00a54
- nginx-acme-ssh, master
- redis_prod, 1.5.0

A role can be removed locally with the ansible-galaxy remove subcommand.

RH294-RHEL8.4-en-1-20210818 287

Chapter 7 | Simplifying Playbooks with Roles

[user@host ~]$ ansible-galaxy remove nginx-acme-ssh
- successfully removed nginx-acme-ssh
[user@host ~]$ ansible-galaxy list
- geerlingguy.redis, 1.6.0
- myrole, (unknown version)
- nginx-acme, 56e00a54
- redis_prod, 1.5.0

Use downloaded and installed roles in playbooks like any other role. They may be referenced in the

roles section using their downloaded role name. If a role is not in the project's roles directory,

the roles_path will be checked to see if the role is installed in one of those directories, first

match being used. The following use-role.yml playbook references the redis_prod and

geerlingguy.redis roles:

[user@host project]$ cat use-role.yml

- name: use redis_prod for Prod machines
 hosts: redis_prod_servers
 remote_user: devops
 become: true
 roles:
 - redis_prod

- name: use geerlingguy.redis for Dev machines
 hosts: redis_dev_servers
 remote_user: devops
 become: true
 roles:
 - geerlingguy.redis

This playbook causes different versions of the geerlingguy.redis role to be applied to the

production and development servers. In this manner, changes to the role can be systematically

tested and integrated before deployment to the production servers. If a recent change to a role

causes problems, using version control to develop the role allows you to roll back to a previous,

stable version of the role.

References

Ansible Galaxy — Ansible Documentation

https://docs.ansible.com/ansible/2.9/cli/ansible-galaxy.html

288 RH294-RHEL8.4-en-1-20210818

https://docs.ansible.com/ansible/2.9/cli/ansible-galaxy.html

Chapter 7 | Simplifying Playbooks with Roles

Guided Exercise

Deploying Roles with Ansible Galaxy

In this exercise, you will use Ansible Galaxy to download and install an Ansible role.

Outcomes
You should be able to:

• create a roles file to specify role dependencies for a playbook

• install roles specified in a roles file

• list roles using the ansible-galaxy command

Scenario Overview
Your organization places custom files in the /etc/skel directory on all hosts. As a

result, new user accounts are configured with a standardized organization-specific Bash

environment.

You will test the development version of the Ansible role responsible for deploying Bash

environment skeleton files.

Before You Begin
Log in to workstation as student using student as the password.

On workstation, run the lab role-galaxy start command. This creates the working

directory, /home/student/role-galaxy, and populates it with an Ansible configuration

file and host inventory.

[student@workstation ~]$ lab role-galaxy start

Instructions

 1. Change to the role-galaxy working directory.

[student@workstation ~]$ cd ~/role-galaxy
[student@workstation role-galaxy]$

 2. To test the Ansible role that configures skeleton files, add the role specification to a roles

file.

Launch your favorite text editor and create a file called requirements.yml
in the roles subdirectory. The URL of the role's Git repository is:

git@workstation.lab.example.com:student/bash_env. To see how the role

affects the behavior of production hosts, use the master branch of the repository. Set the

local name of the role to student.bash_env.

The roles/requirements.yml now contains the following content:

RH294-RHEL8.4-en-1-20210818 289

Chapter 7 | Simplifying Playbooks with Roles

requirements.yml

- src: git@workstation.lab.example.com:student/bash_env
 scm: git
 version: master
 name: student.bash_env

 3. Use the ansible-galaxy command to process the roles file you just created and install

the student.bash_env role.

3.1. For comparison, display the contents of the roles subdirectory before the role is

installed.

[student@workstation role-galaxy]$ ls roles/
requirements.yml

3.2. Use Ansible Galaxy to download and install the roles listed in the roles/
requirements.yml file. Be sure that any downloaded roles are stored in the roles
subdirectory.

[student@workstation role-galaxy]$ ansible-galaxy install -r \
> roles/requirements.yml -p roles
- extracting student.bash_env to /home/student/role-galaxy/roles/student.bash_env
- student.bash_env (master) was installed successfully

3.3. Display the roles subdirectory after the role has been installed. Confirm that it has a

new subdirectory called student.bash_env, matching the name value specified in

the YAML file.

[student@workstation role-galaxy]$ ls roles/
requirements.yml student.bash_env

3.4. Try using the ansible-galaxy command, without any options, to list the project

roles:

[student@workstation role-galaxy]$ ansible-galaxy list
/usr/share/ansible/roles
...output omitted...
- rhel-system-roles.postfix, (unknown version)
- rhel-system-roles.selinux, (unknown version)
- rhel-system-roles.timesync, (unknown version)
/etc/ansible/roles
 [WARNING]: - the configured path /home/student/.ansible/roles does not exist.

Because you used the -p option with the ansible-galaxy install command,

the student.bash_env role was not installed in the default location. Use the -p
option with the ansible-galaxy list command to list the downloaded roles:

290 RH294-RHEL8.4-en-1-20210818

Chapter 7 | Simplifying Playbooks with Roles

[student@workstation role-galaxy]$ ansible-galaxy list -p roles
/home/student/role-galaxy/roles
- student.bash_env, master
...output omitted...
[WARNING]: - the configured path /home/student/.ansible/roles does not exist.

Note

The /home/student/.ansible/roles directory is in your default roles_path,

but since you have not attempted to install a role without using the -p option,

ansible-galaxy has not yet created the directory.

 4. Create a playbook, called use-bash_env-role.yml, that uses the student.bash_env
role. The contents of the playbook should match the following:

- name: use student.bash_env role playbook
 hosts: devservers
 vars:
 default_prompt: '[\u on \h in \W dir]\$ '
 pre_tasks:
 - name: Ensure test user does not exist
 user:
 name: student2
 state: absent
 force: yes
 remove: yes

 roles:
 - student.bash_env

 post_tasks:
 - name: Create the test user
 user:
 name: student2
 state: present
 password: "{{ 'redhat' | password_hash('sha512', 'mysecretsalt') }}"

To see the effects of the configuration change, a new user account must be created. The

pre_tasks and post_tasks section of the playbook ensure that the student2 user

account is created each time the playbook is executed. After playbook execution, the

student2 account is accessed with a password of redhat.

Note

The user2 password is generated using a filter. Filters take data and modify it; here,

the string redhat is modified by passing it to the password_hash module. Filters

are an advanced topic not covered in this course.

RH294-RHEL8.4-en-1-20210818 291

Chapter 7 | Simplifying Playbooks with Roles

 5. Run the playbook. The student.bash_env role creates standard template configuration

files in /etc/skel on the managed host. The files it creates include .bashrc,

.bash_profile, and .vimrc.

[student@workstation role-galaxy]$ ansible-playbook use-bash_env-role.yml

PLAY [use student.bash_env role playbook] ************************************

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

TASK [Ensure test user does not exist] ***************************************
ok: [servera.lab.example.com]

TASK [student.bash_env : put away .bashrc] ***********************************
changed: [servera.lab.example.com]

TASK [student.bash_env : put away .bash_profile] *****************************
ok: [servera.lab.example.com]

TASK [student.bash_env : put away .vimrc] ************************************
changed: [servera.lab.example.com]

TASK [Create the test user] **
changed: [servera.lab.example.com]

PLAY RECAP ***
servera.lab.example.com : ok=6 changed=4 unreachable=0 failed=0

 6. Connect to servera as the student2 user using SSH. Observe the custom prompt for

the student2 user, and then disconnect from servera.

[student@workstation role-galaxy]$ ssh student2@servera
Activate the web console with: systemctl enable --now cockpit.socket

[student2 on servera in ~ dir]$ exit
logout
Connection to servera closed.
[student@workstation role-galaxy]$

 7. Execute the playbook using the development version of the student.bash_env role.

The development version of the role is located in the dev branch of the Git repository. The

development version of the role uses a new variable, prompt_color. Before executing the

playbook, add the prompt_color variable to the vars section of the playbook and set its

value to blue.

7.1. Update the roles/requirements.yml file, and set the version value to dev.

The roles/requirements.yml file now contains:

292 RH294-RHEL8.4-en-1-20210818

Chapter 7 | Simplifying Playbooks with Roles

requirements.yml

- src: git@workstation.lab.example.com:student/bash_env
 scm: git
 version: dev
 name: student.bash_env

7.2. Use the ansible-galaxy install command to install the role using the updated

roles file. Use the --force option to overwrite the existing master version of the

role with the dev version of the role.

[student@workstation role-galaxy]$ ansible-galaxy install \
> -r roles/requirements.yml --force -p roles
- changing role student.bash_env from master to dev
- extracting student.bash_env to /home/student/role-galaxy/roles/student.bash_env
- student.bash_env (dev) was installed successfully

7.3. Edit the use-bash_env-role.yml file. Add the prompt_color variable with a

value of blue to the vars section of the playbook. The file now contains:

- name: use student.bash_env role playbook
 hosts: devservers
 vars:
 prompt_color: blue
 default_prompt: '[\u on \h in \W dir]\$ '
 pre_tasks:
...output omitted...

7.4. Execute the use-bash_env-role.yml playbook.

[student@workstation role-galaxy]$ ansible-playbook use-bash_env-role.yml

PLAY [use student.bash_env role playbook] ************************************

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

TASK [Ensure test user does not exist] ***************************************
changed: [servera.lab.example.com]

TASK [student.bash_env : put away .bashrc] ***********************************
changed: [servera.lab.example.com]

TASK [student.bash_env : put away .bash_profile] *****************************
changed: [servera.lab.example.com]

TASK [student.bash_env : put away .vimrc] ************************************
okay: [servera.lab.example.com]

TASK [Create the test user] **

RH294-RHEL8.4-en-1-20210818 293

Chapter 7 | Simplifying Playbooks with Roles

changed: [servera.lab.example.com]

PLAY RECAP ***
servera.lab.example.com : ok=6 changed=4 unreachable=0 failed=0

 8. Connect again to servera as the student2 using SSH. Observe the error for the

student2 user, and then disconnect from servera.

[student@workstation role-galaxy]$ ssh student2@servera
Activate the web console with: systemctl enable --now cockpit.socket

-bash: [: missing `]'
[student2@servera ~]$ exit
logout
Connection to servera closed.
[student@workstation role-galaxy]$

A Bash error occurred while parsing the student2 user's .bash_profile file.

 9. Correct the error in the development version of the student.bash_env role, and re-

execute the playbook.

9.1. Edit the roles/student.bash_env/templates/_bash_profile.j2 file. Add

the missing] character to line 4 and save the file. The top of the file is now:

.bash_profile

Get the aliases and functions
if [-f ~/.bashrc]; then
 . ~/.bashrc
fi

User specific environment and startup programs

PATH=$PATH:$HOME/.local/bin:$HOME/bin

export PATH

Save the file.

9.2. Execute the use-bash_env-role.yml playbook.

[student@workstation role-galaxy]$ ansible-playbook use-bash_env-role.yml

PLAY [use student.bash_env role playbook] ************************************

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

TASK [Ensure test user does not exist] ***************************************
changed: [servera.lab.example.com]

TASK [student.bash_env : put away .bashrc] ***********************************
ok: [servera.lab.example.com]

294 RH294-RHEL8.4-en-1-20210818

Chapter 7 | Simplifying Playbooks with Roles

TASK [student.bash_env : put away .bash_profile] *****************************
changed: [servera.lab.example.com]

TASK [student.bash_env : put away .vimrc] ************************************
ok: [servera.lab.example.com]

TASK [Create the test user] **
changed: [servera.lab.example.com]

PLAY RECAP ***
servera.lab.example.com : ok=6 changed=3 unreachable=0 failed=0

9.3. Connect again to servera as the student2 using SSH.

[student@workstation role-galaxy]$ ssh student2@servera
Activate the web console with: systemctl enable --now cockpit.socket

[student2 on servera in ~ dir]$ exit
logout
Connection to servera closed.
[student@workstation role-galaxy]$

The error message is no longer present. The custom prompt for the student2 user

now displays with blue characters.

 10. The steps above demonstrate that the development version of the student.bash_env
role is defective. Based on testing results, developers will commit necessary fixes back to

the development branch of the role. When the development branch passes required quality

checks, developers merge features from the development branch into the master branch.

Committing role changes to a Git repository is beyond the scope of this course.

Important

When tracking the latest version of a role in a project, periodically reinstall the role

to update it. This ensures that the local copy stays current with bug fixes, patches,

and other features.

However, if using a third-party role in production, specify the version to use in order

to avoid breakage due to unexpected changes. Periodically update to the latest

role version in your test environment so as to adopt improvements and changes in a

controlled manner.

Finish

Run the lab role-galaxy finish command to clean up the managed host.

[student@workstation ~]$ lab role-galaxy finish

This concludes the guided exercise.

RH294-RHEL8.4-en-1-20210818 295

Chapter 7 | Simplifying Playbooks with Roles

Getting Roles and Modules from Content
Collections

Objectives
After completing this section, you should be able to obtain a set of related roles, supplementary

modules, and other content from content collections, and use them in a playbook.

Discussing Content Collections
Ansible content collections are a distribution format for Ansible content. A collection provides a set

of related modules, roles, and plug-ins that you can download to your control node and then use in

your playbooks.

For example:

• The redhat.insights collection groups modules and roles that you can use to register a

system with Red Hat Insights for Red Hat Enterprise Linux.

• The cisco.ios collection groups modules and plug-ins that manage Cisco IOS network

appliances. The Cisco company supports and maintains that collection.

• The community.crypto collection provides modules that create SSL/TLS certificates.

Content collections allow updates to the core Ansible code to be separated from updates to

modules and plug-ins. This allows vendors and developers to maintain and distribute their

collections at their own pace, independently of Ansible releases. You can develop your own

collections to provide custom roles and modules to your teams.

Content collections also give you more flexibility. By using collections, you can install only the

content you need instead of installing all supported modules. You can also select a specific

version of a collection (possibly an earlier or later one) or choose between a version of a collection

supported by Red Hat or vendors or one provided by the community.

Ansible 2.9 and later support collections. Later versions of Ansible and Red Hat Ansible

Automation Platform will provide further enhancements to collection support and will use them

extensively. Understanding how collections work will be important.

The ansible RPM package provided with Red Hat Ansible Automation Platform 1.2 and

Ansible 2.9 automatically installs all the modules that earlier versions of Ansible did. Future

versions of Ansible and Red Hat Ansible Automation Platform will remove most modules from the

main RPM package and place them in collections that might be included or that you might have to

download.

Organizing Collections in Namespaces

To make it easier to specify collections and their contents by name, collection names are

organized into namespaces. Vendors, partners, developers, and content creators can use

namespaces to assign unique names to their collections without conflicting with other developers.

The namespace is the first part of a collection name. For example, all the collections that

the Ansible community maintains are in the community namespace, and have names like

community.crypto, community.postgresql, and community.rabbitmq. Collections

296 RH294-RHEL8.4-en-1-20210818

Chapter 7 | Simplifying Playbooks with Roles

that Red Hat maintains and supports might use the redhat namespace, and have names like

redhat.rhv, redhat.satellite, and redhat.insights.

Selecting Collection Sources

Ansible provides two official sources to download and install collections: Ansible automation hub

and Ansible Galaxy.

Ansible automation hub
Ansible automation hub hosts Ansible content collections that Red Hat and its partners

support for their customers. Red Hat reviews, maintains, updates, and fully supports those

collections. For example, the redhat.rhv, redhat.satellite, redhat.insights, and

cisco.ios collections are available on that platform.

You need a valid Red Hat Ansible Automation Platform subscription to access Ansible

automation hub. Use the Ansible automation hub web UI at https://cloud.redhat.com/ansible/

automation-hub/ to list and access the collections.

Ansible Galaxy
Ansible Galaxy hosts collections that have been submitted by a variety of Ansible developers

and users. Ansible Galaxy is a public library with no formal support guarantees, but which

allows public access. For example, the community.crypto, community.postgresql, and

community.rabbitmq collections are all available from that platform.

Use the Ansible Galaxy web UI at https://galaxy.ansible.com/ to search it for collections.

Installing Content Collections
Before your playbooks can use content from a collection, you must install that collection on your

control node. Use the ansible-galaxy command to download collections from a number of

possible sources, including Ansible Galaxy.

The following example uses the ansible-galaxy command with the collection argument to

download and then install the community.crypto collection on the local system.

[user@controlnode ~]$ ansible-galaxy collection install community.crypto

The command can also install a collection from a local or a remote tar archive.

[user@controlnode ~]$ ansible-galaxy collection install \
> /tmp/community-dns-1.2.0.tar.gz
[user@controlnode ~]$ ansible-galaxy collection install \
> http://www.example.com/redhat-insights-1.0.5.tar.gz

The Ansible configuration directive collections_paths specifies a colon-separated list of

paths on the system where Ansible looks for installed collections. You can set this directive in

the ansible.cfg configuration file. By default, the ansible-galaxy command installs the

collections in the first directory that the collections_paths directive defines.

The default value for collections_paths is ~/.ansible/collections:/usr/share/
ansible/collections. Therefore, the ansible-galaxy command installs collections in the

~/.ansible/collections directory by default.

If you want to install a collection in a different directory, use the --collections-path (or -p)

option.

RH294-RHEL8.4-en-1-20210818 297

https://cloud.redhat.com/ansible/automation-hub/
https://cloud.redhat.com/ansible/automation-hub/
https://galaxy.ansible.com/

Chapter 7 | Simplifying Playbooks with Roles

[root@controlnode ~]# ansible-galaxy collection install \
> -p /usr/share/ansible/collections community.postgresql

Important

When using the --collections-path (or -p) option, ensure you select a

directory listed in the collections_paths directive. The ansible-playbook
command also uses that directive to locate collections. If you do not use a path

defined in the collections_paths directive, then your playbooks will not find the

collections that you installed.

Installing Collections with a Requirements File

You can create a requirements.yml file to list all the collections that you need to install. By

adding a collections/requirements.yml file in your Ansible project, your team members

can immediately identify the required collections. Also, automation controller detects that file and

automatically installs the collections before running your playbooks.

The following requirements.yml file lists several collections to install. Notice that you can

target a specific collection version and also provide local or remote tar archives.

collections:
 - name: community.crypto

 - name: ansible.posix
 version: 1.2.0

 - name: /tmp/community-dns-1.2.0.tar.gz

 - name: http://www.example.com/redhat-insights-1.0.5.tar.gz

The ansible-galaxy command can then use that file to install all those collections. Use the --
requirements-file (or -r) option to provide the requirements.yml file to the command.

[root@controlnode ~]# ansible-galaxy collection install -r requirements.yml

Configuring Collection Sources

By default, the ansible-galaxy command uses Ansible Galaxy at https://galaxy.ansible.com/ to

download collections.

For the command to also use Ansible automation hub, add the following directives to the

ansible.cfg file.

...output omitted...
[galaxy]
server_list = automation_hub, galaxy

[galaxy_server.automation_hub]
url=https://cloud.redhat.com/api/automation-hub/

298 RH294-RHEL8.4-en-1-20210818

https://galaxy.ansible.com/

Chapter 7 | Simplifying Playbooks with Roles

auth_url=https://sso.redhat.com/auth/realms/redhat-external/protocol/openid-
connect/token
token=eyJh...Jf0o

[galaxy_server.galaxy]
url=https://galaxy.ansible.com/

List all the repositories that the ansible-galaxy command must use in order. For each

name you define, add a [galaxy_server.name] section to provide the connection

parameters. Because Ansible automation hub might not provide all the collections that your

playbooks need, you can add Ansible Galaxy in the last position as a fallback. This way, if the

collection is not available in Ansible automation hub, then the ansible-galaxy command

uses Ansible Galaxy to retrieve it.

Provide the URL to access the repository.

Provide the URL for authentication.

To access Ansible automation hub, you need an authentication token associated with your

account. Use the Ansible automation hub web UI to generate that token. For more details on

that process, see the links in the References section.

Instead of a token, you can use the username and password parameters to provide your

customer portal user name and password.

...output omitted...
[galaxy_server.automation_hub]
url=https://cloud.redhat.com/api/automation-hub/
username=operator1
password=Sup3r53cR3t
...output omitted...

You might not want to expose your credentials in the ansible.cfg file because the file

could potentially get committed using version control. In that case, remove the authentication

parameters from the ansible.cfg file and define them as environment variables. You define the

environment variables as follows:

ANSIBLE_GALAXY_SERVER_<server_id>_<key>=value

server_id
Server identifier in uppercase. The server identifier is the name you use in the server_list
parameter and in the name of the [galaxy_server.server_id] section.

key
Name of the parameter in uppercase.

The following example provides the token parameter as an environment variable:

RH294-RHEL8.4-en-1-20210818 299

Chapter 7 | Simplifying Playbooks with Roles

[user@controlnode ~]$ cat ansible.cfg
...output omitted...
[galaxy_server.automation_hub]
url=https://cloud.redhat.com/api/automation-hub/
auth_url=https://sso.redhat.com/auth/realms/redhat-external/protocol/openid-
connect/token
[user@controlnode ~]$ export \
> ANSIBLE_GALAXY_SERVER_AUTOMATION_HUB_TOKEN='eyJh...Jf0o'
[user@controlnode ~]$ ansible-galaxy collection install ansible.posix

Using Collections
After you install a collection, you can use it with ad hoc commands and playbooks. Access the

collection documentation from Ansible automation hub or the Ansible Galaxy web UI to retrieve

information about the roles and modules it provides. Alternatively, you can inspect the collection

directory structure on your system. The collection stores the modules in the plugins/modules/
directory and the roles in the roles/ directory.

[user@controlnode ~]$ tree \
> ~/.ansible/collections/ansible_collections/redhat/insights/
/home/user/.ansible/collections/ansible_collections/redhat/insights/
...output omitted...
├── plugins
│ ├── action
│ │ └── insights_config.py
│ ├── inventory
│ │ └── insights.py
│ └── modules
│ ├── insights_config.py
│ └── insights_register.py
...output omitted...
├── roles
│ ├── compliance
│ │ ├── meta
│ │ │ └── main.yml
│ │ ├── README.md
│ │ ├── tasks
│ │ │ ├── install.yml
│ │ │ ├── main.yml
│ │ │ └── run.yml
│ │ └── tests
│ │ ├── compliance.yml
│ │ ├── install-only.yml
│ │ └── run-only.yml
│ └── insights_client
...output omitted...

To use a module or a role, refer to it with its fully qualified collection name (FQCN).

Based on the preceding output, you refer to the insights_client role as

redhat.insights.insights_client.

The following ad hoc command calls the mail module from the community.general collection.

300 RH294-RHEL8.4-en-1-20210818

Chapter 7 | Simplifying Playbooks with Roles

[user@controlnode ~]$ ansible localhost -m community.general.mail \
> -a 'subject="Hello World" to=root'

The following playbook invokes the mysql_user module from the community.mysql collection.

- name: Create the operator1 user in the test database
 hosts: db.example.com

 tasks:
 - name: Ensure the operator1 database user is defined
 community.mysql.mysql_user:
 name: operator1
 password: Secret0451
 priv: '.:ALL'
 state: present

The following playbook uses the organizations role from the redhat.satellite collection.

- name: Add the test organizations to Red Hat Satellite
 hosts: localhost

 tasks:
 - name: Ensure the organizations exist
 include_role:
 name: redhat.satellite.organizations
 vars:
 satellite_server_url: https://sat.example.com
 satellite_username: admin
 satellite_password: Sup3r53cr3t
 satellite_organizations:
 - name: test1
 label: tst1
 state: present
 description: Test organization 1
 - name: test2
 label: tst2
 state: present
 description: Test organization 2

Using Ansible Built-in Collections after Ansible 2.9

In future versions of Ansible, the core installation will always include a special collection named

ansible.builtin. This collection will include a set of common modules, such as copy,

template, file, yum, command, and service.

You will always be able to use the short names of these modules in your playbooks. For example,

you will still be able to use file instead of ansible.builtin.file. This will allow many

Ansible 2.9 playbooks to work without modification, although you might need to install additional

collections for modules that are not included in ansible.builtin.

RH294-RHEL8.4-en-1-20210818 301

Chapter 7 | Simplifying Playbooks with Roles

However, Red Hat recommends that you use the FQCN notation to prevent future conflicts with

collections that might use the same module names.

The following playbook uses the FQCN notation for the yum, copy, and service modules.

- name: Install and start Apache HTTPD
 hosts: web

 tasks:
 - name: Ensure the httpd package is present
 ansible.builtin.yum:
 name: httpd
 state: present

 - name: Ensure the index.html file is present
 ansible.builtin.copy:
 src: files/index.html
 dest: /var/www/html/index.html
 owner: root
 group: root
 mode: 0644
 setype: httpd_sys_content_t

 - name: Ensure the httpd service is started
 ansible.builtin.service:
 name: httpd
 state: started
 enabled: true

References

Using collections — Ansible Documentation

https://docs.ansible.com/ansible/2.9/user_guide/collections_using.html

Galaxy User Guide — Ansible Documentation

https://docs.ansible.com/ansible/2.9/galaxy/user_guide.html

302 RH294-RHEL8.4-en-1-20210818

https://docs.ansible.com/ansible/2.9/user_guide/collections_using.html
https://docs.ansible.com/ansible/2.9/galaxy/user_guide.html

Chapter 7 | Simplifying Playbooks with Roles

Guided Exercise

Getting Roles and Modules from Content
Collections

In this exercise, you will install a content collection and use a role or module from that

content collection in a playbook.

Outcomes
You should be able to:

• Use the ansible-galaxy command to install a content collection.

• Use a requirements.yml file to install multiple collections.

• Invoke content collections roles and modules from playbooks.

Before You Begin
Log in to workstation as student using student as the password.

On workstation, run the lab role-collections start command. This command

creates the working directory, /home/student/role-collections, and populates it

with an Ansible project.

[student@workstation ~]$ lab role-collections start

Instructions

 1. Install and then inspect the gls.utils collection.

1.1. Install the gls.utils collection from the tar file at http://
materials.example.com/labs/role-collections/gls-
utils-0.0.1.tar.gz. You can copy and paste that URL from the /home/
student/role-collections/url.txt file.

[student@workstation ~]$ ansible-galaxy collection install \
> http://materials.example.com/labs/role-collections/gls-utils-0.0.1.tar.gz
Process install dependency map
Starting collection install process
Installing 'gls.utils:0.0.1' to '/home/student/.ansible/collections/
ansible_collections/gls/utils'

Notice that the preceding command installs the collection in the /home/
student/.ansible/collections/ansible_collections/gls/utils
directory.

1.2. List the roles that the collection provides.

RH294-RHEL8.4-en-1-20210818 303

Chapter 7 | Simplifying Playbooks with Roles

[student@workstation ~]$ ls \
> ~/.ansible/collections/ansible_collections/gls/utils/roles
backup restore

From the preceding output, notice that the collection provides two roles: backup and

restore.

1.3. Each role provides a README.md file. Consult the README.md file for the backup
role.

[student@workstation ~]$ cat \
> ~/.ansible/collections/ansible_collections/gls/utils/roles/backup/README.md
...output omitted...

1.4. List the modules that the collection provides.

[student@workstation ~]$ ls \
> ~/.ansible/collections/ansible_collections/gls/utils/plugins/modules
newping.py

The collection provides the newping module.

1.5. Use the ansible-doc command to consult the newping module documentation.

[student@workstation ~]$ ansible-doc gls.utils.newping
...output omitted...

 2. Complete and then run the /home/student/role-collections/bck.yml playbook.

That playbook uses the gls.utils.newping module and the gls.utils.backup role.

2.1. Change to the role-collections working directory.

[student@workstation ~]$ cd ~/role-collections
[student@workstation role-collections]$

2.2. Edit the bck.yml playbook. In the first task, invoke the gls.utils.newping
module.

...output omitted...
 tasks:
 - name: Ensure the machine is up
 gls.utils.newping:
 data: pong
...output omitted...

Do not close the file yet.

2.3. In the second task, invoke the gls.utils.backup role. When done, save and close

the file.

304 RH294-RHEL8.4-en-1-20210818

Chapter 7 | Simplifying Playbooks with Roles

...output omitted...
 - name: Ensure configuration files are saved
 include_role:
 name: gls.utils.backup
 vars:
 backup_id: backup_etc
 backup_files:
 - /etc/sysconfig
 - /etc/yum.repos.d
...output omitted...

The resulting file should display as follows:

- name: Backup the system configuration
 hosts: servera.lab.example.com
 become: true
 gather_facts: false

 tasks:
 - name: Ensure the machine is up
 gls.utils.newping:
 data: pong

 - name: Ensure configuration files are saved
 include_role:
 name: gls.utils.backup
 vars:
 backup_id: backup_etc
 backup_files:
 - /etc/sysconfig
 - /etc/yum.repos.d

2.4. Verify the syntax of the bck.yml playbook.

[student@workstation role-collections]$ ansible-playbook --syntax-check bck.yml

playbook: bck.yml

2.5. Run the playbook.

[student@workstation role-collections]$ ansible-playbook bck.yml
...output omitted...

 3. In the second part of this exercise, install content collections specified by a

requirements.yml file.

To test your work when done, run the new_system.yml playbook. That playbook uses the

redhat.insights.insights_client and redhat.rhel_system_roles.selinux
roles to configure Red Hat Insights and SELinux on the servera machine.

3.1. Review the requirements.yml file. The file lists two collections to install from tar

files hosted on the materials.example.com web server.

RH294-RHEL8.4-en-1-20210818 305

Chapter 7 | Simplifying Playbooks with Roles

collections:
 - name: http://materials.example.com/labs/role-collections/redhat-
insights-1.0.5.tar.gz
 - name: http://materials.example.com/labs/role-collections/redhat-
rhel_system_roles-1.0.1.tar.gz

3.2. Use the ansible-galaxy command with the requirements.yml file to install the

collections.

[student@workstation role-collections]$ ansible-galaxy collection install \
> -r requirements.yml
Process install dependency map
Starting collection install process
Installing 'redhat.insights:1.0.5' to '/home/student/.ansible/collections/
ansible_collections/redhat/insights'
Installing 'redhat.rhel_system_roles:1.0.1' to '/home/student/.ansible/
collections/ansible_collections/redhat/rhel_system_roles'

3.3. Review the new_system.yml playbook.

- name: Configure the system
 hosts: servera.lab.example.com
 become: true
 gather_facts: true

 tasks:
 - name: Ensure the system is registered with Insights
 include_role:
 name: redhat.insights.insights_client
 vars:
 auto_config: false
 insights_proxy: http://proxy.example.com:8080

 - name: Ensure SELinux mode is Enforcing
 include_role:
 name: redhat.rhel_system_roles.selinux
 vars:
 selinux_state: enforcing

3.4. Run the new_system.yml playbook in check mode to confirm that you correctly

installed the required collections. Because the classroom systems are not registered

with Red Hat and might not have internet access, the new_system.yml playbook

cannot complete successfully. However, to confirm that you correctly installed the

required collections, you can still run the playbook in check mode.

[student@workstation role-collections]$ ansible-playbook --check new_system.yml

306 RH294-RHEL8.4-en-1-20210818

Chapter 7 | Simplifying Playbooks with Roles

Finish

Run the lab role-collections finish command to clean up the managed host.

[student@workstation ~]$ lab role-collections finish

This concludes the guided exercise.

RH294-RHEL8.4-en-1-20210818 307

Chapter 7 | Simplifying Playbooks with Roles

Lab

Simplifying Playbooks with Roles

Performance Checklist
In this lab, you will create Ansible roles that use variables, files, templates, tasks, and

handlers.

Outcomes
You should be able to:

• Create Ansible roles that use variables, files, templates, tasks, and handlers to configure a

development web server.

• Use a role that is hosted in a remote repository in a playbook.

• Use a Red Hat Enterprise Linux system role in a playbook.

Before You Begin
Log in to workstation as student using student as the password.

On workstation, run the lab role-review start command. The script creates

the working directory, /home/student/role-review, and populates it with an Ansible

configuration file, host inventory, and other lab files.

[student@workstation ~]$ lab role-review start

Instructions

Your organization must provide a single web server to host development code for all web

developers. You are tasked with writing a playbook to configure this development web server.

The development web server must satisfy several requirements:

• The development server configuration matches the production server configuration. The

production server is configured using an Ansible role, developed by the organization's

infrastructure team.

• Each developer is given a directory on the development server to host code and content. Each

developer's content is accessed using an assigned, nonstandard port.

• SELinux is set to enforcing and targeted.

Your playbook will:

• Use a role to configure directories and ports for each developer on the web server. You must

write this role.

This role has a dependency on a role written by the organization to configure Apache. You

should define the dependency using version v1.4 of the organizational role. The URL of the

dependency's repository is: git@workstation.lab.example.com:infra/apache

308 RH294-RHEL8.4-en-1-20210818

Chapter 7 | Simplifying Playbooks with Roles

• Use the rhel-system-roles.selinux role to configure SELinux for the nonstandard HTTP

ports used by your web server. You will be provided with a selinux.yml variable file that can

be installed as a group_vars file to pass the correct settings to the role.

1. Change to the /home/student/role-review working directory.

2. Create a playbook named web_dev_server.yml with a single play named Configure
Dev Web Server. Configure the play to target the host group dev_webserver. Do not

add any roles or tasks to the play yet.

Ensure that the play forces handlers to execute, because you may encounter an error while

developing the playbook.

3. Check the syntax of the playbook. Run the playbook. The syntax check should pass and the

playbook should run successfully.

