SR |
|

]

Lz}

(] [

][
| -

For use by La Pyayt lapyayt2015 lapyayt@infratechmm.com Copyright © 2022 Red Hat, Inc.

(] [

Red Hat Enterprise Linux 8.4 RH294

Red Hat Enterprise Linux Automation with Ansible
Edition 120210818

Publication date 20210818

Authors: Trey Feagle, Hervé Quatremain, Dallas Spohn, Adolfo Vazquez,
Morgan Weetman

Course Architect: Steven Bonneville

DevOps Engineer: Dan Kolepp

Editor: Philip Sweany, Seth Kenlon, Jeff Tyson, Nicole Muller, David
O'Brien

Copyright © 2021 Red Hat, Inc.

The contents of this course and all its modules and related materials, including handouts to audience members, are
Copyright © 2021 Red Hat, Inc.

No part of this publication may be stored in a retrieval system, transmitted or reproduced in any way, including, but
not limited to, photocopy, photograph, magnetic, electronic or other record, without the prior written permission of
Red Hat, Inc.

This instructional program, including all material provided herein, is supplied without any guarantees from Red Hat,
Inc. Red Hat, Inc. assumes no liability for damages or legal action arising from the use or misuse of contents or details
contained herein.

If you believe Red Hat training materials are being used, copied, or otherwise improperly distributed, please send
email to training@redhat.com or phone toll-free (USA) +1(866) 626-2994 or +1(919) 754-3700.

Red Hat, Red Hat Enterprise Linux, the Red Hat logo, JBoss, OpenShift, Fedora, Hibernate, Ansible, CloudForms,
RHCA, RHCE, RHCSA, Ceph, and Gluster are trademarks or registered trademarks of Red Hat, Inc. or its subsidiaries
in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.
Java® is a registered trademark of Oracle and/or its affiliates.

XFS® is a registered trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or
other countries.

MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other countries.

Node.js® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the official Joyent
Node.js open source or commercial project.

The OpenStack® Word Mark and OpenStack Logo are either registered trademarks/service marks or trademarks/
service marks of the OpenStack Foundation, in the United States and other countries and are used with the
OpenStack Foundation's permission. We are not affiliated with, endorsed or sponsored by the OpenStack
Foundation or the OpenStack community.

All other trademarks are the property of their respective owners.
Contributors: James Mighion, Alejandra Ramirez Palacios, Michael Phillips

Portions of this course were adapted from the Ansible Lightbulb project. The material from that
project is available from https://github.com/ansible/lightbulb under the MIT License.

https://github.com/ansible/lightbulb

Document Conventions vii

... Vii
Introduction ix
Red Hat Enterprise Linux Automation with Ansible ..., ix
Orientation to the Classroom ENVIFONMENTooiiiiiiiiiii e X

1. Introducing Ansible 1
Automating Linux Administration with Ansible ..o 2
Quiz: Automating Linux Administration with Ansiblecooiiiiiiiii 9
INSTAllNG ANSIDIE L. oeie e e e e e n
Guided Exercise: Installing ANSIDIEovinii 16
T80 0] 00T YU PEPRPRN 18

2. Implementing an Ansible Playbook 19
Building an Ansible INVENTOIY ... 20
Guided Exercise: Building an Ansible INVENTOrYoiiiiiiiiie e 25
Managing Ansible Configuration Filesccooiiiiiiiii e 29
Guided Exercise: Managing Ansible Configuration Filesccoooviiiiiiiiiiiine 36
RUNNING Ad HOC COMMANASviiiiiiie e 40
Guided Exercise: Running Ad HOC CommMandSiiniiniiniiiieieieiee e 47
Writing and RUNNING PlaybOOKSouiiiiiie e 52
Guided Exercise: Writing and Running Playbooksccoiiiiiiiiiiiiiiieee 58
Implementing MUHIPIE PIAYSoviiie e 63
Guided Exercise: Implementing MUltiple Playscooviiiiiiii e 73

Lab: Implementing PlaybOoKSoiuiiiiiii e 79

T 0 0] 0= 1Y PP 86

3. Managing Variables and Facts 87
Managing VariabIEsiiiii e 88
Guided Exercise: Managing Variablescc.oiiiiiii e 97

[EIatTe] [ale IST=Tel (=] £ T PPN 103
Guided Exercise: Managing SECIETSuiniiniie e 108
MaNagING FaCES oo m
Guided Exercise: Managing Factsc.iviiiii e 120

Lab: Managing Variables and Factscouiiiiii e 125

ST [0 0] 0= VPPN 138

4. Implementing Task Control 139
Writing Loops and Conditional TasKScuiuiiiiiiiee e 140
Guided Exercise: Writing Loops and Conditional Tasksccoevviiiiiiiiiiiiiiiceeen 151
IMplementing HanNAIEISo e 154
Guided Exercise: Implementing HandIersooiiiiiiii e, 157
HaNdliNg Task FQilUreo.iei et e aaes 162
Guided Exercise: Handling Task Failurecooiiiiiiiii e, 166

Lab: Implementing Task CONLIOliuieiie e 174

ST [0 0] 0= VPPN 182

5. Deploying Files to Managed Hosts 183
Modifying and Copying Files 10 HOSESoiiviiiiiii e 184
Guided Exercise: Modifying and Copying Files to HOStScooivviiiiiiiiiee, 190
Deploying Custom Files with Jinja2 Templatescooiiiiiiiiiii e 198
Guided Exercise: Deploying Custom Files with Jinja2 Templatesccccovvviiiiiiininnn.n. 203

Lab: Deploying Files to Managed HOSEScouuiviiniiiiee e 206

ST 0 0] 0= YU 212

6. Managing Complex Plays and Playbooks 213
Selecting Hosts with HOSt Patternsooiiniiiii e 214

Guided Exercise: Selecting Hosts with Host Patternsccocoviiiiiiiii i 222

Including and IMPOrting FIleSouiii e 229
Guided Exercise: Including and Importing Filescooviiiiiiiiiee e 234
Lab: Managing Complex Plays and Playbookscoooiiiiiiiiiiie e 239
T 0 0] 0= 1Y PP 247
7. Simplifying Playbooks with Roles 249
Describing ROIe StrUCTUIE ... 250
Quiz: Describing Role StrUCTUIEiei e 255
Reusing Content with System ROIESoouiiiii i 257
Guided Exercise: Reusing Content with System Rolescooiiiiiiiiiiiiiii 264
Creating ROIES ... e 270
Guided Exercise: Creating ROIESvieiiiie e 276
Deploying Roles with Ansible Galaxycoviiiiiii e, 282
Guided Exercise: Deploying Roles with Ansible GalaxXyccccoviviiiiiiiiiiiiiiiieens 289
Getting Roles and Modules from Content Collectionsccocvviiiiiiiiie i, 296
Guided Exercise: Getting Roles and Modules from Content Collections 303
Lab: Simplifying Playbooks With ROIEScc.viiviiiiiiie e 308
ST [0 0] 0= 1 YU PPN 319
8. Troubleshooting Ansible 321
Troubleshooting PlaybOokKsooniiiie e 322
Guided Exercise: Troubleshooting Playbookscooiiiiiiiiiiii e, 325
Troubleshooting Ansible Managed HOSESoiuiiiiiiiie e 332
Guided Exercise: Troubleshooting Ansible Managed HOStSccooviiiiiiiiiiiiia 337
Lab: Troubleshooting ANSIDIE ..o 341
T 0 0] 0= [P 350
9. Automating Linux Administration Tasks 351
Managing Software and SUBSCHPLIONSo.iiiiiiii e 352
Guided Exercise: Managing Software and SUbsCriptionsccovviiviiiiiiiiiieeieeee 361
Managing Users and AuthentiCationoouiiiiiiii e 368
Guided Exercise: Managing Users and Authenticationc.cooiiiiiiiiiiii, 372
Managing the Boot Process and Scheduled Processesovuvviiiiiiiiiiiieieeen, 379
Guided Exercise: Managing the Boot Process and Scheduled Processes 383
MaNAGING SEOTAGE ... ittt e e e e 392
Guided Exercise: Managing Storageuiuiiiiiiee et 400
Managing Network Configurationcoiiiiiiiiiii e 413
Guided Exercise: Managing Network Configurationc.ccoiiiiiiiiinin 420
Lab: Automating Linux Administration Tasksccooiiiiiiii 424
T 0 0] 0= [P 438
10. Comprehensive Review: Linux Automation with Ansible 439
ComMPreheNnSIVE REVIEWooiuiiiiiii e 440
Lab: Deploying ANSIDIE 443
Lab: Creating Playbooksc..iiiiiii e 448
Lab: Creating ROIES 455
A. Supplementary Topics 467
Examining Ansible Configuration Optionsoviiiiiiiiiii e 468
B. Ansible Lightbulb Licensing 47
Ansible Lightbulb LICENSEouui 472

Document Conventions

This section describes various conventions and practices used throughout all
Red Hat Training courses.

Admonitions

]

¥4

Red Hat Training courses use the following admonitions:

References

These describe where to find external documentation relevant to a
subject.

Note

These are tips, shortcuts, or alternative approaches to the task at hand.
Ignoring a note should have no negative consequences, but you might
miss out on something that makes your life easier.

Important

These provide details of information that is easily missed: configuration
changes that only apply to the current session, or services that need
restarting before an update will apply. Ignoring these admonitions will
not cause data loss, but may cause irritation and frustration.

AN\

Warning

These should not be ignored. Ignoring these admonitions will most likely
cause data loss.

Inclusive Language

Red Hat Training is currently reviewing its use of language in various areas
to help remove any potentially offensive terms. This is an ongoing process
and requires alignment with the products and services covered in Red Hat
Training courses. Red Hat appreciates your patience during this process.

For use by La Pyayt lapyayt2015 lapyayt@infratechmm.com Copyright © 2022 Red Hat, Inc.

RH294-RHEL8.4-en-1-20210818

Introduction

Red Hat Enterprise Linux Automation with Ansible
Red Hat Enterprise Linux Automation with Ansible (RH294) is intended
for Linux system administrators and developers who need to automate
provisioning, configuration, application deployment, and orchestration.

Students will learn how to install and configure Ansible on a management
workstation and prepare managed hosts for automation. Students will write
Ansible Playbooks to automate tasks, and run them to ensure servers are
correctly deployed and configured. Examples of approaches to automate
common Linux system administration tasks will be explored.

- Course .
= Objectives
et 0
. -
Audience .

Prerequisites -

/

Install and configure Ansible from Red Hat Ansible
Automation Platform on a control node.

Create and manage inventories of managed hosts,
and prepare them for Ansible automation.

Run individual ad hoc automation tasks from the
command line.

Write Ansible Playbooks to consistently automate
multiple tasks and apply them to managed hosts.

Parameterize playbooks using variables and facts,
and protect sensitive data with Ansible Vault.

Write and reuse existing Ansible roles to simplify
playbook creation and reuse code.

Automate common Red Hat Enterprise Linux system
administration tasks using Ansible.

Linux system administrators, DevOps engineers,
infrastructure automation engineers, and systems
design engineers responsible for automation

of configuration management, consistent and
repeatable application deployment, provisioning
and deployment of development, testing, and
production servers, and integration with DevOps Cl/
CD workflows.

Red Hat Certified System Administrator (EX200/
RHCSA) certification or equivalent Red Hat
Enterprise Linux knowledge and experience.

RH294-RHEL8.4-en-1-20210818

Introduction

Orientation to the Classroom

Environment

Internet & Facility
Network

N

Student Network
172.25.250.0/24

A

bastion

A

—
ooooo o

classroom

content
materials

Classroom Network

172.25.252.0/24

Figure O.1: Classroom environment

JE=

A

e
— [
servera

[

serverb
Z ||+

= ol

workstation

serverc

g I

serverd

In this course, the main computer system used for hands-on learning activities isworkstation.
Four other machines are also used by students for these activities: servera, serverb, serverc,
and serverd. All these five systems are in the lab.example.com DNS domain.

All student computer systems have a standard user account, student, which has the password

student. The root password on all student systems is redhat.

Classroom Machines

Machine name IP addresses Role
bastion.lab.example.com 172.25.250.254 Gateway system to connect
student private network
to classroom server (must
always be running)
workstation.lab.example.com 172.25.250.9 Graphical workstation used
for system administration
servera.lab.example.com 172.25.250.10 Host managed with Ansible

serverb.lab.example.com

172.25.250.11

Host managed with Ansible

serverc.lab.example.com

172.25.250.12

Host managed with Ansible

serverd.lab.example.com

172.25.250.13

Host managed with Ansible

RH294-RHEL8.4-en-1-20210818

Introduction

The primary function of bastion is that it acts as a router between the network that connects
the student machines and the classroom network. If bastion is down, other student machines will
only be able to access systems on the individual student network.

Several systems in the classroom provide supporting services. Two servers,
content.example.comand materials.example.com, are sources for software and lab
materials used in hands-on activities. Information on how to use these servers is provided in the
instructions for those activities. These are provided by the classroom.example.com virtual
machine. Both classroom and bastion should always be running for proper use of the lab
environment.

Controlling Your Systems

rht-vmct1 Commands

Action Command
Start server machine rht-vmctl start server

View "physical console" to log in and work with | rht-vmview view server
the server machine

Reset server machine to its previous state rht-vmctl reset server
and restart the virtual machine

Students are assigned remote computers in a Red Hat Online Learning classroom. They are
accessed through a web application hosted at rol.redhat.com [http://rol.redhat.com]. Students
should log in to this site using their Red Hat Customer Portal user credentials.

Controlling the Virtual Machines

The virtual machines in your classroom environment are controlled through a web page. The state
of each virtual machine in the classroom is displayed on the page under the Online Lab tab.

Machine States

Virtual Machine Description

State

STARTING The virtual machine is in the process of booting.

STARTED The virtual machine is running and available (or, when booting, soon
will be).

STOPPING The virtual machine is in the process of shutting down.

STOPPED The virtual machine is completely shut down. Upon starting, the virtual

machine boots into the same state as when it was shut down (the disk
will have been preserved).

PUBLISHING The initial creation of the virtual machine is being performed.

WAITING_TO_START | The virtual machine is waiting for other virtual machines to start.

http://rol.redhat.com
http://rol.redhat.com

Introduction

Depending on the state of a machine, a selection of the following actions is available.

Classroom/Machine Actions

Button or Action

PROVISION LAB

DELETELAB

START LAB

SHUTDOWN LAB

OPEN CONSOLE

ACTION — Start

ACTION —
Shutdown

ACTION — Power
Off

ACTION — Reset

Description

Create the ROL classroom. Creates all of the virtual machines needed
for the classroom and starts them. Can take several minutes to
complete.

Delete the ROL classroom. Destroys all virtual machines in the
classroom. Caution: Any work generated on the disks is lost.

Start all virtual machines in the classroom.
Stop all virtual machines in the classroom.

Open a new tab in the browser and connect to the console of the
virtual machine. Students can log in directly to the virtual machine

and run commands. In most cases, students should log in to the
workstation virtual machine and use ssh to connect to the other virtual
machines.

Start (power on) the virtual machine.

Gracefully shut down the virtual machine, preserving the contents of
its disk.

Forcefully shut down the virtual machine, preserving the contents of its
disk. This is equivalent to removing the power from a physical machine.

Forcefully shut down the virtual machine and reset the disk to its initial
state. Caution: Any work generated on the disk is lost.

At the start of an exercise, if instructed to reset a single virtual machine node, click ACTION —
Reset for only the specific virtual machine.

At the start of an exercise, if instructed to reset all virtual machines, click ACTION — Reset

If you want to return the classroom environment to its original state at the start of the course,
you can click DELETE LAB to remove the entire classroom environment. After the lab has been
deleted, you can click PROVISION LAB to provision a new set of classroom systems.

Warning
The DELETE LAB operation cannot be undone. Any work you have completed in the
classroom environment up to that point will be lost.

The Autostop Timer

The Red Hat Online Learning enrollment entitles students to a certain amount of computer time.
To help conserve allotted computer time, the ROL classroom has an associated countdown timer,
which shuts down the classroom environment when the timer expires.

To adjust the timer, click MODIFY to display the New Autostop Time dialog box. Set the number
of hours and minutes until the classroom should automatically stop.

Introduction

Click ADJUST TIME to apply this change to the timer settings.

RH294-RHEL8.4-en-1-20210818

For use by La Pyayt lapyayt2015 lapyayt@infratechmm.com Copyright © 2022 Red Hat, Inc.

RH294-RHEL8.4-en-1-20210818

Chapter1

Introducing Ansible

Goal

Objectives

[

w

-
I—

I Sections

r/

Describe the fundamental Ansible concepts and
how it is used, and install Ansible from Red Hat
Ansible Automation Platform.

+ Describe the motivation for automating
Linux administration tasks with Ansible,
fundamental Ansible concepts, and Ansible’s
basic architecture.

+ Install Ansible on a control node and describe
the distinction between community Ansible and
Red Hat Ansible Automation Platform.

Automating Linux Administration with Ansible
(and Quiz)

+ Installing Ansible (and Guided Exercise)

RH294-RHEL8.4-en-1-20210818

Chapter1 | Introducing Ansible

Automating Linux Administration with
Ansible

Objective

After completing this section, you should be able to describe the motivation for automating Linux
administration tasks with Ansible, fundamental Ansible concepts, and Ansible's basic architecture.

Automation and Linux System Administration

For many years, most system administration and infrastructure management has relied on manual
tasks performed through graphical or command-line user interfaces. System administrators often
work from checklists, other documentation, or a memorized routine to perform standard tasks.

This approach is error-prone. It is easy for a system administrator to skip a step or perform a step
mistakenly.

Often there is limited verification that the steps were performed properly or that they result in the
expected outcome.

Furthermore, by managing each server manually and independently, it is very easy for many
servers that are supposed to be identical in configuration to be different in minor (or major)
ways. This can make maintenance more difficult and introduce errors or instability into the IT
environment.

Automation can help avoid the problems caused by manual system administration and
infrastructure management. As a system administrator, you can use automation to ensure that

all your systems are quickly and correctly deployed and configured. This allows you to automate
the repetitive tasks in your daily schedule, freeing up your time and allowing you to focus on more
critical things. For your organization, this means you can more quickly roll out the next version of
an application or updates to a service.

Infrastructure as Code

A good automation system allows you to implement Infrastructure as Code practices.
Infrastructure as Code means that you can use a machine-readable automation language to
define and describe the state you want your IT infrastructure to be in. Ideally, this automation
language should also be very easy for humans to read, because then you can easily understand
what the state is and make changes to it. This code is then applied to your infrastructure to ensure
that it is actually in that state.

If the automation language is represented as simple text files, it can easily be managedin a
version control system. The advantage of this is that every change can be checked into the version
control system, ensuring that you have a history of the changes you make over time. If you want to
revert to an earlier known-good configuration, you can check out that version and apply it to your
infrastructure.

This builds a foundation to help you follow best practices in DevOps. Developers can define their
desired configuration in the automation language. Operators can review those changes more
easily to provide feedback, and use that automation to reproducibly ensure that systems are in the
state expected by the developers.

Chapter1 | Introducing Ansible

Mitigating Human Error

By reducing the tasks performed manually on servers using automation of tasks and Infrastructure
as Code practices, your servers will be in consistent configurations more often. This means that
you need to become accustomed to making changes by updating your automation code, rather
than manually applying them to your servers. Otherwise, you run the risk of losing manually applied
changes the next time you apply changes using automation.

Automation allows you to use code review, peer review by multiple subject matter experts, and
documentation of the procedure by the automation itself to reduce your operational risks.

Ultimately, you can enforce that changes to your IT infrastructure must be made through
automation in order to mitigate human error.

What is Ansible?

Ansible is an open source automation platform. It is a simple automation language that can
perfectly describe an IT application infrastructure in Ansible Playbooks. It is also an automation
engine that runs Ansible Playbooks.

Ansible can manage powerful automation tasks and can adapt to many different workflows
and environments. At the same time, new users of Ansible can very quickly use it to become
productive.

Ansible Is Simple

Ansible Playbooks provide human-readable automation. This means that playbooks are
automation tools that are also easy for humans to read, comprehend, and change. No special
coding skills are required to write them. Playbooks execute tasks in order. The simplicity of
playbook design makes them usable by every team, which allows people new to Ansible to get
productive quickly.

Ansible Is Powerful

You can use Ansible to deploy applications for configuration management, for workflow
automation, and for network automation. Ansible can be used to orchestrate the entire application
life cycle.

Ansible Is Agentless

Ansible is built around an agentless architecture. Typically, Ansible connects to the hosts it
manages using OpenSSH or WinRM and runs tasks, often (but not always) by pushing out small
programs called Ansible modules to those hosts. These programs are used to put the system in
a specific desired state. Any modules that are pushed are removed when Ansible is finished with
its tasks. You can start using Ansible almost immediately because no special agents need to be
approved for use and then deployed to the managed hosts. Because there are no agents and no
additional custom security infrastructure, Ansible is more efficient and more secure than other
alternatives.