4. Make sure that playbook's role dependencies are installed.

The apache.developer_configs role that you will create depends on the

infra.apache role. Create a roles/requirements.yml file. It should install the role

from the Git repository at git@workstation.lab.example.com:infra/apache, use

version v1.4, and name it infra.apache locally. You can assume that your SSH keys are

configured to allow you to get roles from that repository automatically. Install the role with

the ansible-galaxy command.

In addition, install the rhel-system-roles package if not present.

5. Initialize a new role named apache.developer_configs in the roles subdirectory.

Add the infra.apache role as a dependency for the new role, using the same information

for name, source, version, and version control system as the roles/requirements.yml
file.

The developer_tasks.yml file in the project directory contains tasks for the role. Move

this file to the correct location to be the tasks file for this role, and replace the existing file in

that location.

The developer.conf.j2 file in the project directory is a Jinja2 template used by the tasks

file. Move it to the correct location for template files used by this role.

6. The apache.developer_configs role will process a list of users defined in a variable

named web_developers. The web_developers.yml file in the project directory

defines the web_developers user list variable. Review this file and use it to define the

web_developers variable for the development web server host group.

7. Add the role apache.developer_configs to the play in the web_dev_server.yml
playbook.

8. Check the syntax of the playbook. Run the playbook. The syntax check should pass, but the

playbook should fail when the infra.apache role attempts to restart Apache HTTPD.

9. Apache HTTPD failed to restart in the preceding step because the network ports it uses for

your developers are labeled with the wrong SELinux contexts. You have been provided with

a variable file, selinux.yml, which can be used with the rhel-system-roles.selinux
role to fix the issue.

Create a pre_tasks section for your play in the web_dev_server.yml playbook. In that

section, use a task to include the rhel-system-roles.selinux role in a block/rescue
structure so that it is properly applied. Review the lecture or the documentation for this role

to see how to do this.

Inspect the selinux.yml file. Move it to the correct location so that its variables are set for

the dev_webserver host group.

RH294-RHEL8.4-en-1-20210818 309

Chapter 7 | Simplifying Playbooks with Roles

10. Verify the final web_dev_server.yml playbook and run a syntax check. The syntax check

should pass.

Validate that the web_dev_server.yml playbook passes a syntax check.

11. Run the playbook. It should succeed.

12. Test the configuration of the development web server. Verify that all endpoints are accessible

and serving each developer's content.

Evaluation

Grade your work by running the lab role-review grade command from your workstation
machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab role-review grade

Finish

On workstation, run the lab role-review finish script to clean up this exercise.

[student@workstation ~]$ lab role-review finish

This concludes the lab.

310 RH294-RHEL8.4-en-1-20210818

Chapter 7 | Simplifying Playbooks with Roles

Solution

Simplifying Playbooks with Roles

Performance Checklist
In this lab, you will create Ansible roles that use variables, files, templates, tasks, and

handlers.

Outcomes
You should be able to:

• Create Ansible roles that use variables, files, templates, tasks, and handlers to configure a

development web server.

• Use a role that is hosted in a remote repository in a playbook.

• Use a Red Hat Enterprise Linux system role in a playbook.

Before You Begin
Log in to workstation as student using student as the password.

On workstation, run the lab role-review start command. The script creates

the working directory, /home/student/role-review, and populates it with an Ansible

configuration file, host inventory, and other lab files.

[student@workstation ~]$ lab role-review start

Instructions

Your organization must provide a single web server to host development code for all web

developers. You are tasked with writing a playbook to configure this development web server.

The development web server must satisfy several requirements:

• The development server configuration matches the production server configuration. The

production server is configured using an Ansible role, developed by the organization's

infrastructure team.

• Each developer is given a directory on the development server to host code and content. Each

developer's content is accessed using an assigned, nonstandard port.

• SELinux is set to enforcing and targeted.

Your playbook will:

• Use a role to configure directories and ports for each developer on the web server. You must

write this role.

This role has a dependency on a role written by the organization to configure Apache. You

should define the dependency using version v1.4 of the organizational role. The URL of the

dependency's repository is: git@workstation.lab.example.com:infra/apache

RH294-RHEL8.4-en-1-20210818 311

Chapter 7 | Simplifying Playbooks with Roles

• Use the rhel-system-roles.selinux role to configure SELinux for the nonstandard HTTP

ports used by your web server. You will be provided with a selinux.yml variable file that can

be installed as a group_vars file to pass the correct settings to the role.

1. Change to the /home/student/role-review working directory.

[student@workstation ~]$ cd ~/role-review
[student@workstation role-review]$

2. Create a playbook named web_dev_server.yml with a single play named Configure
Dev Web Server. Configure the play to target the host group dev_webserver. Do not

add any roles or tasks to the play yet.

Ensure that the play forces handlers to execute, because you may encounter an error while

developing the playbook.

Once complete, the /home/student/role-review/web_dev_server.yml playbook

contains:

- name: Configure Dev Web Server
 hosts: dev_webserver
 force_handlers: yes

3. Check the syntax of the playbook. Run the playbook. The syntax check should pass and the

playbook should run successfully.

[student@workstation role-review]$ ansible-playbook \
> --syntax-check web_dev_server.yml

playbook: web_dev_server.yml
[student@workstation role-review]$ ansible-playbook web_dev_server.yml
PLAY [Configure Dev Web Server] **

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

PLAY RECAP ***
servera.lab.example.com : ok=1 changed=0 unreachable=0 failed=0

4. Make sure that playbook's role dependencies are installed.

The apache.developer_configs role that you will create depends on the

infra.apache role. Create a roles/requirements.yml file. It should install the role

from the Git repository at git@workstation.lab.example.com:infra/apache, use

version v1.4, and name it infra.apache locally. You can assume that your SSH keys are

configured to allow you to get roles from that repository automatically. Install the role with

the ansible-galaxy command.

In addition, install the rhel-system-roles package if not present.

4.1. Create a roles subdirectory for the playbook project.

[student@workstation role-review]$ mkdir -v roles
mkdir: created directory 'roles'

312 RH294-RHEL8.4-en-1-20210818

Chapter 7 | Simplifying Playbooks with Roles

4.2. Create a roles/requirements.yml file and add an entry for the infra.apache
role. Use version v1.4 from the role's git repository.

Once complete, the roles/requirements.yml file contains:

- name: infra.apache
 src: git@workstation.lab.example.com:infra/apache
 scm: git
 version: v1.4

4.3. Install the project dependencies.

[student@workstation role-review]$ ansible-galaxy install \
> -r roles/requirements.yml -p roles
- extracting infra.apache to /home/student/role-review/roles/infra.apache
- infra.apache (v1.4) was installed successfully

4.4. Install the RHEL System Roles package if not present. This was installed during an

earlier exercise.

[student@workstation role-review]$ sudo yum install rhel-system-roles

5. Initialize a new role named apache.developer_configs in the roles subdirectory.

Add the infra.apache role as a dependency for the new role, using the same information

for name, source, version, and version control system as the roles/requirements.yml
file.

The developer_tasks.yml file in the project directory contains tasks for the role. Move

this file to the correct location to be the tasks file for this role, and replace the existing file in

that location.

The developer.conf.j2 file in the project directory is a Jinja2 template used by the tasks

file. Move it to the correct location for template files used by this role.

5.1. Use the ansible-galaxy init to create a role skeleton for the

apache.developer_configs role.

[student@workstation role-review]$ cd roles
[student@workstation roles]$ ansible-galaxy init apache.developer_configs
- apache.developer_configs was created successfully
[student@workstation roles]$ cd ..
[student@workstation role-review]$

5.2. Update the roles/apache.developer_configs/meta/main.yml file of the

apache.developer_configs role to reflect a dependency on the infra.apache
role.

After editing, the dependencies variable is defined as follows:

dependencies:
 - name: infra.apache
 src: git@workstation.lab.example.com:infra/apache
 scm: git
 version: v1.4

RH294-RHEL8.4-en-1-20210818 313

Chapter 7 | Simplifying Playbooks with Roles

5.3. Overwrite the role's tasks/main.yml file with the developer_tasks.yml file.

[student@workstation role-review]$ mv -v developer_tasks.yml \
> roles/apache.developer_configs/tasks/main.yml
renamed 'developer_tasks.yml' -> 'roles/apache.developer_configs/tasks/main.yml'

5.4. Place the developer.conf.j2 file in the role's templates directory.

[student@workstation role-review]$ mv -v developer.conf.j2 \
> roles/apache.developer_configs/templates/
renamed 'developer.conf.j2' -> 'roles/apache.developer_configs/templates/
developer.conf.j2'

6. The apache.developer_configs role will process a list of users defined in a variable

named web_developers. The web_developers.yml file in the project directory

defines the web_developers user list variable. Review this file and use it to define the

web_developers variable for the development web server host group.

6.1. Review the web_developers.yml file.

web_developers:
 - username: jdoe
 name: John Doe
 user_port: 9081
 - username: jdoe2
 name: Jane Doe
 user_port: 9082

A name, username, user_port is defined for each web developer.

6.2. Place the web_developers.yml in the group_vars/dev_webserver subdirectory.

[student@workstation role-review]$ mkdir -pv group_vars/dev_webserver
mkdir: created directory 'group_vars'
mkdir: created directory 'group_vars/dev_webserver'
[student@workstation role-review]$ mv -v web_developers.yml \
> group_vars/dev_webserver/
renamed 'web_developers.yml' -> 'group_vars/dev_webserver/web_developers.yml'

7. Add the role apache.developer_configs to the play in the web_dev_server.yml
playbook.

The edited playbook:

- name: Configure Dev Web Server
 hosts: dev_webserver
 force_handlers: yes
 roles:
 - apache.developer_configs

8. Check the syntax of the playbook. Run the playbook. The syntax check should pass, but the

playbook should fail when the infra.apache role attempts to restart Apache HTTPD.

314 RH294-RHEL8.4-en-1-20210818

Chapter 7 | Simplifying Playbooks with Roles

[student@workstation role-review]$ ansible-playbook \
> --syntax-check web_dev_server.yml

playbook: web_dev_server.yml
[student@workstation role-review]$ ansible-playbook web_dev_server.yml

PLAY [Configure Dev Web Server] **

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

...output omitted...

TASK [infra.apache : Install a skeleton index.html] ***************************
skipping: [servera.lab.example.com]

TASK [apache.developer_configs : Create user accounts] ***********************
changed: [servera.lab.example.com] => (item={u'username': u'jdoe', u'user_port':
 9081, u'name': u'John Doe'})
changed: [servera.lab.example.com] => (item={u'username': u'jdoe2', u'user_port':
 9082, u'name': u'Jane Doe'})

...output omitted...

RUNNING HANDLER [infra.apache : restart firewalld] ***************************
changed: [servera.lab.example.com]

RUNNING HANDLER [infra.apache : restart apache] ******************************
fatal: [servera.lab.example.com]: FAILED! => {"changed": false, "msg": "Unable to
 restart service httpd: Job for httpd.service failed because the control process
 exited with error code. See \"systemctl status httpd.service\" and \"journalctl -
xe\" for details.\n"}

NO MORE HOSTS LEFT ***
 to retry, use: --limit @/home/student/role-review/web_dev_server.retry

PLAY RECAP ***
servera.lab.example.com : ok=13 changed=11 unreachable=0 failed=1
skipped=1 rescued=0 ignored=0

An error occurs when the httpd service is restarted. The httpd service daemon cannot bind

to the non-standard HTTP ports, due to the SELinux context on those ports.

9. Apache HTTPD failed to restart in the preceding step because the network ports it uses for

your developers are labeled with the wrong SELinux contexts. You have been provided with

a variable file, selinux.yml, which can be used with the rhel-system-roles.selinux
role to fix the issue.

Create a pre_tasks section for your play in the web_dev_server.yml playbook. In that

section, use a task to include the rhel-system-roles.selinux role in a block/rescue
structure so that it is properly applied. Review the lecture or the documentation for this role

to see how to do this.

Inspect the selinux.yml file. Move it to the correct location so that its variables are set for

the dev_webserver host group.

RH294-RHEL8.4-en-1-20210818 315

Chapter 7 | Simplifying Playbooks with Roles

9.1. The pre_tasks section can be added to the end of the play in the

web_dev_server.yml playbook.

You can look at the block in /usr/share/doc/rhel-system-roles/selinux/
example-selinux-playbook.yml for a basic outline of how to apply the role.

Replace the complex shell and wait_for_connection logic with the reboot
module.

The pre_tasks section should contain:

 pre_tasks:
 - name: Check SELinux configuration
 block:
 - include_role:
 name: rhel-system-roles.selinux
 rescue:
 # Fail if failed for a different reason than selinux_reboot_required.
 - name: Check for general failure
 fail:
 msg: "SELinux role failed."
 when: not selinux_reboot_required

 - name: Restart managed host
 reboot:
 msg: "Ansible rebooting system for updates."

 - name: Reapply SELinux role to complete changes
 include_role:
 name: rhel-system-roles.selinux

9.2. The selinux.yml file contains variable definitions for the rhel-system-
roles.selinux role. Use the file to define variables for the play's host group.

[student@workstation role-review]$ cat selinux.yml

variables used by rhel-system-roles.selinux

selinux_policy: targeted
selinux_state: enforcing

selinux_ports:
 - ports:
 - "9081"
 - "9082"
 proto: 'tcp'
 setype: 'http_port_t'
 state: 'present'

[student@workstation role-review]$ mv -v selinux.yml \
> group_vars/dev_webserver/
renamed 'selinux.yml' -> 'group_vars/dev_webserver/selinux.yml'

10. Verify the final web_dev_server.yml playbook and run a syntax check. The syntax check

should pass.

The final web_dev_server.yml playbook should read as follows:

316 RH294-RHEL8.4-en-1-20210818

Chapter 7 | Simplifying Playbooks with Roles

- name: Configure Dev Web Server
 hosts: dev_webserver
 force_handlers: yes
 roles:
 - apache.developer_configs
 pre_tasks:
 - name: Check SELinux configuration
 block:
 - include_role:
 name: rhel-system-roles.selinux
 rescue:
 # Fail if failed for a different reason than selinux_reboot_required.
 - name: Check for general failure
 fail:
 msg: "SELinux role failed."
 when: not selinux_reboot_required

 - name: Restart managed host
 reboot:
 msg: "Ansible rebooting system for updates."

 - name: Reapply SELinux role to complete changes
 include_role:
 name: rhel-system-roles.selinux

Note

Whether pre_tasks is at the end of the play or in the "correct" position in terms of

execution order in the playbook file does not matter to ansible-playbook. It will

still run the play's tasks in the correct order.

Validate that the web_dev_server.yml playbook passes a syntax check.

[student@workstation role-review]$ ansible-playbook \
> --syntax-check web_dev_server.yml

playbook: web_dev_server.yml

11. Run the playbook. It should succeed.

[student@workstation role-review]$ ansible-playbook web_dev_server.yml

PLAY [Configure Dev Web Server] **

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

TASK [include_role : rhel-system-roles.selinux] ******************************

TASK [rhel-system-roles.selinux : Install SELinux python3 tools] *************

RH294-RHEL8.4-en-1-20210818 317

Chapter 7 | Simplifying Playbooks with Roles

ok: [servera.lab.example.com]

...output omitted...

TASK [infra.apache : Apache Service is started] ******************************
changed: [servera.lab.example.com]

...output omitted...

TASK [apache.developer_configs : Copy Per-Developer Config files] ************
ok: [servera.lab.example.com] => (item={'username': 'jdoe', 'name': 'John Doe',
 'user_port': 9081})
ok: [servera.lab.example.com] => (item={'username': 'jdoe2', 'name': 'Jane Doe',
 'user_port': 9082})

PLAY RECAP ***
servera.lab.example.com : ok=19 changed=3 unreachable=0 failed=0
skipped=14 rescued=0 ignored=0

12. Test the configuration of the development web server. Verify that all endpoints are accessible

and serving each developer's content.

[student@workstation role-review]$ curl servera
This is the production server on servera.lab.example.com
[student@workstation role-review]$ curl servera:9081
This is index.html for user: John Doe (jdoe)
[student@workstation role-review]$ curl servera:9082
This is index.html for user: Jane Doe (jdoe2)
[student@workstation role-review]$

Evaluation

Grade your work by running the lab role-review grade command from your workstation
machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab role-review grade

Finish

On workstation, run the lab role-review finish script to clean up this exercise.

[student@workstation ~]$ lab role-review finish

This concludes the lab.

318 RH294-RHEL8.4-en-1-20210818

Chapter 7 | Simplifying Playbooks with Roles

Summary

In this chapter, you learned:

• Roles organize Ansible code in a way that allows reuse and sharing.

• Red Hat Enterprise Linux System Roles are a collection of tested and supported roles intended

to help you configure host subsystems across versions of Red Hat Enterprise Linux.

• Ansible Galaxy [https://galaxy.ansible.com] is a public library of Ansible roles written by Ansible

users. The ansible-galaxy command can search for, display information about, install, list,

remove, or initialize roles.

• External roles needed by a playbook may be defined in the roles/requirements.yml file.

The ansible-galaxy install -r roles/requirements.yml command uses this file to

install the roles on the control node.

RH294-RHEL8.4-en-1-20210818 319

https://galaxy.ansible.com
https://galaxy.ansible.com

320 RH294-RHEL8.4-en-1-20210818

Chapter 8

Troubleshooting Ansible

Goal Troubleshoot playbooks and managed hosts.

Objectives • Troubleshoot generic issues with a new
playbook and repair them.

• Troubleshoot failures on managed hosts when
running a playbook.

Sections • Troubleshooting Playbooks (and Guided
Exercise)

• Troubleshooting Ansible Managed Hosts (and
Guided Exercise)

Lab • Troubleshooting Ansible

RH294-RHEL8.4-en-1-20210818 321

Chapter 8 | Troubleshooting Ansible

Troubleshooting Playbooks

Objectives
After completing this section, you should be able to troubleshoot generic issues with a new

playbook and repair them.

Log Files for Ansible
By default, Ansible is not configured to log its output to any log file. It provides a built-in logging

infrastructure that can be configured through the log_path parameter in the default section of

the ansible.cfg configuration file, or through the $ANSIBLE_LOG_PATH environment variable.

If any or both are configured, Ansible stores output from both the ansible and ansible-
playbook commands in the log file configured, either through the ansible.cfg configuration

file or the $ANSIBLE_LOG_PATH environment variable.

If you configure Ansible to write log files to /var/log, then Red Hat recommends that you

configure logrotate to manage the Ansible log files.

The Debug Module
The debug module provides insight into what is happening in the play. This module can display the

value for a certain variable at a certain point in the play. This feature is key to debugging tasks that

use variables to communicate with each other (for example, using the output of a task as the input

to the following one).

The following examples use the msg and var settings inside of debug tasks. The first example

displays the value at run time of the ansible_facts['memfree_mb'] fact as part of a

message printed to the output of ansible-playbook. The second example displays the value of

the output variable.

- name: Display free memory
 debug:
 msg: "Free memory for this system is {{ ansible_facts['memfree_mb'] }}"

- name: Display the "output" variable
 debug:
 var: output
 verbosity: 2

Managing Errors
There are several issues than can occur during a playbook run, mainly related to the syntax

of either the playbook or any of the templates it uses, or due to connectivity issues with the

managed hosts (for example, an error in the host name of the managed host in the inventory file).

Those errors are issued by the ansible-playbook command at execution time.

322 RH294-RHEL8.4-en-1-20210818

Chapter 8 | Troubleshooting Ansible

Earlier in this course, you learned about the --syntax-check option, which checks the YAML

syntax for the playbook. It is a good practice to run a syntax check on your playbook before using

it or if you are having problems with it.

[student@demo ~]$ ansible-playbook play.yml --syntax-check

You can also use the --step option to step through a playbook one task at a time. The ansible-
playbook --step command interactively prompts for confirmation that you want each task to

run.

[student@demo ~]$ ansible-playbook play.yml --step

The --start-at-task option allows you to start execution of a playbook from a specific task. It

takes as an argument the name of the task at which to start.

[student@demo ~]$ ansible-playbook play.yml --start-at-task="start httpd service"

Debugging
The output given by a playbook that was run with the ansible-playbook command is a good

starting point for troubleshooting issues related to hosts managed by Ansible. Consider the

following output from a playbook execution:

PLAY [Service Deployment] ***
...output omitted...
TASK: [Install a service] ***
ok: [demoservera]
ok: [demoserverb]

PLAY RECAP **
demoservera : ok=2 changed=0 unreachable=0 failed=0
demoserverb : ok=2 changed=0 unreachable=0 failed=0

The previous output shows a PLAY header with the name of the play to be executed, followed

by one or more TASK headers. Each of these headers represents their associated task in the

playbook, and it is executed in all the managed hosts belonging to the group included in the

playbook in the hosts parameter.

As each managed host executes each play's tasks, the name of the managed host is displayed

under the corresponding TASK header, along with the task state on that managed host. Task

states can appear as ok, fatal, changed, or skipping.

At the bottom of the output for each play, the PLAY RECAP section displays the number of tasks

executed for each managed host.

As discussed earlier in the course, you can increase the verbosity of the output from ansible-
playbook by adding one or more -v options. The ansible-playbook -v command provides

additional debugging information, with up to four total levels.

RH294-RHEL8.4-en-1-20210818 323

Chapter 8 | Troubleshooting Ansible

Verbosity Configuration

Option Description

-v The output data is displayed.

-vv Both the output and input data are displayed.

-vvv Includes information about connections to managed hosts.

-vvvv Includes additional information such scripts that are executed on

each remote host, and the user that is executing each script.

Recommended Practices for Playbook Management
Although the previously discussed tools can help to identify and fix issues in playbooks, when

developing those playbooks it is important to keep in mind some recommended practices that can

help ease the troubleshooting process. Some recommended practices for playbook development

are listed below:

• Use a concise description of the play's or task's purpose to name plays and tasks. The play name

or task name is displayed when the playbook is executed. This also helps document what each

play or task is supposed to accomplish, and possibly why it is needed.

• Include comments to add additional inline documentation about tasks.

• Make effective use of vertical white space. In general, organize task attributes vertically to make

them easier to read.

• Consistent horizontal indentation is critical. Use spaces, not tabs, to avoid indentation errors.

Set up your text editor to insert spaces when you press the Tab key to make this easier.

• Try to keep the playbook as simple as possible. Only use the features that you need.

References

Configuring Ansible — Ansible Documentation

https://docs.ansible.com/ansible/2.9/installation_guide/intro_configuration.html

debug — Print statements during execution — Ansible Documentation

https://docs.ansible.com/ansible/2.9/modules/debug_module.html

Best Practices — Ansible Documentation

https://docs.ansible.com/ansible/2.9/user_guide/playbooks_best_practices.html

324 RH294-RHEL8.4-en-1-20210818

https://docs.ansible.com/ansible/2.9/installation_guide/intro_configuration.html
https://docs.ansible.com/ansible/2.9/modules/debug_module.html
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_best_practices.html

Chapter 8 | Troubleshooting Ansible

Guided Exercise

Troubleshooting Playbooks

In this exercise, you will troubleshoot a playbook that has been given to you that does not

work properly.

Outcomes
You should be able to troubleshoot and resolve issues in playbooks.

Before You Begin
Log in to workstation as student using student as the password.

On workstation, run the lab troubleshoot-playbook start script. It verifies

whether Ansible is installed on workstation. It also creates the /home/student/
troubleshoot-playbook/ directory, and downloads to this directory the inventory,

samba.yml, and samba.conf.j2 files from http://materials.example.com/labs/
troubleshoot-playbook/.

[student@workstation ~]$ lab troubleshoot-playbook start

Instructions

 1. On workstation, change to the /home/student/troubleshoot-playbook/
directory.

[student@workstation ~]$ cd ~/troubleshoot-playbook/
[student@workstation troubleshoot-playbook]$

 2. Create a file named ansible.cfg in the current directory. It should set the log_path
parameter to write Ansible logs to the /home/student/troubleshoot-playbook/
ansible.log file. It should set the inventory parameter to use the /home/student/
troubleshoot-playbook/inventory file deployed by the lab script.

When you are finished, ansible.cfg should have the following contents:

[defaults]
log_path = /home/student/troubleshoot-playbook/ansible.log
inventory = /home/student/troubleshoot-playbook/inventory

 3. Run the playbook. It will fail with an error.

This playbook would set up a Samba server if everything were correct. However, the run

will fail due to missing double quotes on the random_var variable definition. Read the

error message to see how ansible-playbook reports the problem. Notice the variable

random_var is assigned a value that contains a colon and is not quoted.

RH294-RHEL8.4-en-1-20210818 325

Chapter 8 | Troubleshooting Ansible

[student@workstation troubleshoot-playbook]$ ansible-playbook samba.yml
ERROR! We were unable to read either as JSON nor YAML, these are the errors we got
 from each:
JSON: Expecting value: line 1 column 1 (char 0)

Syntax Error while loading YAML.
 mapping values are not allowed in this context

The error appears to be in '/home/student/troubleshoot-playbook/samba.yml': line
 8, column 30, but may be elsewhere in the file depending on the exact syntax
 problem.

The offending line appears to be:

 install_state: installed
 random_var: This is colon: test
 ^ here

 4. Confirm that the error has been properly logged to the /home/student/
troubleshoot-playbook/ansible.log file.

[student@workstation troubleshoot-playbook]$ tail ansible.log

The error appears to be in '/home/student/troubleshoot-playbook/samba.yml': line
 8, column 30, but may be elsewhere in the file depending on the exact syntax
 problem.

The offending line appears to be:

 install_state: installed
 random_var: This is colon: test
 ^ here

 5. Edit the samba.yml playbook and correct the error by adding quotes to the entire value

being assigned to random_var. The corrected version of the playbook contains the

following content:

...output omitted...
 vars:
 install_state: installed
 random_var: "This is colon: test"
...output omitted...

 6. Check the playbook using the --syntax-check option. Another error is issued due to

extra white space in the indentation on the last task, deliver samba config.

[student@workstation troubleshoot-playbook]$ ansible-playbook --syntax-check \
> samba.yml
ERROR! We were unable to read either as JSON nor YAML, these are the errors we got
 from each:
JSON: Expecting value: line 1 column 1 (char 0)

326 RH294-RHEL8.4-en-1-20210818

Chapter 8 | Troubleshooting Ansible

Syntax Error while loading YAML.
 did not find expected key

The error appears to be in '/home/student/troubleshoot-playbook/samba.yml': line
 44, column 4, but may be elsewhere in the file depending on the exact syntax
 problem.

The offending line appears to be:

 - name: deliver samba config
 ^ here

 7. Edit the playbook and remove the extra space for all lines in that task. The corrected

playbook should appear as follows:

...output omitted...
 - name: configure firewall for samba
 firewalld:
 state: enabled
 permanent: true
 immediate: true
 service: samba

 - name: deliver samba config
 template:
 src: templates/samba.conf.j2
 dest: /etc/samba/smb.conf
 owner: root
 group: root
 mode: 0644

 8. Run the playbook using the --syntax-check option. An error is issued due to the

install_state variable being used as a parameter in the install samba task. It is not

quoted.

[student@workstation troubleshoot-playbook]$ ansible-playbook --syntax-check \
> samba.yml
ERROR! We were unable to read either as JSON nor YAML, these are the errors we got
 from each:
JSON: Expecting value: line 1 column 1 (char 0)

Syntax Error while loading YAML.
 found unacceptable key (unhashable type: 'AnsibleMapping')

The error appears to be in '/home/student/troubleshoot-playbook/samba.yml': line
 14, column 15, but may be elsewhere in the file depending on the exact syntax
 problem.

The offending line appears to be:

 name: samba

RH294-RHEL8.4-en-1-20210818 327

Chapter 8 | Troubleshooting Ansible

 state: {{ install_state }}
 ^ here
We could be wrong, but this one looks like it might be an issue with missing
 quotes. Always quote template expression brackets when they start a value. For
 instance:

 with_items:
 - {{ foo }}

Should be written as:

 with_items:
 - "{{ foo }}"

 9. Edit the playbook and correct the install samba task. The reference to the

install_state variable should be in quotes. The resulting file content should look like

the following:

...output omitted...
 tasks:
 - name: install samba
 yum:
 name: samba
 state: "{{ install_state }}"
...output omitted...

 10. Run the playbook using the --syntax-check option. It should not show any additional

syntax errors.

[student@workstation troubleshoot-playbook]$ ansible-playbook --syntax-check \
> samba.yml

playbook: samba.yml

 11. Run the playbook. An error, related to SSH, will be issued.

[student@workstation troubleshoot-playbook]$ ansible-playbook samba.yml
PLAY [Install a samba server] **

TASK [Gathering Facts] ***
fatal: [servera.lab.exammple.com]: UNREACHABLE! => {"changed": false,
 "msg": "Failed to connect to the host via ssh: ssh: connect to host
 servera.lab.exammple.com port 22: Connection timed out", "unreachable": true}

PLAY RECAP ***
servera.lab.exammple.com : ok=0 changed=0 unreachable=1 failed=0 ...

328 RH294-RHEL8.4-en-1-20210818

Chapter 8 | Troubleshooting Ansible

 12. Ensure the managed host servera.lab.example.com is running, using the ping
command.

[student@workstation troubleshoot-playbook]$ ping -c3 servera.lab.example.com
PING servera.lab.example.com (172.25.250.10) 56(84) bytes of data.
64 bytes from servera.lab.example.com (172.25.250.10): icmp_seq=1 ttl=64
 time=0.247 ms
64 bytes from servera.lab.example.com (172.25.250.10): icmp_seq=2 ttl=64
 time=0.329 ms
64 bytes from servera.lab.example.com (172.25.250.10): icmp_seq=3 ttl=64
 time=0.320 ms

--- servera.lab.example.com ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 1999ms
rtt min/avg/max/mdev = 0.247/0.298/0.329/0.041 ms

 13. Ensure that you can connect to the managed host servera.lab.example.com as the

devops user using SSH, and that the correct SSH keys are in place. Log off again when you

have finished.

[student@workstation troubleshoot-playbook]$ ssh devops@servera.lab.example.com
Activate the web console with: systemctl enable --now cockpit.socket
...output omitted...
[devops@servera ~]$ exit
logout
Connection to servera.lab.example.com closed.

 14. Rerun the playbook with -vvvv to get more information about the run. An error is issued

because the servera.lab.example.com managed host is not reachable.

[student@workstation troubleshoot-playbook]$ ansible-playbook -vvvv samba.yml
...output omitted...

PLAYBOOK: samba.yml **
1 plays in samba.yml

PLAY [Install a samba server] **

TASK [Gathering Facts] ***
task path: /home/student/troubleshoot-playbook/samba.yml:2
<servera.lab.exammple.com> ESTABLISH SSH CONNECTION FOR USER: devops
...output omitted...
fatal: [servera.lab.exammple.com]: UNREACHABLE! => {
 "changed": false,
 "msg": "Failed to connect to the host via ssh: OpenSSH_8.0p1, OpenSSL ...
 Control socket \"/home/student/.ansible/cp/d4775f48c9\" does not exist\r\ndebug2:
 resolving \"servera.lab.exammple.com\" port 22\r\ndebug2: ssh_connect_direct
\r\ndebug1: Connecting to servera.lab.exammple.com [3.223.115.185] port 22.\r
\ndebug2: fd 4 setting O_NONBLOCK\r\ndebug1: connect to address 3.223.115.185 port
 22: Connection timed out\r\nssh: connect to host servera.lab.exammple.com port
 22: Connection timed out",
 "unreachable": true
}

RH294-RHEL8.4-en-1-20210818 329

Chapter 8 | Troubleshooting Ansible

...output omitted...
PLAY RECAP ***
servera.lab.exammple.com : ok=0 changed=0 unreachable=1 failed=0

 15. When using the highest level of verbosity with Ansible, examining the Ansible log file is a

better option than checking console output. You might view the log file using the less
command, or you might search for patterns in the log file using the grep command. Search

for the word fatal in the /home/student/troubleshoot-playbook/ansible.log
file.

[student@workstation troubleshoot-playbook]$ grep -i fatal ansible.log
2021-07-15 13:56:21,766 p=45752 u=student n=ansible | fatal:
 [servera.lab.exammple.com]: UNREACHABLE! => {"changed": false, "msg": "Failed to
 connect to the host via ssh: ssh: connect to host servera.lab.exammple.com port
 22: Connection timed out", "unreachable": true}
2021-07-15 14:22:43,262 p=46055 u=student n=ansible | fatal:
 [servera.lab.exammple.com]: UNREACHABLE! => {

 16. Investigate the inventory file for errors. Notice the [samba_servers] group has

misspelled servera.lab.example.com. Correct this error as shown below:

[samba_servers]
servera.lab.example.com
...output omitted...

 17. Run the playbook again. The debug install_state variable task returns the message The state

for the samba service is installed. This task makes use of the debug module, and displays

the value of the install_state variable. An error is also shown in the deliver samba config

task, because no samba.j2 file is available in the working directory, /home/student/
troubleshoot-playbook/.

[student@workstation troubleshoot-playbook]$ ansible-playbook samba.yml

PLAY [Install a samba server] **
...output omitted...
TASK [debug install_state variable] **
ok: [servera.lab.example.com] => {
 "msg": "The state for the samba service is installed"
}
...output omitted...
TASK [deliver samba config] **
fatal: [servera.lab.example.com]: FAILED! => {"changed": false, "msg": "Could not
 find or access 'samba.j2'\nSearched in:\n\t/home/student/troubleshoot-playbook/
templates/samba.j2\n\t/home/student/troubleshoot-playbook/samba.j2\n\t/home/
student/troubleshoot-playbook/templates/samba.j2\n\t/home/student/troubleshoot-
playbook/samba.j2 on the Ansible Controller.\nIf you are using a module and expect
 the file to exist on the remote, see the remote_src option"}
...output omitted...
PLAY RECAP ***
servera.lab.example.com : ok=7 changed=3 unreachable=0 failed=1 ...