Ansible has a number of important strengths:

+ Cross platform support: Ansible provides agentless support for Linux, Windows, UNIX, and
network devices, in physical, virtual, cloud, and container environments.

+ Human-readable automation: Ansible Playbooks, written as YAML text files, are easy to read and
help ensure that everyone understands what they will do.

Chapter1 | Introducing Ansible

* Perfect description of applications: Every change can be made by Ansible Playbooks, and every
aspect of your application environment can be described and documented.

+ Easy to manage in version control: Ansible Playbooks and projects are plain text. They can be
treated like source code and placed in your existing version control system.

+ Support for dynamic inventories: The list of machines that Ansible manages can be dynamically
updated from external sources in order to capture the correct, current list of all managed servers
all the time, regardless of infrastructure or location.

+ Orchestration that integrates easily with other systems: HP SA, Puppet, Jenkins, Red Hat

Satellite, and other systems that exist in your environment can be leveraged and integrated into
your Ansible workflow.

Ansible: The Language of DevOps

ANSIBLE PLAYBOOK

From development... ...to production.

2222 X

DEV/TEST OPERATIONS MANAGEMENT OUTSOURCERS

Figure 1.1: Ansible across the application life cycle

Communication is the key to DevOps. Ansible is the first automation language that can be read
and written across IT. It is also the only automation engine that can automate the application life
cycle and continuous delivery pipeline from start to finish.

Ansible Concepts and Architecture

There are two types of machines in the Ansible architecture: control/ nodes and managed hosts.
Ansible is installed and run from a control node, and this machine also has copies of your Ansible
project files. A control node could be an administrator's laptop, a system shared by a number of
administrators, or a server running Red Hat Ansible Tower.

Managed hosts are listed in an inventory, which also organizes those systems into groups for
easier collective management. The inventory can be defined in a static text file, or dynamically
determined by scripts that get information from external sources.

Instead of writing complex scripts, Ansible users create high-level plays to ensure a host or group
of hosts are in a particular state. A play performs a series of tasks on the hosts, in the order
specified by the play. These plays are expressed in YAML format in a text file. A file that contains
one or more plays is called a playbook.

Each task runs a module, a small piece of code (written in Python, PowerShell, or some other
language), with specific arguments. Each module is essentially a tool in your toolkit. Ansible ships
with hundreds of useful modules that can perform a wide variety of automation tasks. They can act
on system files, install software, or make API calls.

' RH294-RHEL8.4-en-1-20210818

Chapter1 | Introducing Ansible

When used in a task, a module generally ensures that some particular aspect of the machine is
in a particular state. For example, a task using one module might ensure that a file exists and has
particular permissions and contents, while a task using a different module might make certain
that a particular file system is mounted. If the system is not in that state, the task should put itin
that state. If the system is already in that state, it does nothing. If a task fails, the default Ansible
behavior is to abort the rest of the playbook for the hosts that had a failure.

Tasks, plays, and playbooks are designed to be idempotent. This means that you can safely run

a playbook on the same hosts multiple times. When your systems are in the correct state, the
playbook makes no changes when you run it. This means that you should be able to run a playbook
on the same hosts multiple times safely. When your systems are in the correct state the playbook
should make no changes when you run it. There are a handful of modules that you can use to run
arbitrary commands. However, you must use those modules with care to ensure that they run in an
idempotent way.

Ansible also uses plug-ins. Plug-ins are code that you can add to Ansible to extend it and adapt it
to new uses and platforms.

The Ansible architecture is agentless. Typically, when an administrator runs an Ansible Playbook
or an ad hoc command, the control node connects to the managed host using SSH (by default)
or WinRM. This means that clients do not need to have an Ansible-specific agent installed on
managed hosts, and do not need to permit special network traffic to some nonstandard port.

Getting Support for Ansible

Red Hat Ansible Automation Platform is a fully supported version of Ansible that allows enterprises
to manage their automation at scale.

It provides:
+ Official support for the core Ansible toolset.

+ Certified content collections to help you accelerate adoption of Ansible automation with
supported code.

+ Cloud services to help you discover certified Ansible content, facilitate team collaboration, and
provide operational analytics to automate mixed, hybrid environments.

+ On-premise tools to help you centralize management of automation tasks.

For example, the automation controller component (formerly called Red Hat Ansible Tower) is an
enterprise framework that you can use to control who has access to run playbooks on which hosts,
share the use of SSH credentials without allowing users to transfer them or see their contents, log
all of your Ansible jobs, and manage inventory, among many other things.

It provides a browser-based user interface (web Ul) and a RESTful API. The upstream Ansible
community does not automatically include this with core Ansible, but it is developed as open
source and is provided and supported as part of the Red Hat Ansible Automation Platform
product.

Chapter1 | Introducing Ansible

PUBLIC / PRIVATE
CLouD

((

USERS

INVENTORY API HOSTS

NETWORKING

MODULES PLUGINS

ANSIBLE PLAYBOOK

Figure 1.2: Ansible architecture

The Ansible Way
Complexity Kills Productivity

Simpler is better. Ansible is designed so that its tools are simple to use and automation is simple to
write and read. You should take advantage of this to strive for simplification in how you create your
automation.

Optimize For Readability

The Ansible automation language is built around simple, declarative, text-based files that are
easy for humans to read. Written properly, Ansible Playbooks can clearly document your workflow
automation.

Think Declaratively

Ansible is a desired-state engine. It approaches the problem of how to automate IT deployments
by expressing them in terms of the state that you want your systems to be in. Ansible's goal is to
put your systems into the desired state, only making changes that are necessary. Trying to treat

Ansible like a scripting language is not the right approach.

' RH294-RHEL8.4-en-1-20210818

Chapter1 | Introducing Ansible

App. Servers

10 Servers

Stop Monitoring

Stop Services

Deploy Application

Remove from Load Balancing
80y

Reverse Steps 3,2,1

ﬁ> Move to next 10 Servers

Figure 1.3: Ansible provides complete automation

Use Cases

Unlike some other tools, Ansible combines and unites orchestration with configuration
management, provisioning, and application deployment in one easy-to-use platform.

Some use cases for Ansible include:

Configuration Management
Centralizing configuration file management and deployment is a common use case for
Ansible, and it is how many power users are first introduced to the Ansible automation
platform.

Application Deployment
When you define your application with Ansible, and manage the deployment with Red Hat
Ansible Tower, teams can effectively manage the entire application life cycle from
development to production.

Provisioning
Applications have to be deployed or installed on systems. Ansible and Red Hat Ansible Tower
can help streamline the process of provisioning systems, whether you are PXE booting and
kickstarting bare-metal servers or virtual machines, or creating virtual machines or cloud
instances from templates. Applications have to be deployed or installed on systems.

Continuous Delivery
Creating a Cl/CD pipeline requires coordination and buy-in from numerous teams. You cannot
do it without a simple automation platform that everyone in your organization can use. Ansible
Playbooks keep your applications properly deployed and managed throughout their entire life
cycle.

RH294-RHEL8.4-en-1-20210818 ‘

Chapter1 | Introducing Ansible

Security and Compliance
When your security policy is defined in Ansible Playbooks, scanning and remediation of site-
wide security policies can be integrated into other automated processes.

Instead of being an afterthought, it is an integral part of everything that is deployed.

Orchestration
Configurations alone do not define your environment. You need to define how multiple
configurations interact, and ensure that the disparate pieces can be managed as a whole.

References

Ansible
https://www.ansible.com

How Ansible Works
https://www.ansible.com/how-ansible-works

' RH294-RHEL8.4-en-1-20210818

https://www.ansible.com
https://www.ansible.com/how-ansible-works

Chapter1 | Introducing Ansible

» Quiz

Automating Linux Administration with
Ansible

Choose the correct answer to the following questions:

b1

b 2.

P 3.

Which of the following terms best describes the Ansible architecture?
a. Agentless

b. Client/Server

c. Event-driven

d. Stateless

Which network protocol does Ansible use by default to communicate with managed
nodes?

a. HTTP

b. HTTPS

c. SNMP

d. SSH

Which of the following files defines the actions that Ansible performs on managed
nodes?

a. Host inventory

b. Manifest

c. Playbook

d. Script

P 4. What syntax is used to define Ansible Playbooks?

a. Bash
b. Perl
c. Python
d. YAML

RH294-RHEL8.4-en-1-20210818

Chapter1 | Introducing Ansible

» Solution

Automating Linux Administration with
Ansible

Choose the correct answer to the following questions:

P 1. Which of the following terms best describes the Ansible architecture?
a. Agentless
b. Client/Server
c. Event-driven
d. Stateless

P 2. Which network protocol does Ansible use by default to communicate with managed
nodes?
a. HTTP
b. HTTPS
c. SNMP
d. SSH

P 3. Which of the following files defines the actions that Ansible performs on managed
nodes?
a. Host inventory
b. Manifest
c. Playbook
d. Script

P 4. What syntax is used to define Ansible Playbooks?
a. Bash
b. Perl
c. Python
d. YAML

w RH294-RHEL8.4-en-1-20210818

Chapter1 | Introducing Ansible

Installing Ansible

Objectives

After completing this section, you should be able to install Ansible on a control node and describe
the distinction between community Ansible and Red Hat Ansible Automation Platform.

Ansible and Red Hat Ansible Automation Platform

Red Hat provides a fully supported version of Ansible through Red Hat Ansible Automation
Platform. Ansible Automation Platform provides the core Ansible toolset plus additional certified
and supported content, tools, and cloud services. Customers with a valid subscription can use
the available repository, install the additional tools, and consume certified content from the cloud
services.

This course is currently based on Red Hat Ansible Automation Platform 1.2, which includes
Ansible 2.9.

Note

E Earlier versions of Red Hat Ansible Automation Platform refer to the included
version of Ansible as "Red Hat Ansible Engine", and you will see this terminology
used in some documentation.

The upstream development community also provides an unsupported version of Ansible. This used
to be provided as RPM packages, but is transitioning to be provided only from the Python Package
Index (PyPl).

Control Nodes

Ansible is simple to install. The Ansible software only needs to be installed on the control node
(or nodes) from which Ansible will be run. Hosts that are managed by Ansible do not need to have
Ansible installed.

Installing the core Ansible toolset involves relatively few steps and has minimal requirements. On
the other hand, installing the additional components that Red Hat Ansible Automation Platform
provides, such as the automation controller (formerly called Red Hat Ansible Tower), requires a
Red Hat Enterprise Linux 8.2 or later system, with a minimum of two CPUs, 4 GiB of RAM, and
20 GiB of available disk space.

Python 3 (version 3.5 or later) or Python 2 (version 2.7 or later) needs to be installed on the
control node.

RH294-RHEL8.4-en-1-20210818 ‘

Chapter1 | Introducing Ansible

i~ | Important

= If you are running Red Hat Enterprise Linux 8, Ansible can automatically use the
platform-python package that supports system utilities that use Python. You do not
need to install the python36 or python27 package from AppStream.

[root@controlnode ~]# yum list installed platform-python
Installed Packages
platform-python.x86_64 3.6.8-37.el @anaconda

You need a valid Red Hat Ansible Automation Platform subscription to install the core toolset on
your control node. The installation process is as follows:

If you have activated Simple Content Access for your organization in the Red Hat Customer Portal,
then you do not need to attach the subscription to your system. The installation process is as
follows:

Warning
You do not need to run these steps in your classroom environment.

+ Register your system to Red Hat Subscription Manager.

[root@host ~]# subscription-manager register

+ Enable the Red Hat Ansible Engine repository.

[root@host ~]# subscription-manager repos \
> --enable ansible-2-for-rhel-8-x86_64-rpms

+ Install Red Hat Ansible Engine.

[root@host ~]# yum install ansible

Managed Hosts

One of the benefits of Ansible is that managed hosts do not need to have a special agent installed.
The Ansible control node connects to managed hosts using a standard network protocol to ensure
that the systems are in the specified state.

Managed hosts might have some requirements depending on how the control node connects to
them and what modules it will run on them.

Linux and UNIX managed hosts need to have Python 2 (version 2.6 or later) or Python 3
(version 3.5 or later) installed for most modules to work.

For Red Hat Enterprise Linux 8, you may be able to depend on the platform-python package. You
can also enable and install the python36 application stream (or the python27 application stream).

Chapter1 | Introducing Ansible

[root@host ~]# yum module install python36

If SELinux is enabled on the managed hosts, ensure that the python3-libselinux package is
installed before using modules that are related to any copy, file, or template functions. (Note
that if the other Python components are installed, you can use Ansible modules such as yum or
package to ensure that this package is also installed.)

i~ | Important

Some package names may be different in Red Hat Enterprise Linux 7 and earlier
because of the ongoing migration to Python 3.

For Red Hat Enterprise Linux 7 and earlier, install the python package, which
provides Python 2. Instead of python3-libselinux, install libselinux-python instead.

Some modules might have their own additional requirements. For example, the dnf module, which
can be used to install packages on current Fedora systems, requires the python3-dnf package
(python-dnfin RHEL 7).

Note

S Some modules do not need Python. For example, arguments passed to the Ansible
raw module are run directly through the configured remote shell instead of going
through the module subsystem. This can be useful for managing devices that do not
have Python available or cannot have Python installed, or for bootstrapping Python
onto a system that does not have it.

However, the raw module is difficult to use in a safely idempotent way. If you can
use a normal module instead, it is generally better to avoid using raw and similar
command modules. This is discussed further later in the course.

Microsoft Windows-based Managed Hosts

Ansible includes a number of modules that are specifically designed for Microsoft Windows
systems. These are listed in the Windows modules [https://docs.ansible.com/ansible/2.9/
modules/list_of_windows_modules.html] section of the Ansible module index.

Most of the modules specifically designed for Microsoft Windows managed hosts require
PowerShell 3.0 or later on the managed host rather than Python. In addition, the managed hosts
need to have Windows PowerShell remoting configured. Ansible also requires at least .NET
Framework 4.0 or later to be installed on Windows managed hosts.

This course uses Linux-based managed hosts in its examples, and does not go into great depth
on the specific differences and adjustments needed when managing Microsoft Windows-based
managed hosts. More information is available on the Ansible web site at https://docs.ansible.com/
ansible/2.9/user_guide/windows.html.

Managed Network Devices

You can also use Ansible automation to configure managed network devices such as routers and
switches. Ansible includes a large number of modules specifically designed for this purpose. This
includes support for Cisco 10S, IOS XR, and NX-OS; Juniper Junos; Arista EOS; and VyOS-based
networking devices, among others.

https://docs.ansible.com/ansible/2.9/modules/list_of_windows_modules.html
https://docs.ansible.com/ansible/2.9/modules/list_of_windows_modules.html
https://docs.ansible.com/ansible/2.9/modules/list_of_windows_modules.html
https://docs.ansible.com/ansible/2.9/user_guide/windows.html
https://docs.ansible.com/ansible/2.9/user_guide/windows.html

Chapter1 | Introducing Ansible

You can write Ansible Playbooks for network devices using the same basic techniques that you
use when writing playbooks for servers. Because most network devices cannot run Python,
Ansible runs network modules on the control node, not on the managed hosts. Special connection
methods are also used to communicate with network devices, typically using either CLI over SSH,
XML over SSH, or APl over HTTP(S).

This course does not cover automation of network device management in any depth. For more
information on this topic, see Ansible for Network Automation [https://docs.ansible.com/
ansible/2.9/network/index.html] on the Ansible community website, or attend our alternative
course Ansible for Network Automation (DO457) [https://www.redhat.com/en/services/training/
do457-ansible-network-automation].

Preparing for Changes to Ansible Release Methods

Both the upstream Ansible community and Red Hat Ansible Automation Platform are going
through a transition in how Ansible is packaged and distributed to users.

Ansible 2.9, Ansible in Red Hat Ansible Automation Platform 1.2, and earlier versions of both were
provided as an RPM package (ansible). This package also included all Ansible modules and plug-
ins.

In future versions of Red Hat Ansible Automation Platform, the code that runs automation will be
moved to a new package, ansible-core, and supported modules and plug-ins will be provided using
a new feature, content collections. Content collections will be discussed in more detail later in this
course. In addition, Ansible Automation Platform 2 will also include enhanced tools and features
to run your playbooks, new cloud services features, and enhanced versions of the automation
controller (formerly known as Red Hat Ansible Tower) and automation hub.

Future versions of community-built Ansible will provide the executables and a selected set of
content through the Python Package Index (PyPl), from which the pip install ansible
command can install them. However, this selected set of content might be different from what
Red Hat supports and certifies in Red Hat Ansible Automation Platform.

The automation code, tools, and techniques you will learn in this course apply directly to future
versions of Ansible with little or no modification.

w RH294-RHEL8.4-en-1-20210818

https://docs.ansible.com/ansible/2.9/network/index.html
https://docs.ansible.com/ansible/2.9/network/index.html
https://docs.ansible.com/ansible/2.9/network/index.html
https://www.redhat.com/en/services/training/do457-ansible-network-automation
https://www.redhat.com/en/services/training/do457-ansible-network-automation
https://www.redhat.com/en/services/training/do457-ansible-network-automation

Chapter1 | Introducing Ansible

References
ansible-doc(1) man page

Knowledgebase: "How Do | Download and Install Red Hat Ansible Engine?"
https://access.redhat.com/articles/3174981

Simple Content Access
https://access.redhat.com/articles/simple-content-access

Product Documentation for Red Hat Ansible Automation Platform 1.2
https://access.redhat.com/documentation/en-us/
red_hat_ansible_automation_platform/1.2/

Windows Guides — Ansible Documentation
https://docs.ansible.com/ansible/2.9/user_guide/windows.html

Ansible for Networking Automation — Ansible Documentation
https://docs.ansible.com/ansible/2.9/network/index.html

RH294-RHEL8.4-en-1-20210818

https://access.redhat.com/articles/3174981
https://access.redhat.com/articles/simple-content-access
https://access.redhat.com/documentation/en-us/red_hat_ansible_automation_platform/1.2/
https://access.redhat.com/documentation/en-us/red_hat_ansible_automation_platform/1.2/
https://docs.ansible.com/ansible/2.9/user_guide/windows.html
https://docs.ansible.com/ansible/2.9/network/index.html

Chapter1 | Introducing Ansible

» Guided Exercise

Installing Ansible

In this exercise, you will install Ansible on a control node running Red Hat Enterprise Linux.

Outcomes

You should be able to install Ansible on a control node.

Before You Begin
Logintoworkstation as student using student as the password, and run the lab
intro-install start command. This command configures the control node.

[student@workstation ~]$ lab intro-install start

Instructions

P 1. Install Ansible on workstation so that you can use that machine as your control node.

[student@workstation ~]$ sudo yum install ansible

[sudo] password for student: student

Last metadata expiration check: 0:00:44 ago on Thu 22 Jul 2021 01:27:41 AM EDT.
Dependencies resolved.

...output omitted...

Is this ok [y/d/N]: y

...output omitted...

P 2. Verify that Ansible is installed on the system. Execute the ansible command with the - -
version option.

[student@workstation ~]$ ansible --version
ansible 2.9.15
config file = /etc/ansible/ansible.cfg
configured module search path = ['/home/student/.ansible/plugins/modules', '/
usr/share/ansible/plugins/modules"']
ansible python module location = /usr/1lib/python3.6/site-packages/ansible
executable location = /usr/bin/ansible
python version = 3.6.8 (default, Mar 18 2021, 08:58:41) [GCC 8.4.1 20200928 (Red
Hat 8.4.1-1)]

P 3. Invoke the setup module on the local host to retrieve the value of the
ansible_python_version fact.

[student@workstation ~]$ ansible -m setup localhost | grep ansible_python_version
"ansible_python_version": "3.6.8",

Chapter1 | Introducing Ansible

Finish
Onworkstation, runthe lab intro-install finish script to clean up this exercise.

[student@workstation ~]$ lab intro-install finish

This concludes the guided exercise.

RH294-RHEL8.4-en-1-20210818 ‘

Chapter1 | Introducing Ansible

Summary

In this chapter, you learned:

Automation is a key tool to mitigate human error and quickly ensure that your IT infrastructure is
in a consistent, correct state.

Ansible is an open source automation platform that can adapt to many different workflows and
environments.

Ansible can be used to manage many different types of systems, including servers running
Linux, Microsoft Windows, or UNIX, and network devices.

Ansible Playbooks are human-readable text files that describe the desired state of an IT
infrastructure.

Ansible is built around an agentless architecture in which Ansible is installed on a control node
and clients do not need any special agent software.

Ansible connects to managed hosts using standard network protocols such as SSH, and runs
code or commands on the managed hosts to ensure that they are in the state specified by
Ansible.

Chapter 2

Implementing an Ansible
Playbook

Goal Create an inventory of managed hosts, write a ¢
simple Ansible Playbook, and run the playbook to
automate tasks on those hosts.
.
Objectives * Describe Ansible inventory concepts and “
manage a static inventory file.
+ Describe where Ansible configuration files are ".

located, how Ansible selects them, and edit
them to apply changes to default settings.