330 RH294-RHEL8.4-en-1-20210818

Chapter 8 | Troubleshooting Ansible

 18. Edit the playbook, and correct the src parameter in the deliver samba config task to be

samba.conf.j2. When you are finished it should look like the following:

...output omitted...
 - name: deliver samba config
 template:
 src: samba.conf.j2
 dest: /etc/samba/smb.conf
 owner: root
...output omitted...

 19. Run the playbook again. Execute the playbook using the --step option. It should run

without errors.

[student@workstation troubleshoot-playbook]$ ansible-playbook samba.yml --step

PLAY [Install a samba server] **
Perform task: TASK: Gathering Facts (N)o/(y)es/(c)ontinue: y
...output omitted...
Perform task: TASK: install samba (N)o/(y)es/(c)ontinue: y
...output omitted...
Perform task: TASK: install firewalld (N)o/(y)es/(c)ontinue: y
...output omitted...
Perform task: TASK: debug install_state variable (N)o/(y)es/(c)ontinue: y
...output omitted...
Perform task: TASK: start samba (N)o/(y)es/(c)ontinue: y
...output omitted...
Perform task: TASK: start firewalld (N)o/(y)es/(c)ontinue: y
...output omitted...
Perform task: TASK: configure firewall for samba (N)o/(y)es/(c)ontinue: y
...output omitted...
Perform task: TASK: deliver samba config (N)o/(y)es/(c)ontinue: y
...output omitted...
PLAY RECAP ***
servera.lab.example.com : ok=8 changed=1 unreachable=0 failed=0

Finish

On workstation, run the lab troubleshoot-playbook finish script to clean up this

exercise.

[student@workstation ~]$ lab troubleshoot-playbook finish

This concludes the guided exercise.

RH294-RHEL8.4-en-1-20210818 331

Chapter 8 | Troubleshooting Ansible

Troubleshooting Ansible Managed Hosts

Objectives
After completing this section, you should be able to troubleshoot failures on managed hosts when

running a playbook.

Using Check Mode as a Testing Tool
You can use the ansible-playbook --check command to run smoke tests on a playbook. This

option executes the playbook without making changes to the managed hosts' configuration. If a

module used within the playbook supports check mode then the changes that would have been

made to the managed hosts are displayed but not performed. If check mode is not supported by a

module then the changes are not displayed but the module still takes no action.

[student@demo ~]$ ansible-playbook --check playbook.yml

Note

The ansible-playbook --check command might not work properly if your

tasks use conditionals.

You can also control whether individual tasks run in check mode with the check_mode setting. If

a task has check_mode: yes set, it always runs in check mode, whether or not you passed the

--check option to ansible-playbook. Likewise, if a task has check_mode: no set, it always

runs normally, even if you pass --check to ansible-playbook.

The following task is always run in check mode, and does not make changes.

 tasks:
 - name: task always in check mode
 shell: uname -a
 check_mode: yes

The following task is always run normally, even when started with ansible-playbook --check.

 tasks:
 - name: task always runs even in check mode
 shell: uname -a
 check_mode: no

This can be useful because you can run most of a playbook normally while testing individual tasks

with check_mode: yes. Likewise, you can make test runs in check mode more likely to provide

reasonable results by running selected tasks that gather facts or set variables for conditionals but

do not change the managed hosts with check_mode: no.

332 RH294-RHEL8.4-en-1-20210818

Chapter 8 | Troubleshooting Ansible

A task can determine if the playbook is running in check mode by testing the value of the magic

variable ansible_check_mode. This Boolean variable is set to true if the playbook is running in

check mode.

Warning

Tasks that have check_mode: no set will run even when the playbook is run with

ansible-playbook --check. Therefore, you cannot trust that the --check
option will make no changes to managed hosts, without confirming this to be the

case by inspecting the playbook and any roles or tasks associated with it.

Note

If you have older playbooks that use always_run: yes to force tasks to run

normally even in check mode, you will have to replace that code with check_mode:
no in Ansible 2.6 and later.

The ansible-playbook command also provides a --diff option. This option reports the

changes made to the template files on managed hosts. If used with the --check option, those

changes are displayed in the command's output but not actually made.

[student@demo ~]$ ansible-playbook --check --diff playbook.yml

Testing with Modules
Some modules can provide additional information about the status of a managed host. The

following list includes some of the Ansible modules that can be used to test and debug issues on

managed hosts.

• The uri module provides a way to check that a RESTful API is returning the required content.

 tasks:
 - uri:
 url: http://api.myapp.com
 return_content: yes
 register: apiresponse

 - fail:
 msg: 'version was not provided'
 when: "'version' not in apiresponse.content"

• The script module supports executing a script on managed hosts, and fails if the return code

for that script is nonzero. The script must exist on the control node and is transferred to and

executed on the managed hosts.

 tasks:
 - script: check_free_memory

• The stat module gathers facts for a file much like the stat command. You can use it to

register a variable and then test to determine if the file exists or to get other information about

RH294-RHEL8.4-en-1-20210818 333

Chapter 8 | Troubleshooting Ansible

the file. If the file does not exist, the stat task will not fail, but its registered variable will report

false for *.stat.exists.

In this example, an application is still running if /var/run/app.lock exists, in which case the

play should abort.

 tasks:
 - name: Check if /var/run/app.lock exists
 stat:
 path: /var/run/app.lock
 register: lock

 - name: Fail if the application is running
 fail:
 when: lock.stat.exists

• The assert module is an alternative to the fail module. The assert module supports a

that option that takes a list of conditionals. If any of those conditionals are false, the task fails.

You can use the success_msg and fail_msg options to customize the message it prints if it

reports success or failure.

The following example repeats the preceding one, but uses assert instead of fail.

 tasks:
 - name: Check if /var/run/app.lock exists
 stat:
 path: /var/run/app.lock
 register: lock

 - name: Fail if the application is running
 assert:
 that:
 - not lock.stat.exists

Troubleshooting Connections
Many common problems when using Ansible to manage hosts are associated with connections to

the host and with configuration problems around the remote user and privilege escalation.

If you are having problems authenticating to a managed host, make sure that you have

remote_user set correctly in your configuration file or in your play. You should also confirm that

you have the correct SSH keys set up or are providing the correct password for that user.

Make sure that become is set properly, and that you are using the correct become_user (this is

root by default). You should confirm that you are entering the correct sudo password and that

sudo on the managed host is configured correctly.

A more subtle problem has to do with inventory settings. For a complex server with multiple

network addresses, you may need to use a particular address or DNS name when connecting

to that system. You might not want to use that address as the machine's inventory name for

better readability. You can set a host inventory variable, ansible_host, that will override the

inventory name with a different name or IP address and be used by Ansible to connect to that

host. This variable could be set in the host_vars file or directory for that host, or could be set in

the inventory file itself.

334 RH294-RHEL8.4-en-1-20210818

Chapter 8 | Troubleshooting Ansible

For example, the following inventory entry configures Ansible to connect to 192.0.2.4 when

processing the host web4.phx.example.com:

web4.phx.example.com ansible_host=192.0.2.4

This is a useful way to control how Ansible connects to managed hosts. However, it can also cause

problems if the value of ansible_host is incorrect.

Testing Managed Hosts Using Ad Hoc Commands
The following examples illustrate some of the checks that can be made on a managed host

through the use of ad hoc commands.

You have used the ping module to test whether you can connect to managed hosts. Depending

on the options you pass, you can also use it to test whether privilege escalation and credentials are

correctly configured.

[student@demo ~]$ ansible demohost -m ping
demohost | SUCCESS => {
 "ansible_facts": {
 "discovered_interpreter_python": "/usr/libexec/platform-python"
 },
 "changed": false,
 "ping": "pong"
}
[student@demo ~]$ ansible demohost -m ping --become
demohost | FAILED! => {
 "ansible_facts": {
 "discovered_interpreter_python": "/usr/libexec/platform-python"
 },
 "changed": false,
 "module_stderr": "sudo: a password is required\n",
 "module_stdout": "",
 "msg": "MODULE FAILURE\nSee stdout/stderr for the exact error",
 "rc": 1
}

This example returns the currently available space on the disks configured in the demohost
managed host. That can be useful to confirm that the file system on the managed host is not full.

[student@demo ~]$ ansible demohost -m command -a 'df'

This example returns the currently available free memory on the demohost managed host.

[student@demo ~]$ ansible demohost -m command -a 'free -m'

The Correct Level of Testing
Ansible is designed to ensure that the configuration included in playbooks and performed by

its modules is correct. It monitors all modules for reported failures, and stops the playbook

immediately if any failure is encountered. This helps ensure that any task performed before the

failure has no errors.

RH294-RHEL8.4-en-1-20210818 335

Chapter 8 | Troubleshooting Ansible

Because of this, there is usually no need to check if the result of a task managed by Ansible has

been correctly applied on the managed hosts. It makes sense to add some health checks either

to playbooks, or run those directly as ad hoc commands, when more direct troubleshooting is

required. But, you should be careful about adding too much complexity to your tasks and plays in

an effort to double check the tests performed by the modules themselves.

References

Check Mode ("Dry Run") — Ansible Documentation

https://docs.ansible.com/ansible/2.9/user_guide/playbooks_checkmode.html

Testing Strategies — Ansible Documentation

https://docs.ansible.com/ansible/2.9/reference_appendices/test_strategies.html

336 RH294-RHEL8.4-en-1-20210818

https://docs.ansible.com/ansible/2.9/user_guide/playbooks_checkmode.html
https://docs.ansible.com/ansible/2.9/reference_appendices/test_strategies.html

Chapter 8 | Troubleshooting Ansible

Guided Exercise

Troubleshooting Ansible Managed Hosts

In this exercise, you will troubleshoot task failures that are occurring on one of your managed

hosts when running a playbook.

Outcomes
You should be able to troubleshoot managed hosts.

Before You Begin
Log in to workstation as student using student as the password.

On workstation, run the lab troubleshoot-host start script. It ensures that

Ansible is installed on workstation. It also downloads the inventory, mailrelay.yml,

and postfix-relay-main.conf.j2 files from http://materials.example.com/
labs/troubleshoot-host/ to the /home/student/troubleshoot-host/ directory.

[student@workstation ~]$ lab troubleshoot-host start

Instructions

 1. On workstation, change to the /home/student/troubleshoot-host/ directory.

[student@workstation ~]$ cd ~/troubleshoot-host/
[student@workstation troubleshoot-host]$

 2. Run the mailrelay.yml playbook using check mode.

[student@workstation troubleshoot-host]$ ansible-playbook mailrelay.yml --check
PLAY [create mail relay servers] ***
...output omitted...
TASK [check main.cf file] **
ok: [servera.lab.example.com]

TASK [verify main.cf file exists] **
ok: [servera.lab.example.com] => {
 "msg": "The main.cf file exists"
}
...output omitted...
TASK [email notification of always_bcc config] *********************************
fatal: [servera.lab.example.com]: FAILED! => {"msg": "The conditional check
 'bcc_state.stdout != 'always_bcc ='' failed. The error was: error while
 evaluating conditional (bcc_state.stdout != 'always_bcc ='): 'dict object'
 has no attribute 'stdout'\n\nThe error appears to have been in '/home/student/
troubleshoot-host/mailrelay.yml': line 42, column 7, but may\nbe elsewhere in the
 file depending on the exact syntax problem.\n\nThe offending line appears to be:
\n\n\n - name: email notification of always_bcc config\n ^ here\n"}

RH294-RHEL8.4-en-1-20210818 337

Chapter 8 | Troubleshooting Ansible

...output omitted...
PLAY RECAP ***
servera.lab.example.com : ok=6 changed=3 unreachable=0 failed=1

The verify main.cf file exists task uses the stat module. It confirmed that main.cf exists

on servera.lab.example.com.

The email notification of always_bcc config task failed. It did not receive output from the

check for always_bcc task because the playbook was executed using check mode.

 3. Using an ad hoc command, check the header for the /etc/postfix/main.cf file.

[student@workstation troubleshoot-host]$ ansible servera.lab.example.com \
> -u devops -b -a "head /etc/postfix/main.cf"
servera.lab.example.com | FAILED | rc=1 >>
head: cannot open '/etc/postfix/main.cf' for reading: No such file or
 directorynon-zero return code

The command failed because the playbook was executed using check mode. Postfix is not

installed on servera.lab.example.com

 4. Run the playbook again, but without specifying check mode. The error in the email

notification of always_bcc config task should disappear.

[student@workstation troubleshoot-host]$ ansible-playbook mailrelay.yml
PLAY [create mail relay servers] ***
...output omitted...
TASK [check for always_bcc] **
changed: [servera.lab.example.com]

TASK [email notification of always_bcc config] *********************************
skipping: [servera.lab.example.com]

RUNNING HANDLER [restart postfix] **
changed: [servera.lab.example.com]

PLAY RECAP ***
servera.lab.example.com : ok=8 changed=5 unreachable=0 failed=0
skipped=1 rescued=0 ignored=0

 5. Using an ad hoc command, display the top of the /etc/postfix/main.cf file.

[student@workstation troubleshoot-host]$ ansible servera.lab.example.com \
> -u devops -b -a "head /etc/postfix/main.cf"
servera.lab.example.com | SUCCESS | rc=0 >>
Ansible managed
#
Global Postfix configuration file. This file lists only a subset
of all parameters. For the syntax, and for a complete parameter
list, see the postconf(5) manual page (command: "man 5 postconf").
#

338 RH294-RHEL8.4-en-1-20210818

Chapter 8 | Troubleshooting Ansible

For common configuration examples, see BASIC_CONFIGURATION_README
and STANDARD_CONFIGURATION_README. To find these documents, use
the command "postconf html_directory readme_directory", or go to
http://www.postfix.org/BASIC_CONFIGURATION_README.html etc.

Now it starts with a line that contains the string, "Ansible managed". This file was updated

and is now managed by Ansible.

 6. Edit the mailrelay.yml playbook and add a task to enable the smtp service through the

firewall. Add the task as the last task, before the handlers.

...output omitted...
 - name: postfix firewalld config
 firewalld:
 state: enabled
 permanent: true
 immediate: true
 service: smtp
...output omitted...

 7. Run the playbook. The postfix firewalld config task should have been executed

with no errors.

[student@workstation troubleshoot-host]$ ansible-playbook mailrelay.yml
PLAY [create mail relay servers] ***
...output omitted...
TASK [postfix firewalld config] **
changed: [servera.lab.example.com]

PLAY RECAP ***
servera.lab.example.com : ok=8 changed=2 unreachable=0 failed=0
skipped=1 rescued=0 ignored=0

 8. Using an ad hoc command, check that the smtp service is now configured on the firewall at

servera.lab.example.com.

[student@workstation troubleshoot-host]$ ansible servera.lab.example.com \
> -u devops -b -a "firewall-cmd --list-services"
servera.lab.example.com | CHANGED | rc=0 >>
cockpit dhcpv6-client samba smtp ssh

 9. Use telnet to test if the SMTP service is listening on port TCP/25 on

servera.lab.example.com. Disconnect when you are finished.

[student@workstation troubleshoot-host]$ telnet servera.lab.example.com 25
Trying 172.25.250.10...
Connected to servera.lab.example.com.
Escape character is '^]'.
220 servera.lab.example.com ESMTP Postfix
quit
221 2.0.0 Bye
Connection closed by foreign host.

RH294-RHEL8.4-en-1-20210818 339

Chapter 8 | Troubleshooting Ansible

Finish

On workstation, run the lab troubleshoot-host finish script to clean up this exercise.

[student@workstation ~]$ lab troubleshoot-host finish

This concludes the guided exercise.

340 RH294-RHEL8.4-en-1-20210818

Chapter 8 | Troubleshooting Ansible

Lab

Troubleshooting Ansible

Performance Checklist
In this lab, you will troubleshoot problems that occur when you try to run a playbook that has

been provided to you.

Outcomes
You should be able to:

• Troubleshoot playbooks.

• Troubleshoot managed hosts.

Before You Begin
Log in to workstation as student using student as the password. Run the lab
troubleshoot-review start command.

[student@workstation ~]$ lab troubleshoot-review start

This script verifies that Ansible is installed on workstation, and creates the ~student/
troubleshoot-review/html/ directory. It downloads the ansible.cfg,

inventory-lab, secure-web.yml, and vhosts.conf files from http://
materials.example.com/labs/troubleshoot-review/ to the /home/student/
troubleshoot-review/ directory. It also downloads the index.html file to the /home/
student/troubleshoot-review/html/ directory.

Instructions

1. From the ~/troubleshoot-review directory, check the syntax of the secure-web.yml
playbook. This playbook contains one play that sets up Apache HTTPD with TLS/SSL for

hosts in the group webservers. Fix the issue that is reported.

2. Check the syntax of the secure-web.yml playbook again. Fix the issue that is reported.

3. Check the syntax of the secure-web.yml playbook a third time. Fix the issue that is

reported.

4. Check the syntax of the secure-web.yml playbook a fourth time. It should not show any

syntax errors.

5. Run the secure-web.yml playbook. Ansible is not able to connect to

serverb.lab.example.com. Fix this problem.

6. Run the secure-web.yml playbook again. Ansible should authenticate as the devops
remote user on the managed host. Fix this issue.

7. Run the secure-web.yml playbook a third time. Fix the issue that is reported.

8. Run the secure-web.yml playbook one more time. It should complete successfully. Use an

ad hoc command to verify that the httpd service is running.

RH294-RHEL8.4-en-1-20210818 341

Chapter 8 | Troubleshooting Ansible

Evaluation

On workstation, run the lab troubleshoot-review grade script to confirm success on

this exercise.

[student@workstation ~]$ lab troubleshoot-review grade

Finish

On workstation, run the lab troubleshoot-review finish script to clean up this lab.

[student@workstation ~]$ lab troubleshoot-review finish

This concludes the lab.

342 RH294-RHEL8.4-en-1-20210818

Chapter 8 | Troubleshooting Ansible

Solution

Troubleshooting Ansible

Performance Checklist
In this lab, you will troubleshoot problems that occur when you try to run a playbook that has

been provided to you.

Outcomes
You should be able to:

• Troubleshoot playbooks.

• Troubleshoot managed hosts.

Before You Begin
Log in to workstation as student using student as the password. Run the lab
troubleshoot-review start command.

[student@workstation ~]$ lab troubleshoot-review start

This script verifies that Ansible is installed on workstation, and creates the ~student/
troubleshoot-review/html/ directory. It downloads the ansible.cfg,

inventory-lab, secure-web.yml, and vhosts.conf files from http://
materials.example.com/labs/troubleshoot-review/ to the /home/student/
troubleshoot-review/ directory. It also downloads the index.html file to the /home/
student/troubleshoot-review/html/ directory.

Instructions

1. From the ~/troubleshoot-review directory, check the syntax of the secure-web.yml
playbook. This playbook contains one play that sets up Apache HTTPD with TLS/SSL for

hosts in the group webservers. Fix the issue that is reported.

1.1. On workstation, change to the /home/student/troubleshoot-review project

directory.

[student@workstation ~]$ cd ~/troubleshoot-review/

1.2. Check the syntax of the secure-web.yml playbook. This playbook sets up Apache

HTTPD with TLS/SSL for hosts in the webservers group when everything is correct.

[student@workstation troubleshoot-review]$ ansible-playbook --syntax-check \
> secure-web.yml
ERROR! We were unable to read either as JSON nor YAML, these are the errors we got
 from each:
JSON: Expecting value: line 1 column 1 (char 0)

RH294-RHEL8.4-en-1-20210818 343

Chapter 8 | Troubleshooting Ansible

Syntax Error while loading YAML.
 mapping values are not allowed in this context

The error appears to be in '/home/student/troubleshoot-review/secure-web.yml':
 line 7, column 30, but may be elsewhere in the file depending on the exact syntax
 problem.

The offending line appears to be:

 vars:
 random_var: This is colon: test
 ^ here

1.3. Correct the syntax issue in the definition of the random_var variable by adding double

quotes to the This is colon: test string. The resulting change should appear as

follows:

...output omitted...
 vars:
 random_var: "This is colon: test"
...output omitted...

2. Check the syntax of the secure-web.yml playbook again. Fix the issue that is reported.

2.1. Check the syntax of secure-web.yml using ansible-playbook --syntax-
check again.

[student@workstation troubleshoot-review]$ ansible-playbook --syntax-check \
> secure-web.yml
ERROR! We were unable to read either as JSON nor YAML, these are the errors we got
 from each:
JSON: Expecting value: line 1 column 1 (char 0)

Syntax Error while loading YAML.
 did not find expected '-' indicator

The error appears to be in '/home/student/troubleshoot-review/secure-web.yml':
 line 38, column 10, but may be elsewhere in the file depending on the exact
 syntax problem.

The offending line appears to be:

 - name: start and enable web services
 ^ here

2.2. Correct any syntax issues in the indentation. Remove the extra space at the beginning

of the start and enable web services task elements. The resulting change should appear

as follows:

...output omitted...
 args:
 creates: /etc/pki/tls/certs/serverb.lab.example.com.crt

344 RH294-RHEL8.4-en-1-20210818

Chapter 8 | Troubleshooting Ansible

 - name: start and enable web services
 service:
 name: httpd
 state: started
 enabled: yes

 - name: deliver content
 copy:
 dest: /var/www/vhosts/serverb-secure
 src: html/
...output omitted...

3. Check the syntax of the secure-web.yml playbook a third time. Fix the issue that is

reported.

3.1. Check the syntax of the secure-web.yml playbook.

[student@workstation troubleshoot-review]$ ansible-playbook --syntax-check \
> secure-web.yml
ERROR! We were unable to read either as JSON nor YAML, these are the errors we got
 from each:
JSON: Expecting value: line 1 column 1 (char 0)

Syntax Error while loading YAML.
 found unacceptable key (unhashable type: 'AnsibleMapping')

The error appears to be in '/home/student/troubleshoot-review/secure-web.yml':
 line 13, column 20, but may
be elsewhere in the file depending on the exact syntax problem.

The offending line appears to be:

 yum:
 name: {{ item }}
 ^ here
We could be wrong, but this one looks like it might be an issue with
missing quotes. Always quote template expression brackets when they
start a value. For instance:

 with_items:
 - {{ foo }}

Should be written as:

 with_items:
 - "{{ foo }}"

3.2. Correct the item variable in the install web server packages task. Add double

quotes to {{ item }}. The resulting change should appear as follows:

...output omitted...
 - name: install web server packages
 yum:

RH294-RHEL8.4-en-1-20210818 345

Chapter 8 | Troubleshooting Ansible

 name: "{{ item }}"
 state: latest
 notify:
 - restart services
 loop:
 - httpd
 - mod_ssl
...output omitted...

4. Check the syntax of the secure-web.yml playbook a fourth time. It should not show any

syntax errors.

4.1. Review the syntax of the secure-web.yml playbook. It should not show any syntax

errors.

[student@workstation troubleshoot-review]$ ansible-playbook --syntax-check \
> secure-web.yml

playbook: secure-web.yml

5. Run the secure-web.yml playbook. Ansible is not able to connect to

serverb.lab.example.com. Fix this problem.

5.1. Run the secure-web.yml playbook. This will fail with an error.

[student@workstation troubleshoot-review]$ ansible-playbook secure-web.yml

PLAY [create secure web service] ***

TASK [Gathering Facts] ***
fatal: [serverb.lab.example.com]: UNREACHABLE! => {"changed": false, "msg":
 "Failed to connect to the host via ssh: students@serverc.lab.example.com:
 Permission denied (publickey,gssapi-keyex,gssapi-with-mic,password).",
 "unreachable": true}

PLAY RECAP ***
serverb.lab.example.com : ok=0 changed=0 unreachable=1 failed=0 ...

5.2. Run the secure-web.yml playbook again, adding the -vvv parameter to increase the

verbosity of the output.

Notice that Ansible appears to be connecting to serverc.lab.example.com
instead of serverb.lab.example.com.

346 RH294-RHEL8.4-en-1-20210818

Chapter 8 | Troubleshooting Ansible

[student@workstation troubleshoot-review]$ ansible-playbook secure-web.yml -vvv
...output omitted...
TASK [Gathering Facts] ***
task path: /home/student/troubleshoot-review/secure-web.yml:3
<serverc.lab.example.com> ESTABLISH SSH CONNECTION FOR USER: students
<serverc.lab.example.com> SSH: EXEC ssh -C -o ControlMaster=auto
 -o ControlPersist=60s -o KbdInteractiveAuthentication=no -o
 PreferredAuthentications=gssapi-with-mic,gssapi-keyex,hostbased,publickey
 -o PasswordAuthentication=no -o 'User="students"' -o ConnectTimeout=10 -o
 ControlPath=/home/student/.ansible/cp/bc0c05136a serverc.lab.example.com '/bin/sh
 -c '"'"'echo ~students && sleep 0'"'"''
...output omitted...

5.3. Correct the line in the inventory file. Delete the ansible_host host variable so the

file appears as shown below:

[webservers]
serverb.lab.example.com

6. Run the secure-web.yml playbook again. Ansible should authenticate as the devops
remote user on the managed host. Fix this issue.

6.1. Run the secure-web.yml playbook.

[student@workstation troubleshoot-review]$ ansible-playbook secure-web.yml -vvv
...output omitted...
TASK [Gathering Facts] ***
task path: /home/student/troubleshoot-review/secure-web.yml:3
<serverb.lab.example.com> ESTABLISH SSH CONNECTION FOR USER: students
...output omitted...
fatal: [serverb.lab.example.com]: UNREACHABLE! => {
...output omitted...

6.2. Edit the secure-web.yml playbook to make sure devops is the remote_user for

the play. The first lines of the playbook should appear as follows:

start of secure web server playbook
- name: create secure web service
 hosts: webservers
 remote_user: devops
...output omitted...

7. Run the secure-web.yml playbook a third time. Fix the issue that is reported.

7.1. Run the secure-web.yml playbook.

[student@workstation troubleshoot-review]$ ansible-playbook secure-web.yml -vvv
...output omitted...
failed: [serverb.lab.example.com] (item=mod_ssl) => {
 "ansible_loop_var": "item",

RH294-RHEL8.4-en-1-20210818 347

Chapter 8 | Troubleshooting Ansible

 "changed": false,
 "invocation": {
 "module_args": {
 "allow_downgrade": false,
 "autoremove": false,
...output omitted...
 "validate_certs": true
 }
 },
 "item": "mod_ssl",
 "msg": "This command has to be run under the root user.",
 "results": []
}
...output omitted...

7.2. Edit the play to make sure that it has become: true or become: yes set. The

resulting change should appear as follows:

start of secure web server playbook
- name: create secure web service
 hosts: webservers
 remote_user: devops
 become: true
...output omitted...

8. Run the secure-web.yml playbook one more time. It should complete successfully. Use an

ad hoc command to verify that the httpd service is running.

8.1. Run the secure-web.yml playbook.

[student@workstation troubleshoot-review]$ ansible-playbook secure-web.yml

PLAY [create secure web service] ***
...output omitted...
TASK [install web server packages] ***
changed: [serverb.lab.example.com] => (item=httpd)
changed: [serverb.lab.example.com] => (item=mod_ssl)
...output omitted...
TASK [httpd_conf_syntax variable] **
ok: [serverb.lab.example.com] => {
 "msg": "The httpd_conf_syntax variable value is {'cmd': ['/sbin/httpd',
 '-t'], 'stdout': '', 'stderr': 'Syntax OK', 'rc': 0, 'start': '2021-07-16
 14:08:35.304347', 'end': '2021-07-16 14:08:35.342415', 'delta': '0:00:00.038068',
 'changed': True, 'stdout_lines': [], 'stderr_lines': ['Syntax OK'], 'failed':
 False, 'failed_when_result': False}"
}
...output omitted...
RUNNING HANDLER [restart services] ***
changed: [serverb.lab.example.com]

PLAY RECAP ***
serverb.lab.example.com : ok=10 changed=7 unreachable=0 failed=0 ...

348 RH294-RHEL8.4-en-1-20210818

Chapter 8 | Troubleshooting Ansible

8.2. Use an ad hoc command to determine the state of the httpd service on

serverb.lab.example.com. The httpd service should now be running on

serverb.lab.example.com.

[student@workstation troubleshoot-review]$ ansible all -u devops -b \
> -m command -a 'systemctl status httpd'
serverb.lab.example.com | CHANGED | rc=0 >>
● httpd.service - The Apache HTTP Server
 Loaded: loaded (/usr/lib/systemd/system/httpd.service; enabled; vendor preset:
 disabled)
 Active: active (running) since Fri 2021-07-16 14:08:37 EDT; 3min 1s ago
...output omitted...

Evaluation

On workstation, run the lab troubleshoot-review grade script to confirm success on

this exercise.

[student@workstation ~]$ lab troubleshoot-review grade

Finish

On workstation, run the lab troubleshoot-review finish script to clean up this lab.

[student@workstation ~]$ lab troubleshoot-review finish

This concludes the lab.

RH294-RHEL8.4-en-1-20210818 349

Chapter 8 | Troubleshooting Ansible

Summary

In this chapter, you learned:

• Ansible provides built-in logging. This feature is not enabled by default.

• The log_path parameter in the default section of the ansible.cfg configuration file

specifies the location of the log file to which all Ansible output is redirected.

• The debug module provides additional debugging information while running a playbook (for

example, current value for a variable).

• The -v option of the ansible-playbook command provides several levels of output

verbosity. This is useful for debugging Ansible tasks when running a playbook.

• The --check option enables Ansible modules with check mode support to display the changes

to be performed, instead of applying those changes to the managed hosts.

• Additional checks can be executed on the managed hosts using ad hoc commands.

350 RH294-RHEL8.4-en-1-20210818

Chapter 9

Automating Linux
Administration Tasks

Goal Automate common Linux system administration
tasks with Ansible.

Objectives • Subscribe systems, configure software
channels and repositories, enable module
streams, and manage RPM packages on
managed hosts.

• Manage Linux users and groups, configure SSH,
and modify Sudo configuration on managed
hosts.

• Manage service startup, schedule processes
with at, cron, and systemd, reboot, and control
the default boot target on managed hosts.

• Partition storage devices, configure LVM,
format partitions or logical volumes, mount file
systems, and add swap files or spaces.

• Configure network settings and name
resolution on managed hosts, and collect
network-related Ansible facts.

Sections • Managing Software and Subscriptions (Guided
Exercise)

• Managing Users and Authentication (Guided
Exercise)

• Managing the Boot Process and Scheduled
Processes (Guided Exercise)

• Managing Storage (Guided Exercise)

• Managing Network Configuration (Guided
Exercise)

Lab • Automating Linux Administration Tasks

RH294-RHEL8.4-en-1-20210818 351

Chapter 9 | Automating Linux Administration Tasks

Managing Software and Subscriptions

Objectives
After completing this section, you should be able to subscribe systems, configure software

channels and repositories, enable module streams, and manage RPM packages on managed hosts.

Managing Packages with Ansible
The yum Ansible module uses the Yum Package Manager on the managed hosts to handle the

package operations. The following example is a playbook that installs the httpd package on the

servera.lab.example.com managed host.

- name: Install the required packages on the web server
 hosts: servera.lab.example.com
 tasks:
 - name: Install the httpd packages
 yum:
 name: httpd
 state: present

The name keyword gives the name of the package to install.

The state keyword indicates the expected state of the package on the managed host:

present
Ansible installs the package if it is not already there.

absent
Ansible removes the package if it is installed.

latest
Ansible updates the package if it is not already at the most recent available version. If the

package is not installed, Ansible installs it.

The following table compares some usage of the yum Ansible module with the equivalent yum
command.

Ansible task Yum command

- name: Install httpd
 yum:
 name: httpd
 state: present

yum install httpd

352 RH294-RHEL8.4-en-1-20210818

Chapter 9 | Automating Linux Administration Tasks

Ansible task Yum command

- name: Install or update httpd
 yum:
 name: httpd
 state: latest

yum update httpd or yum install
httpd if the package is not yet installed.

- name: Update all packages
 yum:
 name: '*'
 state: latest

yum update

- name: Remove httpd
 yum:
 name: httpd
 state: absent

yum remove httpd

- name: Install Development Tools
 yum:
 name: '@Development Tools'
 state: present

With the yum Ansible module, you must

prefix group names with @. Remember

that you can retrieve the list of groups

with the yum group list command.

yum group install "Development
Tools"

- name: Remove Development Tools
 yum:
 name: '@Development Tools'
 state: absent

yum group remove "Development
Tools"

- name: Inst perl AppStream
 module
 yum:
 name: '@perl:5.26/minimal'
 state: present

To manage a Yum AppStream module,

prefix its name with @. The syntax is the

same as with the yum command. For

example, you can omit the profile part

to use the default profile: @perl:5.26.

Remember that you can list the available

Yum AppStream modules with the yum
module list command.

yum module install perl:5.26/
minimal

Run the ansible-doc yum command for additional parameters and playbook examples.

RH294-RHEL8.4-en-1-20210818 353

Chapter 9 | Automating Linux Administration Tasks

Optimizing Multiple Package Installation

To operate on several packages, the name keyword accepts a list. The following example shows a

playbook that installs three packages on servera.lab.example.com.