Run a single Ansible automation task using an

i
-

st >

P ad hoc command and explain some use cases
' for ad hoc commands.

+ Wirite a basic Ansible Playbook and run it using
the ansible-playbook command.

+ Write a playbook that uses multiple plays and
per-play privilege escalation, and effectively
use ansible-doc to learn how to use new
modules to implement tasks for a play.

Sections *+ Building an Ansible Inventory (and Guided
Exercise)

+ Managing Ansible Configuration Files (and

Guided Exercise)

+ Running Ad Hoc Commands (and Guided
Exercise)

Writing and Running Playbooks (and Guided
Exercise)

+ Implementing Multiple Plays (and Guided
Exercise)

Lab + Implementing Playbooks

74

RH294-RHEL8.4-en-1-20210818

Chapter 2 | Implementing an Ansible Playbook

Building an Ansible Inventory

Objectives

After completing this section, you should be able to describe Ansible inventory concepts and
manage a static inventory file.

Defining the Inventory

An inventory defines a collection of hosts that Ansible will manage. These hosts can also be
assigned to groups, which can be managed collectively. Groups can contain child groups, and
hosts can be members of multiple groups. The inventory can also set variables that apply to the
hosts and groups that it defines.

Host inventories can be defined in two different ways. A static host inventory can be defined by a
text file. A dynamic host inventory can be generated by a script or other program as needed, using
external information providers.

Specifying Managed Hosts with a Static Inventory

A static inventory file is a text file that specifies the managed hosts that Ansible targets. You
can write this file using a number of different formats, including INI-style or YAML. The INI-style
format is very common and will be used for most examples in this course.

Note
S There are multiple static inventory formats supported by Ansible. In this section, we
are focusing on the most common one, INI-style format.

In its simplest form, an INI-style static inventory file is a list of host names or IP addresses of
managed hosts, each on a single line:

webl.example.com
web2.example.com
db1.example.com
db2.example.com
192.0.2.42

Normally, however, you organize managed hosts into host groups. Host groups allow you to more
effectively run Ansible against a collection of systems. In this case, each section starts with a host
group name enclosed in square brackets ([]). This is followed by the host name or an IP address
for each managed host in the group, each on a single line.

In the following example, the host inventory defines two host groups: webservers and db -
servers.

Chapter 2 | Implementing an Ansible Playbook

[webservers]
webl.example.com
web2.example.com
192.0.2.42

[db-servers]
db1.example.com
db2.example.com

Hosts can be in multiple groups. In fact, recommended practice is to organize your hosts into
multiple groups, possibly organized in different ways depending on the role of the host, its physical
location, whether it is in production or not, and so on. This allows you to easily apply Ansible plays
to specific hosts.

[webservers]
webl.example.com
web2.example.com
192.0.2.42

[db-servers]
dbl.example.com
db2.example.com

[east-datacenter]
webl.example.com
dbl.example.com

[west-datacenter]
web2.example.com
db2.example.com

[production]
webl.example.com
web2.example.com
db1.example.com
db2.example.com

[development]
192.0.2.42

i~ | Important
Two host groups always exist:

+ The all host group contains every host explicitly listed in the inventory.

+ The ungrouped host group contains every host explicitly listed in the inventory
that is not a member of any other group.

Chapter 2 | Implementing an Ansible Playbook

Defining Nested Groups

Ansible host inventories can include groups of host groups. This is accomplished by creating a
host group name with the : children suffix. The following example creates a new group called
north-america, which includes all hosts from the usa and canada groups.

[usa]
washingtonl.example.com
washington2.example.com

[canada]
ontario@1.example.com
ontario@2.example.com

[north-america:children]
canada
usa

A group can have both managed hosts and child groups as members. For example, in the previous
inventory you could add a [north-america] section that has its own list of managed hosts. That
list of hosts would be merged with the additional hosts that the north-america group inherits
from its child groups.

Simplifying Host Specifications with Ranges

You can specify ranges in the host names or IP addresses to simplify Ansible host inventories. You
can specify either numeric or alphabetic ranges. Ranges have the following syntax:

[START:END]

Ranges match all values from START to END, inclusively. Consider the following examples:

+ 192.168.[4:7].[0:255] matches all IPv4 addresses in the 192.168.4.0/22 network (192.168.4.0
through 192.168.7.255).

+ server[01:20].example.com matches all hosts named serverOl.example.com through
server20.example.com.

+ [a:c].dns.example.com matches hosts named a.dns.example.com, b.dns.example.com, and
c.dns.example.com.

+ 2001:db8::[a:f] matches all IPv6 addresses from 2001:db8::a through 2001:db8::f.

If leading zeros are included in numeric ranges, they are used in the pattern. The second example
above does not match serveri1.example.combut does match server07.example.com.

To illustrate this, the following example uses ranges to simplify the [usa] and [canada] group
definitions from the earlier example:

[usa]
washington[1:2].example.com

[canada]
ontario[01:02].example.com

Chapter 2 | Implementing an Ansible Playbook

Verifying the Inventory

When in doubt, use the ansible command to verify a machine's presence in the inventory:

[user@controlnode ~]$ ansible washingtonl.example.com --list-hosts
hosts (1):
washingtonl.example.com
[user@controlnode ~]$ ansible washington01l.example.com --list-hosts
[WARNING]: provided hosts 1list is empty, only localhost is available

hosts (0):

You can run the following command to list all hosts in a group:

[user@controlnode ~]$ ansible canada --list-hosts
hosts (2):
ontario@1.example.com
ontario@2.example.com

1| Important

If the inventory contains a host and a host group with the same name, the ansible
command prints a warning and targets the host. The host group is ignored.

There are various ways to deal with this situation, the easiest being to ensure that
host groups do not use the same names as hosts in the inventory.

Overriding the Location of the Inventory

The /etc/ansible/hosts file is considered the system's default static inventory file. However,
normal practice is not to use that file but to define a different location for inventory files in your
Ansible configuration file. This is covered in the next section.

The ansible and ansible-playbook commands that you use to run Ansible ad hoc commands
and playbooks later in the course can also specify the location of an inventory file on the command
line with the - -inventory PATHNAME or -1 PATHNAME option, where PATHNAME is the path to
the desired inventory file.

Defining Variables in the Inventory

Values for variables used by playbooks can be specified in host inventory files. These variables
only apply to specific hosts or host groups. Normally it is better to define these inventory variables
in special directories and not directly in the inventory file. This topic is discussed in more depth
elsewhere in the course.

Describing a Dynamic Inventory

Ansible inventory information can also be dynamically generated, using information provided
by external databases. The open source community has written a number of dynamic inventory
scripts that are available from the upstream Ansible project. If those scripts do not meet your
needs, you can also write your own.

For example, a dynamic inventory program could contact your Red Hat Satellite server or Amazon
EC2 account, and use information stored there to construct an Ansible inventory. Because the

Chapter 2 | Implementing an Ansible Playbook

program does this when you run Ansible, it can populate the inventory with up-to-date information
provided by the service as new hosts are added and old hosts are removed.

I

References

Inventory: Ansible Documentation
http://docs.ansible.com/ansible/2.9/user_guide/intro_inventory.html

w RH294-RHEL8.4-en-1-20210818

http://docs.ansible.com/ansible/2.9/user_guide/intro_inventory.html

Chapter 2 | Implementing an Ansible Playbook

» Guided Exercise

Building an Ansible Inventory

In this exercise, you will create a new static inventory containing hosts and groups.

Outcomes

You should be able to create default and custom static inventories.

Before You Begin
Logintoworkstation as student using student as the password.

Onworkstation, runthe lab deploy-inventory start command. This start
script ensures that the managed hosts, servera, serverb, serverc, and serverd, are
reachable on the network.

[student@workstation ~]$ lab deploy-inventory start

Instructions
P 1. Modify /etc/ansible/hosts toinclude servera. lab.example.com as a managed
host.

11. Add servera. lab.example.com to the end of the default inventory file, /etc/
ansible/hosts.

[student@workstation ~]$ sudo vim /etc/ansible/hosts
...output omitted...
db-[99:101]-node.example.com

servera. lab.example.com

1.2. Continue editing the /etc/ansible/hosts inventory file by adding a
[webservers] group to the bottom of the file with serverb. lab.example.com
server as a group member. Save and exit when complete.

...output omitted. ..
db-[99:101]-node.example.com

servera. lab.example.com

[webservers]
serverb. lab.example.com

P 2. Verify the managed hosts in the /etc/ansible/hosts inventory file.

21. Usetheansible all --list-hosts command to listall managed hostsin the
default inventory file.

Chapter 2 | Implementing an Ansible Playbook

[student@workstation ~]$ ansible all --list-hosts
hosts (2):
servera. lab.example.com
serverb.lab.example.com

2.2. Usethe ansible ungrouped --1list-hosts command to list only managed
hosts that do not belong to a group.

[student@workstation ~]$ ansible ungrouped --list-hosts
hosts (1):
servera. lab.example.com

2.3. Usetheansible webservers --list-hosts command to list only managed
hosts that belong to the webservers group.

[student@workstation ~]$ ansible webservers --list-hosts
hosts (1):
serverb.lab.example.com

P 3. Create a custom static inventory file named inventory in the /home/student/deploy-
inventory working directory.

Information about your four managed hosts is listed in the following table. You will assign
each host to multiple groups for management purposes based on the purpose of the host,
the city where it is located, and the deployment environment to which it belongs.

In addition, groups for US cities (Raleigh and Mountain View) must be set up as children of
the group us so that hosts in the United States can be managed as a group.

Server Inventory Specifications

Host name Purpose Location Environment
servera. lab.example.com Web server Raleigh Development
serverb.lab.example.com Web server Raleigh Testing
serverc. lab.example.com Web server Mountain View Production
serverd. lab.example.com Web server London Production

3.1. Create the /home/student/deploy-inventory working directory, and change
into it.

[student@workstation ~]$ mkdir ~/deploy-inventory
[student@workstation ~]$ cd ~/deploy-inventory
[student@workstation deploy-inventory]$

3.2. Createaninventory file in the /home/student/deploy-inventory working
directory. Use the Server Inventory Specifications table as a guide. Edit the
inventory file and add the following content:

Chapter 2 | Implementing an Ansible Playbook

[webservers]
server[a:d].lab.example.com

[raleigh]
servera. lab.example.com
serverb.lab.example.com

[mountainview]
serverc. lab.example.com

[london]
serverd. lab.example.com

[development]
servera. lab.example.com

[testing]
serverb.lab.example.com

[production]
serverc. lab.example.com
serverd. lab.example.com

[us:children]
raleigh
mountainview

P 4. Use variations of the ansible host-or-group -i inventory --list-hosts
command to verify the managed hosts and groups in the custom /home/student/
deploy-inventory/inventory inventory file.

i~ | Important

Your ansible command mustinclude the -1 inventory option. This makes
ansible use your inventory file in the current working directory instead of the
system /etc/ansible/hosts inventory file.

4]. Usetheansible all -i inventory --list-hosts command to listall
managed hosts.

[student@workstation deploy-inventory]$ ansible all -i inventory --list-hosts
hosts (4):
servera. lab.example.com
serverb.lab.example.com
serverc. lab.example.com
serverd. lab.example.com

4.2. Usetheansible ungrouped -i inventory --1list-hosts command to list
all managed hosts listed in the inventory file but are not part of a group. There are no
ungrouped managed hosts in this inventory file.

Chapter 2 | Implementing an Ansible Playbook

[student@workstation deploy-inventory]$ ansible ungrouped -i inventory \
> --list-hosts
[WARNING]: No hosts matched, nothing to do

hosts (0):

4.3. Usetheansible development -i inventory --list-hosts command to
list all managed hosts listed in the deve lopment group.

[student@workstation deploy-inventory]$ ansible development -i inventory \
> --list-hosts
hosts (1):
servera. lab.example.com

4.4, Usetheansible testing -i inventory --1list-hosts command to list all
managed hosts listed in the testing group.

[student@workstation deploy-inventory]$ ansible testing -i inventory \
> --list-hosts
hosts (1):
serverb.lab.example.com

45. Usetheansible production -i inventory --1list-hosts command to list
all managed hosts listed in the production group.

[student@workstation deploy-inventory]$ ansible production -i inventory \
> --list-hosts
hosts (2):
serverc.lab.example.com
serverd. lab.example.com

4.6. Usetheansible us -i inventory --list-hosts command to listall
managed hosts listed in the us group.

[student@workstation deploy-inventory]$ ansible us -i inventory --list-hosts
hosts (3):
servera. lab.example.com

serverb.lab.example.com
serverc. lab.example.com

4.7. You are encouraged to experiment with other variations to confirm managed host
entries in the custom inventory file.

Finish

Onworkstation, runthe lab deploy-inventory finish script to clean up this exercise

[student@workstation ~]$ lab deploy-inventory finish

This concludes the guided exercise.

Chapter 2 | Implementing an Ansible Playbook

Managing Ansible Configuration Files

Objectives

After completing this section, you should be able to describe where Ansible configuration files are
located, how Ansible selects them, and edit them to apply changes to default settings.

Configuring Ansible

The behavior of an Ansible installation can be customized by modifying settings in the Ansible
configuration file. Ansible chooses its configuration file from one of several possible locations on
the control node.

Using /etc/ansible/ansible.cfg

The ansible package provides a base configuration file located at /etc/ansible/ansible.cfg.
This file is used if no other configuration file is found.

Using ~/.ansible.cfg

Ansible looks for a .ansible.cfg file in the user's home directory. This configuration is used
instead of the /etc/ansible/ansible.cfgif it exists and if there isno ansible.cfqgfilein
the current working directory.

Using ./ansible.cfg

If an ansible. cfg file exists in the directory in which the ansible command is executed, it is
used instead of the global file or the user's personal file. This allows administrators to create a
directory structure where different environments or projects are stored in separate directories,
with each directory containing a configuration file tailored with a unique set of settings.

i~ | Important
—— The recommended practice is to create an ansible.cfqg file in a directory from
which you run Ansible commands. This directory would also contain any files used
by your Ansible project, such as an inventory and a playbook. This is the most
common location used for the Ansible configuration file. It is unusual to use a
~/.ansible.cfgor/etc/ansible/ansible.cfg file in practice.

Using the ANSIBLE_CONFIG environment variable

You can use different configuration files by placing them in different directories and then
executing Ansible commands from the appropriate directory, but this method can be restrictive
and hard to manage as the number of configuration files grows. A more flexible option is to define
the location of the configuration file with the ANSIBLE_CONFIG environment variable. When this
variable is defined, Ansible uses the configuration file that the variable specifies instead of any of
the previously mentioned configuration files.

Chapter 2 | Implementing an Ansible Playbook

Configuration File Precedence

The search order for a configuration file is the reverse of the preceding list. The first file located in
the search order is the one that Ansible selects. Ansible only uses configuration settings from the
first file that it finds.

Any file specified by the ANSIBLE_CONFIG environment variable overrides all other configuration
files. If that variable is not set, the directory in which the ansible command was runis then
checked for an ansible.cfg file. If that file is not present, the user's home directory is checked
fora .ansible.cfg file. The global /etc/ansible/ansible.cfg file is only used if no other
configuration file is found. If the /etc/ansible/ansible.cfg configuration file is not present,
Ansible contains defaults which it uses.

Because of the multitude of locations in which Ansible configuration files can be placed, it can be
confusing which configuration file is being used by Ansible. You can run the ansible - -version
command to clearly identify which version of Ansible is installed, and which configuration file is
being used.

[user@controlnode ~]$ ansible --version
ansible 2.9.21

config file = /etc/ansible/ansible.cfg
...output omitted. ..

Another way to display the active Ansible configuration file is to use the -v option when executing
Ansible commands on the command line.

[user@controlnode ~]$ ansible servers --list-hosts -v
Using /etc/ansible/ansible.cfg as config file
...output omitted. ..

Ansible only uses settings from the configuration file with the highest precedence. Even if other
files with lower precedence exist, their settings are ignored and not combined with those in the
selected configuration file. Therefore, if you choose to create your own configuration file in favor
of the global /etc/ansible/ansible.cfg configuration file, you need to duplicate all desired
settings from that file to your own user-level configuration file. Settings not defined in the user-
level configuration file remain set to the built-in defaults, even if they are set to some other value
by the global configuration file.

Managing Settings in the Configuration File

The Ansible configuration file consists of several sections, with each section containing settings
defined as key-value pairs. Section titles are enclosed in square brackets. For basic operation use
the following two sections:

+ [defaults] sets defaults for Ansible operation

+ [privilege_escalation] configures how Ansible performs privilege escalation on managed
hosts

For example, the following is a typical ansible.cfg file:

[defaults]

inventory = ./inventory
remote_user = user
ask_pass = false

Chapter 2 | Implementing an Ansible Playbook

[privilege_escalation]
become = true
become_method = sudo
become_user = root
become_ask_pass = false

The directives in this file are explained in the following table:

Ansible Configuration

Directive Description
inventory Specifies the path to the inventory file.
remote_user The name of the user to log in as on the managed hosts. If

not specified, the current user's name is used.

ask_pass Whether or not to prompt for an SSH password. Can be
false if using SSH public key authentication.

become Whether to automatically switch user on the managed
host (typically to root) after connecting. This can also be
specified by a play.

become_method How to switch user (typically sudo, which is the default,
but su is an option).

become_user The user to switch to on the managed host (typically
root, which is the default).

become_ask_pass Whether to prompt for a password for your
become_method. Defaults to false.

Configuring Connections

Ansible needs to know how to communicate with its managed hosts. One of the most common
reasons to change the configuration file is to control which methods and users Ansible uses to
administer managed hosts. Some of the information needed includes:

+ The location of the inventory that lists the managed hosts and host groups

+ Which connection protocol to use to communicate with the managed hosts (by default, SSH),
and whether or not a nonstandard network port is needed to connect to the server

+ Which remote user to use on the managed hosts; this could be root or it could be an
unprivileged user

+ If the remote user is unprivileged, Ansible needs to know if it should try to escalate privileges to
root and how to do it (for example, by using sudo)

+ Whether or not to prompt for an SSH password or sudo password to log in or gain privileges

Inventory Location

In the [defaults] section, the inventory directive can point directly to a static inventory file,
or to a directory containing multiple static inventory files and dynamic inventory scripts.

Chapter 2 | Implementing an Ansible Playbook

[defaults]
inventory = ./inventory
Connection Settings

By default, Ansible connects to managed hosts using the SSH protocol. The most important
parameters that control how Ansible connects to the managed hosts are setin the [defaults]
section.

By default, Ansible attempts to connect to the managed host using the same user name
as the local user running the Ansible commands. To specify a different remote user, set the
remote_user parameter to that user name.

If the local user running Ansible has private SSH keys configured that allow them to authenticate
as the remote user on the managed hosts, Ansible automatically logs in. If that is not the case,
you can configure Ansible to prompt the local user for the password used by the remote user by
setting the directive ask_pass = true.

[defaults]
inventory = ./inventory

remote_user = root
ask_pass = true

Assuming that you are using a Linux control node and OpenSSH on your managed hosts, if you
can log in as the remote user with a password then you can probably set up SSH key-based
authentication, which would allow you to set ask_pass = false.

The first step is to make sure that the user on the control node has an SSH key pair configured in
~/ .ssh. You can run the ssh-keygen command to accomplish this.

For a single existing managed host, you can install your public key on the managed host and use
the ssh-copy-1id command to populate your local ~/ . ssh/known_hosts file with its host key,
as follows:

[user@controlnode ~]$ ssh-copy-id root@webl.example.com

The authenticity of host 'webl.example.com (192.168.122.181)' can't be
established.

ECDSA key fingerprint is 70:9c:03:cd:de:ba:2f:11:98:fa:a0:b3:7c:40:86:4b.

Are you sure you want to continue connecting (yes/no)? yes

/usr/bin/ssh-copy-id: INFO: attempting to log in with the new key(s), to filter
out any that are already installed

/usr/bin/ssh-copy-id: INFO: 1 key(s) remain to be installed -- if you are prompted
now it is to install the new keys

root@webl.example.com's password:

Number of key(s) added: 1

Now try logging into the machine, with: "ssh 'root@webl.example.com'"
and check to make sure that only the key(s) you wanted were added.

Chapter 2 | Implementing an Ansible Playbook

Note
E You can also use an Ansible Playbook to deploy your public key to the
remote_user account on all managed hosts using the authorized_key module.

This course has not covered Ansible Playbooks in detail yet. A play that ensures that
your public key is deployed to the managed hosts' root accounts might read as
follows:

- name: Public key is deployed to managed hosts for Ansible
hosts: all

tasks:
- name: Ensure key is in root's ~/.ssh/authorized_hosts

authorized_key:
user: root
state: present
key: '{{ item }}'

with_file:
- ~/.ssh/id_rsa.pub

Because the managed host would not have SSH key-based authentication
configured yet, you would have to run the playbook using the ansible-playbook
command with the - -ask-pass option in order for the command to authenticate
as the remote user.

Escalating Privileges

For security and auditing reasons, Ansible might need to connect to remote hosts as an
unprivileged user before escalating privileges to get administrative access as root. This can be
setupinthe [privilege_escalation] section of the Ansible configuration file.

To enable privilege escalation by default, set the directive become = true in the configuration
file. Even if this is set by default, there are various ways to override it when running ad hoc
commands or Ansible Playbooks. (For example, there might be times when you want to run a task
or play that does not escalate privileges.)

The become_method directive specifies how to escalate privileges. Several options are available,
but the default is to use sudo. Likewise, the become_user directive specifies which user to
escalate to, but the defaultis root.

If the become_method mechanism chosen requires the user to enter a password to escalate
privileges, you can set the become_ask_pass = true directive in the configuration file.

Chapter 2 | Implementing an Ansible Playbook

Note

E On Red Hat Enterprise Linux 7, the default configuration of /etc/sudoers grants
all users in the whee 1 group the ability to use sudo to become root after entering
their password.

One way to enable a user (someuser in the following example) to use sudo to
become root without a password is to install a file with the appropriate directives
into the /etc/sudoers.d directory (owned by root, with octal permissions
0400):

password-less sudo for Ansible user
someuser ALL=(ALL) NOPASSWD:ALL

Think through the security implications of whatever approach you choose for
privilege escalation. Different organizations and deployments might have different
trade-offs to consider.

The following example ansible. cfg file assumes that you can connect to the managed hosts
as someuser using SSH key-based authentication, and that someuser can use sudo to run
commands as root without entering a password:

[defaults]

inventory = ./inventory
remote_user = someuser
ask_pass = false

[privilege_escalation]
become = true
become_method = sudo
become_user = root
become_ask_pass = false

Non-SSH Connections

The protocol used by Ansible to connect to managed hosts is set by default to smart, which
determines the most efficient way to use SSH. This can be set to other values in a number of ways.

For example, there is one exception to the rule that SSH is used by default. If you do not have
localhost in your inventory, Ansible sets up an implicit localhost entry to allow you to run ad hoc
commands and playbooks that target Localhost. This special inventory entry is not included in
the all or ungrouped host groups. In addition, instead of using the smart SSH connection type,
Ansible connects to it using the special Llocal connection type by default.

[user@controlnode ~]$ ansible localhost --list-hosts
[WARNING]: provided hosts list is empty, only localhost is available

hosts (1):
localhost

The local connection type ignores the remote_user setting and runs commands directly on
the local system. If privilege escalation is being used, it runs sudo from the user account that

Chapter 2 | Implementing an Ansible Playbook

ran the Ansible command, not remote_user. This can lead to confusion if the two users have
different sudo privileges.

If you want to make sure that you connect to localhost using SSH like other managed hosts,
one approach is to list it in your inventory. But, this includes it in the all and ungrouped groups,
which you may not want to do.

Another approach is to change the protocol used to connect to localhost. The best way to do
this is to set the ansible_connection host variable for localhost. To do this, in the directory
from which you run Ansible commands, create a host_vars subdirectory. In that subdirectory,
create a file named localhost, containing the line ansible_connection: smart. This
ensures that the smart (SSH) connection protocol is used instead of local for localhost.

You can use this the other way around as well. If you have 127.0.0. 1 listed in your inventory, by
default you will connect to it using smart. You can also create a host_vars/127.0.0.1 file
containing the line ansible_connection: local and it will use local instead.

Host variables are covered in more detail later in the course.

E Note
You can also use group variables to change the connection type for an entire
host group. This can be done by placing files with the same name as the group in
a group_vars directory, and ensuring that those files contain settings for the
connection variables.

For example, you might want all your Microsoft Windows managed hosts to use
the winrm protocol and port 5986 for connections. To configure this, you could
put all of those managed hosts in group windows, and then create a file named
group_vars/windows containing the following lines:

ansible_connection: winrm
ansible_port: 5986

Configuration File Comments

There are two comment characters allowed by Ansible configuration files: the hash or number sign
(#) and the semicolon (;).

The number sign at the start of a line comments out the entire line. It must not be on the same line
with a directive.

The semicolon character comments out everything to the right of it on the line. It can be on the
same line as a directive, as long as that directive is to its left.

References
ansible(l), ansible-config(l), ssh-keygen(1), and ssh-copy-id(1) man
pages

Configuration file: Ansible Documentation
https://docs.ansible.com/ansible/2.9/installation_guide/intro_configuration.html

https://docs.ansible.com/ansible/2.9/installation_guide/intro_configuration.html

Chapter 2 | Implementing an Ansible Playbook

» Guided Exercise

Managing Ansible Configuration Files

In this exercise, you will customize your Ansible environment by editing an Ansible
configuration file.

Outcomes

You should be able to create a configuration file to configure your Ansible environment with
persistent custom settings.

Before You Begin
Logintoworkstation as student using student as the password.

Onworkstation, runthe lab deploy-manage start command. This script ensures
that the managed host, servera, is reachable on the network.

[student@workstation ~]$ lab deploy-manage start

Instructions

P 1. Create the /home/student/deploy-manage directory, which will contain the files for
this exercise. Change to this newly created directory.

[student@workstation ~]$ mkdir ~/deploy-manage
[student@workstation ~]$ cd ~/deploy-manage
[student@workstation deploy-manage]$

P 2. Inyour /home/student/deploy-manage directory, use a text editor to start editing a
new file, ansible.cfg.

Create a [defaults] section in that file. In that section, add a line which uses the
inventory directive to specify the . /inventory file as the default inventory.

[defaults]
inventory = ./inventory

Save your work and exit the text editor.

P 3. Inthe /home/student/deploy-manage directory, use a text editor to start editing the
new static inventory file, inventory.

The static inventory should contain four host groups:

* [myself] should contain the host localhost.

* [intranetweb] should contain the host servera. lab.example.com.
« [internetweb] should contain the host serverb. lab.example.com.
« [web] should contain the intranetweb and internetweb host groups.

Chapter 2 | Implementing an Ansible Playbook

31. In/home/student/deploy-manage/inventory, create the myself host group
by adding the following lines:

[myself]
localhost

3.2. In/home/student/deploy-manage/inventory, create the intranetweb host
group by adding the following lines:

[intranetweb]
servera. lab.example.com

3.3. In/home/student/deploy-manage/inventory, create the internetweb host
group by adding the following lines:

[internetweb]
serverb.lab.example.com

3.4. In/home/student/deploy-manage/inventory, create the web host group by
adding the following lines:

[web:children]
intranetweb
internetweb

3.5. Confirm that your final inventory file looks like the following:

[myself]
localhost

[intranetweb]
servera. lab.example.com

[internetweb]
serverb.lab.example.com

[web:children]
intranetweb
internetweb

Save your work and exit the text editor.

P 4. Use the ansible command with the - -list-hosts option to test the configuration of
your inventory file's host groups. This does not actually connect to those hosts.

[student@workstation deploy-manage]$ ansible myself --list-hosts
hosts (1):
localhost
[student@workstation deploy-manage]$ ansible intranetweb --list-hosts
hosts (1):
servera. lab.example.com
[student@workstation deploy-manage]$ ansible internetweb --list-hosts

Chapter 2 | Implementing an Ansible Playbook

hosts (1):
serverb.lab.example.com
[student@workstation deploy-manage]$ ansible web --list-hosts
hosts (2):
servera. lab.example.com
serverb.lab.example.com
[student@workstation deploy-manage]$ ansible all --list-hosts
hosts (3):
localhost
servera. lab.example.com
serverb.lab.example.com

P 5. Openthe /home/student/deploy-manage/ansible.cfg filein a text editor. Add a
[privilege_escalation] section to configure Ansible to automatically use the sudo
command to switch from student to root when running tasks on the managed hosts.
Ansible should also be configured to prompt you for the password that student uses for
the sudo command.

5.1 Create the [privilege_escalation] sectioninthe /home/student/deploy-
manage/ansible.cfg configuration file by adding the following entry:

[privilege_escalation]
5.2. Enable privilege escalation by setting the become directive to true.

become = true

5.3. Set the privilege escalation to use the sudo command by setting the
become_method directive to sudo.

become_method = sudo

5.4. Set the privilege escalation user by setting the become_user directive to root.

become_user = root

5.5. Enable prompting for the privilege escalation password by setting the
become_ask_pass directive to true.

become_ask_pass = true

5.6. Confirm that the complete ansible.cfqg file looks like the following:

[defaults]
inventory = ./inventory

[privilege_escalation]
become = true
become_method = sudo
become_user = root
become_ask_pass = true

Chapter 2 | Implementing an Ansible Playbook
Save your work and exit the text editor.

P 6. Runtheansible --1list-hosts command again to verify that you are now prompted for
the sudo password.

When prompted for the sudo password, enter student, even though it is not used for this
dry run.

[student@workstation deploy-manage]$ ansible intranetweb --list-hosts
BECOME password: student

hosts (1):
servera. lab.example.com

Finish

Onworkstation, runthe lab deploy-manage finish scriptto clean up this exercise

[student@workstation ~]$ lab deploy-manage finish

This concludes the guided exercise.

RH294-RHEL8.4-en-1-20210818 “

Chapter 2 | Implementing an Ansible Playbook

Running Ad Hoc Commands

Objectives

After completing this section, you should be able to run a single Ansible automation task using an
ad hoc command and explain some use cases for ad hoc commands.

Running Ad Hoc Commands with Ansible

An ad hoc command is a way of executing a single Ansible task quickly, one that you do not need
to save to run again later. They are simple, online operations that can be run without writing a
playbook.

Ad hoc commands are useful for quick tests and changes. For example, you can use an ad hoc
command to make sure that a certain line exists in the /etc/hosts file on a group of servers. You
could use another ad hoc command to efficiently restart a service on many different machines, or
to ensure that a particular software package is up-to-date.

Ad hoc commands are very useful for quickly performing simple tasks with Ansible. They do
have their limits, and in general you will want to use Ansible Playbooks to realize the full power of
Ansible. In many situations, however, ad hoc commands are exactly the tool you need to perform
simple tasks quickly.

Running Ad Hoc Commands

Use the ansible command to run ad hoc commands:

ansible host-pattern -m module [-a 'module arguments'] [-i inventory]

The host-pattern argument is used to specify the managed hosts on which the ad hoc command
should be run. It could be a specific managed host or host group in the inventory. You have already
seen this used in conjunction with the - - list-hosts option, which shows you which hosts are
matched by a particular host pattern. You have also already seen that you can use the -1 option to
specify a different inventory location to use than the default in the current Ansible configuration
file.

The -m option takes as an argument the name of the module that Ansible should run on the
targeted hosts. Modules are small programs that are executed to implement your task. Some
modules need no additional information, but others need additional arguments to specify the
details of their operation. The -a option takes a list of those arguments as a quoted string.

One of the simplest ad hoc commands uses the ping module. This module does not do an ICMP
ping, but checks to see if you can run Python-based modules on managed hosts. For example,
the following ad hoc command determines whether all managed hosts in the inventory can run
standard modules:

Chapter 2 | Implementing an Ansible Playbook

[user@controlnode ~]$ ansible all -m ping
servera.lab.example.com | SUCCESS => {
"ansible_facts": {
"discovered_interpreter_python": "/usr/libexec/platform-python"
H
"changed": false,
"ping": "pong"

Performing Tasks with Modules Using Ad Hoc Commands

Modules are the tools that ad hoc commands use to accomplish tasks. Ansible provides hundreds
of modules which do different things. You can usually find a tested, special-purpose module that
does what you need as part of the standard installation.

The ansible-doc - 1 command lists all modules installed on a system. You can use ansible-
doc to view the documentation of particular modules by name, and find information about
what arguments the modules take as options. For example, the following command displays
documentation for the ping module:

[user@controlnode ~]$ ansible-doc ping
> PING (/usr/lib/python3.6/site-packages/ansible/modules/system/ping.py)

A trivial test module, this module always returns “pong' on successful
contact. It does not make sense in playbooks, but it is useful from "/usr/bin/
ansible' to

verify the ability to login and that a usable Python is configured. This
is NOT ICMP ping, this is just a trivial test module that requires Python on the

remote-node. For Windows targets, use the [win_ping] module instead. For
Network targets, use the [net_ping] module instead.

* This module is maintained by The Ansible Core Team
OPTIONS (= is mandatory):

- data
Data to return for the “ping' return value.
If this parameter is set to ‘crash', the module will cause an exception.
[Default: pong]
type: str
SEE ALSO:

* Module net_ping
The official documentation on the net_ping module.
https://docs.ansible.com/ansible/2.9/modules/net_ping_module.html
* Module win_ping
The official documentation on the win_ping module.
https://docs.ansible.com/ansible/2.9/modules/win_ping_module.html

AUTHOR: Ansible Core Team, Michael DeHaan
METADATA:
status:
- stableinterface

Chapter 2 | Implementing an Ansible Playbook

supported_by: core

EXAMPLES:

Test we can logon to 'webservers' and execute python with json 1lib.
ansible webservers -m ping

Example from an Ansible Playbook

- ping:

Induce an exception to see what happens

- ping:
data: crash

RETURN VALUES:

ping:

description: value provided with the data parameter

returned: success

type: str

sample: pong

To learn more about modules, access the online Ansible documentation at http://
docs.ansible.com/ansible/2.9/modules/modules_by_category.html.

The following table lists a number of useful modules as examples. Many others exist.

Ansible Modules

Module category

Files modules

Software package
modules

System modules

Modules

+ copy: Copy a local file to the managed host

« file: Set permissions and other properties of files

+ lineinfile: Ensure a particular line is oris not in a file
+ synchronize: Synchronize content using rsync

+ package: Manage packages using autodetected package
manager native to the operating system

+ yum: Manage packages using the YUM package manager

+ apt: Manage packages using the APT package manager

+ dnf: Manage packages using the DNF package manager

+ gem: Manage Ruby gems

+ pip: Manage Python packages from PyPI

- firewalld: Manage arbitrary ports and services using
firewalld

+ reboot: Reboot a machine

+ service: Manage services

+ user: Add, remove, and manage user accounts

http://docs.ansible.com/ansible/2.9/modules/modules_by_category.html
http://docs.ansible.com/ansible/2.9/modules/modules_by_category.html

Chapter 2 | Implementing an Ansible Playbook

Module category Modules

Net Tools modules + get_url: Download files over HTTP, HTTPS, or FTP
+ nmc li: Manage networking
+ uri:Interact with web services

Most modules take arguments. You can find the list of arguments available for a module in

the module's documentation. Ad hoc commands pass arguments to modules using the -a
option. When no argument is needed, omit the -a option from the ad hoc command. If multiple
arguments need to be specified, supply them as a quoted space-separated list.

For example, the following ad hoc command uses the user module to ensure that the newbie
user exists and has UID 4000 on servera. lab.example.com:

[user@controlnode ~]$ ansible -m user -a 'name=newbie uid=4000 state=present' \
> servera.lab.example.com
servera.lab.example.com | SUCCESS => {

"ansible_facts": {

"discovered_interpreter_python": "/usr/libexec/platform-python"
H
"changed": true,
"comment": "",

"createhome": true,
"group": 4000,

"home": "/home/newbie",
"name": "newbie",
"shell": "/bin/bash",
"state": "present",
"system": false,

"uid": 4000

Most modules are idempotent, which means that they can be run safely multiple times, and if the
system is already in the correct state, they do nothing. For example, if you run the previous ad hoc
command again, it should report no change:

[user@controlnode ~]$ ansible -m user -a 'name=newbie uid=4000 state=present' \
> servera.lab.example.com
servera.lab.example.com | SUCCESS => {

"ansible_facts": {

"discovered_interpreter_python": "/usr/libexec/platform-python"

H

"append": false,

"changed": false

"comment": "",

"group": 4000,

"home": "/home/newbie",
"move_home": false,
"name": "newbie",
"shell": "/bin/bash",
"state": "present",
"uid": 4000

Chapter 2 | Implementing an Ansible Playbook

Running Arbitrary Commands on Managed Hosts

The command module allows administrators to run arbitrary commands on the command line of
managed hosts. The command to be run is specified as an argument to the module using the -a
option. For example, the following command runs the hostname command on the managed hosts
referenced by the mymanagedhosts host pattern.

[user@controlnode ~]$ ansible mymanagedhosts -m command -a /usr/bin/hostname
hostl.lab.example.com | CHANGED | rc=0 >>

hostl.lab.example.com

host2.lab.example.com | CHANGED | rc=0 >>

host2.lab.example.com

The previous ad hoc command example returned two lines of output for each managed host.
The first line is a status report, showing the name of the managed host that the ad hoc operation
ran on, as well as the outcome of the operation. The second line is the output of the command
executed remotely using the Ansible command module.

For better readability and parsing of ad hoc command output, administrators might find it useful to
have a single line of output for each operation performed on a managed host. Use the -0 option
to display the output of Ansible ad hoc commands in a single line format.

[user@controlnode ~]$ ansible mymanagedhosts -m command -a /usr/bin/hostname -o
hostl.lab.example.com | CHANGED | rc=0 >> (stdout) hostl.lab.example.com
host2.lab.example.com | CHANGED | rc=0 >> (stdout) host2.lab.example.com

The command module allows administrators to quickly execute remote commands on managed
hosts. These commands are not processed by the shell on the managed hosts. As such, they
cannot access shell environment variables or perform shell operations, such as redirection and

piping.

Note
E If an ad hoc command does not specify which module to use with the -m option,
Ansible uses the command module by default.

For situations where commands require shell processing, administrators can use the shell
module. Like the command module, you pass the commands to be executed as arguments

to the module in an ad hoc command. Ansible then executes the command remotely on the
managed hosts. Unlike the command module, the commands are processed through a shell on the
managed hosts. Therefore, shell environment variables are accessible and shell operations such as
redirection and piping are also available for use.

The following example illustrates the difference between the command and she 11 modules. If you
try to execute the built-in Bash command set with these two modules, it only succeeds with the
shell module.

[user@controlnode ~]$ ansible localhost -m command -a set
localhost | FAILED | rc=2 >>

[Errno 2] No such file or directory

[user@controlnode ~]$ ansible localhost -m shell -a set
localhost | CHANGED | rc=0 >>

BASH=/bin/sh

Chapter 2 | Implementing an Ansible Playbook

BASHOPTS=cmdhist:extquote:force_fignore:hostcomplete:interact
ive_comments:progcomp:promptvars:sourcepath

BASH_ALIASES=()

...output omitted. ..

Both command and she11 modules require a working Python installation on the managed host.

A third module, raw, can run commands directly using the remote shell, bypassing the module
subsystem. This is useful when managing systems that cannot have Python installed (for example,
a network router). It can also be used to install Python on a host.

i~ | Important

In most circumstances, it is a recommended practice that you avoid the command,
shell, and raw "run command" modules.

Most other modules are idempotent and can perform change tracking automatically.
They can test the state of systems and do nothing if those systems are already in
the correct state. By contrast, it is much more complicated to use "run command"
modules in a way that is idempotent. Depending upon them makes it harder for you
to be confident that rerunning an ad hoc command or playbook would not cause an
unexpected failure. When a she 11 or command module runs, it typically reports a
CHANGED status based on whether it thinks it affected machine state.

There are times when "run command" modules are valuable tools and a good
solution to a problem. If you do need to use them, it is probably best to try to use
the command module first, resorting to she 1l or raw modules only if you need their
special features.

Configuring Connections for Ad Hoc Commands

The directives for managed host connections and privilege escalation can be configured in the
Ansible configuration file, and they can also be defined using options in ad hoc commands. When
defined using options in ad hoc commands, they take precedence over the directive configured in
the Ansible configuration file. The following table shows the analogous command-line options for
each configuration file directive.

Ansible Command-line Options

Configuration file directives Command-line option
inventory -1

remote_user -u

become --become, -b
become_method - -become-method
become_user --become-user
become_ask_pass --ask-become-pass, -K

Before configuring these directives using command-line options, their currently defined values can
be determined by consulting the output of ansible - -help.

Chapter 2 | Implementing an Ansible Playbook

[user@controlnode ~]$ ansible --help
...output omitted...
-b, --become run operations with become (nopasswd implied)
- -become-method=BECOME_METHOD
privilege escalation method to use (default=sudo),
valid choices: [sudo | su | pbrun | pfexec | runas |
doas]
--become-user=BECOME_USER
...output omitted...
-u REMOTE_USER, --user=REMOTE_USER
connect as this user (default=None)

D References
ansible(1) man page
Working with Patterns: Ansible Documentation

https://docs.ansible.com/ansible/2.9/user_guide/intro_patterns.html

Introduction to Ad-Hoc Commands: Ansible Documentation
http://docs.ansible.com/ansible/2.9/user_guide/intro_adhoc.html

Module Index: Ansible Documentation
http://docs.ansible.com/ansible/2.9/modules/modules_by_category.html

command - Executes a command on a remote node: Ansible Documentation
http://docs.ansible.com/ansible/2.9/modules/command_module.html

shell - Execute commands in nodes: Ansible Documentation
http://docs.ansible.com/ansible/2.9/modules/shell_module.html

w RH294-RHEL8.4-en-1-20210818

https://docs.ansible.com/ansible/2.9/user_guide/intro_patterns.html
http://docs.ansible.com/ansible/2.9/user_guide/intro_adhoc.html
http://docs.ansible.com/ansible/2.9/modules/modules_by_category.html
http://docs.ansible.com/ansible/2.9/modules/command_module.html
http://docs.ansible.com/ansible/2.9/modules/shell_module.html

Chapter 2 | Implementing an Ansible Playbook

» Guided Exercise

Running Ad Hoc Commands

In this exercise, you will execute ad hoc commands on multiple managed hosts.