- name: Install the required packages on the web server
 hosts: servera.lab.example.com
 tasks:
 - name: Install the packages
 yum:
 name:
 - httpd
 - mod_ssl
 - httpd-tools
 state: present

With this syntax, Ansible installs the packages in a single Yum transaction. This is equivalent to

running the yum install httpd mod_ssl httpd-tools command.

A commonly seen but less efficient and slower version of this task is to use a loop.

- name: Install the required packages on the web server
 hosts: servera.lab.example.com
 tasks:
 - name: Install the packages
 yum:
 name: "{{ item }}""
 state: present
 loop:
 - httpd
 - mod_ssl
 - httpd-tools

Avoid using this method as it requires the module to perform three individual transactions, one for

each package.

Gathering Facts about Installed Packages

The package_facts Ansible module collects the installed package details on managed hosts. It

sets the ansible_facts.packages variable with the package details.

The following playbook calls the package_facts module, the debug module to display the

content of the ansible_facts.packages variable, and the debug module again to view the

version of the installed NetworkManager package.

- name: Display installed packages
 hosts: servera.lab.example.com
 tasks:
 - name: Gather info on installed packages
 package_facts:
 manager: auto

354 RH294-RHEL8.4-en-1-20210818

Chapter 9 | Automating Linux Administration Tasks

 - name: List installed packages
 debug:
 var: ansible_facts.packages

 - name: Display NetworkManager version
 debug:
 msg: "Version {{ansible_facts.packages['NetworkManager'][0].version}}"
 when: "'NetworkManager' in ansible_facts.packages"

When run, the playbook displays the package list and the version of the NetworkManager package:

[user@controlnode ~]$ ansible-playbook lspackages.yml

PLAY [Display installed packages] **

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

TASK [Gather info on installed packages] ***********************************
ok: [servera.lab.example.com]

TASK [List installed packages] ***
ok: [servera.lab.example.com] => {
 "ansible_facts.packages": {
 "NetworkManager": [
 {
 "arch": "x86_64",
 "epoch": 1,
 "name": "NetworkManager",
 "release": "14.el8",
 "source": "rpm",
 "version": "1.14.0"
 }
],
...output omitted...
 "zlib": [
 {
 "arch": "x86_64",
 "epoch": null,
 "name": "zlib",
 "release": "10.el8",
 "source": "rpm",
 "version": "1.2.11"
 }
]
 }
}

TASK [Display NetworkManager version] **************************************
ok: [servera.lab.example.com] => {
 "msg": "Version 1.14.0"
}

RH294-RHEL8.4-en-1-20210818 355

Chapter 9 | Automating Linux Administration Tasks

PLAY RECAP ***
servera.lab.example.com : ok=4 changed=0 unreachable=0 failed=0

Reviewing Alternative Modules to Manage Packages

The yum Ansible module works on managed hosts that are using the Yum Package Manager. For

other package managers, Ansible usually provides a dedicated module. For example, the dnf
module manages packages on operating systems such as Fedora using the DNF package manager.

The apt module uses the APT package tool available on Debian or Ubuntu. The win_package
module can install software on Microsoft Windows systems.

The following playbook uses conditionals to select the appropriate module in an environment

composed of Red Hat Enterprise Linux and Fedora systems.

- name: Install the required packages on the web servers
 hosts: webservers
 tasks:
 - name: Install httpd on RHEL
 yum:
 name: httpd
 state: present
 when: "ansible_distribution == 'RedHat'"

 - name: Install httpd on Fedora
 dnf:
 name: httpd
 state: present
 when: "ansible_distribution == 'Fedora'"

As an alternative, the generic package module automatically detects and uses the package

manager available on the managed hosts. With the package module, you can rewrite the previous

playbook as follows.

- name: Install the required packages on the web servers
 hosts: webservers
 tasks:
 - name: Install httpd
 package:
 name: httpd
 state: present

However, notice that the package module does not support all the features that the more

specialized modules provide. Also, operating systems often have different names for the packages

they provide. For example, the package that installs the Apache HTTP Server is httpd on Red Hat

Enterprise Linux and apache2 on Ubuntu. In that situation, you still need a conditional for selecting

the correct package name depending on the operating system of the managed host.

356 RH294-RHEL8.4-en-1-20210818

Chapter 9 | Automating Linux Administration Tasks

Registering and Managing Systems with Red Hat
Subscription Management
To entitle your new Red Hat Enterprise Linux systems to product subscriptions, Ansible provides

the redhat_subscription and rhsm_repository modules. These modules interface with the

Red Hat Subscription Management tool on the managed hosts.

Registering and Subscribing New systems

The first two tasks you usually perform with the Red Hat Subscription Management tool is to

register the new system and attach an available subscription.

Without Ansible, you perform these tasks with the subscription-manager command:

[user@host ~]$ subscription-manager register --username=yourusername \
> --password=yourpassword
[user@host ~]$ subscription-manager attach --pool=poolID

Remember that you list the available pools in your account with the subscription-manager
list --available command.

The redhat_subscription Ansible module performs the registration and the subscription in

one task.

- name: Register and subscribe the system
 redhat_subscription:
 username: yourusername
 password: yourpassword
 pool_ids: poolID
 state: present

A state keyword set to present indicates to register and to subscribe the system. When it is set

to absent, the module unregisters the system.

Enabling Red Hat Software Repositories

The next task after the subscription is to enable Red Hat software repositories on the new system.

Without Ansible, you usually execute the subscription-manager command for that purpose:

[user@host ~]$ subscription-manager repos \
> --enable "rhel-8-for-x86_64-baseos-rpms" \
> --enable "rhel-8-for-x86_64-baseos-debug-rpms"

Remember that you can list the available repositories with the subscription-manager repos
--list command.

With Ansible, use the rhsm_repository module:

RH294-RHEL8.4-en-1-20210818 357

Chapter 9 | Automating Linux Administration Tasks

- name: Enable Red Hat repositories
 rhsm_repository:
 name:
 - rhel-8-for-x86_64-baseos-rpms
 - rhel-8-for-x86_64-baseos-debug-rpms
 state: present

Configuring a Yum Repository
To enable support for a third-party repository on a managed host, Ansible provides the

yum_repository module.

Declaring a Yum Repository

When run, the following playbook declares a new repository on servera.lab.example.com.

- name: Configure the company Yum repositories
 hosts: servera.lab.example.com
 tasks:
 - name: Ensure Example Repo exists
 yum_repository:
 file: example
 name: example-internal
 description: Example Inc. Internal YUM repo
 baseurl: http://materials.example.com/yum/repository/
 enabled: yes
 gpgcheck: yes
 state: present

The file keyword gives the name of the file to create under the /etc/yum.repos.d/
directory. The module automatically adds the .repo extension to that name.

Typically, software providers digitally sign RPM packages using GPG keys. By setting the

gpgcheck keyword to yes, the RPM system verifies package integrity by confirming that the

package was signed by the appropriate GPG key. It refuses to install a package if the GPG

signature does not match. Use the rpm_key Ansible module, described later on, to install the

required GPG public key.

When you set the state keyword to present, Ansible creates or updates the .repo file.

When state is set to absent, Ansible deletes the file.

The resulting /etc/yum.repos.d/example.repo file on servera.lab.example.com is as

follows.

[example-internal]
baseurl = http://materials.example.com/yum/repository/
enabled = 1
gpgcheck = 1
name = Example Inc. Internal YUM repo

358 RH294-RHEL8.4-en-1-20210818

Chapter 9 | Automating Linux Administration Tasks

The yum_repository module exposes most of the Yum repository configuration parameters as

keywords. Run the ansible-doc yum_repository command for additional parameters and

playbook examples.

Note

Some third-party repositories provide the configuration file and the GPG public

key as part of an RPM package that can be downloaded and installed using the

yum install command. For example, the Extra Packages for Enterprise Linux

(EPEL) project provides the https://dl.fedoraproject.org/pub/epel/epel-release-

latest-VER.noarch.rpm package that deploys the /etc/yum.repos.d/
epel.repo configuration file. For this repository, use the yum Ansible module to

install the EPEL package instead of the yum_repository module.

Importing an RPM GPG key

When the gpgcheck keyword is set to yes in the yum_repository module, you also need to

install the GPG key on the managed host. The rpm_key module in the following example deploys

on servera.lab.example.com the GPG public key hosted on a remote web server.

- name: Configure the company Yum repositories
 hosts: servera.lab.example.com
 tasks:
 - name: Deploy the GPG public key
 rpm_key:
 key: http://materials.example.com/yum/repository/RPM-GPG-KEY-example
 state: present

 - name: Ensure Example Repo exists
 yum_repository:
 file: example
 name: example-internal
 description: Example Inc. Internal YUM repo
 baseurl: http://materials.example.com/yum/repository/
 enabled: yes
 gpgcheck: yes
 state: present

RH294-RHEL8.4-en-1-20210818 359

Chapter 9 | Automating Linux Administration Tasks

References

yum(8), yum.conf(5), and subscription-manager(8) man pages

yum — Manages packages with the yum package manager — Ansible

Documentation

https://docs.ansible.com/ansible/2.9/modules/yum_module.html

package_facts — package information as facts — Ansible Documentation

https://docs.ansible.com/ansible/2.9/modules/package_facts_module.html

redhat_subscription — Manage registration and subscriptions to RHSM using

the subscription-manager command — Ansible Documentation

https://docs.ansible.com/ansible/2.9/modules/redhat_subscription_module.html

rhsm_repository — Manage RHSM repositories using the subscription-manager

command — Ansible Documentation

https://docs.ansible.com/ansible/2.9/modules/rhsm_repository_module.html

yum_repository — Add or remove YUM repositories — Ansible Documentation

https://docs.ansible.com/ansible/2.9/modules/yum_repository_module.html

rpm_key — Adds or removes a gpg key from the rpm db — Ansible

Documentation

https://docs.ansible.com/ansible/2.9/modules/rpm_key_module.html

360 RH294-RHEL8.4-en-1-20210818

https://docs.ansible.com/ansible/2.9/modules/yum_module.html
https://docs.ansible.com/ansible/2.9/modules/package_facts_module.html
https://docs.ansible.com/ansible/2.9/modules/redhat_subscription_module.html
https://docs.ansible.com/ansible/2.9/modules/rhsm_repository_module.html
https://docs.ansible.com/ansible/2.9/modules/yum_repository_module.html
https://docs.ansible.com/ansible/2.9/modules/rpm_key_module.html

Chapter 9 | Automating Linux Administration Tasks

Guided Exercise

Managing Software and Subscriptions

In this exercise you will configure a new Yum repository and install packages from it on your

managed hosts.

Outcomes
You should be able to:

• Configure a yum repository using the yum_repository module.

• Manage RPM GPG keys using the rpm_key module.

• Obtain information about the installed packages on a host using the package_facts
module.

Before You Begin
On workstation, run the lab start script to confirm that the environment is ready for

the lab to begin. The script creates the working directory, called system-software, and

populates it with an Ansible configuration file, a host inventory, and lab files.

[student@workstation ~]$ lab system-software start

Instructions

Your organization requires that all hosts have the example-motd package installed. This package

is provided by an internal Yum repository maintained by your organization to host internally

developed software packages.

You are tasked with writing a playbook to ensure that the example-motd package is installed on

the remote host. The playbook must ensure the configuration of the internal Yum repository.

The repository is located at http://materials.example.com/yum/repository. All RPM

packages are signed with an organizational GPG key pair. The GPG public key is available at

http://materials.example.com/yum/repository/RPM-GPG-KEY-example.

 1. As the student user on workstation, change to the /home/student/system-
software working directory.

[student@workstation ~]$ cd ~/system-software
[student@workstation system-software]$

 2. Begin writing the repo_playbook.yml playbook. Define a single play in the playbook that

targets all hosts. Add a vars clause that defines a single variable custom_pkg with a value

of example-motd. Add the tasks clause to to the playbook.

The playbook now contains:

RH294-RHEL8.4-en-1-20210818 361

Chapter 9 | Automating Linux Administration Tasks

- name: Repository Configuration
 hosts: all
 vars:
 custom_pkg: example-motd
 tasks:

 3. Add two tasks to the playbook.

Use the package_facts module in the first task to gather information about installed

packages on the remote host. This task populates the ansible_facts.packages fact.

Use the debug module in the second task to print the installed version of the package

referenced by the custom_pkg variable. Only execute this task if the custom package is

found in the ansible_facts.packages fact.

Execute the repo_playbook.yml playbook.

3.1. Add the first task to the playbook. Configure the manager keyword of the

package_facts module with a value of auto. The first task contains the following:

 - name: Gather Package Facts
 package_facts:
 manager: auto

3.2. Add a second task to the playbook that uses the debug module to display the value

of the ansible_facts.packages[custom_pkg] variable. Add a when clause

to the task to check if the value of the custom_pkg variable is contained in the

ansible_facts.packages variable. The second task contains the following:

 - name: Show Package Facts for the custom package
 debug:
 var: ansible_facts.packages[custom_pkg]
 when: custom_pkg in ansible_facts.packages

3.3. Execute the playbook:

[student@workstation system-software]$ ansible-playbook repo_playbook.yml

PLAY [Repository Configuration] **

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

TASK [Gather Package Facts] **
ok: [servera.lab.example.com]

TASK [Show Package Facts for the custom package] *****************************
skipping: [servera.lab.example.com]

PLAY RECAP ***
servera.lab.example.com : ok=2 changed=0 unreachable=0 failed=0
skipped=1 rescued=0 ignored=0

362 RH294-RHEL8.4-en-1-20210818

Chapter 9 | Automating Linux Administration Tasks

The debug task is skipped because the example-motd package is not installed on the

remote host.

 4. Add a third task that uses the yum_repository module to ensure the configuration of the

internal yum repository on the remote host. Ensure that:

• The repository's configuration is stored in the file /etc/yum.repos.d/example.repo

• The repository ID is example-internal

• The base URL is http://materials.example.com/yum/repository

• The repository is configured to check RPM GPG signatures

• The repository description is Example Inc. Internal YUM repo

The third task contains the following:

 - name: Ensure Example Repo exists
 yum_repository:
 name: example-internal
 description: Example Inc. Internal YUM repo
 file: example
 baseurl: http://materials.example.com/yum/repository/
 gpgcheck: yes

 5. Add a fourth task to the play that uses the rpm_key module to ensure that the repository

public key is present on the remote host. The repository public key URL is http://
materials.example.com/yum/repository/RPM-GPG-KEY-example.

The fourth task appears as follows:

 - name: Ensure Repo RPM Key is Installed
 rpm_key:
 key: http://materials.example.com/yum/repository/RPM-GPG-KEY-example
 state: present

 6. Add a fifth task to ensure that the package referenced by the custom_pkg variable is

installed on the remote host.

The fifth task appears as follows:

 - name: Install Example motd package
 yum:
 name: "{{ custom_pkg }}"
 state: present

 7. The ansible_facts.packages fact is not updated when a new package is installed on a

remote host.

Copy the second task and add it as the sixth task in the play. Execute the playbook and

verify that the ansible_facts.packages fact does not contain information about the

example-motd installed on the remote host.

7.1. The sixth task contains a copy of the second task:

RH294-RHEL8.4-en-1-20210818 363

Chapter 9 | Automating Linux Administration Tasks

 - name: Show Package Facts for the custom package
 debug:
 var: ansible_facts.packages[custom_pkg]
 when: custom_pkg in ansible_facts.packages

The entire playbook now looks as follows:

- name: Repository Configuration
 hosts: all
 vars:
 custom_pkg: example-motd
 tasks:
 - name: Gather Package Facts
 package_facts:
 manager: auto

 - name: Show Package Facts for the custom package
 debug:
 var: ansible_facts.packages[custom_pkg]
 when: custom_pkg in ansible_facts.packages

 - name: Ensure Example Repo exists
 yum_repository:
 name: example-internal
 description: Example Inc. Internal YUM repo
 file: example
 baseurl: http://materials.example.com/yum/repository/
 gpgcheck: yes

 - name: Ensure Repo RPM Key is Installed
 rpm_key:
 key: http://materials.example.com/yum/repository/RPM-GPG-KEY-example
 state: present

 - name: Install Example motd package
 yum:
 name: "{{ custom_pkg }}"
 state: present

 - name: Show Package Facts for the custom package
 debug:
 var: ansible_facts.packages[custom_pkg]
 when: custom_pkg in ansible_facts.packages

7.2. Execute the playbook.

[student@workstation system-software]$ ansible-playbook repo_playbook.yml
PLAY [Repository Configuration] **

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

364 RH294-RHEL8.4-en-1-20210818

Chapter 9 | Automating Linux Administration Tasks

TASK [Gather Package Facts] **
ok: [servera.lab.example.com]

TASK [Show Package Facts for the custom package] *****************************
skipping: [servera.lab.example.com]

TASK [Ensure Example Repo exists] **
changed: [servera.lab.example.com]

TASK [Ensure Repo RPM Key is Installed] **************************************
changed: [servera.lab.example.com]

TASK [Install Example motd package] **
changed: [servera.lab.example.com]

TASK [Show Package Facts for the custom package] *****************************
skipping: [servera.lab.example.com]

PLAY RECAP ***
servera.lab.example.com : ok=5 changed=3 unreachable=0 failed=0
skipped=2 rescued=0 ignored=0

The Gather Package Facts task determines the data contained in the

ansible_facts.packages fact.

The task is skipped because the example-motd package is installed after the

Gather Package Facts task.

 8. Insert a task immediately after the Install Example motd package task using the

package_facts module to update the package facts. Set the module's manager keyword

with a value of auto.

The complete playbook is shown below:

- name: Repository Configuration
 hosts: all
 vars:
 custom_pkg: example-motd
 tasks:
 - name: Gather Package Facts
 package_facts:
 manager: auto

 - name: Show Package Facts for the custom package
 debug:
 var: ansible_facts.packages[custom_pkg]
 when: custom_pkg in ansible_facts.packages

 - name: Ensure Example Repo exists
 yum_repository:
 name: example-internal
 description: Example Inc. Internal YUM repo
 file: example
 baseurl: http://materials.example.com/yum/repository/

RH294-RHEL8.4-en-1-20210818 365

Chapter 9 | Automating Linux Administration Tasks

 gpgcheck: yes

 - name: Ensure Repo RPM Key is Installed
 rpm_key:
 key: http://materials.example.com/yum/repository/RPM-GPG-KEY-example
 state: present

 - name: Install Example motd package
 yum:
 name: "{{ custom_pkg }}"
 state: present

 - name: Gather Package Facts
 package_facts:
 manager: auto

 - name: Show Package Facts for the custom package
 debug:
 var: ansible_facts.packages[custom_pkg]
 when: custom_pkg in ansible_facts.packages

 9. Use an Ansible ad hoc command to remove the example-motd package installed

during the previous execution of the playbook. Execute the playbook with the inserted

package_facts task and use the output to verify that the installation of the example-

motd package.

9.1. To remove the example-motd package from all hosts, use the ansible all
command with the -m yum and -a 'name=example-motd state=absent'
options.

[student@workstation system-software]$ ansible all -m yum \
> -a 'name=example-motd state=absent'
servera.lab.example.com | CHANGED => {
...output omitted...
 "changed": true,
 "msg": "",
 "rc": 0,
 "results": [
 "Removed: example-motd-1.0-1.el7.x86_64"
]
...output omitted...

9.2. Execute the playbook.

[student@workstation system-software]$ ansible-playbook repo_playbook.yml

PLAY [Repository Configuration] **

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

TASK [Gather Package Facts] **
ok: [servera.lab.example.com]

366 RH294-RHEL8.4-en-1-20210818

Chapter 9 | Automating Linux Administration Tasks

TASK [Show Package Facts for the custom package] *****************************
skipping: [servera.lab.example.com]

...output omitted...

TASK [Install Example motd package] **
changed: [servera.lab.example.com]

TASK [Gather Package Facts] **
ok: [servera.lab.example.com]

TASK [Show Package Facts for example-motd] ***********************************
ok: [servera.lab.example.com] => {
 "ansible_facts.packages[custom_pkg]": [
 {
 "arch": "x86_64",
 "epoch": null,
 "name": "example-motd",
 "release": "1.el7",
 "source": "rpm",
 "version": "1.0"
 }
]
}

PLAY RECAP ***
servera.lab.example.com : ok=7 changed=1 unreachable=0 failed=0
skipped=1 rescued=0 ignored=0

No package fact exists for the example-motd package because the package is

not installed on the remote host.

The example-motd package is installed as a result of this task, as indicated by

the changed status.

This task updates the package facts with information about the example-motd

package.

The example-motd package fact exists and indicates only one example-motd

package is installed. The installed package is at version 1.0.

Finish

On workstation, run the lab system-software finish script to clean up the resources

created in this exercise.

[student@workstation ~]$ lab system-software finish

This concludes the guided exercise.

RH294-RHEL8.4-en-1-20210818 367

Chapter 9 | Automating Linux Administration Tasks

Managing Users and Authentication

Objectives
After completing this section, you should be able to manage Linux users and groups, configure

SSH, and modify Sudo configuration on managed hosts.

The User Module
The Ansible user module lets you manage user accounts on a remote host. You can manage a

number of parameters including remove user, set home directory, set the UID for system accounts,

manage passwords and associated groupings. To create a user that can log into the machine, you

need to provide a hashed password for the password parameter. See the reference section for a

link to "How do I generate encrypted passwords for the user module?"

Example of the User Module

- name: Add new user to the development machine and assign the appropriate groups.
 user:
 name: devops_user
 shell: /bin/bash
 groups: sys_admins, developers
 append: yes

The name parameter is the only requirement in the user module and is usually the service

account or user account.

The shell parameter optionally sets the user's shell. On other operating systems, the

default shell is decided by the tool being used.

The groups parameter along with the append parameter tells the machine that we want to

append the groups sys_asmins and developers with this user. If you do not use the append

parameter then the groups will overwrite in place.

When creating a user you can specify it to generate_ssh_key. This will not overwrite an

existing SSH key.

Example of User Module Generating an ssh key

- name: Create a SSH key for user1
 user:
 name: user1
 generate_ssh_key: yes
 ssh_key_bits: 2048
 ssh_key_file: .ssh/id_my_rsa

368 RH294-RHEL8.4-en-1-20210818

Chapter 9 | Automating Linux Administration Tasks

Note

The user module also offers some return values. Ansible modules can take a return

value and register them into a variable. Find out more with ansible-doc and on the

main doc site.

Some commonly used parameters

Parameter Comments

comment Optionally sets the description of a user account.

group Optionally sets the user's primary group.

groups List of multiple groups. When set to a null value, all groups

except the primary group is removed.

home Optionally sets the user's home directory.

create_home Takes a boolean value of yes or no. A home directory will be

created for the user if the value is set to yes.

system When creating an account state=present, setting this to yes

makes the user a system account. This setting cannot be

changed on existing users.

uid Sets the UID od user.

The Group Module
The group module allows you to manage (add, delete, modify) groups on the managed hosts.

You need to have groupadd, groupdel or groupmod. For windows targets, use the win_group
module.

Example of the group module

- name: Verify that auditors group exists
 group:
 name: auditors
 state: present

Parameters for the group module

Parameter Comments

gid Optional GID to set for the group.

local Forces the use of "local" command alternatives on platforms

that implement it.

name Name of the group to manage.

RH294-RHEL8.4-en-1-20210818 369

Chapter 9 | Automating Linux Administration Tasks

Parameter Comments

state Whether the group should be present or not on the remote

host.

system If set to yes, indicates that the group created is a system

group.

The Known Hosts Module
If you have a large number of host keys to manage you will want to use the known_hosts module.

The known_hosts module lets you add or remove host keys from the known_hosts file on

managed host.

Example of known_host Tasks

- name: copy host keys to remote servers
 known_hosts:
 path: /etc/ssh/ssh_known_hosts
 name: host1
 key: "{{ lookup('file', 'pubkeys/host1') }}"

A lookup plugin allows Ansible to access data from outside sources.

The Authorized Key Module
The authorized_key module allows you to add or remove SSH authorized keys per user

accounts. When adding and subtracting users to a large bank of servers, you need to be able to

manage ssh keys.

Example of authorized_key Tasks

- name: Set authorized key
 authorized_key:
 user: user1
 state: present
 key: "{{ lookup('file', '/home/user1/.ssh/id_rsa.pub') }}

A key can also be taken from a url: https://github.com/user1.keys.

370 RH294-RHEL8.4-en-1-20210818

https://github.com/user1.keys

Chapter 9 | Automating Linux Administration Tasks

References

Users Module Ansible Documentation

http://docs.ansible.com/ansible/2.9/modules/user_module.html#user-module

How do I generate encrypted passwords for the user module

https://docs.ansible.com/ansible/2.9/reference_appendices/faq.html#how-do-i-

generate-encrypted-passwords-for-the-user-module

Group Module Ansible Documentation

https://docs.ansible.com/ansible/2.9/modules/group_module.html#group-module

SSH Known Hosts Module Ansible Documentation

https://docs.ansible.com/ansible/2.9/modules/known_hosts_module.html#known-

hosts-module

Authorized_key module Ansible Documentation

https://docs.ansible.com/ansible/2.9/modules/

authorized_key_module.html#authorized-key-module

The Lookup Plugin Ansible Documentation

https://docs.ansible.com/ansible/2.9/plugins/lookup.html?highlight=lookup

RH294-RHEL8.4-en-1-20210818 371

http://docs.ansible.com/ansible/2.9/modules/user_module.html#user-module
https://docs.ansible.com/ansible/2.9/reference_appendices/faq.html#how-do-i-generate-encrypted-passwords-for-the-user-module
https://docs.ansible.com/ansible/2.9/reference_appendices/faq.html#how-do-i-generate-encrypted-passwords-for-the-user-module
https://docs.ansible.com/ansible/2.9/modules/group_module.html#group-module
https://docs.ansible.com/ansible/2.9/modules/known_hosts_module.html#known-hosts-module
https://docs.ansible.com/ansible/2.9/modules/known_hosts_module.html#known-hosts-module
https://docs.ansible.com/ansible/2.9/modules/authorized_key_module.html#authorized-key-module
https://docs.ansible.com/ansible/2.9/modules/authorized_key_module.html#authorized-key-module
https://docs.ansible.com/ansible/2.9/plugins/lookup.html?highlight=lookup

Chapter 9 | Automating Linux Administration Tasks

Guided Exercise

Managing Users and Authentication

In this exercise, you will create multiple users on your managed hosts and populate the

authorized SSH keys for them.

Outcomes
You should be able to:

• Create a new user group.

• Manage users with the user module.

• Populate SSH authorized keys using the authorized_key module.

• Modify both the sudoers and the sshd_config files using the lineinfile module.

Before You Begin
On workstation, run the lab start script to confirm the environment is ready for the lab to

begin. The script creates the working directory, called system-users, and populates it with

an Ansible configuration file, a host inventory, and some lab files.

[student@workstation ~]$ lab system-users start

Instructions

Your organization requires that all hosts have the same local users available. These users should

belong to the webadmin user group, which has the ability to use the sudo command without

specifying a password. Also, the users' SSH public keys should be distributed in the environment

and the root user should not be allowed to log in using SSH directly.

You are tasked with writing a playbook to ensure that the users and user group are present on the

remote host. The playbook must ensure the users can log in using the authorized SSH key, as well

as use sudo without specifying a password, and that the root user can't log in directly using SSH.

 1. As the student user on workstation, change to the /home/student/system-users
working directory.

[student@workstation ~]$ cd ~/system-users
[student@workstation system-users]$

 2. Take a look at the existing vars/users_vars.yml variable file.

[student@workstation system-users]$ cat vars/users_vars.yml

users:
 - username: user1
 groups: webadmin

372 RH294-RHEL8.4-en-1-20210818

Chapter 9 | Automating Linux Administration Tasks

 - username: user2
 groups: webadmin
 - username: user3
 groups: webadmin
 - username: user4
 groups: webadmin
 - username: user5
 groups: webadmin

It uses the username variable name to set the correct username, and the groups variable

to define additional groups that the user should belong to.

 3. Start writing the users.yml playbook. Define a single play in the playbook that targets

the webservers host group. Add a vars_files clause that defines the location of the

vars/users_vars.yml filename, which has been created for you, and contains all the

user names that are required for this exercise. Add the tasks clause to to the playbook.

Use a text editor to create the users.yml playbook. The playbook should contain the

following:

- name: Create multiple local users
 hosts: webservers
 vars_files:
 - vars/users_vars.yml
 tasks:

 4. Add two tasks to the playbook.

Use the group module in the first task to create the webadmin user group on the remote

host. This task creates the webadmin group.

Use the user module in the second task to create the users from the vars/
users_vars.yml file.

Execute the users.yml playbook.

4.1. Add the first task to the playbook. The first task contains the following:

 - name: Add webadmin group
 group:
 name: webadmin
 state: present

4.2. Add a second task to the playbook that uses the user module to create the users.

Add a loop: "{{ users }}" clause to the task to loop through the variable file

for every username found in the vars/users_vars.yml file. As the name: for the

users, use the item.username as the variable name. This allows the variable file to

contain additional information that might be useful for creating the users, such as the

groups that the users should belong to. The second task contains the following:

 - name: Create user accounts
 user:
 name: "{{ item.username }}"
 groups: "{{ item.groups }}"
 loop: "{{ users }}"

RH294-RHEL8.4-en-1-20210818 373

Chapter 9 | Automating Linux Administration Tasks

4.3. Execute the playbook:

[student@workstation system-users]$ ansible-playbook users.yml

PLAY [Create multiple local users] ***

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

TASK [Add webadmin group] **
changed: [servera.lab.example.com]

TASK [Create user accounts] **
changed: [servera.lab.example.com] => (item={u'username': u'user1', u'groups':
 u'webadmin'})
changed: [servera.lab.example.com] => (item={u'username': u'user2', u'groups':
 u'webadmin'})
changed: [servera.lab.example.com] => (item={u'username': u'user3', u'groups':
 u'webadmin'})
changed: [servera.lab.example.com] => (item={u'username': u'user4', u'groups':
 u'webadmin'})
changed: [servera.lab.example.com] => (item={u'username': u'user5', u'groups':
 u'webadmin'})

PLAY RECAP ***
servera.lab.example.com : ok=3 changed=2 unreachable=0 failed=0

 5. Add a third task that uses the authorized_key module to ensure the SSH public keys

have been properly distributed on the remote host. In the files directory, each of the

users has a unique SSH public key file. The module loops through the list of users, finds the

appropriate key by using the username variable, and pushes the key to the remote host.

The third task contains the following:

 - name: Add authorized keys
 authorized_key:
 user: "{{ item.username }}"
 key: "{{ lookup('file', 'files/'+ item.username + '.key.pub') }}"
 loop: "{{ users }}"

 6. Add a fourth task to the play that uses the copy module to modify the sudo config file and

allow the webadmin group members to use sudo without a password on the remote host.

The fourth task appears as follows:

 - name: Modify sudo config to allow webadmin users sudo without a password
 copy:
 content: "%webadmin ALL=(ALL) NOPASSWD: ALL"
 dest: /etc/sudoers.d/webadmin
 mode: 0440

374 RH294-RHEL8.4-en-1-20210818

Chapter 9 | Automating Linux Administration Tasks

 7. Add a fifth task to ensure that the root user is not permitted to log in using SSH directly.

Use notify: "Restart sshd" to trigger a handler to restart SSH.

The fifth task appears as follows:

 - name: Disable root login via SSH
 lineinfile:
 dest: /etc/ssh/sshd_config
 regexp: "^PermitRootLogin"
 line: "PermitRootLogin no"
 notify: Restart sshd

 8. In the first line after the location of the variable file, add a new handler definition. Give it a

name of Restart sshd.

8.1. The handler should be defined as follows:

...output omitted...
 - vars/users_vars.yml
 handlers:
 - name: Restart sshd
 service:
 name: sshd
 state: restarted

The entire playbook now looks as follows:

- name: Create multiple local users
 hosts: webservers
 vars_files:
 - vars/users_vars.yml
 handlers:
 - name: Restart sshd
 service:
 name: sshd
 state: restarted

 tasks:

 - name: Add webadmin group
 group:
 name: webadmin
 state: present

 - name: Create user accounts
 user:
 name: "{{ item.username }}"
 groups: "{{ item.groups }}"
 loop: "{{ users }}"

 - name: Add authorized keys
 authorized_key:
 user: "{{ item.username }}"

RH294-RHEL8.4-en-1-20210818 375

Chapter 9 | Automating Linux Administration Tasks

 key: "{{ lookup('file', 'files/'+ item.username + '.key.pub') }}"
 loop: "{{ users }}"

 - name: Modify sudo config to allow webadmin users sudo without a password
 copy:
 content: "%webadmin ALL=(ALL) NOPASSWD: ALL"
 dest: /etc/sudoers.d/webadmin
 mode: 0440

 - name: Disable root login via SSH
 lineinfile:
 dest: /etc/ssh/sshd_config
 regexp: "^PermitRootLogin"
 line: "PermitRootLogin no"
 notify: "Restart sshd"

8.2. Execute the playbook.

[student@workstation system-users]$ ansible-playbook users.yml

PLAY [Create multiple local users] ***

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

TASK [Add webadmin group] **
ok: [servera.lab.example.com]

TASK [Create user accounts] **
ok: [servera.lab.example.com] => (item={u'username': u'user1', u'groups':
 u'webadmin'})
ok: [servera.lab.example.com] => (item={u'username': u'user2', u'groups':
 u'webadmin'})
ok: [servera.lab.example.com] => (item={u'username': u'user3', u'groups':
 u'webadmin'})
ok: [servera.lab.example.com] => (item={u'username': u'user4', u'groups':
 u'webadmin'})
ok: [servera.lab.example.com] => (item={u'username': u'user5', u'groups':
 u'webadmin'})

TASK [Add authorized keys] ***
changed: [servera.lab.example.com] => (item={u'username': u'user1', u'groups':
 u'webadmin'})
changed: [servera.lab.example.com] => (item={u'username': u'user2', u'groups':
 u'webadmin'})
changed: [servera.lab.example.com] => (item={u'username': u'user3', u'groups':
 u'webadmin'})
changed: [servera.lab.example.com] => (item={u'username': u'user4', u'groups':
 u'webadmin'})
changed: [servera.lab.example.com] => (item={u'username': u'user5', u'groups':
 u'webadmin'})

TASK [Modify sudo config to allow webadmin users sudo without a password] ***
changed: [servera.lab.example.com]

376 RH294-RHEL8.4-en-1-20210818

Chapter 9 | Automating Linux Administration Tasks

TASK [Disable root login via SSH] ***
changed: [servera.lab.example.com]

RUNNING HANDLER [Restart sshd] **
changed: [servera.lab.example.com]

PLAY RECAP **
servera.lab.example.com : ok=7 changed=4 unreachable=0 failed=0

 9. As the user1 user, log in to servera server using SSH. Once logged in, use sudo su -
command to switch identity to the root user.