Outcomes

You should be able to execute commands on managed hosts on an ad hoc basis using
privilege escalation.

You will execute ad hoc commands on workstation and servera using the devops
user account. This account has the same sudo configuration on both workstation and
servera.

Before You Begin
Logintoworkstation as student using student as the password.

Onworkstation, run the lab deploy-adhoc start command. This script ensures that
the managed host servera is reachable on the network. It also creates and populates the /
home/student/deploy-adhoc working directory with materials used in this exercise.

[student@workstation ~]$ lab deploy-adhoc start

Instructions
P 1. Determine the sudo configuration for the devops account on both workstation and
servera.

11. Determine the sudo configuration for the devops account that was configured
whenworkstation was built. Enter student if prompted for the password for the
student account.

[student@workstation ~]$ sudo -1 -U devops

...output omitted...

User devops may run the following commands on workstation:
(ALL) NOPASSWD: ALL

Note that the user has full sudo privileges but does not require password
authentication.

1.2. Determine the sudo configuration for the devops account that was configured when
servera was built.

[student@workstation ~]$ ssh devops@servera.lab.example.com

[devops@servera ~]$ sudo -1

...output omitted. ..

User devops may run the following commands on servera:
(ALL) NOPASSWD: ALL

[devops@servera ~]$ exit

Chapter 2 | Implementing an Ansible Playbook

Note that the user has full sudo privileges but does not require password
authentication.

P 2. Change directory to /home/student/deploy-adhoc and examine the contents of the
ansible.cfgand inventory files.

[student@workstation ~]$ cd ~/deploy-adhoc
[student@workstation deploy-adhoc]$ cat ansible.cfg
[defaults]

inventory=inventory

[student@workstation deploy-adhoc]$ cat inventory
[control_node]

localhost

[intranetweb]
servera. lab.example.com

The configuration file uses the directory's inventory file as the Ansible inventory. Note
that Ansible is not yet configured to use privilege escalation.

P 3. Usingthe all host group and the ping module, execute an ad hoc command that ensures
all managed hosts can run Ansible modules using Python.

[student@workstation deploy-adhoc]$ ansible all -m ping
servera. lab.example.com | SUCCESS => {
"ansible_facts": {
"discovered_interpreter_python": "/usr/libexec/platform-python"
i
"changed": false,
"ping": "pong"
}
localhost | SUCCESS => {
"ansible_facts": {
"discovered_interpreter_python": "/usr/libexec/platform-python"
i
"changed": false,
"ping": "pong"

P 4. Using the command module, execute an ad hoc command on workstation to identify
the user account that Ansible uses to perform operations on managed hosts. Use the
localhost host pattern to connect toworkstation for the ad hoc command execution.
Because you are connecting locally, workstation is both the control node and managed
host.

[student@workstation deploy-adhoc]$ ansible localhost -m command -a 'id'
localhost | CHANGED | rc=0 >>

uid=1000(student) gid=1000(student) groups=1000(student),10(wheel)
context=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

Notice that the ad hoc command was performed on the managed host as the student
user.

Chapter 2 | Implementing an Ansible Playbook

) 5.

Execute the previous ad hoc command onworkstation but connect and perform the
operation with the devops user account by using the - u option.

[student@workstation deploy-adhoc]$ ansible localhost -m command -a 'id' -u devops
localhost | CHANGED | rc=0 >>

uid=1001(devops) gid=1001(devops) groups=1001(devops)
context=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

) 6.

Notice that the ad hoc command was performed on the managed host as the devops user.

Using the copy module, execute an ad hoc command on workstation to change the
contents of the /etc/motd file so that it consists of the string "Managed by Ansible"
followed by a newline. Execute the command using the devops account, but do not use
the - -become option to switch to root. The ad hoc command should fail due to lack of
permissions.

[student@workstation deploy-adhoc]$ ansible localhost -m copy \
> -a 'content="Managed by Ansible\n" dest=/etc/motd' -u devops
localhost | FAILED! => {

b7

"ansible_facts": {
"discovered_interpreter_python": "/usr/libexec/platform-python"
}
"changed": false,
"checksum": "4458b979ede3c332f8f2128385df4ba305e58c27",
"msg": "Destination /etc not writable"

The ad hoc command failed because the devops user does not have permission to write to
the file.

Run the command again using privilege escalation. You could fix the settings in the
ansible.cfg file, but for this example just use appropriate command-line options of the
ansible command.

Using the copy module, execute the previous command on workstation to change

the contents of the /etc/motd file so that it consists of the string "Managed by Ansible"
followed by a newline. Use the devops user to make the connection to the managed host,
but perform the operation as the root user using the - -become option. The use of the - -
become option is sufficient because the default value for the become_user directive is set
to root inthe /etc/ansible/ansible.cfqgfile.

[student@workstation deploy-adhoc]$ ansible localhost -m copy \
> -a 'content="Managed by Ansible\n" dest=/etc/motd' -u devops --become
localhost | CHANGED => {

"ansible_facts": {
"discovered_interpreter_python": "/usr/libexec/platform-python"
}
"changed": true,
"checksum": "4458b979ede3c332f8f2128385df4ba305e58c27",
"dest": "/etc/motd",
"gid": o,
"group": "root",
"md5sum": "65a4290ee5559756ad04e558b0eOc4e3",
"mode": "0644",
"owner": "root",

Chapter 2 | Implementing an Ansible Playbook

"secontext": "system_u:object_r:etc_t:so",

"size": 19,

"src": "/home/devops/.ansible/tmp/ansible-
tmp-1558954193.0260043-131348380629718/source",

"state": "file",

"uid": ©

Note that the command succeeded this time because the ad hoc command was executed
with privilege escalation.

P 8. Run the previous ad hoc command again on all hosts using the al1l host group. This
ensures that /etc/motd on bothworkstation and servera consist of the text "
Managed by Ansible".

[student@workstation deploy-adhoc]$ ansible all -m copy \
> -a 'content="Managed by Ansible\n" dest=/etc/motd' -u devops --become
servera. lab.example.com | CHANGED => {

"ansible_facts": {

"discovered_interpreter_python": "/usr/libexec/platform-python"

H

"changed": true,

"checksum": "4458b979ede3c332f8f2128385df4ba305e58¢c27",

"dest": "/etc/motd",

"gid": o,

"group": "root",

"md5sum": "65a4290ee5559756ad04e558b0e0c4e3",

"mode": "0644",

"owner": "root",

"secontext": "system_u:object_r:etc_t:s0",

"size": 19,

"src": "/home/devops/.ansible/tmp/ansible-
tmp-1558954250.7893758-136255396678462/source",

"state": "file",

"uid": ©

}
localhost | SUCCESS => {

"ansible_facts": {
"discovered_interpreter_python": "/usr/libexec/platform-python"
H
"changed": false,
"checksum": "4458b979ede3c332f8f2128385df4ba305e58¢c27",
"dest": "/etc/motd",

"gid": o,

"group": "root",

"mode": "0644",

"owner": "root",

"path": "/etc/motd",

"secontext": "system_u:object_r:etc_t:s0",

Chapter 2 | Implementing an Ansible Playbook

"size": 19,
"state": "file",
"uid": ©

You should see SUCCESS for Llocalhost and CHANGED for servera. However,
localhost should report "changed": false because the file is already in the correct
state. Conversely, servera should report "changed" : true because the ad hoc
command updated the file to the correct state.

P 9. Using the command module, execute an ad hoc command to run cat /etc/motd to
verify that the contents of the file have been successfully modified on both workstation
and servera. Use the all host group and the devops user to specify and make the
connection to the managed hosts. You do not need privilege escalation for this command
to work.

[student@workstation deploy-adhoc]$ ansible all -m command \
> -a 'cat /etc/motd' -u devops

servera.lab.example.com | CHANGED | rc=0 >>

Managed by Ansible

localhost | CHANGED | rc=0 >>
Managed by Ansible

Finish

Onworkstation, runthe lab deploy-adhoc finish script to clean up this exercise

[student@workstation ~]$ lab deploy-adhoc finish

This concludes the guided exercise.

Chapter 2 | Implementing an Ansible Playbook

Writing and Running Playbooks

Objectives

After completing this section, you should be able to write a basic Ansible Playbook and run it using
the ansible-playbook command.

Ansible Playbooks and Ad Hoc Commands

Ad hoc commands can run a single, simple task against a set of targeted hosts as a one-time
command. The real power of Ansible, however, is in learning how to use playbooks to run multiple,
complex tasks against a set of targeted hosts in an easily repeatable manner.

A task is the application of a module to perform a specific unit of work. A play is a sequence of
tasks to be applied, in order, to one or more hosts selected from your inventory. A playbook is a
text file containing a list of one or more plays to run in a specific order.

Plays allow you to change a lengthy, complex set of manual administrative tasks into an easily
repeatable routine with predictable and successful outcomes. In a playbook, you can save the
sequence of tasks in a play into a human-readable and immediately runnable form. The tasks
themselves, because of the way in which they are written, document the steps needed to deploy
your application or infrastructure.

Formatting an Ansible Playbook

To help you understand the format of a playbook, review this ad hoc command from a previous
chapter:

[student@workstation ~]$ ansible -m user -a "name=newbie uid=4000 state=present" \
> servera. lab.example.com

This can be rewritten as a single task play and saved in a playbook. The resulting playbook appears
as follows:

- name: Configure important user consistently
hosts: servera.lab.example.com
tasks:
- name: newbie exists with UID 4000
user:
name: newbie
uid: 4000
state: present

A playbook is a text file written in YAML format, and is normally saved with the extension ym1l. The
playbook uses indentation with space characters to indicate the structure of its data. YAML does
not place strict requirements on how many spaces are used for the indentation, but there are two
basic rules.

Chapter 2 | Implementing an Ansible Playbook

+ Data elements at the same level in the hierarchy (such as items in the same list) must have the
same indentation.

+ Items that are children of another item must be indented more than their parents.

You can also add blank lines for readability.

i~ | Important

Only the space character can be used for indentation; tab characters are not
allowed.

If you use the vi text editor, you can apply some settings which might make it
easier to edit your playbooks. For example, you can add the following line to your
$HOME/ . vimrec file, and when vi detects that you are editing a YAML file, it
performs a 2-space indentation when you press the Tab key and autoindents
subsequent lines.

autocmd FileType yaml setlocal ai ts=2 sw=2 et

A playbook begins with a line consisting of three dashes (- - -) as a start of document marker. It
may end with three dots (. . .) as an end of document marker, although in practice this is often
omitted.

In between those markers, the playbook is defined as a list of plays. Anitem in a YAML list starts
with a single dash followed by a space. For example, a YAML list might appear as follows:

- apple
- orange
- grape

In the preceding playbook example, the line after - - - begins with a dash and starts the first (and
only) play in the list of plays.

The play itself is a collection of key-value pairs. Keys in the same play should have the same
indentation. The following example shows a YAML snippet with three keys. The first two keys have
simple values. The third has a list of three items as a value.

name: just an example
hosts: webservers
tasks:

- first

- second

- third

The original example play has three keys, name, hosts, and tasks, because these keys all have
the same indentation.

The first line of the example play starts with a dash and a space (indicating the play is the first
item of a list), and then the first key, the name attribute. The name key associates an arbitrary
string with the play as a label. This identifies what the play is for. The name key is optional, but
is recommended because it helps to document your playbook. This is especially useful when a
playbook contains multiple plays.

Chapter 2 | Implementing an Ansible Playbook

- name: Configure important user consistently

The second key in the play is a hosts attribute, which specifies the hosts against which the play's
tasks are run. Like the argument for the ansible command, the hosts attribute takes a host
pattern as a value, such as the names of managed hosts or groups in the inventory.

hosts: servera.lab.example.com

Finally, the last key in the play is the tasks attribute, whose value specifies a list of tasks to run for
this play. This example has a single task, which runs the user module with specific arguments (to
ensure user newbie exists and has UID 4000).

tasks:
- name: newbie exists with UID 4000
user:
name: newbie
uid: 4000
state: present

The tasks attribute is the part of the play that actually lists, in order, the tasks to be run on the
managed hosts. Each task in the list is itself a collection of key-value pairs.

In this example, the only task in the play has two keys:

+ name is an optional label documenting the purpose of the task. It is a good idea to name all your
tasks to help document the purpose of each step of the automation process.

+ user is the module to run for this task. Its arguments are passed as a collection of key-value
pairs, which are children of the module (name, uid, and state).

The following is another example of a tasks attribute with multiple tasks, using the service
module to ensure that several network services are enabled to start at boot:

tasks:
- name: web server is enabled
service:
name: httpd
enabled: true

- name: NTP server is enabled
service:
name: chronyd
enabled: true

- name: Postfix is enabled
service:
name: postfix
enabled: true

Chapter 2 | Implementing an Ansible Playbook

i~ | Important

= The order in which the plays and tasks are listed in a playbook is important, because
Ansible runs them in the same order.

The playbooks you have seen so far are basic examples, and you will see more sophisticated
examples of what you can do with plays and tasks as this course continues.

Running Playbooks

The ansible-playbook command is used to run playbooks. The command is executed on the
control node and the name of the playbook to be run is passed as an argument:

[student@workstation ~]$ ansible-playbook site.yml

When you run the playbook, output is generated to show the play and tasks being executed. The
output also reports the results of each task executed.

The following example shows the contents of a simple playbook, and then the result of running it.

[student@workstation playdemo]$ cat webserver.yml

- name: play to setup web server
hosts: servera.lab.example.com

tasks:
- name: latest httpd version installed
yum:
name: httpd

state: latest
...output omitted. ..
[student@workstation playdemo]$ ansible-playbook webserver.yml

PLAY [play to Setup web Server] khhkhkhkhkhhkhhkhhhhhhhhhhhhhhhhhhhhhkhhhhhhhkhhkhhhhkhkk

TASK [Gathering FaCtS] LR EEEEEEEEEEEEE R R R R R EREREEREEREREREEEEEREEEEEEEREEREEREEEEESEESES

ok: [servera.lab.example.com]

TASK ['Latest httpd VerSlOI’] lnStalled] EEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEESEEEEEEESESES
changed: [servera.lab.example.com]

PLAY RECAP EEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEREERERERERERERERERESEESESESS

servera. lab.example.com 1 ok=2 changed=1 unreachable=0 failed=0

The value of the name key for each play and task is displayed when the playbook is run. (The
Gathering Facts task s a special task that the setup module usually runs automatically at
the start of a play. This is covered later in the course.) For playbooks with multiple plays and tasks,
setting name attributes makes it easier to monitor the progress of a playbook's execution.

You should also see that the latest httpd version installed taskis changed for
servera. lab.example.com. This means that the task changed something on that host to
ensure its specification was met. In this case, it means that the httpd package probably was not
installed or was not the latest version.

Chapter 2 | Implementing an Ansible Playbook

In general, tasks in Ansible Playbooks are idempotent, and it is safe to run a playbook multiple
times. If the targeted managed hosts are already in the correct state, no changes should be made.
For example, assume that the playbook from the previous example is run again:

[student@workstation playdemo]$ ansible-playbook webserver.yml

PLAY [p'Lay to Setup Web Server] EEEEEEEEEEEEEEEEEREEREEEREREREEEEEEEEEEEEEEEEEEEESRESSS

TASK [Gathering FaCtS] EEEEEEEEEEEEEEEREREREEEEEEEEEEREEREEEEEEEESEERERESRERESEESRESESRESES

ok: [servera.lab.example.com]

TASK ['Latest httpd verSlon lnStalled] EE R R R R EEEEEEEEEEEEEEEEEEEEEEEEEESEEEEEEEEES
ok: [servera.lab.example.com]

PLAY RECAP LR R

servera. lab.example.com 1 ok=2 changed=0 unreachable=0 failed=0

This time, all tasks passed with status ok and no changes were reported.

Increasing Output Verbosity

The default output provided by the ansible-playbook command does not provide detailed
task execution information. The ansible-playbook -v command provides additional
information, with up to four total levels.

Configuring the Output Verbosity of Playbook Execution

Option Description

Y The task results are displayed.

-VvV Both task results and task configuration are displayed

-VVV Includes information about connections to managed hosts

-VVVV Adds extra verbosity options to the connection plug-ins, including

users being used in the managed hosts to execute scripts, and
what scripts have been executed

Syntax Verification

Prior to executing a playbook, it is good practice to perform a verification to ensure that the
syntax of its contents is correct. The ansible-playbook command offers a - -syntax-check
option that you can use to verify the syntax of a playbook. The following example shows the
successful syntax verification of a playbook.

[student@workstation ~]$ ansible-playbook --syntax-check webserver.yml

playbook: webserver.yml

When syntax verification fails, a syntax error is reported. The output also includes the approximate
location of the syntax issue in the playbook. The following example shows the failed syntax
verification of a playbook where the space separator is missing after the name attribute for the
play.

Chapter 2 | Implementing an Ansible Playbook

[student@workstation ~]$ ansible-playbook --syntax-check webserver.yml
ERROR! Syntax Error while loading YAML.
mapping values are not allowed in this context

The error appears to have been in ...output omitted... line 3, column 8, but may
be elsewhere in the file depending on the exact syntax problem.

The offending line appears to be:

- name:play to setup web server
hosts: servera.lab.example.com
A here

Executing a Dry Run

You can use the -C option to perform a dry run of the playbook execution. This causes Ansible to
report what changes would have occurred if the playbook were executed, but does not make any
actual changes to managed hosts.

The following example shows the dry run of a playbook containing a single task for ensuring that
the latest version of httpd package is installed on a managed host. Note that the dry run reports
that the task would effect a change on the managed host.

[student@workstation ~]$ ansible-playbook -C webserver.yml

PLAY [play to setup Web server] LR R R R R R R R R

TASK [Gatherlng Facts] LR R R R R R R R R R

ok: [servera.lab.example.com]

TASK ['Latest httpd VerSlon lnStalled] R R R R R R R S R S R
changed: [servera.lab.example.com]

PLAY RECAP khkkkhkhkhhkhhhhhhdhdhdhdhdhddhdhdhhdhdhddhdhdhdhdhdhdddddddddddddddddddddrddrrrrrrrrrrrrrx

servera. lab.example.com 1 ok=2 changed=1 unreachable=0 failed=0

References
ansible-playbook(1) man page

Intro to Playbooks — Ansible Documentation
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_intro.html

Playbooks — Ansible Documentation
https://docs.ansible.com/ansible/2.9/user_guide/playbooks.html

Check Mode ("Dry Run") — Ansible Documentation
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_checkmode.html

https://docs.ansible.com/ansible/2.9/user_guide/playbooks_intro.html
https://docs.ansible.com/ansible/2.9/user_guide/playbooks.html
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_checkmode.html

Chapter 2 | Implementing an Ansible Playbook

» Guided Exercise

Writing and Running Playbooks

In this exercise, you will write and run an Ansible Playbook.

Outcomes

You should be able to write a playbook using basic YAML syntax and Ansible Playbook
structure, and successfully run it with the ansible-playbook command.

Before You Begin
Logintoworkstation as student using student as the password.

Onworkstation, run the lab playbook-basic start command. This

function ensures that the managed hosts, serverc. lab.example.comand

serverd. lab.example.com are reachable on the network. It also ensures that the correct
Ansible configuration file and inventory file are installed on the control node.

[student@workstation ~]$ lab playbook-basic start

Instructions

The /home/student/playbook-basic working directory has been created onworkstation
for this exercise. This directory has already been populated with an ansible.cfg configuration
file, and also an inventory inventory file, which defines a web group that includes both managed
hosts listed above as members.

In this directory, use a text editor to create a playbook named site.yml. This playbook contains
one play, which should target members of the web host group. The playbook should use tasks to
ensure that the following conditions are met on the managed hosts:

+ The httpd package is present, using the yum module.

+ Thelocal files/index.html file is copied to /var/www/html/index.html on each
managed host, using the copy module.

+ The httpd service is started and enabled, using the service module.

You can use the ansible-doc command to help you understand the keywords needed for each
of the modules.

After the playbook is written, verify its syntax and then use ansible-playbook to run the
playbook to implement the configuration.

P 1. Change to the /home/student/playbook-basic directory.

[student@workstation ~]$ cd ~/playbook-basic
[student@workstation playbook-basic]$

Chapter 2 | Implementing an Ansible Playbook

P 2. Use a text editor to create a new playbook called /home/student/playbook-basic/
site.yml. Start writing a play that targets the hosts in the web host group.

2. Create and open ~/playbook-basic/site.ymLl. The first line of the file should be
three dashes to indicate the start of the playbook.