9.1. Use SSH as the user1 user and log in to servera server.

[student@workstation system-users]$ ssh user1@servera
Activate the web console with: systemctl enable --now cockpit.socket

[user1@servera ~]$

9.2. Switch identity to the root user.

[user1@servera ~]$ sudo -i
root@servera ~]#

9.3. Log out from servera.

[root@servera ~]$ exit
logout
[user1@servera ~]$ exit
logout
Connection to servera closed.
[student@workstation system-users]$

 10. Try to log in to servera as the root user directly. This step should fail because the SSH

daemon configuration has been modified not to permit direct root user logins.

10.1. From workstation use SSH as root to log in to servera server.

[student@workstation system-users]$ ssh root@servera
root@servera's password: redhat
Permission denied, please try again.
root@servera's password:

This confirms that the SSH configuration denied direct access to the system for the

root user.

Finish

On workstation, run the lab system-users finish script to clean up the resources created

in this exercise.

RH294-RHEL8.4-en-1-20210818 377

Chapter 9 | Automating Linux Administration Tasks

[student@workstation ~]$ lab system-users finish

This concludes the guided exercise.

378 RH294-RHEL8.4-en-1-20210818

Chapter 9 | Automating Linux Administration Tasks

Managing the Boot Process and
Scheduled Processes

Objectives
After completing this section, you should be able to manage service startup, schedule processes

with at, cron, and systemd, reboot, and control the default boot target on managed hosts.

Scheduling with the at Module
Quick one-time scheduling is done with the at module. You create the job for a future time to

run and it is held until that time comes to execute. There are six parameters that come with this

module. They are: command, count, script_file, state, unique, and units.

The at Module Example:

- name: remove tempuser.
 at:
 command: userdel -r tempuser
 count: 20
 units: minutes
 unique: yes

Parameters

Parameter Options Comments

command Null A command that is scheduled to

run.

count Null The count of units. (Must run with

units)

script_file Null An existing script file to be executed

in the future.

state absent, present The state adds or removes a

command or script.

unique yes, no If a job is already running, it will not

be executed again.

units minutes/hours/days/weeks The time denominations.

Appending Commands with the cron Module
When setting a jobs scheduled task the cron module is used. The cron module will append

commands directly into the crontab of the user you designate.

RH294-RHEL8.4-en-1-20210818 379

Chapter 9 | Automating Linux Administration Tasks

The cron module example:

- cron:
 name: "Flush Bolt"
 user: "root"
 minute: 45
 hour: 11
 job: "php ./app/nut cache:clear"

This play uses a company's cache:clear command immediately flushes Bolt cache, removing

cached files and directories.flushes cache of the CMS server every morning at 11:45.

Ansible will write the play to the crontab using the correct syntax as the user stated.

Checking the crontab will verify that it has been appended to.

Some commonly used parameters for the cron module are:

Parameters

Parameter Options Comments

special_time reboot, yearly, annually, monthly,

weekly, daily, hourly

A set of reoccurring times.

state absent, present If set to present, it will create the

command. Absent will remove it.

cron_file Null If you have large banks of servers to

maintain then sometimes it is better

to have a pre-written crontab file.

backup yes, no Backs up the crontab file prior to

being edited.

Managing Services with the systemd and service
Modules
For managing services or reloading daemons, Ansible has the systemd and the service modules.

Service offers a basic set of options start, stop, restart, enable. The systemd module offers more

configuration options. Systemd will allow you to do a daemon-reload where the service module will

not.

The service Module Example:

- name: start nginx
 service:
 name: nginx
 state: started"

380 RH294-RHEL8.4-en-1-20210818

Chapter 9 | Automating Linux Administration Tasks

Note

The init daemon is being replaced by systemd. So in a lot of cases systemd will be

the better option.

The systemd Module Example:

- name: reload web server
 systemd:
 name: apache2
 state: reload
 daemon-reload: yes

The Reboot Module
Another well used Ansible Systems Module is reboot. Considered safer than using the shell

module to initiate shutdown. While running a play the reboot module will shut down the managed

host, then wait until it is back up again prior to carrying on with the play.

The reboot module Example:

- name: "Reboot after patching"
 reboot:
 reboot_timeout: 180

- name: force a quick reboot
 reboot:

The Shell and Command Module
Like the service and the systemd modules, the shell and the command can interchange some

tasks. The command module is considered more secure but some environment variables are not

available. Also, stream operators will not work. If you need to stream your commands then shell

module will do.

The shell module example:

- name: Run a templated variable (always use quote filter to avoid injection)
 shell: cat {{ myfile|quote }}

To sanitize any variables, It is suggested that you use {{ var | quote }} instead of just

{{ var }}

The command module example:

- name: This command only
 command: /usr/bin/scrape_logs.py arg1 arg2
 args:
 chdir: scripts/
 creates: /path/to/script

RH294-RHEL8.4-en-1-20210818 381

Chapter 9 | Automating Linux Administration Tasks

You can pass arguments into the form to provide the options.

Note

The command module is considered more secure because it is not affected by the

users environment.

Gathering facts on the managed host will allow you to access the environment variables. There is a

sublist called ansible_env which has all the environment variables inside it.

- name:
 hosts: webservers
 vars:
 local_shell: "{{ ansible_env }}"
 tasks:
 - name: Printing all the environment variables in Ansible
 debug:
 msg: "{{ local_shell }}"

You can isolate the variable you want to return by using the lookup plugin. msg:
"{{ lookup('env','USER','HOME','SHELL') }}"

References

at - Schedule the execution of a command or script file via the at

command — Ansible Documentation

https://docs.ansible.com/ansible/2.9/modules/at_module.html

cron - Manage cron.d and crontab entries — Ansible Documentation

https://docs.ansible.com/ansible/2.9/modules/cron_module.html

reboot - Reboot a machine — Ansible Documentation

https://docs.ansible.com/ansible/2.9/modules/reboot_module.html

service - Run services on a machine — Ansible Documentation

https://docs.ansible.com/ansible/2.9/modules/service_module.html

382 RH294-RHEL8.4-en-1-20210818

https://docs.ansible.com/ansible/2.9/modules/at_module.html
https://docs.ansible.com/ansible/2.9/modules/cron_module.html
https://docs.ansible.com/ansible/2.9/modules/reboot_module.html
https://docs.ansible.com/ansible/2.9/modules/service_module.html

Chapter 9 | Automating Linux Administration Tasks

Guided Exercise

Managing the Boot Process and
Scheduled Processes

In this exercise, you will manage the startup process, schedule recurring jobs, and reboot

managed hosts.

Outcomes
You should be able to use a playbook to:

• Schedule a cron job.

• Remove a single specific cron job from a crontab file.

• Schedule an at task.

• Set the default boot target on managed hosts.

• Reboot managed hosts.

Before You Begin
Run the lab system-process start script from workstation to configure the

environment for the exercise. The script creates the system-process working directory,

and downloads the Ansible configuration file and the host inventory file needed for the

exercise.

[student@workstation ~]$ lab system-process start

Instructions

 1. As the student user on workstation, change to the /home/student/system-
process working directory.

[student@workstation ~]$ cd ~/system-process
[student@workstation system-process]$

 2. Create a playbook, create_crontab_file.yml, in the current working directory.

Configure the playbook to use the cron module to create the /etc/cron.d/add-date-
time crontab file that schedules a recurring cron job. The job should run as the devops
user every two minutes between 09:00 and 16:59 on Monday through Friday. The job

should append the current date and time to the file /home/devops/my_datetime_cron_job

2.1. Create a new playbook, create_crontab_file.yml, and add the lines needed

to start the play. It should target the managed hosts in the webservers group and

enable privilege escalation.

RH294-RHEL8.4-en-1-20210818 383

Chapter 9 | Automating Linux Administration Tasks

- name: Recurring cron job
 hosts: webservers
 become: true

2.2. Define a task that uses the cron module to schedule a recurring cron job.

Note

The cron module provides a name option to uniquely describe the crontab file

entry and to ensure expected results. The description is added to the crontab file.

For example, the name option is required if you are removing a crontab entry using

state=absent. Additionally, the name option prevents a new crontab entry from

always being created when the default state, state=present, is set.

 tasks:
 - name: Crontab file exists
 cron:
 name: Add date and time to a file

2.3. Configure the job to run every two minutes between 09:00 and 16:59 on Monday
through Friday.

 minute: "*/2"
 hour: 9-16
 weekday: 1-5

2.4. Use the cron_file parameter to use the /etc/cron.d/add-date-time crontab

file instead of an individual user's crontab in /var/spool/cron/. A relative path will

place the file in /etc/cron.d directory. If the cron_file parameter is used, you

must also specify the user parameter.

 user: devops
 job: date >> /home/devops/my_date_time_cron_job
 cron_file: add-date-time
 state: present

2.5. When completed, the playbook should appear as follows. Review the playbook for

accuracy.

- name: Recurring cron job
 hosts: webservers
 become: true

 tasks:
 - name: Crontab file exists
 cron:
 name: Add date and time to a file
 minute: "*/2"

384 RH294-RHEL8.4-en-1-20210818

Chapter 9 | Automating Linux Administration Tasks

 hour: 9-16
 weekday: 1-5
 user: devops
 job: date >> /home/devops/my_date_time_cron_job
 cron_file: add-date-time
 state: present

2.6. Verify playbook syntax by running the ansible-playbook --syntax-check
create_crontab_file.yml command. Correct any errors before moving to the

next step.

[student@workstation system-process]$ ansible-playbook --syntax-check \
> create_crontab_file.yml

playbook: create_crontab_file.yml

2.7. Run the playbook.

[student@workstation system-process]$ ansible-playbook create_crontab_file.yml

PLAY [Recurring cron job] ***

TASK [Gathering Facts] **
ok: [servera.lab.example.com]

TASK [Crontab file exists] **
changed: [servera.lab.example.com]

PLAY RECAP **
servera.lab.example.com : ok=2 changed=1 unreachable=0 failed=0

2.8. Run an ad hoc command to verify that the /etc/cron.d/add-date-time cron file

exists and its content is correct.

[student@workstation system-process]$ ansible webservers -u devops -b \
> -a "cat /etc/cron.d/add-date-time"
servera.lab.example.com | CHANGED | rc=0 >>
#Ansible: Add date and time to a file
*/2 9-16 * * 1-5 devops date >> /home/devops/my_date_time_cron_job

 3. Create a playbook, remove_cron_job.yml, in the current working directory. Configure

the playbook to use the cron module to remove the Add date and time to a file
cron job from the /etc/cron.d/add-date-time crontab file

3.1. Create a new playbook, remove_cron_job.yml, and add the following lines:

- name: Remove scheduled cron job
 hosts: webservers
 become: true

 tasks:

RH294-RHEL8.4-en-1-20210818 385

Chapter 9 | Automating Linux Administration Tasks

 - name: Cron job removed
 cron:
 name: Add date and time to a file
 user: devops
 cron_file: add-date-time
 state: absent

3.2. Verify playbook syntax by running the ansible-playbook --syntax-check
remove_cron_job.yml command. Correct any errors before moving to the next

step.

[student@workstation system-process]$ ansible-playbook --syntax-check \
> remove_cron_job.yml

playbook: remove_cron_job.yml

3.3. Run the playbook.

[student@workstation system-process]$ ansible-playbook remove_cron_job.yml

PLAY [Remove scheduled cron job] **

TASK [Gathering Facts] **
ok: [servera.lab.example.com]

TASK [Cron job removed] ***
changed: [servera.lab.example.com]

PLAY RECAP **
servera.lab.example.com : ok=2 changed=1 unreachable=0 failed=0

3.4. Run an ad hoc command to verify that the /etc/cron.d/add-date-time cron file

continues to exist but the cron job has been removed.

[student@workstation system-process]$ ansible webservers -u devops -b \
> -a "cat /etc/cron.d/add-date-time"
servera.lab.example.com | CHANGED | rc=0 >>

 4. Create a playbook, schedule_at_task.yml, in the current working directory. Configure

the playbook to use the at module to schedule a task that runs one minute in the future.

The task should run the date command and redirect its output to the /home/devops/
my_at_date_time file. Use the unique: yes option to ensure that if the command

already exists in the at queue, a new task is not added.

4.1. Create a new playbook, schedule_at_task.yml, and add the following lines:

- name: Schedule at task
 hosts: webservers
 become: true
 become_user: devops

386 RH294-RHEL8.4-en-1-20210818

Chapter 9 | Automating Linux Administration Tasks

 tasks:
 - name: Create date and time file
 at:
 command: "date > ~/my_at_date_time\n"
 count: 1
 units: minutes
 unique: yes
 state: present

4.2. Verify playbook syntax by running the ansible-playbook -syntax-check
schedule_at_task.yml command. Correct any errors before moving to the next

step.

[student@workstation system-process]$ ansible-playbook --syntax-check \
> schedule_at_task.yml

playbook: schedule_at_task.yml

4.3. Run the playbook.

[student@workstation system-process]$ ansible-playbook schedule_at_task.yml

PLAY [Schedule at task] ***

TASK [Gathering Facts] **
ok: [servera.lab.example.com]

TASK [Create date and time file] **
changed: [servera.lab.example.com]

PLAY RECAP **
servera.lab.example.com : ok=2 changed=1 unreachable=0 failed=0

4.4. After waiting one minute for the at command to complete, run ad hoc commands to

verify that the /home/devops/my_at_date_time file exists and has the correct

contents.

[student@workstation system-process]$ ansible webservers -u devops \
> -a "ls -l my_at_date_time"
servera.lab.example.com | CHANGED | rc=0 >>
-rw-rw-r--. 1 devops devops 30 abr 17 06:15 my_at_date_time

[student@workstation system-process]$ ansible webservers -u devops \
> -a "cat my_at_date_time"
servera.lab.example.com | CHANGED | rc=0 >>
Thu Jul 22 13:24:34 PDT 2021

 5. Create a playbook, set_default_boot_target_graphical.yml, in the current

working directory. Configure the playbook to use the file module to change the symbolic

link on managed hosts to reference the graphical-target boot target.

RH294-RHEL8.4-en-1-20210818 387

Chapter 9 | Automating Linux Administration Tasks

Note

In the following file module, the src parameter value is what the symbolic link

references. The dest parameter value is the symbolic link.

5.1. Create a new playbook, set_default_boot_target_graphical.yml, and add

the following lines:

- name: Change default boot target
 hosts: webservers
 become: true

 tasks:
 - name: Default boot target is graphical
 file:
 src: /usr/lib/systemd/system/graphical.target
 dest: /etc/systemd/system/default.target
 state: link

5.2. Verify the playbook syntax by running the ansible-playbook --syntax-check
set_default_boot_target_graphical.yml command. Correct any errors

before moving to the next step.

[student@workstation system-process]$ ansible-playbook --syntax-check \
> set_default_boot_target_graphical.yml

playbook: set_default_boot_target_graphical.yml

5.3. Before running the playbook, run an ad hoc command to verify that the current

default boot target is multi-user.target:

[student@workstation system-process]$ ansible webservers -u devops -b \
> -a "systemctl get-default"
servera.lab.example.com | CHANGED | rc=0 >>
multi-user.target

5.4. Run the playbook.

[student@workstation system-process]$ ansible-playbook \
> set_default_boot_target_graphical.yml

PLAY [Change default boot target] ***

TASK [Gathering Facts] **
ok: [servera.lab.example.com]

TASK [Default boot target is graphical] ***********************************
changed: [servera.lab.example.com]

388 RH294-RHEL8.4-en-1-20210818

Chapter 9 | Automating Linux Administration Tasks

PLAY RECAP **
servera.lab.example.com : ok=2 changed=1 unreachable=0 failed=0

5.5. Run an ad hoc command to verify that the default boot target is now

graphical.target.

[student@workstation system-process]$ ansible webservers -u devops -b \
> -a "systemctl get-default"
servera.lab.example.com | CHANGED | rc=0 >>
graphical.target

 6. Create a playbook, reboot_hosts.yml, in the current working directory that reboots

the managed hosts. It is not required to reboot a server after changing the default target.

However, knowing how to create a playbook that reboots managed hosts may prove useful.

6.1. Create a new playbook, reboot_hosts.yml, and add the following lines:

- name: Reboot hosts
 hosts: webservers
 become: true

 tasks:
 - name: Hosts are rebooted
 reboot:

6.2. Verify the playbook syntax by running the ansible-playbook --syntax-check
reboot_hosts.yml command. Correct any errors before moving to the next step.

[student@workstation system-process]$ ansible-playbook --syntax-check \
> reboot_hosts.yml

playbook: reboot_hosts.yml

6.3. Before running the playbook, run an ad hoc command to determine the timestamp of

the last system reboot.

[student@workstation system-process]$ ansible webservers -u devops -b \
> -a "who -b"
servera.lab.example.com | CHANGED | rc=0 >>
 system boot 2021-07-22 14:34

6.4. Run the playbook.

[student@workstation system-process]$ ansible-playbook reboot_hosts.yml

PLAY [Reboot hosts] ***

TASK [Gathering Facts] **
ok: [servera.lab.example.com]

RH294-RHEL8.4-en-1-20210818 389

Chapter 9 | Automating Linux Administration Tasks

TASK [Hosts are rebooted] ***
changed: [servera.lab.example.com]

PLAY RECAP **
servera.lab.example.com : ok=2 changed=1 unreachable=0 failed=0

6.5. Run an ad hoc command to determine the timestamp of the last system reboot. The

timestamp displayed after the playbook runs should be later.

[student@workstation system-process]$ ansible webservers -u devops -b \
> -a "who -b"
servera.lab.example.com | CHANGED | rc=0 >>
 system boot 2021-07-22 14:52

6.6. Run a second ad hoc command to determine that the graphical.target boot

target survived the reboot.

[student@workstation system-process]$ ansible webservers -u devops -b \
> -a "systemctl get-default"
servera.lab.example.com | CHANGED | rc=0 >>
graphical.target

 7. To maintain consistency throughout the remaining exercises, change the default

boot target back to its former setting, multi-user.target. Create a playbook,

set_default_boot_target_multi-user.yml, in the current working directory.

Configure the playbook to use the file module to change the symbolic link on managed

hosts to reference the multi-user.target boot target.

7.1. Create a new playbook, set_default_boot_target_multi-user.yml, and add

the following lines:

- name: Change default runlevel target
 hosts: webservers
 become: true

 tasks:
 - name: Default runlevel is multi-user target
 file:
 src: /usr/lib/systemd/system/multi-user.target
 dest: /etc/systemd/system/default.target
 state: link

7.2. Verify playbook syntax by running the ansible-playbook --syntax-check
set_default_boot_target_multi-user.yml command. Correct any errors

before moving to the next step.

[student@workstation system-process]$ ansible-playbook --syntax-check \
> set_default_boot_target_multi-user.yml

playbook: set_default_boot_target_multi-user.yml

390 RH294-RHEL8.4-en-1-20210818

Chapter 9 | Automating Linux Administration Tasks

7.3. Run the playbook.

[student@workstation system-process]$ ansible-playbook \
> set_default_boot_target_multi-user.yml

PLAY [Change default runlevel target] *************************************

TASK [Gathering Facts] **
ok: [servera.lab.example.com]

TASK [Default runlevel is multi-user target] ******************************
changed: [servera.lab.example.com]

PLAY RECAP **
servera.lab.example.com : ok=2 changed=1 unreachable=0 failed=0

7.4. Run an ad hoc command to verify that the default boot target is now multi-
user.target.

[student@workstation system-process]$ ansible webservers -u devops -b \
> -a "systemctl get-default"
servera.lab.example.com | CHANGED | rc=0 >>
multi-user.target

Finish

On workstation, run the lab system-process finish script to clean up this exercise.

[student@workstation ~]$ lab system-process finish

This concludes the guided exercise.

RH294-RHEL8.4-en-1-20210818 391

Chapter 9 | Automating Linux Administration Tasks

Managing Storage

Objectives
After completing this section, you should be able to partition storage devices, configure LVM,

format partitions or logical volumes, mount file systems, and add swap files or spaces.

Configuring Storage with Ansible Modules
Red Hat Ansible Automation Platform provides a collection of modules to configure storage

devices on managed hosts. Those modules support partitioning devices, creating logical volumes,

and creating and mounting filesystems.

The parted Module

The parted module supports the partition of block devices. This module includes the

functionality of the parted command, and allows to create partitions with a specific size, flag, and

alignment. The following table lists some of the parameters for the parted module.

Parameter name Description

align Configures partition alignment.

device Block device.

flags Flags for the partition.

number The partition number.

part_end Partition size from the beginning of the disk specified in parted
supported units.

state Creates or removes the partition.

unit Size units for the partition information.

The following example creates a new partition of 10 GB.

- name: New 10GB partition
 parted:
 device: /dev/vdb
 number: 1
 state: present
 part_end: 10GB

Uses vdb as the block device to partition.

Creates the partition number one.

Ensures the partition is available.

392 RH294-RHEL8.4-en-1-20210818

Chapter 9 | Automating Linux Administration Tasks

Sets the partition size to 10 GB.

The lvg and lvol Modules

The lvg and lvol modules support the creation of logical volumes, including the configuration of

physical volumes, and volume groups. The lvg takes as parameters the block devices to configure

as the back end physical volumes for the volume group. The following table lists some of the

parameters for the lvg module.

Parameter name Description

pesize The size of the physical extent. Must be a power of 2, or multiple of

128 KiB.

pvs List of comma-separated devices to be configured as physical volumes

for the volume group.

vg The name of the volume group.

state Creates or removes the volume.

The following task creates a volume group with a specific physical extent size using a block device

as a back end.

- name: Creates a volume group
 lvg:
 vg: vg1
 pvs: /dev/vda1
 pesize: 32

The volume group name is vg1.

Uses /dev/vda1 as the back end physical volume for the volume group.

Sets the physical extent size to 32.

In the following example, if the vg1 volume group is already available with /dev/vdb1 as a

physical volume, the volume is enlarged adding a new physical volume with /dev/vdc1.

- name: Resize a volume group
 lvg:
 vg: vg1
 pvs: /dev/vdb1,/dev/vdc1

The lvol module creates logical volumes, and supports the resizing and shrinking of those

volumes, and the filesystems on top of them. This module also supports the creation of snapshots

for the logical volumes. The following table lists some of the parameters for the lvol module.

Parameter name Description

lv The name of the logical volume.

resizefs Resizes the filesystem with the logical volume.

shrink Enable logical volume shrink.

RH294-RHEL8.4-en-1-20210818 393

Chapter 9 | Automating Linux Administration Tasks

Parameter name Description

size The size of the logical volume.

snapshot The name of the snapshot for the logical volume.

state Create or remove the logical volume.

vg The parent volume group for the logical volume.

The following task creates a logical volume of 2 GB.

- name: Create a logical volume of 2GB
 lvol:
 vg: vg1
 lv: lv1
 size: 2g

The parent volume group name is vg1.

The logical volume name is lv1.

The size of the logical volume is 2 GB.

The filesystem Module

The filesystem module supports both creating and resizing a filesystem. This module supports

filesystem resizing for ext2, ext3, ext4, ext4dev, f2fs, lvm, xfs, and vfat. The following

table lists some of the parameters for the filesystem module.

Parameter name Description

dev Block device name.

fstype Filesystem type.

resizefs Grows the filesystem size to the size of the block device.

The following example creates a filesystem on a partition.

- name: Create an XFS filesystem
 filesystem:
 fstype: xfs
 dev: /dev/vdb1

Uses the XFS filesystem.

Uses the /dev/vdb1 device.

The mount Module

The mount module supports the configuration of mount points on /etc/fstab. The following

table lists some of the parameters for the mount module.

394 RH294-RHEL8.4-en-1-20210818

Chapter 9 | Automating Linux Administration Tasks

Parameter name Description

fstype Filesystem type.

opts Mount options.

path Mount point path.

src Device to be mounted.

state Specify the mount status. If set to mounted, the system mounts the

device, and configures /etc/fstab with that mount information. To

unmount the device and remove it from /etc/fstab use absent.

The following example mounts a device with an specific ID.

- name: Mount device with ID
 mount:
 path: /data
 src: UUID=a8063676-44dd-409a-b584-68be2c9f5570
 fstype: xfs
 state: present

Uses /data as the mount point path.

Mounts the device with the a8063676-44dd-409a-b584-68be2c9f5570 ID.

Uses the XFS filesystem.

Mounts the device and configures /etc/fstab accordingly.

The following example mounts the NFS share available at 172.25.250.100:/share on the /
nfsshare directory at the managed host.

- name: Mount NFS share
 mount:
 path: /nfsshare
 src: 172.25.250.100:/share
 fstype: nfs
 opts: defaults
 dump: '0'
 passno: '0'
 state: mounted

Configuring swap with Modules

Red Hat Ansible Automation Platform does not currently include modules to manage swap

memory. To add swap memory to a system with Ansible with logical volumes you need to create a

new volume group and logical volume with the lvg and lvol modules. When ready, you need to

format as swap the new logical volume using the command module with the mkswap command.

Finally, you need to activate the new swap device using the command module with the swapon
command. Ansible includes the ansible_swaptotal_mb variable which includes the total swap

memory. You can use this variable to trigger swap configuration and enablement when swap

RH294-RHEL8.4-en-1-20210818 395

Chapter 9 | Automating Linux Administration Tasks

memory is low. The following tasks, create a volume group and a logical volume for swap memory,

format that logical volume as swap, and activates it.

- name: Create new swap VG
 lvg:
 vg: vgswap
 pvs: /dev/vda1
 state: present

- name: Create new swap LV
 lvol:
 vg: vgswap
 lv: lvswap
 size: 10g

- name: Format swap LV
 command: mkswap /dev/vgswap/lvswap
 when: ansible_swaptotal_mb < 128

- name: Activate swap LV
 command: swapon /dev/vgswap/lvswap
 when: ansible_swaptotal_mb < 128

Ansible Facts for Storage Configuration
Ansible uses facts to retrieve information to the control node about the configuration of the

managed hosts. You can use the setup Ansible module to retrieve all the Ansible facts for a

managed host.

[user@controlnode ~]$ ansible webservers -m setup
host.lab.example.com | SUCCESS => {
 "ansible_facts": {
...output omitted...
 }

The filter option for the setup module supports fine-grained filtering based on shell-style

wildcards.

The ansible_devices element includes all the storage devices available on the managed host.

The element for each storage device includes additional information like partitions or total size.

The following example displays the ansible_devices element for a managed host with three

storage devices: sr0, vda, and vdb.

[user@controlnode ~]$ ansible webservers -m setup -a 'filter=ansible_devices'
host.lab.example.com | SUCCESS => {
 "ansible_facts": {
 "ansible_devices": {
 "sr0": {
 "holders": [],
 "host": "IDE interface: Intel Corporation 82371SB PIIX3 IDE
 [Natoma/Triton II]",
 "links": {
 "ids": [

396 RH294-RHEL8.4-en-1-20210818

Chapter 9 | Automating Linux Administration Tasks

 "ata-QEMU_DVD-ROM_QM00003"
],
 "labels": [],
 "masters": [],
 "uuids": []
 },
 "model": "QEMU DVD-ROM",
 "partitions": {},
 "removable": "1",
 "rotational": "1",
 "sas_address": null,
 "sas_device_handle": null,
 "scheduler_mode": "mq-deadline",
 "sectors": "2097151",
 "sectorsize": "512",
 "size": "1024.00 MB",
 "support_discard": "0",
 "vendor": "QEMU",
 "virtual": 1
 },
 "vda": {
 "holders": [],
 "host": "SCSI storage controller: Red Hat, Inc. Virtio block
 device",
 "links": {
 "ids": [],
 "labels": [],
 "masters": [],
 "uuids": []
 },
 "model": null,
 "partitions": {
 "vda1": {
 "holders": [],
 "links": {
 "ids": [],
 "labels": [],
 "masters": [],
 "uuids": [
 "a8063676-44dd-409a-b584-68be2c9f5570"
]
 },
 "sectors": "20969439",
 "sectorsize": 512,
 "size": "10.00 GB",
 "start": "2048",
 "uuid": "a8063676-44dd-409a-b584-68be2c9f5570"
 }
 },
 "removable": "0",
 "rotational": "1",
 "sas_address": null,
 "sas_device_handle": null,
 "scheduler_mode": "mq-deadline",
 "sectors": "20971520",

RH294-RHEL8.4-en-1-20210818 397

Chapter 9 | Automating Linux Administration Tasks

 "sectorsize": "512",
 "size": "10.00 GB",
 "support_discard": "0",
 "vendor": "0x1af4",
 "virtual": 1
 },
 "vdb": {
 "holders": [],
 "host": "SCSI storage controller: Red Hat, Inc. Virtio block
 device",
 "links": {
 "ids": [],
 "labels": [],
 "masters": [],
 "uuids": []
 },
 "model": null,
 "partitions": {},
 "removable": "0",
 "rotational": "1",
 "sas_address": null,
 "sas_device_handle": null,
 "scheduler_mode": "mq-deadline",
 "sectors": "10485760",
 "sectorsize": "512",
 "size": "5.00 GB",
 "support_discard": "0",
 "vendor": "0x1af4",
 "virtual": 1
 }
 }
 },
 "changed": false
}

The ansible_device_links element includes all the links available for each storage device.

The following example displays the ansible_device_links element for a managed host with

two storage devices, sr0 and vda1, which have an associated ID.

[user@controlnode ~]$ ansible webservers -m setup -a 'filter=ansible_device_links'
host.lab.example.com | SUCCESS => {
 "ansible_facts": {
 "ansible_device_links": {
 "ids": {
 "sr0": [
 "ata-QEMU_DVD-ROM_QM00003"
]
 },
 "labels": {},
 "masters": {},
 "uuids": {
 "vda1": [
 "a8063676-44dd-409a-b584-68be2c9f5570"
]

398 RH294-RHEL8.4-en-1-20210818

Chapter 9 | Automating Linux Administration Tasks

 }
 }
 },
 "changed": false
}

The ansible_mounts element includes information about the current mounted devices on the

managed host, like the mounted device, the mount point, and the options. The following output

displays the ansible_mounts element for a managed host with one active mount, /dev/vda1
on the / directory.

[user@controlnode ~]$ ansible webservers -m setup -a 'filter=ansible_mounts'
host.lab.example.com | SUCCESS => {
 "ansible_facts": {
 "ansible_mounts": [
 {
 "block_available": 2225732,
 "block_size": 4096,
 "block_total": 2618619,
 "block_used": 392887,
 "device": "/dev/vda1",
 "fstype": "xfs",
 "inode_available": 5196602,
 "inode_total": 5242304,
 "inode_used": 45702,
 "mount": "/",
 "options": "rw,seclabel,relatime,attr2,inode64,noquota",
 "size_available": 9116598272,
 "size_total": 10725863424,
 "uuid": "a8063676-44dd-409a-b584-68be2c9f5570"
 }
]
 },
 "changed": false
}

References

parted - Configure block device partitions — Ansible Documentation

https://docs.ansible.com/ansible/2.9/modules/parted_module.html

lvg - Configure LVM volume groups — Ansible Documentation

https://docs.ansible.com/ansible/2.9/modules/lvg_module.html

lvol - Configure LVM logical volumes — Ansible Documentation

https://docs.ansible.com/ansible/2.9/modules/lvol_module.html

filesystem - Makes a filesystem — Ansible Documentation

https://docs.ansible.com/ansible/2.9/modules/filesystem_module.html

mount - Control active and configured mount points — Ansible Documentation

https://docs.ansible.com/ansible/2.9/modules/mount_module.html

RH294-RHEL8.4-en-1-20210818 399

https://docs.ansible.com/ansible/2.9/modules/parted_module.html
https://docs.ansible.com/ansible/2.9/modules/lvg_module.html
https://docs.ansible.com/ansible/2.9/modules/lvol_module.html
https://docs.ansible.com/ansible/2.9/modules/filesystem_module.html
https://docs.ansible.com/ansible/2.9/modules/mount_module.html

Chapter 9 | Automating Linux Administration Tasks

Guided Exercise

Managing Storage

In this exercise you will partition a new disk, create logical volumes and format them with XFS

file systems, and mount them immediately and automatically at boot time on your managed

hosts.

Outcomes
You should be able to:

• Use the parted module to configure block device partitions.

• Use the lvg module to manage LVM volume groups.

• Use the lvol module to manage LVM logical volumes.

• Use the filesystem module to create file systems.

• Use the mount module to control and configure mount points in /etc/fstab.

Before You Begin
Run the lab system-storage start script from workstation to configure the

environment for the exercise. The script creates the system-storage project directory,

and downloads the Ansible configuration file and the host inventory file needed for the

exercise.

[student@workstation ~]$ lab system-storage start

Instructions

You are responsible for managing a set of web servers. A recommended practice for web server

configuration is to store web server data on a separate partition or logical volume.

You will write a playbook to:

• Manage partitions of the /dev/vdb device

• Manage a volume group named apache-vg for web server data

• Create two logical volumes named content-lv and logs-lv, both backed by the apache-vg
volume group

• Create an XFS file system on both logical volumes

• Mount the content-lv logical volume at /var/www

• Mount the logs-lv logical volume at /var/log/httpd

If the storage requirements for the web server change, update the appropriate playbook variables

and re-execute the playbook. The playbook should be idempotent.

400 RH294-RHEL8.4-en-1-20210818

Chapter 9 | Automating Linux Administration Tasks

 1. As the student user on workstation, change to the /home/student/system-
storage working directory.

[student@workstation ~]$ cd ~/system-storage
[student@workstation system-storage]$

 2. Review the skeleton playbook file storage.yml and the associated variables file

storage_vars.yml in the project directory. Execute the playbook.

2.1. Review the storage.yml playbook.

- name: Ensure Apache Storage Configuration
 hosts: webservers
 vars_files:
 - storage_vars.yml
 tasks:
 - name: Correct partitions exist on /dev/vdb
 debug:
 msg: TODO
 loop: "{{ partitions }}"

 - name: Ensure Volume Groups Exist
 debug:
 msg: TODO
 loop: "{{ volume_groups }}"

 - name: Create each Logical Volume (LV) if needed
 debug:
 msg: TODO
 loop: "{{ logical_volumes }}"
 when: true

 - name: Ensure XFS Filesystem exists on each LV
 debug:
 msg: TODO
 loop: "{{ logical_volumes }}"

 - name: Ensure the correct capacity for each LV
 debug:
 msg: TODO
 loop: "{{ logical_volumes }}"

 - name: Each Logical Volume is mounted
 debug:
 msg: TODO
 loop: "{{ logical_volumes }}"

The name of each task acts as an outline of the intended procedure to implement. In

later steps, you will update and change these six tasks.

2.2. Review the storage_vars.yml variables file.

RH294-RHEL8.4-en-1-20210818 401

Chapter 9 | Automating Linux Administration Tasks

partitions:
 - number: 1
 start: 1MiB
 end: 257MiB

volume_groups:
 - name: apache-vg
 devices: /dev/vdb1

logical_volumes:
 - name: content-lv
 size: 64M
 vgroup: apache-vg
 mount_path: /var/www

 - name: logs-lv
 size: 128M
 vgroup: apache-vg
 mount_path: /var/log/httpd

This file describes the intended structure of partitions, volume groups, and logical

volumes on each web server. The first partition begins at an offset of 1 MiB from the

beginning of the /dev/vdb device, and ends at an offset of 257 MiB, for a total size

of 256 MiB.

Each web server has one volume group, named apache-vg, containing the first

partition of the /dev/vdb device.

Each web server has two logical volumes. The first logical volume is named

content-lv, with a size of 64 MiB, attached to the apache-vg volume group, and

mounted at /var/www. The second logical volume is named logs-lv, with a size

of 128 MiB, attached to the apache-vg volume group, and mounted at /var/log/
httpd.

Note

The apache-vg volume group has a capacity of 256 MiB, because it is backed

by the /dev/vdb1 partition. It provides enough capacity for both of the logical

volumes.

2.3. Execute the storage.yml playbook.

[student@workstation system-storage]$ ansible-playbook storage.yml

PLAY [Ensure Apache Storage Configuration] ***********************************

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

TASK [Correct partitions exist on /dev/vdb] **********************************
ok: [servera.lab.example.com] => (item={u'start': u'1MiB', u'end': u'257MiB',
 u'number': 1}) => {

402 RH294-RHEL8.4-en-1-20210818

Chapter 9 | Automating Linux Administration Tasks

 "msg": "TODO"
}

...output omitted...

TASK [Each Logical Volume is mounted] **
ok: [servera.lab.example.com] => (item={u'vgroup': u'apache-vg', u'size': u'64M',
 u'mount_path': u'/var/www', u'name': u'content-lv'}) => {
 "msg": "TODO"
}
ok: [servera.lab.example.com] => (item={u'vgroup': u'apache-vg', u'size': u'128M',
 u'mount_path': u'/var/log/httpd', u'name': u'logs-lv'}) => {
 "msg": "TODO"
}

PLAY RECAP ***
servera.lab.example.com : ok=7 changed=0 unreachable=0 failed=0

 3. Change the first task to use the parted module to configure a partition for each loop item.

Each item describes an intended partition of the /dev/vdb device on each web server:

number

The partition number. Use this as the value of the number keyword for the parted
module.

start

The start of the partition, as an offset from the beginning of the block device. Use this

as the value of the part_start keyword for the parted module.

end

The end of the partition, as an offset from the beginning of the block device. Use this

as the value of the part_end keyword for the parted module.

The content of the first task should be:

 - name: Correct partitions exist on /dev/vdb
 parted:
 device: /dev/vdb
 state: present
 number: "{{ item.number }}"
 part_start: "{{ item.start }}"
 part_end: "{{ item.end }}"
 loop: "{{ partitions }}"

RH294-RHEL8.4-en-1-20210818 403

Chapter 9 | Automating Linux Administration Tasks

 4. Change the second task of the play to use the lvg module to configure a volume group for

each loop item. Each item of the volume_groups variable describes a volume group that

should exist on each web server:

name

The name of the volume group. Use this as the value of the vg keyword for the lvg
module.

devices

A comma-separated list of devices or partitions that form the volume group. Use this

as the value of the pvs keyword for the lvg module.

The content of the second task should be:

 - name: Ensure Volume Groups Exist
 lvg:
 vg: "{{ item.name }}"
 pvs: "{{ item.devices }}"
 loop: "{{ volume_groups }}"

 5. Change the third task of the play to use the lvol module to create a logical volume for

each item. Use the item's keywords to create the new logical volume:

name

The name of the logical volume. Use this as the value of the lv keyword for the lvol
module.

vgroup

The name of the volume group that provides storage for the logical volume.

size

The size of the logical volume. The value of this keyword is any acceptable value for the

-L option of the lvcreate command.

Only execute the task if a logical volume does not already exist. Update the when
statement to check that a logical volume does not exist with a name that matches the value

of the item's name keyword.

5.1. Change the third task to use the lvol module. Set the volume group name, logical

volume name, and logical volume size using each item's keywords. The content of the

third task is now:

 - name: Create each Logical Volume (LV) if needed
 lvol:
 vg: "{{ item.vgroup }}"
 lv: "{{ item.name }}"
 size: "{{ item.size }}"
 loop: "{{ logical_volumes }}"
 when: true

5.2. The Ansible fact ansible_lvm contains information about Logical Volume

Management objects on each hosts. Use an ad hoc command to see the current set

of logical volumes on the remote host:

404 RH294-RHEL8.4-en-1-20210818

Chapter 9 | Automating Linux Administration Tasks

[student@workstation system-storage]$ ansible all -m setup -a \
> "filter=ansible_lvm"
servera.lab.example.com | SUCCESS => {
 "ansible_facts": {
 "ansible_lvm": {
 "lvs": {},
 "pvs": {},
 "vgs": {}
 },
 "discovered_interpreter_python": "/usr/libexec/platform-python"
 },
 "changed": false
}

The value of the lvs keyword indicates that there are no logical volumes on the

remote host.

5.3. Execute the playbook to create the logical volumes on the remote host.

[student@workstation system-storage]$ ansible-playbook storage.yml

PLAY [Ensure Apache Storage Configuration] ***********************************

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

TASK [Correct partitions exist on /dev/vdb] **********************************
changed: [servera.lab.example.com] => (item={...output omitted...})

TASK [Ensure Volume Groups Exist] **
changed: [servera.lab.example.com] => (item={...output omitted...})

TASK [Create each Logical Volume (LV) if needed] *****************************
changed: [servera.lab.example.com] => (item={...output omitted...})
changed: [servera.lab.example.com] => (item={...output omitted...})

TASK [Ensure XFS Filesystem exists on each LV] *******************************
ok: [servera.lab.example.com] => (item={...output omitted...}) => {
 "msg": "TODO"
}
...output omitted...
PLAY RECAP ***
servera.lab.example.com : ok=7 changed=3 unreachable=0 failed=0

5.4. Execute another ad hoc command to see the structure of the ansible_lvm variable

when logical volumes exists on the remote host.

[student@workstation system-storage]$ ansible all -m setup -a \
> "filter=ansible_lvm"
servera.lab.example.com | SUCCESS => {
 "ansible_facts": {
 "ansible_lvm": {
 "lvs": {

RH294-RHEL8.4-en-1-20210818 405

Chapter 9 | Automating Linux Administration Tasks

 "content-lv": {
 "size_g": "0.06",
 "vg": "apache-vg"
 },
 "logs-lv": {
 "size_g": "0.12",
 "vg": "apache-vg"
 }
 },
 "pvs": {
 "/dev/vdb1": {
 "free_g": "0.06",
 "size_g": "0.25",
 "vg": "apache-vg"
 }
 },
 "vgs": {
 "apache-vg": {
 "free_g": "0.06",
 "num_lvs": "2",
 "num_pvs": "1",
 "size_g": "0.25"
 }
 }
 }
 },
 "changed": false
}

The value of the lvs keyword is a key-value pair data structure. The keys of

this structure are the names of any logical volumes on the host. This indicates

that both the content-lv and logs-lv logical volumes exist. For each logical

volume, the corresponding volume group is provided by the vg keyword.

The pvs keyword contains information about physical volumes on the host. The

information indicates that the /dev/vdb1 partition belongs to the apache-vg
volume group.

The vgs keyword contains information about volume groups on the host.

5.5. Update the when statement to check that a logical volume does not exist with a name

that matches the value of the item's name keyword. The content of the third task is

now:

 - name: Create each Logical Volume (LV) if needed
 lvol:
 vg: "{{ item.vgroup }}"
 lv: "{{ item.name }}"
 size: "{{ item.size }}"
 loop: "{{ logical_volumes }}"
 when: item.name not in ansible_lvm["lvs"]

 6. Change the fourth task to use the filesystem module. Configure the task to ensure

that each logical volume is formatted as an XFS file system. Recall that a logical volume is

406 RH294-RHEL8.4-en-1-20210818

Chapter 9 | Automating Linux Administration Tasks

associated with the logical device /dev/<volume group name>/<logical volume
name>.

The content of the fourth task should be:

 - name: Ensure XFS Filesystem exists on each LV
 filesystem:
 dev: "/dev/{{ item.vgroup }}/{{ item.name }}"
 fstype: xfs
 loop: "{{ logical_volumes }}"

 7. Configure the fifth task to ensure each logical volume has the correct storage capacity. If

the logical volume increases in capacity, be sure to force the expansion of the volume's file

system.

Warning

If a logical volume needs to decrease in capacity, this task will fail because an XFS

file system does not support shrinking capacity.

The content of the fifth task should be:

 - name: Ensure the correct capacity for each LV
 lvol:
 vg: "{{ item.vgroup }}"
 lv: "{{ item.name }}"
 size: "{{ item.size }}"
 resizefs: yes
 force: yes
 loop: "{{ logical_volumes }}"

 8. Use the mount module in the sixth task to ensure that each logical volume is mounted at

the corresponding mount path and persists after a reboot.

The content of the sixth task should be:

 - name: Each Logical Volume is mounted
 mount:
 path: "{{ item.mount_path }}"
 src: "/dev/{{ item.vgroup }}/{{ item.name }}"
 fstype: xfs
 opts: noatime
 state: mounted
 loop: "{{ logical_volumes }}"

 9. Review the completed storage.yml playbook. Execute the playbook and verify that each

logical volume is mounted.

9.1. Review the playbook:

- name: Ensure Apache Storage Configuration
 hosts: webservers

RH294-RHEL8.4-en-1-20210818 407

Chapter 9 | Automating Linux Administration Tasks

 vars_files:
 - storage_vars.yml
 tasks:
 - name: Correct partitions exist on /dev/vdb
 parted:
 device: /dev/vdb
 state: present
 number: "{{ item.number }}"
 part_start: "{{ item.start }}"
 part_end: "{{ item.end }}"
 loop: "{{ partitions }}"

 - name: Ensure Volume Groups Exist
 lvg:
 vg: "{{ item.name }}"
 pvs: "{{ item.devices }}"
 loop: "{{ volume_groups }}"

 - name: Create each Logical Volume (LV) if needed
 lvol:
 vg: "{{ item.vgroup }}"
 lv: "{{ item.name }}"
 size: "{{ item.size }}"
 loop: "{{ logical_volumes }}"
 when: item.name not in ansible_lvm["lvs"]

 - name: Ensure XFS Filesystem exists on each LV
 filesystem:
 dev: "/dev/{{ item.vgroup }}/{{ item.name }}"
 fstype: xfs
 loop: "{{ logical_volumes }}"

 - name: Ensure the correct capacity for each LV
 lvol:
 vg: "{{ item.vgroup }}"
 lv: "{{ item.name }}"
 size: "{{ item.size }}"
 resizefs: yes
 force: yes
 loop: "{{ logical_volumes }}"

 - name: Each Logical Volume is mounted
 mount:
 path: "{{ item.mount_path }}"
 src: "/dev/{{ item.vgroup }}/{{ item.name }}"
 fstype: xfs
 opts: noatime
 state: mounted
 loop: "{{ logical_volumes }}"

9.2. Execute the playbook.

408 RH294-RHEL8.4-en-1-20210818

Chapter 9 | Automating Linux Administration Tasks

[student@workstation system-storage]$ ansible-playbook storage.yml

PLAY [Ensure Apache Storage Configuration] ***********************************

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

TASK [Correct partitions exist on /dev/vdb] **********************************
ok: [servera.lab.example.com] => (item={...output omitted...})

TASK [Ensure Volume Groups Exist] **
ok: [servera.lab.example.com] => (item={...output omitted...})
...output omitted...

TASK [Create each Logical Volume (LV) if needed] *****************************
skipping: [servera.lab.example.com] => (item={...output omitted...})
skipping: [servera.lab.example.com] => (item={...output omitted...})

TASK [Ensure XFS Filesystem exists on each LV] *******************************
changed: [servera.lab.example.com] => (item={...output omitted...})
changed: [servera.lab.example.com] => (item={...output omitted...})

TASK [Ensure the correct capacity for each LV] *******************************
ok: [servera.lab.example.com] => (item={...output omitted...})
ok: [servera.lab.example.com] => (item={...output omitted...})

TASK [Each Logical Volume is mounted] **
changed: [servera.lab.example.com] => (item={...output omitted...})
changed: [servera.lab.example.com] => (item={...output omitted...})

PLAY RECAP ***
servera.lab.example.com : ok=6 changed=2 unreachable=0 failed=0
skipped=1 rescued=0 ignored=0

A task is skipped during execution because the playbook was previously executed

with the same variable values. The logical volumes did not need to be created.

9.3. Use an Ansible ad hoc command to run the lsblk command on the remote host. The

output indicates the mount points for the logical volumes.

[student@workstation system-storage]$ ansible all -a lsblk
servera.lab.example.com | CHANGED | rc=0 >>
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sr0 11:0 1 1024M 0 rom
vda 252:0 0 10G 0 disk
└─vda1 252:1 0 10G 0 part /
vdb 252:16 0 1G 0 disk
└─vdb1 252:17 0 256M 0 part
 ├─apache--vg-content--lv 253:0 0 64M 0 lvm /var/www
 └─apache--vg-logs--lv 253:1 0 128M 0 lvm /var/log/httpd

RH294-RHEL8.4-en-1-20210818 409

Chapter 9 | Automating Linux Administration Tasks

 10. Increase the capacity of the content-lv logical volume to 128 MiB, and the logs-lv
logical volume to 256 MiB. This requires increasing the capacity of the apache-vg volume

group.

Create a new partition with a capacity of 256 MiB and add it to the apache-vg volume

group.

10.1. Edit the partitions variable definition in the storage_vars.yml file to add a

second partition to the /dev/vdb device. The content of the partitions variable

should be:

partitions:
 - number: 1
 start: 1MiB
 end: 257MiB
 - number: 2
 start: 257MiB
 end: 513MiB

10.2. Edit the volume_groups variable definition in the storage_vars.yml file. Add

the second partition to list of devices backing the volume group. The content of the

volume_groups variable should be:

volume_groups:
 - name: apache-vg
 devices: /dev/vdb1,/dev/vdb2

10.3. Double the capacity of each logical volume defined in the storage_vars.yml file.

The content of the logical_volumes variable should be:

logical_volumes:
 - name: content-lv
 size: 128M
 vgroup: apache-vg
 mount_path: /var/www

 - name: logs-lv
 size: 256M
 vgroup: apache-vg
 mount_path: /var/log/httpd

10.4. Execute the playbook. Verify the new capacity of each logical volume.

[student@workstation system-storage]$ ansible-playbook storage.yml

PLAY [Ensure Apache Storage Configuration] ***********************************

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

TASK [Correct partitions exist on /dev/vdb] **********************************
ok: [servera.lab.example.com] => (item={...output omitted...})
changed: [servera.lab.example.com] => (item={u'start': u'257MiB', u'end':
 u'513MiB', u'number': 2})

410 RH294-RHEL8.4-en-1-20210818

Chapter 9 | Automating Linux Administration Tasks

TASK [Ensure Volume Groups Exist] **
changed: [servera.lab.example.com] => (item={u'name': u'apache-vg', u'devices':
 u'/dev/vdb1,/dev/vdb2'})
...output omitted...

TASK [Create each Logical Volume (LV) if needed] *****************************
skipping: [servera.lab.example.com] => (item={u'vgroup': u'apache-vg', u'size':
 u'128M', u'mount_path': u'/var/www', u'name': u'content-lv'})
skipping: [servera.lab.example.com] => (item={u'vgroup': u'apache-vg', u'size':
 u'256M', u'mount_path': u'/var/log/httpd', u'name': u'logs-lv'})

TASK [Ensure XFS Filesystem exists on each LV] *******************************
ok: [servera.lab.example.com] => (item={...output omitted...})
ok: [servera.lab.example.com] => (item={...output omitted...})

TASK [Ensure the correct capacity for each LV] *******************************
changed: [servera.lab.example.com] => (item={u'vgroup': u'apache-vg', u'size':
 u'128M', u'mount_path': u'/var/www', u'name': u'content-lv'})
changed: [servera.lab.example.com] => (item={u'vgroup': u'apache-vg', u'size':
 u'256M', u'mount_path': u'/var/log/httpd', u'name': u'logs-lv'})

TASK [Each Logical Volume is mounted] **
ok: [servera.lab.example.com] => (item={...output omitted...})
ok: [servera.lab.example.com] => (item={...output omitted...})

PLAY RECAP ***
servera.lab.example.com : ok=6 changed=3 unreachable=0 failed=0
skipped=1 rescued=0 ignored=0

The output indicates changes to the partitions and volume group on the remote host,

and that both logical volumes were resized.

10.5. Use an Ansible ad hoc command to run the lsblk command on the remote host.

[student@workstation system-storage]$ ansible all -a lsblk
servera.lab.example.com | CHANGED | rc=0 >>
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sr0 11:0 1 1024M 0 rom
vda 252:0 0 10G 0 disk
└─vda1 252:1 0 10G 0 part /
vdb 252:16 0 1G 0 disk
├─vdb1 252:17 0 256M 0 part
│ ├─apache--vg-content--lv 253:0 0 128M 0 lvm /var/www
│ └─apache--vg-logs--lv 253:1 0 256M 0 lvm /var/log/httpd
└─vdb2 252:18 0 256M 0 part
 ├─apache--vg-content--lv 253:0 0 128M 0 lvm /var/www
 └─apache--vg-logs--lv 253:1 0 256M 0 lvm /var/log/httpd

The output indicates that each logical volume is the correct size and mounted at the

correct directory. Two entries exists for each logical volume because files stored on

the logical volume may be physically located on either partition (/dev/vdb1 or /
dev/vdb2).

RH294-RHEL8.4-en-1-20210818 411

Chapter 9 | Automating Linux Administration Tasks

Finish

Run the lab system-storage finish command to cleanup the managed host.

[student@workstation ~]$ lab system-storage finish

This concludes the guided exercise.

412 RH294-RHEL8.4-en-1-20210818

Chapter 9 | Automating Linux Administration Tasks

Managing Network Configuration

Objectives
After completing this section, you should be able to configure network settings and name

resolution on managed hosts, and collect network-related Ansible facts.

Configuring Networking with the Network System Role
Red Hat Enterprise Linux 8 includes a collection of system Ansible roles to configure RHEL-based

systems. The rhel-system-roles package installs those system roles which, for example, support

the configuration of time synchronization or networking. You can list the currently installed system

roles with the ansible-galaxy list command.

[user@controlnode ~]$ ansible-galaxy list
- linux-system-roles.kdump, (unknown version)
- linux-system-roles.network, (unknown version)
- linux-system-roles.postfix, (unknown version)
- linux-system-roles.selinux, (unknown version)
- linux-system-roles.timesync, (unknown version)
- rhel-system-roles.kdump, (unknown version)
- rhel-system-roles.network, (unknown version)
- rhel-system-roles.postfix, (unknown version)
- rhel-system-roles.selinux, (unknown version)
- rhel-system-roles.timesync, (unknown version)

Roles are located in the /usr/share/ansible/roles directory. A role beginning with linux-
system-roles is a symlink to the matching rhel-system-roles role.

The network system role supports the configuration of networking on managed hosts. This role

supports the configuration of ethernet interfaces, bridge interfaces, bonded interfaces, VLAN

interfaces, MacVLAN interfaces, and Infiniband interfaces. The network role is configured with two

variables, network_provider and network_connections.

network_provider: nm
network_connections:
 - name: ens4
 type: ethernet
 ip:
 address:
 - 172.25.250.30/24

The network_provider variable configures the back end provider, either nm (NetworkManager)

or initscripts. On Red Hat Enterprise Linux 8, the network role uses the nm
(NetworkManager) as a default networking provider. The initscripts provider is used for

RHEL 6 systems, and requires the network service to be available. The network_connections
variable configures the different connections, specified as a list of dictionaries, using the interface

name as the connection name.

RH294-RHEL8.4-en-1-20210818 413

Chapter 9 | Automating Linux Administration Tasks

The following table lists the options for the network_connections variable.

Option name Description

name Identifies the connection profile.

state The runtime state of a connection profile.

Either up, if the connection profile is active, or

down if it is not.

persistent_state Identifies if a connection profile is persistent.

Either present if the connection profile is

persistent, or absent if it is not.

type Identifies the connection type. Valid values

are ethernet, bridge, bond, team, vlan,

macvlan, and infiniband.

autoconnect Determines if the connection automatically

starts.

mac Restricts the connection to be used on

devices with a specific MAC address.

interface_name Restricts the connection profile to be used by

a specific interface.

zone Configures the FirewallD zone for the

interface.

ip Determines the IP configuration for the

connection. Supports options like for example

address, to specify a static IP address, or

dns to configure a DNS server.

The following example uses some of the previous options:

network_connections:
- name: eth0
 persistent_state: present
 type: ethernet
 autoconnect: yes
 mac: 00:00:5e:00:53:5d
 ip:
 address:
 - 172.25.250.40/24
 zone: external

Uses eth0 as the connection name.

Makes the connection persistent. This is the default value.

Sets the connection type to ethernet.

Automatically starts the connection at boot. This is the default value.

414 RH294-RHEL8.4-en-1-20210818

Chapter 9 | Automating Linux Administration Tasks

Restricts the connection usage to a device with that MAC address.

Configures the 172.25.250.40/24 IP address for the connection.

Configures the external zone as the FirewallD zone of the connection.

To use the network system role, you need to specify the role name under the roles clause in your

playbook as follows:

- name: NIC Configuration
 hosts: webservers
 vars:
 network_connections:
 - name: ens4
 type: ethernet
 ip:
 address:
 - 172.25.250.30/24
 roles:
 - rhel-system-roles.network

You can specify variables for the network role with the vars clause, as in the previous example,

or create a YAML file with those variables under the group_vars or host_vars directories,

depending on your use case.

Configuring Networking with Modules
As an alternative to the network system role, Ansible includes modules which support the

networking configuration on a system. The nmcli module supports the management of both

network connections and devices. This module supports the configuration of both teaming and

bonding for network interfaces, as well as IPv4 and IPv6 addressing.

The following table lists some of the parameters for the nmcli module.

Parameter name Description

conn_name Configures the connection name.

autoconnect Enables automatic connection activation on

boot.

dns4 Configures DNS servers for IPv4 (up to 3).

gw4 Configures the IPv4 gateway for the

interface.

ifname Interface to be bound to the connection.

ip4 IP address (IPv4) for the interface.

state Enables or disables the network interface.

type Type of device or network connection.

The following example configures a static IP configuration for a network connection and device.

RH294-RHEL8.4-en-1-20210818 415

Chapter 9 | Automating Linux Administration Tasks

- name: NIC configuration
 nmcli:
 conn_name: ens4-conn
 ifname: ens4
 type: ethernet
 ip4: 172.25.250.30/24
 gw4: 172.25.250.1
 state: present

Configures ens4-conn as the connection name.

Binds the ens4-conn connection to the ens4 network interface.

Configures the network interface as ethernet.

Configures the 172.25.250.30/24 IP address on the interface.

Sets the gateway to 172.25.250.1.

Makes sure the connection is available.

The hostname module sets the hostname for a managed host without modifying the /etc/
hosts file. This module uses the name parameter to specify the new hostname, as on the task

shown below:

- name: Change hostname
 hostname:
 name: managedhost1

The firewalld module supports the management of FirewallD on managed hosts. This modules

supports the configuration of FirewallD rules for services and ports. It also supports the zone

management, including the association or network interfaces and rules to a specific zone.

The following task shows how to create a FirewallD rule for the http service on the default zone

(public). The task configures the rule as permanent, and makes sure it is active.

- name: Enabling http rule
 firewalld:
 service: http
 permanent: yes
 state: enabled

This task configures the eth0 in the external FirewallD zone.

- name: Moving eth0 to external
 firewalld:
 zone: external
 interface: eth0
 permanent: yes
 state: enabled

The following table lists some of the parameters for the firewalld module.

416 RH294-RHEL8.4-en-1-20210818

Chapter 9 | Automating Linux Administration Tasks

Parameter name Description

interface The interface name to manage with FirewallD.

port Port or port range. Uses the port/protocol or

port-port/protocol format.

rich_rule Rich rule for FirewallD.

service Service name to manage with FirewallD.

source Source network to manage with FirewallD.

zone The FirewallD zone.

state Enables or disables a FirewallD configuration.

type Type of device or network connection.

Ansible Facts for Network Configuration
Ansible uses facts to retrieve information to the control node about the configuration of the

managed hosts. You can use the setup Ansible module to retrieve all the Ansible facts for a

managed host.

[user@controlnode ~]$ ansible webservers -m setup
host.lab.example.com | SUCCESS => {
 "ansible_facts": {
...output omitted...
 }

All network interfaces for a managed host are available under the ansible_interfaces
element. You can use the gather_subset=network parameter for the setup module to restrict

the facts to those included in the network subset. The filter option for the setup module

supports fine-grained filtering based on shell-style wildcards.

[user@controlnode ~]$ ansible webservers -m setup \
> -a 'gather_subset=network filter=ansible_interfaces'
host.lab.example.com | SUCCESS => {
 "ansible_facts": {
 "ansible_interfaces": [
 "ens4",
 "lo",
 "ens3"
]
 },
 "changed": false
}

The previous command shows that three network interfaces are available on the managed host,

host.lab.example.com: lo, ens3, and ens4.

RH294-RHEL8.4-en-1-20210818 417

Chapter 9 | Automating Linux Administration Tasks

You can retrieve additional information about the configuration for a network interface with the

ansible_NIC_name filter for the setup module. For example, to retrieve the configuration for

the ens4 network interface, use the ansible_ens4 filter.

[user@controlnode ~]$ ansible webservers -m setup \
> -a 'gather_subset=network filter=ansible_ens4'
host.lab.example.com | SUCCESS => {
 "ansible_facts": {
 "ansible_ens4": {
 "active": true,
 "device": "ens4",
 "features": {
 },
 "hw_timestamp_filters": [],
 "ipv4": {
 "address": "172.25.250.30",
 "broadcast": "172.25.250.255",
 "netmask": "255.255.255.0",
 "network": "172.25.250.0"
 },
 "ipv6": [
 {
 "address": "fe80::5b42:8c94:1fc7:40ae",
 "prefix": "64",
 "scope": "link"
 }
],
 "macaddress": "52:54:00:01:fa:0a",
 "module": "virtio_net",
 "mtu": 1500,
 "pciid": "virtio1",
 "promisc": false,
 "speed": -1,
 "timestamping": [
 "tx_software",
 "rx_software",
 "software"
],
 "type": "ether"
 }
 },
 "changed": false
}

The previous command displays additional configuration details like the IP address configuration

both for IPv4 and IPv6, the associated device, and the type.

The following table lists some of the available facts for the network subset.

Fact name Description

ansible_dns Includes the DNS server(s) IP address, and

the search domain(s).

418 RH294-RHEL8.4-en-1-20210818

Chapter 9 | Automating Linux Administration Tasks

Fact name Description

ansible_domain Includes the subdomain for the managed

host.

ansible_all_ipv4_addresses Includes all the IPv4 addresses configured on

the managed host.

ansible_all_ipv6_addresses Includes all the IPv6 addresses configured on

the managed host.

ansible_fqdn Includes the FQDN for the managed host.

ansible_hostname Includes the unqualified hostname, the string

in the FQDN before the first period.

ansible_nodename Includes the hostname for the managed host

as reported by the system.

Note

Ansible also provides the inventory_hostname variable which includes the

hostname as configured in Ansible's inventory file.

References

Knowledgebase: Red Hat Enterprise Linux (RHEL) System Roles

https://access.redhat.com/articles/3050101

Linux System Roles

https://linux-system-roles.github.io/

nmcli Module Documentation

https://docs.ansible.com/ansible/2.9/modules/nmcli_module.html

hostname Module Documentation

https://docs.ansible.com/ansible/2.9/modules/hostname_module.html

firewalld Module Documentation

https://docs.ansible.com/ansible/2.9/modules/firewalld_module.html

RH294-RHEL8.4-en-1-20210818 419

https://access.redhat.com/articles/3050101
https://linux-system-roles.github.io/
https://docs.ansible.com/ansible/2.9/modules/nmcli_module.html
https://docs.ansible.com/ansible/2.9/modules/hostname_module.html
https://docs.ansible.com/ansible/2.9/modules/firewalld_module.html

Chapter 9 | Automating Linux Administration Tasks

Guided Exercise

Managing Network Configuration

In this exercise, you will adjust the network configuration of a managed host and collect

information about it on a file created by a template.

Outcomes
You should be able to configure network settings and name resolution on managed hosts,

and collect network-related Ansible facts.

Before You Begin
Run the lab system-network start script from workstation to configure the

environment for the exercise. The script creates the system-network working directory,

and downloads the Ansible configuration file and the host inventory file needed for the

exercise.

[student@workstation ~]$ lab system-network start

Instructions

 1. Review the inventory file at the /home/student/system-network directory.

1.1. As the student user on workstation, change to the /home/student/system-
network working directory.

[student@workstation ~]$ cd ~/system-network
[student@workstation system-network]$

1.2. Verify that servera.lab.example.com is part of the webservers host group.

This server has a spare network interface.

[student@workstation system-network]$ cat inventory
[webservers]
servera.lab.example.com

 2. Use the ansible-galaxy command to verify that system roles are available. If no roles

are available, you need to install the rhel-system-roles package.

[student@workstation system-network]$ ansible-galaxy list
/usr/share/ansible/roles
- linux-system-roles.kdump, (unknown version)
- linux-system-roles.network, (unknown version)
- linux-system-roles.postfix, (unknown version)
- linux-system-roles.selinux, (unknown version)
- linux-system-roles.timesync, (unknown version)
- rhel-system-roles.kdump, (unknown version)

420 RH294-RHEL8.4-en-1-20210818

Chapter 9 | Automating Linux Administration Tasks

- rhel-system-roles.network, (unknown version)
- rhel-system-roles.postfix, (unknown version)
- rhel-system-roles.selinux, (unknown version)
- rhel-system-roles.timesync, (unknown version)
/etc/ansible/roles
 [WARNING]: - the configured path /home/student/.ansible/roles does not exist.

 3. Create a playbook which uses the linux-system-roles.network role to configure the spare

network interface eth1 on servera.lab.example.com with the 172.25.250.30 IP

address.

3.1. Create a playbook, playbook.yml, with one play that targets the webservers host

group. Include the rhel-system-roles.network role in the roles section of the

play.

- name: NIC Configuration
 hosts: webservers

 roles:
 - rhel-system-roles.network

3.2. Review the Role Variables section of the README.md file for the rhel-system-
roles.network role. Determine the role variables to configure the eth1 network

interface with the 172.25.250.30 IP address.