2.2. The next line starts the play. It needs to start with a dash and a space before the first
keyword in the play. Name the play with an arbitrary string documenting the play's
purpose, using the name keyword.

- name: Install and start Apache HTTPD

2.3. Addahosts keyword-value pair to specify that the play run on hosts in the
inventory's web host group. Make sure that the hosts keyword is indented two
spaces so it aligns with the name keyword in the preceding line.

The complete site.yml file should now appear as follows:

- name: Install and start Apache HTTPD
hosts: web

) 3. Continue to edit the /home/student/playbook-basic/site.yml file, and add a
tasks keyword and the three tasks for your play that were specified in the instructions.

3.1. Adda tasks keyword indented by two spaces (aligned with the hosts keyword) to
start the list of tasks. Your file should now appear as follows:

- name: Install and start Apache HTTPD
hosts: web
tasks:

3.2. Add the first task. Indent by four spaces, and start the task with a dash and a space,
and then give the task a name, such as httpd package is present. Use the
yum module for this task. Indent the module keywords two more spaces; set the

package name to httpd and the package state to present. The task should appear
as follows:

- name: httpd package is present
yum:
name: httpd
state: present

3.3. Add the second task. Match the format of the previous task, and give the task a
name, such as correct index.html is present. Use the copy module. The
module keywords should set the src key to files/index.html and the dest key
to /var/www/html/index.html. The task should appear as follows:

Chapter 2 | Implementing an Ansible Playbook

- name: correct index.html is present
copy':
src: files/index.html
dest: /var/www/html/index.html

3.4. Add the third task to start and enable the ht tpd service. Match the format of the
previous two tasks, and give the new task a name, suchas httpd is started. Use
the service module for this task. Set the name key of the service to httpd, the
state key to started, and the enabled key to true. The task should appear as
follows:

- name: httpd is started
service:
name: httpd
state: started
enabled: true

3.5. Yourentire site.yml Ansible Playbook should match the following example. Make
sure that the indentation of your play's keywords, the list of tasks, and each task's
keywords are all correct.

- name: Install and start Apache HTTPD
hosts: web
tasks:
- name: httpd package is present
yum:
name: httpd
state: present

- name: correct index.html is present
copy:
src: files/index.html
dest: /var/www/html/index.html

- name: httpd is started
service:
name: httpd
state: started
enabled: true

Save the file and exit your text editor.
P 4. Before running your playbook, run the ansible-playbook --syntax-check

site.yml command to verify that its syntax is correct. If it reports any errors, correct them
before moving to the next step. You should see output similar to the following:

[student@workstation playbook-basic]$ ansible-playbook --syntax-check site.yml

playbook: site.yml

Chapter 2 | Implementing an Ansible Playbook

P 5. Runyour playbook. Read through the output generated to ensure that all tasks completed
successfully.

[student@workstation playbook-basic]$ ansible-playbook site.yml

PLAY [Insta‘L‘L and start Apache HTTPD] khkkhkhkhkhhhhkhhhhhhhkhhhhhhkhhhhhhkhhhhhhkhkkk

TASK [Gathering FaCtS] khhkhkhhkhhkhhkhhhhhhhkhhhhhhhhhhkhhkhhkhhkhhhkhhkhhhhhkhhkhhhhkhkhdhkkhk

ok: [serverd.lab.example.com]
ok: [serverc.lab.example.com]

TASK [httpd package lS present] R I I
changed: [serverd.lab.example.com]
changed: [serverc.lab.example.com]

TASK [Correct lndeX htm'L lS present] R S R
changed: [serverd.lab.example.com]
changed: [serverc.lab.example.com]

TASK [httpd is Started] khkhkhkkhhhhkhhhhhhhhhhhhhhhhhhhhkhhhhhhkhhhhhhkhhkhhhhkhkkkk

changed: [serverd.lab.example.com]
changed: [serverc.lab.example.com]

PLAY REGCAP % * % % % o % ok s ok ok sk o ok ok o ok ok o ok ok o ok ok ok ok ok ok ok ko ko ko ko ko ok ko

serverc. lab.example.com : ok=4 changed=3 unreachable=0 failed=0
serverd. lab.example.com : ok=4 changed=3 unreachable=0 failed=0

P 6. Ifall went well, you should be able to run the playbook a second time and see all tasks
complete with no changes to the managed hosts.

[student@workstation playbook-basic]$ ansible-playbook site.yml

PLAY [Install and Start Apache HTTPD] R R R SR Sk S Sk S S S S S S S S Sk S S S S S S

TASK [Gatherlng Facts] EE R R SR Sk S Sk R S Sk S S S S R S S S R S S R S S S S S R

ok: [serverd.lab.example.com]
ok: [serverc.lab.example.com]

TASK [httpd package lS present] R SR Sk S S S Sk S S S Sk S Sk S S S S kR
ok: [serverd.lab.example.com]
ok: [serverc.lab.example.com]

TASK [Correct lndeX.html lS present] R R SR Sk Sk SR S S S S S S S S S
ok: [serverc.lab.example.com]
ok: [serverd.lab.example.com]

TASK [httpd lS Started] R R Sk S Sk Sk S S S S S S S R S S S S R S S R S S S

ok: [serverd.lab.example.com]
ok: [serverc.lab.example.com]

PLAY RECAP R R Sk S S Sk S S R R S S R S S S kR S Sk kS kR S S S

serverc.lab.example.com : ok=4 changed=0 unreachable=0 failed=0
serverd. lab.example.com : ok=4 changed=0 unreachable=0 failed=0

Chapter 2 | Implementing an Ansible Playbook

P 7. Use the curl command to verify that both serverc and serverd are configured as an
HTTPD server.

[student@workstation playbook-basic]$ curl serverc.lab.example.com
This is a test page.
[student@workstation playbook-basic]$ curl serverd. lab.example.com
This is a test page.

Finish
Onworkstation, runthe lab playbook-basic finish scriptto clean up the resources

created in this exercise.

[student@workstation ~]$ lab playbook-basic finish

This concludes the guided exercise.

W RH294-RHEL8.4-en-1-20210818

Chapter 2 | Implementing an Ansible Playbook

Implementing Multiple Plays

Objectives

After completing this section, you should be able to write a playbook that uses multiple plays and
per-play privilege escalation, and effectively use ansible-doc to learn how to use new modules
to implement tasks for a play

Writing Multiple Plays

A playbook is a YAML file containing a list of one or more plays. Remember that a single play is an
ordered list of tasks to execute against hosts selected from the inventory. Therefore, if a playbook
contains multiple plays, each play may apply its tasks to a separate set of hosts.

This can be very useful when orchestrating a complex deployment which may involve different
tasks on different hosts. You can write a playbook that runs one play against one set of hosts, and
when that finishes runs another play against another set of hosts.

Writing a playbook that contains multiple plays is very straightforward. Each play in the playbook
is written as a top-level list item in the playbook. Each play is a list item containing the usual play
keywords.

The following example shows a simple playbook with two plays. The first play runs against
web.example.com, and the second play runs against database.example.com.

This is a simple playbook with two plays

- name: first play
hosts: web.example.com
tasks:

- name: first task
yum:
name: httpd
status: present

- name: second task
service:
name: httpd
enabled: true

- name: second play
hosts: database.example.com
tasks:
- name: first task
service:
name: mariadb
enabled: true

Chapter 2 | Implementing an Ansible Playbook

Remote Users and Privilege Escalation in Plays

Plays can use different remote users or privilege escalation settings for a play than what is
specified by the defaults in the configuration file. These are set in the play itself at the same level
as the hosts or tasks keywords.

User Attributes

Tasks in playbooks are normally executed through a network connection to the managed hosts. As
with ad hoc commands, the user account used for task execution depends on various keywords in
the Ansible configuration file, /etc/ansible/ansible.cfg. The user that runs the tasks can be
defined by the remote_user keyword. However, if privilege escalation is enabled, other keywords
such as become_user can also have an impact.

If the remote user defined in the Ansible configuration for task execution is not suitable, it can be
overridden by using the remote_user keyword within a play.

remote_user: remoteuser

Privilege Escalation Attributes

Additional keywords are also available to define privilege escalation parameters from within a
playbook. The become boolean keyword can be used to enable or disable privilege escalation
regardless of how it is defined in the Ansible configuration file. It can take yes or true to enable
privilege escalation, or no or false to disable it.

become: true

If privilege escalation is enabled, the become_method keyword can be used to define the
privilege escalation method to use during a specific play. The example below specifies that sudo
be used for privilege escalation.

become_method: sudo

Additionally, with privilege escalation enabled, the become_user keyword can define the user
account to use for privilege escalation within the context of a specific play.

become_user: privileged_user

The following example demonstrates the use of these keywords in a play:

- name: /etc/hosts is up to date
hosts: datacenter-west
remote_user: automation
become: yes

tasks:
- name: server.example.com in /etc/hosts
lineinfile:

path: /etc/hosts
line: '192.0.2.42 server.example.com server'
state: present

Chapter 2 | Implementing an Ansible Playbook

Finding Modules for Tasks
Module Documentation

The large number of modules packaged with Ansible provides administrators with many tools

for common administrative tasks. Earlier in this course, we discussed the Ansible documentation
website at http://docs.ansible.com. The Module Index on the website is an easy way to browse the
list of modules shipped with Ansible. For example, modules for user and service management can
be found under Systems Modules and modules for database administration can be found under
Database Modules.

For each module, the Ansible documentation website provides a summary of its functions and
instructions on how each specific function can be invoked with options to the module. The
documentation also provides useful examples that show you how to use each module and how to
set their keywords in a task.

You have already worked with the ansible-doc command to look up information about modules
installed on the local system. As a review, to see a list of the modules available on a control node,
run the ansible-doc -1 command. This displays a list of module names and a synopsis of their
functions.

[student@workstation modules]$ ansible-doc -1

al0_server Manage A10 Networks ... devices' server object.
al0_server_axapi3 Manage A10 Networks ... devices
al0_service_group Manage A10 Networks ... devices' service groups.
al0_virtual_server Manage A10 Networks ... devices' virtual servers.
...output omitted. ..

zfs_facts Gather facts about ZFS datasets.

znode Create, ... and update znodes using ZooKeeper
zpool_facts Gather facts about ZFS pools.

zypper Manage packages on SUSE and openSUSE
zypper_repository Add and remove Zypper repositories

Use the ansible-doc [module name] command to display detailed documentation for

a module. Like the Ansible documentation website, the command provides a synopsis of the
module's function, details of its various options, and examples. The following example shows the
documentation displayed for the yum module.

[student@workstation modules]$ ansible-doc yum
> YUM (/usr/1ib/python3.6/site-packages/ansible/modules/packaging/os/yum.py)

Installs, upgrade, downgrades, removes, and lists packages and groups with
the “yum' package manager. This module only works on Python 2. If you require
Python

3 support see the [dnf] module.

* This module is maintained by The Ansible Core Team
* note: This module has a corresponding action plugin.

OPTIONS (= is mandatory):
- allow_downgrade

Specify if the named package and version is allowed to downgrade a maybe
already installed higher version of that package. Note that setting

http://docs.ansible.com

Chapter 2 | Implementing an Ansible Playbook

allow_downgrade=True can make this module behave in a non-idempotent way.
The task could end up with a set of packages that does not match the complete
list of

specified packages to install (because dependencies between the downgraded
package and others can cause changes to the packages which were in the earlier

transaction).

[Default: no]

type: bool

version_added: 2.4

- autoremove
If “yes', removes all "leaf" packages from the system that were originally

installed as dependencies of user-installed packages but which are no longer
required
by any such package. Should be used alone or when state is “absent'
NOTE: This feature requires yum >= 3.4.3 (RHEL/Cent0S 7+)
[Default: no]
type: bool
version_added: 2.7

- bugfix

If set to “yes', and “state=latest' then only installs updates that have
been marked bugfix related.

[Default: no]

version_added: 2.6

- conf_file
The remote yum configuration file to use for the transaction.
[Default: (null)]
version_added: 0.6

- disable_excludes
Disable the excludes defined in YUM config files.
If set to "all', disables all excludes.
If set to "main', disable excludes defined in [main] in yum.conf.
If set to "repoid', disable excludes defined for given repo id.
[Default: (null)]
version_added: 2.7

- disable_gpg_check

Whether to disable the GPG checking of signatures of packages being
installed. Has an effect only if state is “present' or "latest'.

[Default: no]

type: bool

version_added: 1.2

- disable_plugin

"Plugin' name to disable for the install/update operation. The disabled
plugins will not persist beyond the transaction.

[Default: (null)]

version_added: 2.5

- disablerepo

Chapter 2 | Implementing an Ansible Playbook

"Repoid' of repositories to disable for the install/update operation.
These repos will not persist beyond the transaction. When specifying multiple
repos,

separate them with a “","'.

As of Ansible 2.7, this can alternatively be a list instead of ", "'
separated string

[Default: (null)]

The ansible-doc command also offers the -s option, which produces example output that

can serve as a model for how to use a particular module in a playbook. This output can serve as a
starter template, which can be included in a playbook to implement the module for task execution.
Comments are included in the output to remind administrators of the use of each option. The
following example shows this output for the yum module.

[student@workstation ~]$ ansible-doc -s yum
- name: Manages packages with the “yum' package manager
yum:

allow_downgrade: Specify if the named package ..

autoremove: If “yes', removes all "leaf" packages
bugfix: If set to “yes',
conf_file: The remote yum configuration file ...

Disable the excludes

Whether to disable the GPG ...
"Plugin' name to disable ...
"Repoid' of repositories

disable_excludes:
disable_gpg_check:
disable_plugin:
disablerepo:
download_only:
enable_plugin:

Oonly download the packages,
"Plugin' name to enable ...

enablerepo: "Repoid' of repositories to enable ...

exclude: Package name(s) to exclude ...

installroot: Specifies an alternative installroot,

list: Package name to run

name: A package name or package specifier

releasever: Specifies an alternative release ...

security: If set to “yes',

skip_broken: Skip packages with

state: Whether to install ... or remove ... a package.

update_cache:
update_only:
use_backend:
validate_certs:

Force yum to check if cache ...
When using latest, only update ...
This module supports “yum'

H O H H OH OH H O H K W OH W KK K OH OH H KKK K

This only applies if using a https url ...

Module Maintenance

Ansible ships with a large number of modules that can be used for many tasks. The upstream
community is very active, and these modules may be in different stages of development. The
ansible-doc documentation for the module is expected to specify who maintains that module
in the upstream Ansible community, and what its development status is. This is indicated in the
METADATA section at the end of the output of ansible-doc for that module.

The status field records the development status of the module:

- stableinterface: The module's keywords are stable, and every effort will be made not to
remove keywords or change their meaning.

Chapter 2 | Implementing an Ansible Playbook

+ preview: The module is in technology preview, and might be unstable, its keywords might
change, or it might require libraries or web services that are themselves subject to incompatible
changes.

- deprecated: The module is deprecated, and will no longer be available in some future release.

+ removed: The module has been removed from the release, but a stub exists for documentation
purposes to help former users migrate to new modules.

Note
S The stableinterface status only indicates that a module's interface is stable, it
does not rate the module's code quality.

The supported_by field records who maintains the module in the upstream Ansible community.
Possible values are:

+ core: Maintained by the "core" Ansible developers upstream, and always included with Ansible.

+ curated: Modules submitted and maintained by partners or companies in the community.
Maintainers of these modules must watch for any issues reported or pull requests raised against
the module. Upstream "core" developers review proposed changes to curated modules after
the community maintainers have approved the changes. Core committers also ensure that any
issues with these modules due to changes in the Ansible engine are remediated. These modules
are currently included with Ansible, but might be packaged separately at some point in the
future.

« community: Modules not supported by the core upstream developers, partners, or companies,
but maintained entirely by the general open source community. Modules in this category are still
fully usable, but the response rate to issues is purely up to the community. These modules are
also currently included with Ansible, but will be packaged separately at some point in the future.

The upstream Ansible community has an issue tracker for Ansible and its integrated modules at
https://github.com/ansible/ansible/issues.

Sometimes, a module does not exist for something you want to do. As an end user, you can also
write your own private modules, or get modules from a third party. Ansible searches for custom
modules in the location specified by the ANSIBLE_LIBRARY environment variable, or if that is
not set, by a Library keyword in the current Ansible configuration file. Ansible also searches for
custom modules in the . /1library directory relative to the playbook currently being run.

library = /usr/share/my_modules

Information on writing modules is beyond the scope of this course. Documentation on how to do
this is available at https://docs.ansible.com/ansible/2.9/dev_guide/developing_modules.html.

https://github.com/ansible/ansible/issues
https://docs.ansible.com/ansible/2.9/dev_guide/developing_modules.html

Chapter 2 | Implementing an Ansible Playbook

Important

Use the ansible-doc command to find and learn how to use modules for your
tasks.

When possible, try to avoid the command, shel1l, and raw modules in playbooks,
even though they might seem simple to use. Because these take arbitrary
commands, it is very easy to write non-idempotent playbooks with these modules.

For example, the following task using the shell module is not idempotent. Every
time the play is run, it rewrites /etc/resolv.conf even if it already consists of the
line nameserver 192.0.2.1.

- name: Non-idempotent approach with shell module

shell: echo "nameserver 192.0.2.1" > /etc/resolv.conf

There are several ways to write tasks using the shell module idempotently, and
sometimes making those changes and using shellis the best approach. A quicker
solution may be to use ansible-doc to discover the copy module and use that to
get the desired effect.

The following example does not rewrite the /etc/resolv.conf file if it already
consists of the correct content:

- name: Idempotent approach with copy module

copy:
dest: /etc/resolv.conf
content: "nameserver 192.0.2.1\n"

The copy module tests to see if the state has already been met, and if so, it makes
no changes. The shell module allows a lot of flexibility, but also requires more
attention to ensure that it runs idempotently.

Idempotent playbooks can be run repeatedly to ensure systems are in a particular
state without disrupting those systems if they already are.

Playbook Syntax Variations

The last part of this chapter investigates some variations of YAML or Ansible Playbook syntax that
you might encounter.

YAML Comments

Comments can also be used to aid readability. In YAML, everything to the right of the number or
hash symbol (#) is a comment. If there is content to the left of the comment, precede the number
symbol with a space.

This is a YAML comment

some data # This is also a YAML comment

Chapter 2 | Implementing an Ansible Playbook

YAML Strings

Strings in YAML do not normally need to be put in quotation marks even if there are spaces
contained in the string. You can enclose strings in either double quotes or single quotes.

this is a string
'this is another string'

"this is yet another a string"

There are two ways to write multiline strings. You can use the vertical bar (|) character to denote
that newline characters within the string are to be preserved.

include_newlines: |
Example Company
123 Main Street
Atlanta, GA 30303

You can also write multiline strings using the greater-than (>) character to indicate that newline
characters are to be converted to spaces and that leading white spaces in the lines are to be
removed. This method is often used to break long strings at space characters so that they can
span multiple lines for better readability.

fold_newlines: >
This is an example
of a long string,
that will become
a single sentence once folded.

YAML Dictionaries

You have seen collections of key-value pairs written as an indented block, as follows:
name: svcrole

svcservice: httpd
svcport: 80

Dictionaries can also be written in an inline block format enclosed in curly braces, as follows:

{name: svcrole, svcservice: httpd, svcport: 80}

In most cases the inline block format should be avoided because it is harder to read. However,
there is at least one situation in which it is more commonly used. The use of roles is discussed later
in this course. When a playbook includes a list of roles, it is more common to use this syntax to
make it easier to distinguish roles included in a play from the variables being passed to a role.

YAML Lists

You have also seen lists written with the normal single-dash syntax:

Chapter 2 | Implementing an Ansible Playbook

hosts:
- servera
- serverb
- serverc

Lists also have an inline format enclosed in square braces, as follows:

hosts: [servera, serverb, serverc]

You should avoid this syntax because it is usually harder to read.

Obsolete key=value Playbook Shorthand

Some playbooks might use an older shorthand method to define tasks by putting the key-value
pairs for the module on the same line as the module name. For example, you might see this syntax:

tasks:
- name: shorthand form
service: name=httpd enabled=true state=started

Normally you would write the same task as follows:

tasks:
- name: normal form
service:
name: httpd
enabled: true
state: started

You should generally avoid the shorthand form and use the normal form.

The normal form has more lines, but it is easier to work with. The task's keywords are stacked
vertically and easier to differentiate. Your eyes can run straight down the play with less left-
to-right motion. Also, the normal syntax is native YAML,; the shorthand form is not. Syntax
highlighting tools in modern text editors can help you more effectively if you use the normal
format than if you use the shorthand format.

You might see this syntax in documentation and older playbooks from other people, and the
syntax does still function.