[student@workstation system-network]$ cat \
> /usr/share/doc/rhel-system-roles/network/README.md
...output omitted...
Setting the IP configuration:
...output omitted...

3.3. Create the group_vars/webservers subdirectory.

[student@workstation system-network]$ mkdir -pv group_vars/webservers
mkdir: created directory 'group_vars'
mkdir: created directory 'group_vars/webservers'

3.4. Create a new file network.yml to define role variables. Because these variable

values apply to the hosts on the webservers host group, you need to create that file

in the group_vars/webservers directory. Add variable definitions to support the

configuration of the eth1 network interface. The file now contains:

network_connections:
 - name: eth1
 type: ethernet
 ip:
 address:
 - 172.25.250.30/24

3.5. Run the playbook to configure the secondary network interface on servera.

RH294-RHEL8.4-en-1-20210818 421

Chapter 9 | Automating Linux Administration Tasks

[student@workstation system-network]$ ansible-playbook playbook.yml

PLAY [NIC Configuration] ***

TASK [Gathering Facts] ***
ok: [servera.lab.example.com]

TASK [rhel-system-roles.network : Check which services are running] ************
ok: [servera.lab.example.com]

TASK [rhel-system-roles.network : Check which packages are installed] **********
ok: [servera.lab.example.com]

TASK [rhel-system-roles.network : Print network provider] **********************
ok: [servera.lab.example.com] => {
 "msg": "Using network provider: nm"
}

TASK [rhel-system-roles.network : Install packages] ****************************
skipping: [servera.lab.example.com]

TASK [rhel-system-roles.network : Enable network service] **********************
ok: [servera.lab.example.com]

TASK [rhel-system-roles.network : Configure networking connection profiles] ****
...output omitted...

changed: [servera.lab.example.com]

TASK [rhel-system-roles.network : Re-test connectivity] ************************
ok: [servera.lab.example.com]

PLAY RECAP ***
servera.lab.example.com : ok=7 changed=1 unreachable=0 failed=0
skipped=1 rescued=0 ignored=0

 4. Use the Ansible setup module on an Ansible adhoc command to verify that the eth1
network interface configuration on servera is correct.

4.1. Use the setup Ansible module to list all the Ansible facts available

for servera. Filter results for the eth1 network interface with the -a
'filter=filter_string' option. Verify that the eth1 network interface uses the

172.25.250.30 IP address. It may take up to a minute to configure the IP address.

[student@workstation system-network]$ ansible webservers -m setup \
> -a 'filter=ansible_eth1'
servera.lab.example.com | SUCCESS => {
 "ansible_facts": {
 "ansible_eth1": {
...output omitted...
 "ipv4": {
 "address": "172.25.250.30",
 "broadcast": "172.25.250.255",

422 RH294-RHEL8.4-en-1-20210818

Chapter 9 | Automating Linux Administration Tasks

 "netmask": "255.255.255.0",
 "network": "172.25.250.0"
 },
...output omitted...

Finish

On workstation, run the lab system-network finish script to clean up the resources

created in this exercise.

[student@workstation ~]$ lab system-network finish

This concludes the guided exercise.

RH294-RHEL8.4-en-1-20210818 423

Chapter 9 | Automating Linux Administration Tasks

Lab

Automating Linux Administration Tasks

Performance Checklist
In this lab, you will configure and perform administrative tasks on managed hosts using a

playbook.

Outcomes
You should be able to create playbooks for configuring on a managed host a software

repository, users and groups, logical volumes, cron jobs, and additional network interfaces.

Before You Begin
On workstation, run the lab start script to confirm that the environment is ready for

the lab to begin. The script creates the working directory, called system-review, and

populates it with an Ansible configuration file, a host inventory, and lab files.

[student@workstation ~]$ lab system-review start

Instructions

1. Create and execute on the webservers host group a playbook which configures the Yum

internal repository located at http://materials.example.com/yum/repository,

and installs the example-motd package available in that repository. All RPM packages are

signed with an organizational GPG key pair. The GPG public key is available at http://
materials.example.com/yum/repository/RPM-GPG-KEY-example.

2. Create and execute on the webservers host group a playbook which creates the webadmin
user group, and add two users to that group, ops1 and ops2.

3. Create and execute on the webservers host group a playbook that uses the /dev/vdb
device to create a volume group named apache-vg. This playbook also creates two logical

volumes, named content-lv and logs-lv, both backed by the apache-vg volume group.

Finally, it creates an XFS file system on each logical volume, and mounts the content-
lv logical volume at /var/www, and the logs-lv logical volume at /var/log/httpd.

The lab script populates two files in ~/system-review, storage.yml which provides an

initial skeleton for the playbook, and storage_vars.yml which provides values to all the

variables required by the different modules.

4. Create and execute on the webservers host group a playbook which uses the cron module

to create the /etc/cron.d/disk_usage crontab file that schedules a recurring cron job.

The job should run as the devops user every two minutes between 09:00 and 16:59 on

Monday through Friday. The job should append the current disk usage to the file /home/
devops/disk_usage.

5. Create and execute on the webservers host group a playbook which uses the linux-
system-roles.network role to configure with the 172.25.250.40/24 IP address the

spare network interface, eth1.

424 RH294-RHEL8.4-en-1-20210818

Chapter 9 | Automating Linux Administration Tasks

Evaluation

Run lab system-review grade on workstation to grade your work.

[student@workstation ~]$ lab system-review grade

Finish

From workstation, run the lab system-review finish script to clean up the resources

created in this lab.

[student@workstation ~]$ lab system-review finish

This concludes the lab.

RH294-RHEL8.4-en-1-20210818 425

Chapter 9 | Automating Linux Administration Tasks

Solution

Automating Linux Administration Tasks

Performance Checklist
In this lab, you will configure and perform administrative tasks on managed hosts using a

playbook.

Outcomes
You should be able to create playbooks for configuring on a managed host a software

repository, users and groups, logical volumes, cron jobs, and additional network interfaces.

Before You Begin
On workstation, run the lab start script to confirm that the environment is ready for

the lab to begin. The script creates the working directory, called system-review, and

populates it with an Ansible configuration file, a host inventory, and lab files.

[student@workstation ~]$ lab system-review start

Instructions

1. Create and execute on the webservers host group a playbook which configures the Yum

internal repository located at http://materials.example.com/yum/repository,

and installs the example-motd package available in that repository. All RPM packages are

signed with an organizational GPG key pair. The GPG public key is available at http://
materials.example.com/yum/repository/RPM-GPG-KEY-example.

1.1. As the student user on workstation, change to the /home/student/system-
review working directory.

[student@workstation ~]$ cd ~/system-review
[student@workstation system-review]$

1.2. Create the repo_playbook.yml playbook which runs on the managed hosts at

the webservers host group. Add a task that uses the yum_repository module to

ensure the configuration of the internal yum repository on the remote host. Ensure

that:

• The repository's configuration is stored in the file /etc/yum.repos.d/
example.repo

• The repository ID is example-internal

• The base URL is http://materials.example.com/yum/repository

• The repository is configured to check RPM GPG signatures

• The repository description is Example Inc. Internal YUM repo

426 RH294-RHEL8.4-en-1-20210818

Chapter 9 | Automating Linux Administration Tasks

The playbook contains the following:

- name: Repository Configuration
 hosts: webservers
 tasks:
 - name: Ensure Example Repo exists
 yum_repository:
 name: example-internal
 description: Example Inc. Internal YUM repo
 file: example
 baseurl: http://materials.example.com/yum/repository/
 gpgcheck: yes

1.3. Add a second task to the play that uses the rpm_key module to ensure that the

repository public key is present on the remote host. The repository public key URL is

http://materials.example.com/yum/repository/RPM-GPG-KEY-example.

The second task appears as follows:

 - name: Ensure Repo RPM Key is Installed
 rpm_key:
 key: http://materials.example.com/yum/repository/RPM-GPG-KEY-example
 state: present

1.4. Add a third task to install the example-motd package available in the Yum internal

repository.

The third task appears as follows:

 - name: Install Example motd package
 yum:
 name: example-motd
 state: present

1.5. Execute the playbook:

[student@workstation system-review]$ ansible-playbook repo_playbook.yml

PLAY [Repository Configuration] **

TASK [Gathering Facts] ***
ok: [serverb.lab.example.com]

TASK [Ensure Example Repo exists] **
changed: [serverb.lab.example.com]

TASK [Ensure Repo RPM Key is Installed] **
changed: [serverb.lab.example.com]

TASK [Install Example motd package] **
changed: [serverb.lab.example.com]

RH294-RHEL8.4-en-1-20210818 427

Chapter 9 | Automating Linux Administration Tasks

PLAY RECAP ***
serverb.lab.example.com : ok=4 changed=3 unreachable=0 failed=0

2. Create and execute on the webservers host group a playbook which creates the webadmin
user group, and add two users to that group, ops1 and ops2.

2.1. Create a vars/users_vars.yml variable file, which defines two users, ops1 and

ops2, which belong to the webadmin user group. You may need to create the vars
subdirectory.

[student@workstation system-review]$ mkdir vars
[student@workstation system-review]$ vi vars/users_vars.yml

users:
 - username: ops1
 groups: webadmin
 - username: ops2
 groups: webadmin

2.2. Create the users.yml playbook. Define a single play in the playbook that targets the

webservers host group. Add a vars_files clause that defines the location of the

vars/users_vars.yml filename. Add a task which uses the group module to create

the webadmin user group on the remote host.

- name: Create multiple local users
 hosts: webservers
 vars_files:
 - vars/users_vars.yml
 tasks:
 - name: Add webadmin group
 group:
 name: webadmin
 state: present

2.3. Add a second task to the playbook that uses the user module to create the users.

Add a loop: "{{ users }}" clause to the task to loop through the variable file for

every username found in the vars/users_vars.yml file. As the name: for the users,

use the item.username the variable name. This way the variable file may contain

additional information that might be useful for creating the users, such as the groups

that the users should belong to. The second task contains the following:

 - name: Create user accounts
 user:
 name: "{{ item.username }}"
 groups: webadmin
 loop: "{{ users }}"

2.4. Execute the playbook:

428 RH294-RHEL8.4-en-1-20210818

Chapter 9 | Automating Linux Administration Tasks

[student@workstation system-review]$ ansible-playbook users.yml

PLAY [Create multiple local users] ***

TASK [Gathering Facts] ***
ok: [serverb.lab.example.com]

TASK [Add webadmin group] **
changed: [serverb.lab.example.com]

TASK [Create user accounts] **
changed: [serverb.lab.example.com] => (item={'username': 'ops1', 'groups':
 'webadmin'})
changed: [serverb.lab.example.com] => (item={'username': 'ops2', 'groups':
 'webadmin'})

PLAY RECAP ***
serverb.lab.example.com : ok=3 changed=2 unreachable=0 failed=0

3. Create and execute on the webservers host group a playbook that uses the /dev/vdb
device to create a volume group named apache-vg. This playbook also creates two logical

volumes, named content-lv and logs-lv, both backed by the apache-vg volume group.

Finally, it creates an XFS file system on each logical volume, and mounts the content-
lv logical volume at /var/www, and the logs-lv logical volume at /var/log/httpd.

The lab script populates two files in ~/system-review, storage.yml which provides an

initial skeleton for the playbook, and storage_vars.yml which provides values to all the

variables required by the different modules.

3.1. Review the storage_vars.yml variables file.

[student@workstation system-review]$ cat storage_vars.yml

partitions:
 - number: 1
 start: 1MiB
 end: 257MiB

volume_groups:
 - name: apache-vg
 devices: /dev/vdb1

logical_volumes:
 - name: content-lv
 size: 64M
 vgroup: apache-vg
 mount_path: /var/www

 - name: logs-lv
 size: 128M
 vgroup: apache-vg
 mount_path: /var/log/httpd

RH294-RHEL8.4-en-1-20210818 429

Chapter 9 | Automating Linux Administration Tasks

This file describes the intended structure of partitions, volume groups, and logical

volumes on each web server. The first partition begins at an offset of 1 MiB from the

beginning of the /dev/vdb device, and ends at an offset of 257 MiB, for a total size of

256 MiB.

Each web server has one volume group, named apache-vg, containing the first

partition of the /dev/vdb device.

Each web server has two logical volumes. The first logical volume is named content-
lv, with a size of 64 MiB, attached to the apache-vg volume group, and mounted at

/var/www. The second logical volume is named content-lv, with a size of 128 MiB,

attached to the apache-vg volume group, and mounted at /var/log/httpd.

Note

The apache-vg volume group has a capacity of 256 MiB, because it is backed

by the /dev/vdb1 partition. It provides enough capacity for both of the logical

volumes.

3.2. Change the first task in the storage.yml playbook to use the parted module to

configure a partition for each loop item. Each item describes an intended partition of

the /dev/vdb device on each web server:

number
The partition number. Use this as the value of the number keyword for the parted
module.

start
The start of the partition, as an offset from the beginning of the block device. Use

this as the value of the part_start keyword for the parted module.

end
The end of the partition, as an offset from the beginning of the block device. Use

this as the value of the part_end keyword for the parted module.

The content of the first task should be:

 - name: Correct partitions exist on /dev/vdb
 parted:
 device: /dev/vdb
 state: present
 number: "{{ item.number }}"
 part_start: "{{ item.start }}"
 part_end: "{{ item.end }}"
 loop: "{{ partitions }}"

3.3. Change the second task of the play to use the lvg module to configure a volume

group for each loop item. Each item of the volume_groups variable describes a

volume group that should exist on each web server:

name
The name of the volume group. Use this as the value of the vg keyword for the lvg
module.

430 RH294-RHEL8.4-en-1-20210818

Chapter 9 | Automating Linux Administration Tasks

devices
A comma-separated list of devices or partitions that form the volume group. Use

this as the value of the pvs keyword for the lvg module.

The content of the second task should be:

 - name: Ensure Volume Groups Exist
 lvg:
 vg: "{{ item.name }}"
 pvs: "{{ item.devices }}"
 loop: "{{ volume_groups }}"

3.4. Change the third task to use the lvol module. Set the volume group name, logical

volume name, and logical volume size using each item's keywords. The content of the

third task is now:

 - name: Create each Logical Volume (LV) if needed
 lvol:
 vg: "{{ item.vgroup }}"
 lv: "{{ item.name }}"
 size: "{{ item.size }}"
 loop: "{{ logical_volumes }}"

3.5. Change the fourth task to use the filesystem module. Configure the task to ensure

that each logical volume is formatted as an XFS file system. Recall that a logical volume

is associated with the logical device /dev/<volume group name>/<logical
volume name>.

The content of the fourth task should be:

 - name: Ensure XFS Filesystem exists on each LV
 filesystem:
 dev: "/dev/{{ item.vgroup }}/{{ item.name }}"
 fstype: xfs
 loop: "{{ logical_volumes }}"

3.6. Configure the fifth task to ensure each logical volume has the correct storage capacity.

If the logical volume increases in capacity, be sure to force the expansion of the

volume's file system.

Warning

If a logical volume needs to decrease in capacity, this task will fail because an XFS

file system does not support shrinking capacity.

The content of the fifth task should be:

RH294-RHEL8.4-en-1-20210818 431

Chapter 9 | Automating Linux Administration Tasks

 - name: Ensure the correct capacity for each LV
 lvol:
 vg: "{{ item.vgroup }}"
 lv: "{{ item.name }}"
 size: "{{ item.size }}"
 resizefs: yes
 force: yes
 loop: "{{ logical_volumes }}"

3.7. Use the mount module in the sixth task to ensure that each logical volume is mounted

at the corresponding mount path and persists after a reboot.

The content of the sixth task should be:

 - name: Each Logical Volume is mounted
 mount:
 path: "{{ item.mount_path }}"
 src: "/dev/{{ item.vgroup }}/{{ item.name }}"
 fstype: xfs
 state: mounted
 loop: "{{ logical_volumes }}"

3.8. Execute the playbook to create the logical volumes on the remote host.

[student@workstation system-review]$ ansible-playbook storage.yml
PLAY [Ensure Apache Storage Configuration] *************************************

TASK [Gathering Facts] ***
ok: [serverb.lab.example.com]

TASK [Correct partitions exist on /dev/vdb] ************************************
changed: [serverb.lab.example.com] => (item={'number': 1, 'start': '1MiB', 'end':
 '257MiB'})

TASK [Ensure Volume Groups Exist] **
changed: [serverb.lab.example.com] => (item={'name': 'apache-vg', 'devices': '/
dev/vdb1'})
...output omitted...

TASK [Create each Logical Volume (LV) if needed] *******************************
changed: [serverb.lab.example.com] => (item={'name': 'content-lv', 'size': '64M',
 'vgroup': 'apache-vg', 'mount_path': '/var/www'})
changed: [serverb.lab.example.com] => (item={'name': 'logs-lv', 'size': '128M',
 'vgroup': 'apache-vg', 'mount_path': '/var/log/httpd'})

TASK [Ensure XFS Filesystem exists on each LV] *********************************
changed: [serverb.lab.example.com] => (item={'name': 'content-lv', 'size': '64M',
 'vgroup': 'apache-vg', 'mount_path': '/var/www'})
changed: [serverb.lab.example.com] => (item={'name': 'logs-lv', 'size': '128M',
 'vgroup': 'apache-vg', 'mount_path': '/var/log/httpd'})

TASK [Ensure the correct capacity for each LV] *********************************

432 RH294-RHEL8.4-en-1-20210818

Chapter 9 | Automating Linux Administration Tasks

ok: [serverb.lab.example.com] => (item={'name': 'content-lv', 'size': '64M',
 'vgroup': 'apache-vg', 'mount_path': '/var/www'})
ok: [serverb.lab.example.com] => (item={'name': 'logs-lv', 'size': '128M',
 'vgroup': 'apache-vg', 'mount_path': '/var/log/httpd'})

TASK [Each Logical Volume is mounted] **
changed: [serverb.lab.example.com] => (item={'name': 'content-lv', 'size': '64M',
 'vgroup': 'apache-vg', 'mount_path': '/var/www'})
changed: [serverb.lab.example.com] => (item={'name': 'logs-lv', 'size': '128M',
 'vgroup': 'apache-vg', 'mount_path': '/var/log/httpd'})

PLAY RECAP ***
serverb.lab.example.com : ok=7 changed=5 unreachable=0 failed=0

4. Create and execute on the webservers host group a playbook which uses the cron module

to create the /etc/cron.d/disk_usage crontab file that schedules a recurring cron job.

The job should run as the devops user every two minutes between 09:00 and 16:59 on

Monday through Friday. The job should append the current disk usage to the file /home/
devops/disk_usage.

4.1. Create a new playbook, create_crontab_file.yml, and add the lines needed

to start the play. It should target the managed hosts in the webservers group and

enable privilege escalation.

- name: Recurring cron job
 hosts: webservers
 become: true

4.2. Define a task that uses the cron module to schedule a recurring cron job.

Note

The cron module provides a name option to uniquely describe the crontab file

entry and to ensure expected results. The description is added to the crontab file.

For example, the name option is required if you are removing a crontab entry using

state=absent. Additionally, when the default state, state=present is set, the

name option prevents a new crontab entry from always being created, regardless of

existing ones.

 tasks:
 - name: Crontab file exists
 cron:
 name: Add date and time to a file

4.3. Configure the job to run every two minutes between 09:00 and 16:59 on Monday
through Friday.

 minute: "*/2"
 hour: 9-16
 weekday: 1-5

RH294-RHEL8.4-en-1-20210818 433

Chapter 9 | Automating Linux Administration Tasks

4.4. Use the cron_file parameter to use the /etc/cron.d/disk_usage crontab file

instead of an individual user's crontab in /var/spool/cron/. A relative path will place

the file in /etc/cron.d directory. If the cron_file parameter is used, you must also

specify the user parameter.

 user: devops
 job: df >> /home/devops/disk_usage
 cron_file: disk_usage
 state: present

4.5. When completed, the playbook should appear as follows. Review the playbook for

accuracy.

- name: Recurring cron job
 hosts: webservers
 become: true

 tasks:
 - name: Crontab file exists
 cron:
 name: Add date and time to a file
 minute: "*/2"
 hour: 9-16
 weekday: 1-5
 user: devops
 job: df >> /home/devops/disk_usage
 cron_file: disk_usage
 state: present

4.6. Run the playbook.

[student@workstation system-review]$ ansible-playbook create_crontab_file.yml
PLAY [Recurring cron job] **

TASK [Gathering Facts] ***
ok: [serverb.lab.example.com]

TASK [Crontab file exists] ***
changed: [serverb.lab.example.com]

PLAY RECAP ***
serverb.lab.example.com : ok=2 changed=1 unreachable=0 failed=0

5. Create and execute on the webservers host group a playbook which uses the linux-
system-roles.network role to configure with the 172.25.250.40/24 IP address the

spare network interface, eth1.

5.1. Use ansible-galaxy to verify that system roles are available. If not, you need to

install the rhel-system-roles package.

434 RH294-RHEL8.4-en-1-20210818

Chapter 9 | Automating Linux Administration Tasks

[student@workstation system-review]$ ansible-galaxy list
/usr/share/ansible/roles
- linux-system-roles.kdump, (unknown version)
- linux-system-roles.network, (unknown version)
- linux-system-roles.postfix, (unknown version)
- linux-system-roles.selinux, (unknown version)
- linux-system-roles.timesync, (unknown version)
- rhel-system-roles.kdump, (unknown version)
- rhel-system-roles.network, (unknown version)
- rhel-system-roles.postfix, (unknown version)
- rhel-system-roles.selinux, (unknown version)
- rhel-system-roles.timesync, (unknown version)
/etc/ansible/roles
 [WARNING]: - the configured path /home/student/.ansible/roles does not exist.

5.2. Create a playbook, network_playbook.yml, with one play that targets the

webservers host group. Include the rhel-system-roles.network role in the

roles section of the play.

- name: NIC Configuration
 hosts: webservers

 roles:
 - rhel-system-roles.network

5.3. Create the group_vars/webservers subdirectory.

[student@workstation system-review]$ mkdir -pv group_vars/webservers
mkdir: created directory 'group_vars'
mkdir: created directory 'group_vars/webservers'

5.4. Create a new file network.yml to define role variables. Because these variable values

apply to the hosts on the webservers host group, you need to create that file in

the group_vars/webservers directory. Add variable definitions to support the

configuration of the eth1 network interface. The file now contains:

[student@workstation system-review]$ vi group_vars/webservers/network.yml

network_connections:
 - name: eth1
 type: ethernet
 ip:
 address:
 - 172.25.250.40/24

5.5. Run the playbook to configure the secondary network interface.

[student@workstation system-review]$ ansible-playbook network_playbook.yml

PLAY [NIC Configuration] ***

RH294-RHEL8.4-en-1-20210818 435

Chapter 9 | Automating Linux Administration Tasks

TASK [Gathering Facts] ***
ok: [serverb.lab.example.com]

TASK [rhel-system-roles.network : Check which services are running] ************
ok: [serverb.lab.example.com]

TASK [rhel-system-roles.network : Check which packages are installed] **********
ok: [serverb.lab.example.com]

TASK [rhel-system-roles.network : Print network provider] **********************
ok: [serverb.lab.example.com] => {
 "msg": "Using network provider: nm"
}

TASK [rhel-system-roles.network : Install packages] ****************************
skipping: [serverb.lab.example.com]

TASK [rhel-system-roles.network : Enable network service] **********************
ok: [serverb.lab.example.com]

TASK [rhel-system-roles.network : Configure networking connection profiles] ****
 [WARNING]: [002] <info> #0, state:None persistent_state:present, 'eth1': add
 connection
eth1, 38d63afd-e610-4929-ba1b-1d38413219fb

changed: [serverb.lab.example.com]

TASK [rhel-system-roles.network : Re-test connectivity] ************************
ok: [serverb.lab.example.com]

PLAY RECAP ***
serverb.lab.example.com : ok=7 changed=1 unreachable=0 failed=0

5.6. Verify that the eth1 network interface uses the 172.25.250.40 IP address. It may

take up to a minute to configure the IP address.

[student@workstation system-review]$ ansible webservers -m setup \
> -a 'filter=ansible_eth1'
serverb.lab.example.com | SUCCESS => {
 "ansible_facts": {
 "ansible_eth1": {
...output omitted...
 "ipv4": {
 "address": "172.25.250.40",
 "broadcast": "172.25.250.255",
 "netmask": "255.255.255.0",
 "network": "172.25.250.0"
 },
...output omitted...

Evaluation

Run lab system-review grade on workstation to grade your work.

436 RH294-RHEL8.4-en-1-20210818

Chapter 9 | Automating Linux Administration Tasks

[student@workstation ~]$ lab system-review grade

Finish

From workstation, run the lab system-review finish script to clean up the resources

created in this lab.

[student@workstation ~]$ lab system-review finish

This concludes the lab.

RH294-RHEL8.4-en-1-20210818 437

Chapter 9 | Automating Linux Administration Tasks

Summary

In this chapter, you learned:

• The yum_repository module configures a Yum repository on a managed host. For

repositories that use public keys, you can verify that the key is available with the rpm_key
module.

• The user and group modules create users and groups respectively on a managed host. You

can configure authorized keys for a user with the authorized_key module.

• Cron jobs can be configured on managed hosts with the cron module.

• Ansible supports the configuration of logical volumes with the lvg, and lvol modules. The

parted and filesystem modules support respectively the partition of devices and creation of

filesystems.

• Red Hat Enterprise Linux 8 includes the network system role which supports the configuration

of network interfaces on managed hosts.

438 RH294-RHEL8.4-en-1-20210818

Chapter 10

Comprehensive Review: Linux
Automation with Ansible

Goal Demonstrate skills learned in this course by
installing, optimizing, and configuring Ansible for
the management of managed hosts.

Sections • Comprehensive Review

Labs • Lab: Deploying Ansible

• Lab: Creating Playbooks

• Lab: Creating Roles

RH294-RHEL8.4-en-1-20210818 439

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

Comprehensive Review

Objectives
After completing this section, you should be able to demonstrate proficiency with knowledge and

skills learned in Red Hat Enterprise Linux Automation with Ansible.

Reviewing Red Hat System Administration III: Linux
Automation with Ansible
Before beginning the comprehensive review for this course, you should be comfortable with the

topics covered in each chapter.

Refer to earlier sections in the textbook for extra study.

Chapter 1, Introducing Ansible

Describe the fundamental concepts of Ansible and how it is used, and install Red Hat Ansible

Automation Platform.

• Describe the motivation for automating Linux administration tasks with Ansible, fundamental

Ansible concepts, and Ansible's basic architecture.

• Install Ansible on a control node and describe the distinction between community Ansible and

Red Hat Ansible Automation Platform.

Chapter 2, Implementing an Ansible Playbook

Create an inventory of managed hosts, write a simple Ansible Playbook, and run the playbook to

automate tasks on those hosts.

• Describe Ansible inventory concepts and manage a static inventory file.

• Describe where Ansible configuration files are located, how Ansible selects them, and edit them

to apply changes to default settings.

• Run a single Ansible automation task using an ad hoc command and explain some use cases for

ad hoc commands.

• Write a basic Ansible Playbook and run it using the ansible-playbook command.

• Write a playbook that uses multiple plays and per-play privilege escalation, and effectively use

ansible-doc to learn how to use new modules to implement tasks for a play.

Chapter 3, Managing Variables and Facts

Write playbooks that use variables to simplify management of the playbook and facts to reference

information about managed hosts.

• Create and reference variables that affect particular hosts or host groups, the play, or the global

environment, and describe how variable precedence works.

• Encrypt sensitive variables using Ansible Vault, and run playbooks that reference Vault-

encrypted variable files.

440 RH294-RHEL8.4-en-1-20210818

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

• Reference data about managed hosts using Ansible facts, and configure custom facts on

managed hosts.

Chapter 4, Implementing Task Control

Manage task control, handlers, and task errors in Ansible Playbooks.

• Use loops to write efficient tasks and use conditions to control when to run tasks.

• Implement a task that runs only when another task changes the managed host.

• Control what happens when a task fails, and what conditions cause a task to fail.

Chapter 5, Deploying Files to Managed Hosts

Deploy, manage, and adjust files on hosts managed by Ansible.

• Create, install, edit, and remove files on managed hosts, and manage permissions, ownership,

SELinux context, and other characteristics of those files.

• Deploy files to managed hosts that are customized by using Jinja2 templates.

Chapter 6, Managing Complex Plays and Playbooks

Write playbooks for larger, more complex plays and playbooks.

• Write sophisticated host patterns to efficiently select hosts for a play or ad hoc command.

• Manage large playbooks by importing or including other playbooks or tasks from external files,

either unconditionally or based on a conditional test.

Chapter 7, Simplifying Playbooks with Roles

Use Ansible roles to develop playbooks more quickly and to reuse Ansible code.

• Describe what a role is, how it is structured, and how you can use it in a playbook.

• Write playbooks that take advantage of Red Hat Enterprise Linux System Roles to perform

standard operations.

• Create a role in a playbook's project directory and run it as part of one of the plays in the

playbook.

• Select and retrieve roles from Ansible Galaxy or other sources such as a Git repository, and use

them in your playbooks.

• Obtain a set of related roles, supplementary modules, and other content from content

collections, and use them in a playbook.

Chapter 8, Troubleshooting Ansible

Troubleshoot playbooks and managed hosts.

• Troubleshoot generic issues with a new playbook and repair them.

• Troubleshoot failures on managed hosts when running a playbook.

Chapter 9, Automating Linux Administration Tasks

Automate common Linux system administration tasks with Ansible.

RH294-RHEL8.4-en-1-20210818 441

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

• Subscribe systems, configure software channels and repositories, enable module streams, and

manage RPM packages on managed hosts.

• Manage Linux users and groups, configure SSH, and modify Sudo configuration on managed

hosts.

• Manage service startup, schedule processes with at, cron, and systemd, reboot, and control the

default boot target on managed hosts.

• Partition storage devices, configure LVM, format partitions or logical volumes, mount file

systems, and add swap files or spaces.

• Configure network settings and name resolution on managed hosts, and collect network-related

Ansible facts.

442 RH294-RHEL8.4-en-1-20210818

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

Lab

Deploying Ansible

In this review, you will install Ansible on workstation, use it as a control node, and

configure it for connections to the managed hosts servera and serverb. Use ad hoc

commands to perform actions on managed hosts.

Outcomes
You should be able to:

• Install Ansible.

• Use ad hoc commands to perform actions on managed hosts.

Before You Begin
Log in to workstation as student using student as the password.

On workstation, run the lab review-deploy start command. This script ensures

that the managed hosts, servera and serverb, are reachable on the network. The script

creates a lab subdirectory named review-deploy in the student's home directory.

[student@workstation ~]$ lab review-deploy start

Instructions

1. Install Ansible on workstation so that it can serve the control node.

2. On the control node, create an inventory file, /home/student/review-deploy/
inventory, containing a group called dev. This group should consist of the managed hosts

servera.lab.example.com and serverb.lab.example.com.

3. Create the Ansible configuration file in /home/student/review-deploy/ansible.cfg.

The configuration file should reference the /home/student/review-deploy/
inventory inventory file.

4. Execute an ad hoc command using privilege escalation to modify the contents of the /etc/
motd file on servera and serverb to contain the string Managed by Ansible\n. Use

devops as the remote user.

5. Execute an ad hoc command to verify that the contents of the /etc/motd file on servera
and serverb are identical.

Evaluation

On workstation, run the lab review-deploy grade command to confirm success on this

exercise. Correct any reported failures and rerun the command until successful.

[student@workstation ~]$ lab review-deploy grade

RH294-RHEL8.4-en-1-20210818 443

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

Finish

On workstation, run the lab review-deploy finish command to clean up this exercise.

[student@workstation ~]$ lab review-deploy finish

This concludes the lab.

444 RH294-RHEL8.4-en-1-20210818

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

Solution

Deploying Ansible

In this review, you will install Ansible on workstation, use it as a control node, and

configure it for connections to the managed hosts servera and serverb. Use ad hoc

commands to perform actions on managed hosts.

Outcomes
You should be able to:

• Install Ansible.

• Use ad hoc commands to perform actions on managed hosts.

Before You Begin
Log in to workstation as student using student as the password.

On workstation, run the lab review-deploy start command. This script ensures

that the managed hosts, servera and serverb, are reachable on the network. The script

creates a lab subdirectory named review-deploy in the student's home directory.

[student@workstation ~]$ lab review-deploy start

Instructions

1. Install Ansible on workstation so that it can serve the control node.

[student@workstation ~]$ sudo yum install ansible
[sudo] password for student:
Loaded plugins: langpacks, search-disabled-repos
Resolving Dependencies
--> Running transaction check
...output omitted...
Is this ok [y/d/N]: y
...output omitted...

2. On the control node, create an inventory file, /home/student/review-deploy/
inventory, containing a group called dev. This group should consist of the managed hosts

servera.lab.example.com and serverb.lab.example.com.

2.1. Change directory into the Ansible project directory, /home/student/review-
deploy, created by the setup script.

[student@workstation ~]$ cd ~/review-deploy

2.2. Create the inventory file with the following content.

RH294-RHEL8.4-en-1-20210818 445

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

[dev]
servera.lab.example.com
serverb.lab.example.com

3. Create the Ansible configuration file in /home/student/review-deploy/ansible.cfg.

The configuration file should reference the /home/student/review-deploy/
inventory inventory file.

Add the following entries to configure the inventory file ./inventory as the inventory

source. Save the changes and exit the text editor.