Chapter 2 | Implementing an Ansible Playbook

References
ansible-playbook(1) and ansible-doc(1) man pages

Intro to Playbooks — Ansible Documentation
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_intro.html

Playbooks — Ansible Documentation
https://docs.ansible.com/ansible/2.9/user_guide/playbooks.html

Developing Modules — Ansible Documentation
https://docs.ansible.com/ansible/2.9/dev_guide/developing_modules.html

Module Support — Ansible Documentation
https://docs.ansible.com/ansible/2.9/user_guide/modules_support.html

YAML Syntax — Ansible Documentation
https://docs.ansible.com/ansible/2.9/reference_appendices/YAMLSyntax.html

w RH294-RHEL8.4-en-1-20210818

https://docs.ansible.com/ansible/2.9/user_guide/playbooks_intro.html
https://docs.ansible.com/ansible/2.9/user_guide/playbooks.html
https://docs.ansible.com/ansible/2.9/dev_guide/developing_modules.html
https://docs.ansible.com/ansible/2.9/user_guide/modules_support.html
https://docs.ansible.com/ansible/2.9/reference_appendices/YAMLSyntax.html

Chapter 2 | Implementing an Ansible Playbook

» Guided Exercise

Implementing Multiple Plays

In this exercise, you will create a playbook containing multiple plays, then use it to perform
configuration tasks on managed hosts.

Outcomes

You should be able to construct and execute a playbook to manage configuration and
perform administration of a managed host.

Before You Begin
Logintoworkstation as student using student as the password.

Onworkstation, runthe lab playbook-multi start command. This function
ensures that the managed host, servera. lab.example.com, is reachable on the network.
It also ensures that the correct Ansible configuration file and inventory file are installed on
the control node.

[student@workstation ~]$ lab playbook-multi start

Instructions

P 1. A working directory, /home/student/playbook-multi, has been created on
workstation for the Ansible project. The directory has already been populated
with an ansible.cfg configuration file and an inventory file, inventory. The
managed host, servera. lab.example.com, is already defined in this inventory
file. Create a new playbook, /home/student/playbook-multi/intranet.yml,
and add the lines needed to start the first play. It should target the managed host
servera. lab.example.comand enable privilege escalation.

11. Change directory into the /home/student/playbook-multi working directory.

[student@workstation ~]$ cd ~/playbook-multi
[student@workstation playbook-multi]$

1.2. Create and open a new playbook, /home/student/playbook-multi/
intranet.yml, and add a line consisting of three dashes to the beginning of the file
to indicate the start of the YAML file.

1.3. Add the following line to the /home/student/playbook-multi/intranet.yml
file to denote the start of a play with a name of Enable intranet services.

- name: Enable intranet services

Chapter 2 | Implementing an Ansible Playbook

1.4. Add the following line to indicate that the play applies to the
servera. lab.example.com managed host. Be sure to indent the line with two
spaces (aligning with the name keyword above it) to indicate that it is part of the first

play.

hosts: servera.lab.example.com

1.5. Add the following line to enable privilege escalation. Be sure to indent the line with
two spaces (aligning with the keywords above it) to indicate it is part of the first play.

become: yes

1.6. Add the following line to define the beginning of the tasks list. Indent the line with
two spaces (aligning with the keywords above it) to indicate that it is part of the first

play.

tasks:

P 2. Asthe first task in the first play, define a task that ensures that the httpd and firewalld
packages are up to date.

Be sure to indent the first line of the task with four spaces. Under the tasks keyword in the
first play, add the following lines.

- name: latest version of httpd and firewalld installed
yum:
name:
- httpd
- firewalld
state: latest

The first line provides a descriptive name for the task. The second line is indented with

six spaces and calls the yum module. The next line is indented eight spaces and is a name
keyword. It specifies which packages the yum module should ensure are up-to-date. The
yum module's name keyword (which is different from the task name) can take a list of
packages, which is indented ten spaces on the two following lines. After the list, the 8-
space indented state keyword specifies that the yum module should ensure that the latest
version of the packages is installed.

P 3. Add atask to the first play's list that ensures that the correct contentis in /var/www/
html/index.html.

Add the following lines to define the content for /var/www/html/index.html. Be sure
to indent the first line with four spaces.

- name: test html page is installed
copy':
content: "Welcome to the example.com intranet!\n"
dest: /var/www/html/index.html

The first entry provides a descriptive name for the task. The second entry is indented with

six spaces and calls the copy module. The remaining entries are indented with eight spaces
and pass the necessary arguments to ensure that the correct content is in the web page.

Chapter 2 | Implementing an Ansible Playbook

P 4. Define two more tasks in the play to ensure that the firewalld service is running and will

) 5.

) 6.

start on boot, and will allow connections to the httpd service.

4. Add the following lines to ensure that the firewalld service is enabled and running.
Be sure to indent the first line with four spaces.

- name: firewalld enabled and running
service:
name: firewalld
enabled: true
state: started

The first entry provides a descriptive name for the task. The second entry is indented
with eight spaces and calls the service module. The remaining entries are indented
with ten spaces and pass the necessary arguments to ensure that the firewalld service
is enabled and started.

4.2. Add the following lines to ensure that firewalld allows HTTP connections from
remote systems. Be sure to indent the first line with four spaces.

- name: firewalld permits access to httpd service
firewalld:
service: http
permanent: true
state: enabled
immediate: yes

The first entry provides a descriptive name for the task. The second entry is indented
with six spaces and calls the firewalld module. The remaining entries are indented
with eight spaces and pass the necessary arguments to ensure that remote HTTP
connections are permanently allowed.

Add a final task to the first play that ensures that the ht tpd service is running and will start
at boot.

Add the following lines to ensure that the httpd service is enabled and running. Be sure to
indent the first line with four spaces.

- name: httpd enabled and running
service:
name: httpd
enabled: true
state: started

The first entry provides a descriptive name for the task. The second entry is indented with
six spaces and calls the service module. The remaining entries are indented with eight

spaces and pass the necessary arguments to ensure that the httpd service is enabled and
running.

In /home/student/playbook-multi/intranet.yml, define a second play targeted at
localhost which will test the intranet web server. It does not need privilege escalation.

6.1. Add the following line to define the start of a second play. Note that there is no
indentation.

Chapter 2 | Implementing an Ansible Playbook

- name: Test intranet web server

[A

6.2. Add the following line to indicate that the play applies to the Tocalhost managed
host. Be sure to indent the line with two spaces to indicate that it is contained by the
second play.

hosts: localhost

6.3. Add the following line to disable privilege escalation. Be sure to align the indentation
with the hosts keyword above it.

become: no

6.4. Add the following line to the /home/student/playbook-multi/intranet.yml
file to define the beginning of the tasks list. Be sure to indent the line with two
spaces to indicate that it is contained by the second play.

tasks:

Add a single task to the second play, and use the uri module to request content from
http://servera. lab.example.com. The task should verify a return HTTP status code
of 200. Configure the task to place the returned content in the task results variable.

Add the following lines to create the task for verifying the web service from the control
node. Be sure to indent the first line with four spaces.

- name: connect to intranet web server
uri:
url: http://servera.lab.example.com
return_content: yes
status_code: 200

The first line provides a descriptive name for the task. The second line is indented with six
spaces and calls the uri module. The remaining lines are indented with eight spaces and
pass the necessary arguments to execute a query for web content from the control node
to the managed host and verify the status code received. The return_content keyword
ensures that the server's response is added to the task results.

Verify that the final /home/student/playbook-multi/intranet.yml playbook
reflects the following structured content, then save and close the file.

name: Enable intranet services
hosts: servera.lab.example.com
become: yes

tasks:

- name: latest version of httpd and firewalld installed
yum:
name:
- httpd
- firewalld

Chapter 2 | Implementing an Ansible Playbook
state: latest

- name: test html page is installed
copy':
content: "Welcome to the example.com intranet!\n"
dest: /var/www/html/index.html

- name: firewalld enabled and running
service:
name: firewalld
enabled: true
state: started

- name: firewalld permits access to httpd service
firewalld:
service: http
permanent: true
state: enabled
immediate: yes

- name: httpd enabled and running
service:
name: httpd
enabled: true
state: started

- name: Test intranet web server

hosts: localhost

become: no

tasks:

- name: connect to intranet web server
uri:

url: http://servera.lab.example.com
return_content: yes
status_code: 200

P 9. Runtheansible-playbook --syntax-check command to verify the syntax of the /
home/student/playbook-multi/intranet.yml playbook.

[student@workstation playbook-multi]$ ansible-playbook --syntax-check intranet.yml

playbook: intranet.yml

) 10. Execute the playbook using the -V option to output detailed results for each task. Read
through the output generated to ensure that all tasks completed successfully. Verify that
an HTTP GET request to http://servera. lab.example.com provides the correct
content.

[student@workstation playbook-multi]$ ansible-playbook -v intranet.yml
...output omitted...

PLAY [Enable lntranet SeerceS] Rk R Sk S Sk Sk S S S S S S R S S S S S S S

Chapter 2 | Implementing an Ansible Playbook

TASK [Gathering FaCtS] khhkkkkhhkhhkhhhhhhhkhhhhhhhkhhhh kb kb dhhkhh kb hk bk hhkhdkhhkhkhkhkhk k%

ok: [servera.lab.example.com]

TASK [latest version of httpd and firewalld installed] ******xxaiiiiiiiiiiiiix
changed: [servera.lab.example.com] => {"changed": true, ...output omitted...

TASK [test html page is installed] khhkkkkhhkhhkhhhhhhhhhhkhhh b bk hhhhhhhhhhkhd bk khkhk*

changed: [servera.lab.example.com] => {"changed": true, ...output omitted...

TASK [fire\l\lalld enabled and running] khkkkkkhhkhhkhhhhhhhkhhhhhhhhhhhhhhkhhhhhkhhkhkhkhx

ok: [servera.lab.example.com] => {"changed": false, ...output omitted...

TASK [fire\l\lalld permits http Service] khkkkkkhhkhhhhhkhhkhhhhhhhhhhhhhhkhdhhhhkhdhkkkhk

changed: [servera.lab.example.com] => {"changed": true, ...output omitted...

TASK [httpd enabled and running] khhkkkhkkhkhkhhkhhhhhhhhhhhhhhhhhhhhhkhdhhhkhhkhd bk hhkhk*

changed: [servera.lab.example.com] => {"changed": true, ...output omitted...

PLAY [TeSt intranet web Server] khkkkhkkhhkhhkhhhkhhhhhhhhhhhhhhhhh bk bk hhhkhhkhdkhhhkhkhkkx

TASK [Gathering FaCtS] o R R XX

ok: [localhost]

TASK [ConneCt to intranet web Server] khkkkkkhhkhhkhhhkhhkhhhhhhhhhhhhhhkhhhhhhkhkhkkkk

ok: [localhost] => {"accept_ranges": "bytes", "changed": false, "connection": "cl

ose", "content": "Welcome to the example.com intranet!\n", "content_length":"
"37", "content_type": "text/html; charset=UTF-8", "cookies": {}, "cookies_string
""" "date": "...output omitted...", "etag": "\"25-5790ddbcc5a48\"",
"last_modified": "...output omitted...", "msg": "OK (37 bytes)", "redir

ected": false, "server": "Apache/2.4.6 (Red Hat Enterprise Linux)",

"status": 200, "url": "http://servera.lab.example.com"}ta

PLAY RECAP ***&xkkkdkkhkhhkhhhhhkkhhkhhkkhhk Ak k ki ok ok k ok ok kkkk ok ok k ok ok k ok ok k ok ok kkkkkkkkkkkkxkokx

localhost 1 ok=2 changed=0 unreachable=0 failed=0
servera. lab.example.com : ok=6 changed=4 unreachable=0 failed=0

© The server responded with the desired content, welcome to the example.com
intranet!\n.

© The server responded with an HTTP status code of 200.

Finish
Onworkstation, runthe lab playbook-multi finish command to clean up the resources

created in this exercise.

[student@workstation ~]$ lab playbook-multi finish

This concludes the guided exercise.

Chapter 2 | Implementing an Ansible Playbook

» Lab
Implementing Playbooks

Performance Checklist
In this lab, you will configure and perform administrative tasks on managed hosts using a
playbook.

Outcomes

You should be able to construct and execute a playbook to install, configure, and verify the
status of web and database services on a managed host.

Before You Begin
Logintoworkstation as student using student as the password.

Onworkstation, runthe lab playbook-review start command. This function
ensures that the managed host, serverb. lab.example.com, is reachable on the network.
It also ensures that the correct Ansible configuration file and inventory file are installed on
the control node.

[student@workstation ~]$ lab playbook-review start

A working directory, /home/student/playbook-review, has been created on
workstation for the Ansible project. The directory has already been populated
with an ansible.cfg configuration file and an inventory file. The managed host,
serverb. lab.example.com, is already defined in this inventory file.

Instructions

Note

S The playbook used by this lab is very similar to the one you wrote in the preceding
guided exercise in this chapter. If you do not want to create this lab's playbook from
scratch, you can use that exercise's playbook as a starting point for this lab.

If you do, be careful to target the correct hosts and change the tasks to match the
instructions for this exercise.

1. Create a new playbook, /home/student/playbook-review/internet.yml, and add
the necessary entries to start a first play named Enable internet services and specify
its intended managed host, serverb. lab.example.com. Add an entry to enable privilege
escalation, and one to start a task list.

2. Addthe required entries to the /home/student/playbook-review/internet.yml file
to define a task that installs the latest versions of firewalld, httpd, mariadb-server, php, and
php-mysqlnd packages.

Chapter 2 | Implementing an Ansible Playbook

3.

Add the necessary entries to the /home/student/playbook-review/internet.yml
file to define the firewall configuration tasks. They should ensure that the firewalld service
is enabled and running, and that access is allowed to the http service.

Add the necessary tasks to ensure the httpd and mariadb services are enabled and
running.

Add the necessary entries to define the final task for generating web content for testing.
Use the get_ur 1l module to copy http://materials.example.com/labs/playbook-
review/index.phpto /var/www/html/ on the managed host.

In /home/student/playbook-review/internet.yml, define another play for the task
to be performed on the control node. This play will test access to the web server that should
be running on the serverb managed host. This play does not require privilege escalation,
and will run on the Localhost managed host.

Add a task that tests the web service running on serverb from the control node using the
uri module. Check for a return status code of 200.

Verify the syntax of the internet.yml playbook.

Use the ansible-playbook command to run the playbook. Read through the output
generated to ensure that all tasks completed successfully.

Evaluation

Grade your work by running the lab playbook-review grade command from your
workstation machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab playbook-review grade

Finish
Onworkstation, runthe lab playbook-review finish scriptto clean up the resources
created in this lab.

[student@workstation ~]$ lab playbook-review finish

This concludes the lab.

Chapter 2 | Implementing an Ansible Playbook

» Solution

Implementing Playbooks

Performance Checklist

In this lab, you will configure and perform administrative tasks on managed hosts using a
playbook.

Outcomes

You should be able to construct and execute a playbook to install, configure, and verify the
status of web and database services on a managed host.

Before You Begin
Logintoworkstation as student using student as the password.

Onworkstation, runthe lab playbook-review start command. This function
ensures that the managed host, serverb. lab.example.com, is reachable on the network.
It also ensures that the correct Ansible configuration file and inventory file are installed on
the control node.

[student@workstation ~]$ lab playbook-review start

A working directory, /home/student/playbook-review, has been created on
workstation for the Ansible project. The directory has already been populated
with an ansible.cfg configuration file and an inventory file. The managed host,
serverb. lab.example.com, is already defined in this inventory file.

Instructions

Note

S The playbook used by this lab is very similar to the one you wrote in the preceding
guided exercise in this chapter. If you do not want to create this lab's playbook from
scratch, you can use that exercise's playbook as a starting point for this lab.

If you do, be careful to target the correct hosts and change the tasks to match the
instructions for this exercise.

1. Create a new playbook, /home/student/playbook-review/internet.yml, and add
the necessary entries to start a first play named Enable internet services and specify
its intended managed host, serverb. lab.example.com. Add an entry to enable privilege
escalation, and one to start a task list.

11, Add the following entry to the beginning of /home/student/playbook-review/
internet.yml to begin the YAML format.

RH294-RHEL8.4-en-1-20210818 “

Chapter 2 | Implementing an Ansible Playbook

1.2. Add the following entry to denote the start of a play with a name of Enable
internet services.

- name: Enable internet services

1.3. Add the following entry to indicate that the play applies to the serverb managed host.

hosts: serverb.lab.example.com

1.4. Add the following entry to enable privilege escalation.

become: yes

1.5. Add the following entry to define the beginning of the tasks list.

tasks:

2. Add the required entries to the /home/student/playbook-review/internet.yml file
to define a task that installs the latest versions of firewalld, httpd, mariadb-server, php, and
php-mysqind packages.

- name: latest version of all required packages installed

yum:
name :
- firewalld
- httpd
- mariadb-server
- php

- php-mysqlnd
state: latest

3. Add the necessary entries to the /home/student/playbook-review/internet.yml
file to define the firewall configuration tasks. They should ensure that the firewalld service
is enabled and running, and that access is allowed to the http service.

- name: firewalld enabled and running
service:
name: firewalld
enabled: true
state: started

- name: firewalld permits http service
firewalld:
service: http
permanent: true
state: enabled
immediate: yes

4. Add the necessary tasks to ensure the httpd and mariadb services are enabled and
running.

Chapter 2 | Implementing an Ansible Playbook

- name: httpd enabled and running
service:
name: httpd
enabled: true
state: started

- name: mariadb enabled and running
service:
name: mariadb
enabled: true
state: started

5. Add the necessary entries to define the final task for generating web content for testing.
Use the get_ur 1 module to copy http://materials.example.com/labs/playbook-
review/index.phpto /var/www/html/ on the managed host.

- name: test php page is installed
get_url:
url: "http://materials.example.com/labs/playbook-review/index.php"
dest: /var/www/html/index.php
mode: 0644

6. In/home/student/playbook-review/internet.yml, define another play for the task
to be performed on the control node. This play will test access to the web server that should
be running on the serverb managed host. This play does not require privilege escalation,
and will run on the Localhost managed host.

6.1. Add the following entry to denote the start of a second play with a name of Test
internet web server.

- name: Test internet web server

6.2. Add the following entry to indicate that the play applies to the localhost managed
host.

hosts: localhost

6.3. Add the following line after the hosts keyword to disable privilege escalation for the
second play.

become: no

6.4. Add an entry to the /home/student/playbook-review/internet.yml file to
define the beginning of the tasks list.

tasks:

7. Add a task that tests the web service running on serverb from the control node using the
uri module. Check for a return status code of 200

Chapter 2 | Implementing an Ansible Playbook

8.

- name: connect to internet web server
uri:
url: http://serverb.lab.example.com
status_code: 200

Verify the syntax of the internet.ym1 playbook.

[student@workstation playbook-review]$ ansible-playbook --syntax-check \
> internet.yml

playbook: internet.yml

Use the ansible-playbook command to run the playbook. Read through the output
generated to ensure that all tasks completed successfully.

[student@workstation playbook-review]$ ansible-playbook internet.yml
PLAY [Enable lnternet SeerceS] R I S

TASK [Gathering FaCtS] khhkhkhhkhhkhhkhhhhhhhkhhhhhhhhhhkhhkhhkhhhhhkhhkhhhhhhhkhhhhkhkhkkkhk

ok: [serverb.lab.example.com]

TASK [latest version of all required packages installed] ********xxxsdakxxsdinx
changed: [serverb.lab.example.com]

TASK [firewalld enabled and running] khkkhkhkhhkhhkhhhkhhhhhhhhhhhhhhhhkhhkhhhhkhkhdhkkhx

ok: [serverb.lab.example.com]

TASK [firewalld permits http Service] khkkhkhkhkhhkhhkhhhhhhhkhhhhhhhhhhhhhkhhkhhhhkhkkkk

changed: [serverb.lab.example.com]

TASK [httpd enabled and running] khkhkhkkhhkhhhhhhhhhkhhhhhkhhhhhhhhhkhhhhkhhhhhhkhkkk

changed: [serverb.lab.example.com]

TASK [mariadb enabled and running] khkhkhkhkhhhhkhhhhhhhhhhhhhkhhhhhhkhhhhhhkhkhhkkhk

changed: [serverb.lab.example.com]

TASK [test php page insta‘L‘Led] khkkhkhkhhhhkhhhhhhhkhhhhhhhkhhhhhhkhhhhhhkhhhkhhhkhkkk

changed: [serverb.lab.example.com]

PLAY [TeSt internet web Server] khkkhkhkhkhhhhkhhhhhhhhhhhhhhhhkhhhhkhkhhhkhhkhhkhhkhhkhkk

TASK [Gathering FaCtS] khkhkhkhhkhhkhhhhhhhkhhhhhkhhhhhkhhkhhkhhhhhkhhkhhhhhkhhkhhhhkhkhkkkhk

ok: [localhost]

TASK [COﬂneCt to lnternet Web Server] R S S
ok: [localhost]

PLAY REGCAP % * % % % o % ok sk ok ok sk o ok ok o ok ok o ok ok o ok ok ok ok ok ok ok ko ko ko ok ko ko ok ko

localhost 1 ok=2 changed=0 unreachable=0 failed=0
serverb.lab.example.com 1 ok=7 changed=5 unreachable=0 failed=0

Chapter 2 | Implementing an Ansible Playbook

Evaluation

Grade your work by running the lab playbook-review grade command from your
workstation machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab playbook-review grade
Finish
Onworkstation, runthe lab playbook-review finish script to clean up the resources

created in this lab.