[defaults]
inventory=./inventory

4. Execute an ad hoc command using privilege escalation to modify the contents of the /etc/
motd file on servera and serverb to contain the string Managed by Ansible\n. Use

devops as the remote user.

[student@workstation review-deploy]$ ansible dev -m copy \
> -a 'content="Managed by Ansible\n" dest=/etc/motd' -b -u devops
servera.lab.example.com | CHANGED => {
 "ansible_facts": {
 "discovered_interpreter_python": "/usr/libexec/platform-python"
 },
 "changed": true,
 "checksum": "4458b979ede3c332f8f2128385df4ba305e58c27",
 "dest": "/etc/motd",
 "gid": 0,
 "group": "root",
 "md5sum": "65a4290ee5559756ad04e558b0e0c4e3",
 "mode": "0644",
 "owner": "root",
 "secontext": "unconfined_u:object_r:etc_t:s0",
 "size": 19,
 "src": "/home/devops/.ansible/tmp/...output omitted...",
 "state": "file",
 "uid": 0
}
serverb.lab.example.com | CHANGED => {
 "ansible_facts": {
 "discovered_interpreter_python": "/usr/libexec/platform-python"
 },
 "changed": true,
 "checksum": "4458b979ede3c332f8f2128385df4ba305e58c27",
 "dest": "/etc/motd",
 "gid": 0,
 "group": "root",
 "md5sum": "65a4290ee5559756ad04e558b0e0c4e3",
 "mode": "0644",
 "owner": "root",
 "secontext": "system_u:object_r:etc_t:s0",
 "size": 19,
 "src": "/home/devops/.ansible/tmp/...output omitted...",

446 RH294-RHEL8.4-en-1-20210818

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

 "state": "file",
 "uid": 0
}

5. Execute an ad hoc command to verify that the contents of the /etc/motd file on servera
and serverb are identical.

[student@workstation review-deploy]$ ansible dev -m command -a "cat /etc/motd"
servera.lab.example.com | CHANGED | rc=0 >>
Managed by Ansible

serverb.lab.example.com | CHANGED | rc=0 >>
Managed by Ansible

Evaluation

On workstation, run the lab review-deploy grade command to confirm success on this

exercise. Correct any reported failures and rerun the command until successful.

[student@workstation ~]$ lab review-deploy grade

Finish

On workstation, run the lab review-deploy finish command to clean up this exercise.

[student@workstation ~]$ lab review-deploy finish

This concludes the lab.

RH294-RHEL8.4-en-1-20210818 447

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

Lab

Creating Playbooks

In this review, you will create three playbooks in the Ansible project directory, /home/
student/review-playbooks. One playbook will ensure that lftp is installed on systems

that should be FTP clients, one playbook will ensure that vsftpd is installed and configured

on systems that should be FTP servers, and one playbook (site.yml) will run both of the

other playbooks.

Outcomes
You should be able to:

• Create and execute playbooks to perform tasks on managed hosts.

• Utilize Jinja2 templates, variables, and handlers in playbooks.

Important

If you are having trouble with your site.yml playbook, make sure that both

ansible-vsftpd.yml and ftpclients.yml use consistent indentation.

Before You Begin
Log in to workstation as student using student as the password.

On workstation, run the lab review-playbooks start command.

[student@workstation ~]$ lab review-playbooks start

Instructions

1. As the student user on workstation, create the inventory file /home/student/
review-playbooks/inventory, containing serverc.lab.example.com in the

ftpclients group, and serverb.lab.example.com and serverd.lab.example.com
in the ftpservers group.

2. Create the Ansible configuration file, /home/student/review-playbooks/
ansible.cfg, and populate it with the necessary entries to meet these requirements:

• Configure the Ansible project to use the newly created inventory

• Connect to managed hosts as the devops user

• Utilize privilege escalation using sudo as the root user

• Escalate privileges for each task by default

3. Create the playbook, /home/student/review-playbooks/ftpclients.yml,

containing a play that targets hosts in the ftpclients inventory group and ensures that the

lftp package is installed.

448 RH294-RHEL8.4-en-1-20210818

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

4. Place the provided vsftpd configuration file, vsftpd.conf.j2, in the templates
subdirectory.

5. Place the provided defaults-template.yml file in the vars subdirectory.

6. Create a vars.yml variable definition file in the vars subdirectory to define the following

three variables and their values:

Variable Value

vsftpd_package vsftpd

vsftpd_service vsftpd

vsftpd_config_file /etc/vsftpd/vsftpd.conf

7. Using the previously created Jinja2 template and variable definition files, create a second

playbook, /home/student/review-playbooks/ansible-vsftpd.yml, to configure

the vsftpd service on the hosts in the ftpservers inventory group.

8. Create a third playbook, /home/student/review-playbooks/site.yml, and include

the plays from the two playbooks created previously, ftpclients.yml and ansible-
vsftpd.yml.

9. Execute the /home/student/review-playbooks/site.yml playbook to verify that it

performs the desired tasks on the managed hosts.

Evaluation

As the student user on workstation, run the lab review-playbooks grade command to

confirm success of this exercise. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab review-playbooks grade

Finish

Run the lab review-playbooks finish command to clean up the lab tasks on serverb,

serverc, and serverd.

[student@workstation ~]$ lab review-playbooks finish

This concludes the lab.

RH294-RHEL8.4-en-1-20210818 449

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

Solution

Creating Playbooks

In this review, you will create three playbooks in the Ansible project directory, /home/
student/review-playbooks. One playbook will ensure that lftp is installed on systems

that should be FTP clients, one playbook will ensure that vsftpd is installed and configured

on systems that should be FTP servers, and one playbook (site.yml) will run both of the

other playbooks.

Outcomes
You should be able to:

• Create and execute playbooks to perform tasks on managed hosts.

• Utilize Jinja2 templates, variables, and handlers in playbooks.

Important

If you are having trouble with your site.yml playbook, make sure that both

ansible-vsftpd.yml and ftpclients.yml use consistent indentation.

Before You Begin
Log in to workstation as student using student as the password.

On workstation, run the lab review-playbooks start command.

[student@workstation ~]$ lab review-playbooks start

Instructions

1. As the student user on workstation, create the inventory file /home/student/
review-playbooks/inventory, containing serverc.lab.example.com in the

ftpclients group, and serverb.lab.example.com and serverd.lab.example.com
in the ftpservers group.

1.1. Change directory into the Ansible project directory, /home/student/review-
playbooks, created by the setup script.

[student@workstation ~]$ cd ~/review-playbooks

1.2. Populate the inventory file with the following entries, and then save and exit.

450 RH294-RHEL8.4-en-1-20210818

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

[ftpservers]
serverb.lab.example.com
serverd.lab.example.com

[ftpclients]
serverc.lab.example.com

2. Create the Ansible configuration file, /home/student/review-playbooks/
ansible.cfg, and populate it with the necessary entries to meet these requirements:

• Configure the Ansible project to use the newly created inventory

• Connect to managed hosts as the devops user

• Utilize privilege escalation using sudo as the root user

• Escalate privileges for each task by default

[defaults]
remote_user = devops
inventory = ./inventory

[privilege_escalation]
become_user = root
become_method = sudo
become = true

3. Create the playbook, /home/student/review-playbooks/ftpclients.yml,

containing a play that targets hosts in the ftpclients inventory group and ensures that the

lftp package is installed.

- name: Ensure FTP Client Configuration
 hosts: ftpclients

 tasks:
 - name: latest version of lftp is installed
 yum:
 name: lftp
 state: latest

4. Place the provided vsftpd configuration file, vsftpd.conf.j2, in the templates
subdirectory.

4.1. Create the templates subdirectory.

[student@workstation review-playbooks]$ mkdir -v templates
mkdir: created directory 'templates'

4.2. Move the vsftpd.conf.j2 file to the newly created templates subdirectory.

RH294-RHEL8.4-en-1-20210818 451

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

[student@workstation review-playbooks]$ mv -v vsftpd.conf.j2 templates/
renamed 'vsftpd.conf.j2' -> 'templates/vsftpd.conf.j2'

5. Place the provided defaults-template.yml file in the vars subdirectory.

5.1. Create the vars subdirectory.

[student@workstation review-playbooks]$ mkdir -v vars
mkdir: created directory 'vars'

5.2. Move the defaults-template.yml file to the newly created vars subdirectory.

[student@workstation review-playbooks]$ mv -v defaults-template.yml vars/
renamed 'defaults-template.yml' -> 'vars/defaults-template.yml'

6. Create a vars.yml variable definition file in the vars subdirectory to define the following

three variables and their values:

Variable Value

vsftpd_package vsftpd

vsftpd_service vsftpd

vsftpd_config_file /etc/vsftpd/vsftpd.conf

vsftpd_package: vsftpd
vsftpd_service: vsftpd
vsftpd_config_file: /etc/vsftpd/vsftpd.conf

7. Using the previously created Jinja2 template and variable definition files, create a second

playbook, /home/student/review-playbooks/ansible-vsftpd.yml, to configure

the vsftpd service on the hosts in the ftpservers inventory group.

- name: FTP server is installed
 hosts:
 - ftpservers
 vars_files:
 - vars/defaults-template.yml
 - vars/vars.yml

 tasks:
 - name: Packages are installed
 yum:
 name: "{{ vsftpd_package }}"
 state: present

 - name: Ensure service is started
 service:
 name: "{{ vsftpd_service }}"

452 RH294-RHEL8.4-en-1-20210818

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

 state: started
 enabled: true

 - name: Configuration file is installed
 template:
 src: templates/vsftpd.conf.j2
 dest: "{{ vsftpd_config_file }}"
 owner: root
 group: root
 mode: 0600
 setype: etc_t
 notify: restart vsftpd

 - name: firewalld is installed
 yum:
 name: firewalld
 state: present

 - name: firewalld is started and enabled
 service:
 name: firewalld
 state: started
 enabled: yes

 - name: FTP port is open
 firewalld:
 service: ftp
 permanent: true
 state: enabled
 immediate: yes

 - name: FTP passive data ports are open
 firewalld:
 port: 21000-21020/tcp
 permanent: yes
 state: enabled
 immediate: yes

 handlers:
 - name: restart vsftpd
 service:
 name: "{{ vsftpd_service }}"
 state: restarted

8. Create a third playbook, /home/student/review-playbooks/site.yml, and include

the plays from the two playbooks created previously, ftpclients.yml and ansible-
vsftpd.yml.

FTP Servers playbook
- import_playbook: ansible-vsftpd.yml

FTP Clients playbook
- import_playbook: ftpclients.yml

RH294-RHEL8.4-en-1-20210818 453

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

9. Execute the /home/student/review-playbooks/site.yml playbook to verify that it

performs the desired tasks on the managed hosts.

[student@workstation review-playbooks]$ ansible-playbook site.yml

Evaluation

As the student user on workstation, run the lab review-playbooks grade command to

confirm success of this exercise. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab review-playbooks grade

Finish

Run the lab review-playbooks finish command to clean up the lab tasks on serverb,

serverc, and serverd.

[student@workstation ~]$ lab review-playbooks finish

This concludes the lab.

454 RH294-RHEL8.4-en-1-20210818

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

Lab

Creating Roles

In this review, you will convert the ansible-vsftpd.yml playbook into a role, and then use

that role in a new playbook that will also run some additional tasks.

Outcomes
You should be able to:

• Create a role to configure the vsftpd service using tasks from an existing playbook.

• Include a role in a playbook, and execute the playbook.

Important

You may find it useful to debug your role by testing it in a playbook that does

not contain the extra tasks or playbook variables listed above, but instead

contains a play that only targets hosts in the group ftpservers and applies

the role.

After confirming that a simplified playbook using only the role works just like

the original ansible-vsftpd.yml playbook, you can build the complete

vsftpd-configure.yml playbook by adding the additional variables and

tasks specified above.

Important

If you are having trouble with your site.yml playbook, make sure that

both vsftpd-configure.yml and ftpclients.yml use consistent

indentation.

Before You Begin
Log in to workstation as student using student as the password.

On workstation, run the lab review-roles start command. This script ensures

that the remote hosts are reachable on the network. The script also checks that Ansible is

installed on workstation, creates a directory structure for the lab environment, and installs

required lab files.

[student@workstation ~]$ lab review-roles start

Instructions

1. Change to the review-roles working directory. Configure the Ansible project to use the

static inventory file inventory. Verify the inventory configuration using the ansible-
inventory command.

2. Convert the ansible-vsftpd.yml playbook to the role ansible-vsftpd.

RH294-RHEL8.4-en-1-20210818 455

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

3. Update the contents of the roles/ansible-vsftpd/meta/main.yml file.

Variable Value

author Red Hat Training

description example role for RH294

company Red Hat

license BSD

4. Modify the contents of the roles/ansible-vsftpd/README.md file so that it provides

pertinent information regarding the role. After modification, the file should contain the

following.

ansible-vsftpd
=========
Example ansible-vsftpd role from Red Hat's "Linux Automation" (RH294)
course.

Role Variables

* defaults/main.yml contains variables used to configure the vsftpd.conf template
* vars/main.yml contains the name of the vsftpd service, the name of the RPM
package, and the location of the service's configuration file

Dependencies

None.

Example Playbook

 - hosts: servers
 roles:
 - ansible-vsftpd

License

BSD

Author Information

Red Hat (training@redhat.com)

5. Remove the unused directories from the new role.

456 RH294-RHEL8.4-en-1-20210818

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

6. Create the new playbook vsftpd-configure.yml. It should contain the following.

- name: Install and configure vsftpd
 hosts: ftpservers
 vars:
 vsftpd_anon_root: /mnt/share/
 vsftpd_local_root: /mnt/share/

 roles:
 - ansible-vsftpd

 tasks:
 - name: /dev/vdb1 is partitioned
 parted:
 device: /dev/vdb
 number: 1
 label: gpt
 part_start: 1MiB
 part_end: 100%
 state: present

 - name: XFS file system exists on /dev/vdb1
 filesystem:
 dev: /dev/vdb1
 fstype: xfs
 force: yes

 - name: anon_root mount point exists
 file:
 path: '{{ vsftpd_anon_root }}'
 state: directory

 - name: /dev/vdb1 is mounted on anon_root
 mount:
 path: '{{ vsftpd_anon_root }}'
 src: /dev/vdb1
 fstype: xfs
 state: mounted
 dump: '1'
 passno: '2'
 notify: restart vsftpd

 - name: Make sure permissions on mounted fs are correct
 file:
 path: '{{ vsftpd_anon_root }}'
 owner: root
 group: root
 mode: '0755'
 setype: "{{ vsftpd_setype }}"
 state: directory

 - name: Copy README to the ftp anon_root

RH294-RHEL8.4-en-1-20210818 457

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

 copy:
 dest: '{{ vsftpd_anon_root }}/README'
 content: "Welcome to the FTP server at {{ ansible_fqdn }}\n"
 setype: '{{ vsftpd_setype }}'

7. Change the site.yml playbook to use the newly created vsftpd-configure.yml
playbook instead of the ansible-vsftpd.yml playbook.

8. Verify that the site.yml playbook works as intended by executing it with ansible-
playbook.

Evaluation

From workstation, run the lab review-roles grade command to confirm success on this

exercise. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab review-roles grade

Finish

Run the lab review-roles finish command to clean up the lab tasks on servera and

serverb.

[student@workstation ~]$ lab review-roles finish

This concludes the lab.

458 RH294-RHEL8.4-en-1-20210818

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

Solution

Creating Roles

In this review, you will convert the ansible-vsftpd.yml playbook into a role, and then use

that role in a new playbook that will also run some additional tasks.

Outcomes
You should be able to:

• Create a role to configure the vsftpd service using tasks from an existing playbook.

• Include a role in a playbook, and execute the playbook.

Important

You may find it useful to debug your role by testing it in a playbook that does

not contain the extra tasks or playbook variables listed above, but instead

contains a play that only targets hosts in the group ftpservers and applies

the role.

After confirming that a simplified playbook using only the role works just like

the original ansible-vsftpd.yml playbook, you can build the complete

vsftpd-configure.yml playbook by adding the additional variables and

tasks specified above.

Important

If you are having trouble with your site.yml playbook, make sure that

both vsftpd-configure.yml and ftpclients.yml use consistent

indentation.

Before You Begin
Log in to workstation as student using student as the password.

On workstation, run the lab review-roles start command. This script ensures

that the remote hosts are reachable on the network. The script also checks that Ansible is

installed on workstation, creates a directory structure for the lab environment, and installs

required lab files.

[student@workstation ~]$ lab review-roles start

Instructions

1. Change to the review-roles working directory. Configure the Ansible project to use the

static inventory file inventory. Verify the inventory configuration using the ansible-
inventory command.

1.1. Change to the review-roles working directory.

RH294-RHEL8.4-en-1-20210818 459

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

[student@workstation ~]$ cd ~/review-roles
[student@workstation review-roles]$

1.2. Edit the ansible.cfg file, add the inventory directive in the [defaults] section,

and set it to ./inventory.

The [defaults] section of the ansible.cfg file looks like this:

[defaults]
remote_user=devops
inventory=./inventory

1.3. Use the ansible-inventory command to verify the project inventory configuration:

[student@workstation review-roles]$ ansible-inventory --list all
{
 "_meta": {
 "hostvars": {}
 },
 "all": {
 "children": [
 "ftpclients",
 "ftpservers",
 "ungrouped"
]
 },
 "ftpclients": {
 "hosts": [
 "servera.lab.example.com",
 "serverc.lab.example.com"
]
 },
 "ftpservers": {
 "hosts": [
 "serverb.lab.example.com",
 "serverd.lab.example.com"
]
 }
}

2. Convert the ansible-vsftpd.yml playbook to the role ansible-vsftpd.

2.1. Create the roles subdirectory.

[student@workstation review-roles]$ mkdir -v roles
mkdir: created directory 'roles'

2.2. Using ansible-galaxy, create the directory structure for the new ansible-vsftpd
role in the roles subdirectory.

460 RH294-RHEL8.4-en-1-20210818

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

[student@workstation review-roles]$ cd roles
[student@workstation roles]$ ansible-galaxy init ansible-vsftpd
- Role ansible-vsftpd was created successfully
[student@workstation roles]$ cd ..
[student@workstation review-roles]$

2.3. Using tree, verify the directory structure created for the new role.

[student@workstation review-roles]$ tree roles
roles
└── ansible-vsftpd
 ├── defaults
 │ └── main.yml
 ├── files
 ├── handlers
 │ └── main.yml
 ├── meta
 │ └── main.yml
 ├── README.md
 ├── tasks
 │ └── main.yml
 ├── templates
 ├── tests
 │ ├── inventory
 │ └── test.yml
 └── vars
 └── main.yml

9 directories, 8 files

2.4. Replace the roles/ansible-vsftpd/defaults/main.yml file with the variable

definitions in the defaults-template.yml file.

[student@workstation review-roles]$ mv -v defaults-template.yml \
> roles/ansible-vsftpd/defaults/main.yml
renamed 'defaults-template.yml' -> 'roles/ansible-vsftpd/defaults/main.yml'

2.5. Replace the roles/ansible-vsftpd/vars/main.yml file with the variable

definitions in the vars.yml file.

[student@workstation review-roles]$ mv -v vars.yml \
> roles/ansible-vsftpd/vars/main.yml
renamed 'vars.yml' -> 'roles/ansible-vsftpd/vars/main.yml'

2.6. Use the templates/vsftpd.conf.j2 file as a template for the ansible-vsftpd
role.

[student@workstation review-roles]$ mv -v vsftpd.conf.j2 \
> roles/ansible-vsftpd/templates/
renamed 'vsftpd.conf.j2' -> 'roles/ansible-vsftpd/templates/vsftpd.conf.j2'

RH294-RHEL8.4-en-1-20210818 461

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

2.7. Copy tasks from the ansible-vsftpd.yml playbook to the roles/ansible-
vsftpd/tasks/main.yml file. The value of the src keyword in the template
module task no longer needs to reference the templates subdirectory. The roles/
ansible-vsftpd/tasks/main.yml file should contain the following when you

finish.

tasks file for ansible-vsftpd
- name: Packages are installed
 yum:
 name: '{{ vsftpd_package }}'
 state: present

- name: Ensure service is started
 service:
 name: '{{ vsftpd_service }}'
 state: started
 enabled: true

- name: Configuration file is installed
 template:
 src: vsftpd.conf.j2
 dest: '{{ vsftpd_config_file }}'
 owner: root
 group: root
 mode: '0600'
 setype: etc_t
 notify: restart vsftpd

- name: firewalld is installed
 yum:
 name: firewalld
 state: present

- name: firewalld is started and enabled
 service:
 name: firewalld
 state: started
 enabled: yes

- name: FTP port is open
 firewalld:
 service: ftp
 permanent: true
 state: enabled
 immediate: yes

- name: Passive FTP data ports allowed through the firewall
 firewalld:
 port: 21000-21020/tcp
 permanent: yes
 state: enabled
 immediate: yes

462 RH294-RHEL8.4-en-1-20210818

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

2.8. Copy the handlers from the ansible-vsftpd.yml playbook to the roles/
ansible-vsftpd/handlers/main.yml file. The roles/ansible-vsftpd/
handlers/main.yml file should contain the following when you finish.

handlers file for ansible-vsftpd
- name: restart vsftpd
 service:
 name: "{{ vsftpd_service }}"
 state: restarted

3. Update the contents of the roles/ansible-vsftpd/meta/main.yml file.

Variable Value

author Red Hat Training

description example role for RH294

company Red Hat

license BSD

3.1. Change the value of the author entry to Red Hat Training.

 author: Red Hat Training

3.2. Change the value of the description entry to example role for RH294.

 description: example role for RH294

3.3. Change the value of the company entry to Red Hat.

 company: Red Hat

3.4. Change the value of the license: entry to BSD.

 license: BSD

4. Modify the contents of the roles/ansible-vsftpd/README.md file so that it provides

pertinent information regarding the role. After modification, the file should contain the

following.

ansible-vsftpd
=========
Example ansible-vsftpd role from Red Hat's "Linux Automation" (RH294)
course.

Role Variables

* defaults/main.yml contains variables used to configure the vsftpd.conf template

RH294-RHEL8.4-en-1-20210818 463

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

* vars/main.yml contains the name of the vsftpd service, the name of the RPM
package, and the location of the service's configuration file

Dependencies

None.

Example Playbook

 - hosts: servers
 roles:
 - ansible-vsftpd

License

BSD

Author Information

Red Hat (training@redhat.com)

5. Remove the unused directories from the new role.

[student@workstation review-roles]$ rm -rvf roles/ansible-vsftpd/tests
removed 'roles/ansible-vsftpd/tests/inventory'
removed 'roles/ansible-vsftpd/tests/test.yml'
removed directory: 'roles/ansible-vsftpd/tests'

6. Create the new playbook vsftpd-configure.yml. It should contain the following.

- name: Install and configure vsftpd
 hosts: ftpservers
 vars:
 vsftpd_anon_root: /mnt/share/
 vsftpd_local_root: /mnt/share/

 roles:
 - ansible-vsftpd

 tasks:
 - name: /dev/vdb1 is partitioned
 parted:
 device: /dev/vdb
 number: 1
 label: gpt
 part_start: 1MiB
 part_end: 100%
 state: present

464 RH294-RHEL8.4-en-1-20210818

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

 - name: XFS file system exists on /dev/vdb1
 filesystem:
 dev: /dev/vdb1
 fstype: xfs
 force: yes

 - name: anon_root mount point exists
 file:
 path: '{{ vsftpd_anon_root }}'
 state: directory

 - name: /dev/vdb1 is mounted on anon_root
 mount:
 path: '{{ vsftpd_anon_root }}'
 src: /dev/vdb1
 fstype: xfs
 state: mounted
 dump: '1'
 passno: '2'
 notify: restart vsftpd

 - name: Make sure permissions on mounted fs are correct
 file:
 path: '{{ vsftpd_anon_root }}'
 owner: root
 group: root
 mode: '0755'
 setype: "{{ vsftpd_setype }}"
 state: directory

 - name: Copy README to the ftp anon_root
 copy:
 dest: '{{ vsftpd_anon_root }}/README'
 content: "Welcome to the FTP server at {{ ansible_fqdn }}\n"
 setype: '{{ vsftpd_setype }}'

7. Change the site.yml playbook to use the newly created vsftpd-configure.yml
playbook instead of the ansible-vsftpd.yml playbook.

FTP Servers playbook
- import_playbook: vsftpd-configure.yml

FTP Clients playbook
- import_playbook: ftpclients.yml

8. Verify that the site.yml playbook works as intended by executing it with ansible-
playbook.

[student@workstation review-roles]$ ansible-playbook site.yml

RH294-RHEL8.4-en-1-20210818 465

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

Evaluation

From workstation, run the lab review-roles grade command to confirm success on this

exercise. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab review-roles grade

Finish

Run the lab review-roles finish command to clean up the lab tasks on servera and

serverb.

[student@workstation ~]$ lab review-roles finish

This concludes the lab.

466 RH294-RHEL8.4-en-1-20210818

Appendix A

Supplementary Topics

Goal Investigate supplementary topics not included in
the official course.

Sections • Examining Ansible Configuration Options

RH294-RHEL8.4-en-1-20210818 467

Appendix A | Supplementary Topics

Examining Ansible Configuration Options

Objectives
After completing this section, you should be able to use ansible-config to discover and

investigate configuration options and to determine which options have been modified from the

default settings.

Viewing Configuration Options

If you want to find out what options are available in the configuration file, use the ansible-
config list command. It will display an exhaustive list of the available configuration options

and their default settings. This list may vary depending on the version of Ansible that you have

installed and whether you have any additional Ansible plugins on your control node.

Each option displayed by ansible-config list will have a number of key-value pairs

associated with it. These key-value pairs provide information on how that option works. For

example, the option ACTION_WARNINGS displays the following key-value pairs:

Key Value Purpose

description [By default Ansible will issue a

warning when received from a

task action (module or action

plugin). These warnings can be

silenced by adjusting this setting

to False.]

Describes what this configuration

option is for.

type boolean What the type is for the option:

boolean means true-false value.

default true The default value for this option.

version_added 2.5 The version of Ansible that

added this option, for backward

compatibility.

ini { key: action_warnings,
section: defaults }

Which section of the INI-like

inventory file contains this

option, and the name of the

option in the configuration file

(action_warnings, in the

defaults section).

env ANSIBLE_ACTION_WARNINGS If this environment variable is set,

it will override any setting of the

option made in the configuration

file.

468 RH294-RHEL8.4-en-1-20210818

Appendix A | Supplementary Topics

Determining Modified Configuration Options

When working with configuration files, you might want to find out which options have been set to

values which are different from the built-in defaults.

You can do this by running the ansible-config dump -v --only-changed command. The

-v option displays the location of the ansible.cfg file used when processing the command.

The ansible-config command follows the same order of precedence mentioned previously for

the ansible command. Output will vary depending on the location of the ansible.cfg file and

which directory the ansible-config command is ran from.

In the following example, there is a single ansible configuration file located at /etc/ansible/
ansible.cfg. The ansible-config command is first ran from student's home directory, then

from a working directory with the same results:

[user@controlnode ~]$ ansible-config dump -v --only-changed
Using /etc/ansible/ansible.cfg as config file
DEFAULT_ROLES_PATH(/etc/ansible/ansible.cfg) = [u'/etc/ansible/roles', u'/usr/
share/ansible/roles']

[user@controlnode ~]$ cd /home/student/workingdirectory
[user@controlnode workingdirectory]$ ansible-config dump -v --only-changed
Using /etc/ansible/ansible.cfg as config file
DEFAULT_ROLES_PATH(/etc/ansible/ansible.cfg) = [u'/etc/ansible/roles', u'/usr/
share/ansible/roles']

However, if you have a custom ansible.cfg file in your working directory, the same command

will display information based on where it is ran from and the relative ansible.cfg file.

[user@controlnode ~]$ ansible-config dump -v --only-changed
Using /etc/ansible/ansible.cfg as config file
DEFAULT_ROLES_PATH(/etc/ansible/ansible.cfg) = [u'/etc/ansible/roles', u'/usr/
share/ansible/roles']

[user@controlnode ~]$ cd /home/student/workingdirectory
[user@controlnode workingdirectory]$ cat ansible.cfg
[defaults]
inventory = ./inventory
remote_user = devops

[user@controlnode workingdirectory]$ ansible-config dump -v --only-changed
Using /home/student/workingdirectory/ansible.cfg as config file
DEFAULT_HOST_LIST(/home/student/workingdirectory/ansible.cfg) = [u'/home/student/
workingdirectory/inventory']
DEFAULT_REMOTE_USER(/home/student/workingdirectory/ansible.cfg) = devops

References

ansible-config(1) man page

Configuration file: Ansible Documentation

https://docs.ansible.com/ansible/2.9/installation_guide/intro_configuration.html

RH294-RHEL8.4-en-1-20210818 469

https://docs.ansible.com/ansible/2.9/installation_guide/intro_configuration.html

470 RH294-RHEL8.4-en-1-20210818

Appendix B

Ansible Lightbulb Licensing

RH294-RHEL8.4-en-1-20210818 471

Appendix B | Ansible Lightbulb Licensing

Ansible Lightbulb License

Portions of this course were adapted from the Ansible Lightbulb project. The original material

from that project is available from https://github.com/ansible/lightbulb under the following MIT

License:

Copyright 2017 Red Hat, Inc.

The above copyright notice and this permission notice shall be included in all copies or substantial

portions of the Software.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software

and associated documentation files (the "Software"), to deal in the Software without restriction,

including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,

and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do

so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial

portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

THE SOFTWARE.

472 RH294-RHEL8.4-en-1-20210818

https://github.com/ansible/lightbulb

	Red Hat Enterprise Linux Automation with Ansible
	Table of Contents
	Document Conventions
	

	Introduction
	Red Hat Enterprise Linux Automation with Ansible
	Orientation to the Classroom Environment

	Chapter 1. Introducing Ansible
	Automating Linux Administration with Ansible
	Quiz: Automating Linux Administration with Ansible
	Installing Ansible
	Guided Exercise: Installing Ansible
	Summary

	Chapter 2. Implementing an Ansible Playbook
	Building an Ansible Inventory
	Guided Exercise: Building an Ansible Inventory
	Managing Ansible Configuration Files
	Guided Exercise: Managing Ansible Configuration Files
	Running Ad Hoc Commands
	Guided Exercise: Running Ad Hoc Commands
	Writing and Running Playbooks
	Guided Exercise: Writing and Running Playbooks
	Implementing Multiple Plays
	Guided Exercise: Implementing Multiple Plays
	Lab: Implementing Playbooks
	Summary

	Chapter 3. Managing Variables and Facts
	Managing Variables
	Guided Exercise: Managing Variables
	Managing Secrets
	Guided Exercise: Managing Secrets
	Managing Facts
	Guided Exercise: Managing Facts
	Lab: Managing Variables and Facts
	Summary

	Chapter 4. Implementing Task Control
	Writing Loops and Conditional Tasks
	Guided Exercise: Writing Loops and Conditional Tasks
	Implementing Handlers
	Guided Exercise: Implementing Handlers
	Handling Task Failure
	Guided Exercise: Handling Task Failure
	Lab: Implementing Task Control
	Summary

	Chapter 5. Deploying Files to Managed Hosts
	Modifying and Copying Files to Hosts
	Guided Exercise: Modifying and Copying Files to Hosts
	Deploying Custom Files with Jinja2 Templates
	Guided Exercise: Deploying Custom Files with Jinja2 Templates
	Lab: Deploying Files to Managed Hosts
	Summary

	Chapter 6. Managing Complex Plays and Playbooks
	Selecting Hosts with Host Patterns
	Guided Exercise: Selecting Hosts with Host Patterns
	Including and Importing Files
	Guided Exercise: Including and Importing Files
	Lab: Managing Complex Plays and Playbooks
	Summary

	Chapter 7. Simplifying Playbooks with Roles
	Describing Role Structure
	Quiz: Describing Role Structure
	Reusing Content with System Roles
	Guided Exercise: Reusing Content with System Roles
	Creating Roles
	Guided Exercise: Creating Roles
	Deploying Roles with Ansible Galaxy
	Guided Exercise: Deploying Roles with Ansible Galaxy
	Getting Roles and Modules from Content Collections
	Guided Exercise: Getting Roles and Modules from Content Collections
	Lab: Simplifying Playbooks with Roles
	Summary

	Chapter 8. Troubleshooting Ansible
	Troubleshooting Playbooks
	Guided Exercise: Troubleshooting Playbooks
	Troubleshooting Ansible Managed Hosts
	Guided Exercise: Troubleshooting Ansible Managed Hosts
	Lab: Troubleshooting Ansible
	Summary

	Chapter 9. Automating Linux Administration Tasks
	Managing Software and Subscriptions
	Guided Exercise: Managing Software and Subscriptions
	Managing Users and Authentication
	Guided Exercise: Managing Users and Authentication
	Managing the Boot Process and Scheduled Processes
	Guided Exercise: Managing the Boot Process and Scheduled Processes
	Managing Storage
	Guided Exercise: Managing Storage
	Managing Network Configuration
	Guided Exercise: Managing Network Configuration
	Lab: Automating Linux Administration Tasks
	Summary

	Chapter 10. Comprehensive Review: Linux Automation with Ansible
	Comprehensive Review
	Lab: Deploying Ansible
	Lab: Creating Playbooks
	Lab: Creating Roles

	Appendix A. Supplementary Topics
	Examining Ansible Configuration Options

	Appendix B. Ansible Lightbulb Licensing
	Ansible Lightbulb License