[student@workstation ~]$ lab playbook-review finish

This concludes the lab.

RH294-RHEL8.4-en-1-20210818 “

Chapter 2 | Implementing an Ansible Playbook

Summary

In this chapter, you learned:

A play is an ordered list of tasks, which runs against hosts selected from the inventory.
A playbook is a text file that contains a list of one or more plays to run in order.
Ansible Playbooks are written in YAML format.

YAML files are structured using space indentation to represent the data hierarchy.
Tasks are implemented using standardized code packaged as Ansible modules.

The ansible-doc command can list installed modules, and provide documentation and
example code snippets of how to use them in playbooks.

The ansible-playbook command is used to verify playbook syntax and run playbooks.

W RH294-RHEL8.4-en-1-20210818

Chapter 3

Managing Variables and Facts

Goal Write playbooks that use variables to simplify ¢
management of the playbook and facts to
reference information about managed hosts.
.
Objectives + Create and reference variables that affect “
particular hosts or host groups, the play, or the
global environment, and describe how variable n-
precedence works. ’
- + Encrypt sensitive variables using Ansible i
Vault, and run playbooks that reference Vault-

encrypted variable files.

+ Reference data about managed hosts using
Ansible facts, and configure custom facts on
managed hosts.
Sections + Managing Variables (and Guided Exercise)

w

-
I—

+ Managing Secrets (and Guided Exercise)
Managing Facts (and Guided Exercise)

Lab * Managing Variables and Facts

r/

RH294-RHEL8.4-en-1-20210818

Chapter 3 | Managing Variables and Facts

Managing Variables

Objectives

After completing this section, you should be able to create and reference variables that affect
particular hosts or host groups, the play, or the global environment, and describe how variable
precedence works.

Introduction to Ansible Variables

Ansible supports variables that can be used to store values that can then be reused throughout
files in an Ansible project. This can simplify the creation and maintenance of a project and reduce
the number of errors.

Variables provide a convenient way to manage dynamic values for a given environment in your
Ansible project. Examples of values that variables might contain include:

+ Users to create

+ Packages to install

+ Services to restart

+ Files to remove

« Archives to retrieve from the internet

Naming Variables

Variable names must start with a letter, and they can only contain letters, numbers, and
underscores.

The following table illustrates the difference between invalid and valid variable names.

Examples of Invalid and Valid Ansible Variable Names

Invalid variable names Valid variable names
web server web_server
remote.file remote_file
1st file file_1

filel
remoteserver$i remote_server_1

remote_serverl

RH294-RHEL8.4-en-1-20210818

Chapter 3 | Managing Variables and Facts

Defining Variables

Variables can be defined in a variety of places in an Ansible project. If a variable is set using the
same name in two places, and those settings have different values, precedence determines which
value is used.

You can set a variable that affects a group of hosts or only individual hosts. Some variables are
facts that can be set by Ansible based on the configuration of a system. Other variables can be set
inside the playbook, and affect one play in that playbook, or only one task in that play. You can also
set extra variables on the ansible-playbook command line by using the --extra-varsor -e
option and specifying those variables, and they override all other values for that variable name.

Here is a simplified list of ways to define a variable, ordered from lowest precedence to highest:
+ Group variables defined in the inventory.

+ Group variables defined in files in a group_vars subdirectory in the same directory as the
inventory or the playbook.

+ Host variables defined in the inventory.

+ Host variables defined in files in a host_vars subdirectory in the same directory as the
inventory or the playbook.

+ Host facts, discovered at runtime.
+ Play variables in the playbook (vars and vars_files).
+ Task variables.

+ Extra variables defined on the command line.

For example, a variable that is set to affect the all host group will be overridden by a variable that
has the same name and is set to affect a single host.

One recommended practice is to choose globally unique variable names so you do not have to
consider precedence rules. However, sometimes you might want to use precedence to cause
different hosts or host groups to get different settings than your defaults.

If the same variable name is defined at more than one level, the level with the highest precedence
wins. A narrow scope, such as a host variable or a task variable, takes precedence over a wider
scope, such as a group variable or a play variable. Variables defined by the inventory are
overridden by variables defined by the playbook. Extra variables defined on the command line with
the - -extra-vars, or -e, option have the highest precedence.

A detailed and more precise discussion of variable precedence is available in the Ansible
documentation at Variable Precedence: Where Should | Put A Variable? [https://docs.ansible.com/
ansible/2.9/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-
variable].

Variables in Playbooks

Variables play an important role in Ansible Playbooks because they ease the management of
variable data in a playbook.

https://docs.ansible.com/ansible/2.9/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable

Chapter 3 | Managing Variables and Facts

Defining Variables in Playbooks

When writing playbooks, you can define your own variables and then invoke those values in a task.
For example, a variable named web_package can be defined with a value of httpd. A task can
then call the variable using the yum module to install the httpd package.

Playbook variables can be defined in multiple ways. One common method is to place a variable in a
vars block at the beginning of a playbook:

- hosts: all
vars:
user: joe

home: /home/joe

Itis also possible to define playbook variables in external files. In this case, instead of using a vars
block in the playbook, the vars_files directive may be used, followed by a list of names for
external variable files relative to the location of the playbook:

- hosts: all
vars_files:
- vars/users.yml

The playbook variables are then defined in that file or those files in YAML format:

user: joe
home: /home/joe

Using Variables in Playbooks

After variables have been declared, administrators can use the variables in tasks. Variables are
referenced by placing the variable name in double curly braces ({{ }}). Ansible substitutes the
variable with its value when the task is executed.

vars:
user: joe

tasks:
This line will read: Creates the user joe
- name: Creates the user {{ user }}
user:
This line will create the user named Joe
name: "{{ user }}"

Chapter 3 | Managing Variables and Facts

i~ | Important
= When a variable is used as the first element to start a value, quotes are mandatory.
This prevents Ansible from interpreting the variable reference as starting a YAML
dictionary. The following message appears if quotes are missing:

yum:
name: {{ service }}
A here
We could be wrong, but this one looks like it might be an issue with
missing quotes. Always quote template expression brackets when they
start a value. For instance:

with_items:

- {{ foo }}
Should be written as:

with_items:

- "{{ foo }}"

Host Variables and Group Variables

Inventory variables that apply directly to hosts fall into two broad categories: host variables apply
to a specific host, and group variables apply to all hosts in a host group or in a group of host
groups. Host variables take precedence over group variables, but variables defined by a playbook
take precedence over both.

One way to define host variables and group variables is to do it directly in the inventory file. This is
an older approach and not the easiest to work with, but you might still see it used because it does
put all the inventory information and variable settings for hosts and host groups in one file.

+ Defining the ansible_user host variable for demo.example.com:

[servers]
demo.example.com ansible_user=joe

+ Defining the user group variable for the servers host group.

[servers]
demol.example.com
demo2.example.com

[servers:vars]
user=joe

+ Defining the user group variable for the servers group, which consists of two host groups
each with two servers.

[serversi]
demol.example.com
demo2.example.com

Chapter 3 | Managing Variables and Facts

[servers2]
demo3.example.com
demo4.example.com

[servers:children]
serversl
servers2

[servers:vars]
user=joe

Some disadvantages of this approach are that it makes the inventory file more difficult to work
with, it mixes information about hosts and variables in the same file, and uses an obsolete syntax.

Using Directories to Populate Host and Group Variables

The preferred approach to defining variables for hosts and host groups is to create two directories,
group_vars and host_vars, in the same working directory as the inventory file or playbook.
These directories contain files defining group variables and host variables, respectively.

i~ | Important

—— The recommended practice is to define inventory variables using host_vars and
group_vars directories, and not to define them directly in the inventory files.

To define group variables for the servers group, you would create a YAML file named
group_vars/servers, and then the contents of that file would set variables to values using the
same syntax as in a playbook:

user: joe

Likewise, to define host variables for a particular host, create a file with a name matching the host
in the host_vars directory to contain the host variables.

The following examples illustrate this approach in more detail. Consider a scenario where there
are two data centers to manage and the data center hosts are defined in the ~/project/
inventory inventory file:

[admin@station project]$ cat ~/project/inventory
[datacenter1l]

demol.example.com

demo2.example.com

[datacenter2]
demo3.example.com
demo4.example.com

[datacenters:children]
datacenteril
datacenter2

Chapter 3 | Managing Variables and Facts

+ If you need to define a general value for all servers in both data centers, set a group variable for
the datacenters host group:

[admin@station project]$ cat ~/project/group_vars/datacenters
package: httpd

+ If the value to define varies for each data center, set a group variable for each data center host
group:

[admin@station project]$ cat ~/project/group_vars/datacenteri
package: httpd

[admin@station project]$ cat ~/project/group_vars/datacenter2
package: apache

+ If the value to be defined varies for each host in every data center, then define the variables in
separate host variable files:

[admin@station project]$ cat ~/project/host_vars/demol.example.com
package: httpd

[admin@station project]$ cat ~/project/host_vars/demo2.example.com
package: apache

[admin@station project]$ cat ~/project/host_vars/demo3.example.com
package: mariadb-server

[admin@station project]$ cat ~/project/host_vars/demo4.example.com
package: mysql-server

The directory structure for the example project, project, if it contained all the example files
above, would appear as follows:

project

— ansible.cfg

— group_vars

| |— datacenters
| |— datacentersi

| L— datacenters2

— host_vars

| |— demol.example.com
| — demo2.example.com
| |— demo3.example.com
| L— demo4.example.com
— inventory
L

playbook.yml

Note

S Ansible looks for host_vars and group_vars subdirectories relative to both
the inventory and the playbook. If your inventory and your playbook happen to be
in the same directory, this is simple and Ansible looks in that directory for those
subdirectories. If your inventory and your playbook are in separate directories, then
Ansible will look in both places for host_vars and group_vars subdirectories.
The playbook subdirectories have higher precedence.

Chapter 3 | Managing Variables and Facts

Overriding Variables from the Command Line

Inventory variables are overridden by variables set in a playbook, but both kinds of variables may
be overridden through arguments passed to the ansible or ansible-playbook commands on
the command line. Variables set on the command line are called extra variables.

Extra variables can be useful when you need to override the defined value for a variable for a one-
off run of a playbook. For example:

[user@demo ~]$ ansible-playbook main.yml -e "package=apache"

Using Arrays as Variables

Instead of assigning configuration data that relates to the same element (a list of packages, a list
of services, alist of users, and so on), to multiple variables, administrators can use arrays. One
consequence of this is that an array can be browsed.

For example, consider the following snippet:

userl_first_name: Bob
userl_last_name: Jones
userl_home_dir: /users/bjones
user2_first_name: Anne
user2_last_name: Cook
user2_home_dir: /users/acook

This could be rewritten as an array called users:

users:
bjones:
first_name: Bob
last_name: Jones
home_dir: /users/bjones
acook:
first_name: Anne
last_name: Cook
home_dir: /users/acook

You can then use the following variables to access user data:

Returns 'Bob'
users.bjones.first_name

Returns '/users/acook'
users.acook.home_dir

Because the variable is defined as a Python dictionary, an alternative syntax is available.

W RH294-RHEL8.4-en-1-20210818

Chapter 3 | Managing Variables and Facts

Returns 'Bob'
users['bjones']['first_name']

Returns '/users/acook'
users['acook']['home_dir']

1| Important

= The dot notation can cause problems if the key names are the same as names of
Python methods or attributes, such as discard, copy, add, and so on. Using the
brackets notation can help avoid conflicts and errors.

Both syntaxes are valid, but to make troubleshooting easier, Red Hat recommends
that you use one syntax consistently in all files throughout any given Ansible project.

Capturing Command Output with Registered Variables

You can use the register statement to capture the output of a command. The output is saved
into a temporary variable that can be used later in the playbook for either debugging purposes or
to achieve something else, such as a particular configuration based on a command's output.

The following playbook demonstrates how to capture the output of a command for debugging
purposes:

- name: Installs a package and prints the result

hosts: all
tasks:
- name: Install the package
yum:
name: httpd

state: installed
register: install_result

- debug:
var: install_result

When you run the playbook, the debug module is used to dump the value of the
install_result registered variable to the terminal.

[user@demo ~]$ ansible-playbook playbook.yml
PLAY [Installs a package and prints the result] ****** ks

TASK [Setup] o R XX

ok: [demo.example.com]

TASK [Insta‘L‘L the package] khkkhkkkhhkhhhhhkhhhhhhhhhh bk bk hhhkh bk bk hhhkhhk bk hhkhkhk k%

ok: [demo.example.com]

TASK [debug] o R R XX

ok: [demo.example.com] => {
"install_result": {

Chapter 3 | Managing Variables and Facts

"changed": false,
Ilmsgll: IIII’
"rc": 0,
"results": [
"httpd-2.4.6-40.el17.x86_64 providing httpd is already installed"

PLAY RECAP ****xkkkkkhkkhkhhkkhk Ak ok Ak ok kkk Ak ke k ok ok k ok ok ko k ko kk ok ok k ok ok k ok ok k ok ok kk ok kkkx

demo.example.com 1 ok=3 changed=0 unreachable=0 failed=0

D References
Inventory — Ansible Documentation
https://docs.ansible.com/ansible/2.9/user_guide/intro_inventory.html

Variables — Ansible Documentation
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_variables.html

Variable Precedence: Where Should | Put A Variable?
https://docs.ansible.com/ansible/2.9/user_guide/
playbooks_variables.html#variable-precedence-where-should-i-put-a-variable

YAML Syntax — Ansible Documentation
https://docs.ansible.com/ansible/2.9/reference_appendices/YAMLSyntax.html

w RH294-RHEL8.4-en-1-20210818

https://docs.ansible.com/ansible/2.9/user_guide/intro_inventory.html
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_variables.html
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.ansible.com/ansible/2.9/reference_appendices/YAMLSyntax.html

Chapter 3 | Managing Variables and Facts

» Guided Exercise

Managing Variables

In this exercise, you will define and use variables in a playbook.

Outcomes
You should be able to:

+ Define variables in a playbook.

+ Create tasks that use defined variables.

Before You Begin
Logintoworkstation as student using student as the password.

Onworkstation, run the lab data-variables start command. This function creates
the data-variables working directory, and populates it with an Ansible configuration file
and host inventory.

[student@workstation ~]$ lab data-variables start

Instructions

P 1. Onworkstation, asthe student user, change into the /home/student/data-
variables directory.

[student@workstation ~]$ cd ~/data-variables
[student@workstation data-variables]$

P 2. Over the next several steps, you will create a playbook that installs the Apache web server
and opens the ports for the service to be reachable. The playbook queries the web server
to ensure it is up and running.

Create the playbook.ym1 playbook and define the following variables in the vars
section:

RH294-RHEL8.4-en-1-20210818 u

Chapter 3 | Managing Variables and Facts

Variables
Variable Description
web_pkg Web server package to install.
firewall_pkg Firewall package to install.
web_service Web service to manage.
firewall_service Firewall service to manage.
python_pkg Required package for the uri module.
rule The service name to open.

- name: Deploy and start Apache HTTPD service
hosts: webserver
vars:
web_pkg: httpd
firewall_pkg: firewalld
web_service: httpd
firewall_service: firewalld
python_pkg: python3-PyMySQL
rule: http

P 3. Create the tasks block and create the first task, which should use the yum module to make
sure the latest versions of the required packages are installed.

tasks:
- name: Required packages are installed and up to date
yum:
name:
- "{{ web_pkg }}"
- "{{ firewall_pkg }}"

- "{{ python_pkg }}"
state: latest

Note

E You can use ansible-doc yum to review the syntax for the yum module. The
syntax shows that its name directive can take a list of packages that the module
should work with, so that you do not need separate tasks to makes sure each
package is up-to-date.

Chapter 3 | Managing Variables and Facts

P 4. Create two tasks to make sure that the httpd and firewalld services are started and
enabled.

- name: The {{ firewall_service }} service is started and enabled
service:
name: "{{ firewall_service }}"
enabled: true
state: started

- name: The {{ web_service }} service is started and enabled
service:
name: "{{ web_service }}"
enabled: true
state: started

Note

S The service module works differently from the yum module, as documented by
ansible-doc service. Its name directive takes the name of exactly one service
to work with.

You can write a single task that ensures both services are started and enabled, using
the loop keyword covered later in this course.

P 5. Add atask that ensures specific content exists in the /var/www/html/index.html file.

- name: Web content is in place
copy:
content: "Example web content"
dest: /var/www/html/index.html

P 6. Add atask that uses the firewalld module to ensure the firewall ports are open for the
firewalld service named in the rule variable.

- name: The firewall port for {{ rule }} is open
firewalld:
service: "{{ rule }}"
permanent: true
immediate: true
state: enabled

) 7. Create anew play that queries the web service to ensure everything has been correctly
configured. It should run on localhost. Because of that Ansible fact, Ansible does not
have to change identity, so set the become module to false. You can use the uri module

Chapter 3 | Managing Variables and Facts

to check a URL. For this task, check for a status code of 200 to confirm the web server on
servera. lab.example.comis running and correctly configured.

- name: Verify the Apache service

hosts: localhost

become: false

tasks:

- name: Ensure the webserver is reachable
uri:

url: http://servera.lab.example.com
status_code: 200

P 8. When completed, the playbook should appear as follows. Review the playbook and confirm
that both plays are correct.

- name: Deploy and start Apache HTTPD service
hosts: webserver
vars:
web_pkg: httpd
firewall_pkg: firewalld
web_service: httpd
firewall_service: firewalld
python_pkg: python3-PyMySQL
rule: http

tasks:
- name: Required packages are installed and up to date
yum:
name:
- "{{ web_pkg }}"
- "{{ firewall_pkg }}"

- "{{ python_pkg }}"
state: latest

- name: The {{ firewall_service }} service is started and enabled
service:
name: "{{ firewall_service }}"
enabled: true
state: started

- name: The {{ web_service }} service is started and enabled
service:
name: "{{ web_service }}"
enabled: true
state: started

- name: Web content is in place
copy':
content: "Example web content"
dest: /var/www/html/index.html

- name: The firewall port for {{ rule }} is open
firewalld:

Chapter 3 | Managing Variables and Facts

service: "{{ rule }}"
permanent: true
immediate: true
state: enabled

- name: Verify the Apache service

hosts: localhost

become: false

tasks:

- name: Ensure the webserver is reachable
uri:

url: http://servera.lab.example.com
status_code: 200

P 9. Before you run the playbook, use the ansible-playbook --syntax-check command
to verify its syntax. If it reports any errors, correct them before moving to the next step. You
should see output similar to the following:

[student@workstation data-variables]$ ansible-playbook --syntax-check playbook.yml

playbook: playbook.yml

P 10. Use the ansible-playbook command to run the playbook. Watch the output as Ansible
installs the packages, starts and enables the services, and ensures the web server is
reachable.

[student@workstation data-variables]$ ansible-playbook playbook.yml

PLAY [Deploy and Start Apache HTTPD Seerce] R R Sk Sk Sk Sk S S Sk S S S S S S S S S S S S

TASK [Gatherlng Facts] R R SR Sk S S R S Sk S S S R S S S R S S R R S S S

ok: [servera.lab.example.com]

TASK [Required packages are installed and up to date] *****xx*kkdkakskdkdkhxrkddhrrx
changed: [servera.lab.example.com]

TASK [The firewalld service is started and enabled] *******xxkskdkdkrkskdkdhhxrkdhrrx
ok: [servera.lab.example.com]

TASK [The httpd service is started and enabled] ******x*xiuiaidaiaidaionrdidxiwis
changed: [servera.lab.example.com]

TASK [Web Content lS ln place] Rk R Sk Sk S S S S S S S R S S S S S S S

changed: [servera.lab.example.com]

TASK [The flrewall port for http lS Open] R Rk Sk Sk Sk Sk Sk S S S S S S S S Sk S S
changed: [servera.lab.example.com]

PLAY [Verlfy the Apache Seerce] R R SR S S Sk Sk Sk Sk S S S S Sk S S S kS

TASK [Gatherlng Facts] R Rk SR Sk Sk Sk R S Sk S S S R S S R S R S S kS

ok: [localhost]

Chapter 3 | Managing Variables and Facts

TASK [Ensure the Webserver lS reachable] R R R R R R R R R R
ok: [localhost]

PLAY RECAP khkkhkhkhkhhkhhhhhhhdhhhdhddhdhdhdhdhdhdhdhdhdhdhdhdhdhdhddhddhdhdhddddhddddrddddrdrdrdrdrrrrrrrrrrrrx

localhost 1 ok=2 changed=0 unreachable=0 failed=0
servera. lab.example.com : ok=6 changed=4 unreachable=0 failed=0

Finish
Onworkstation, runthe lab data-variables finish scriptto clean up this exercise.

[student@workstation ~]$ lab data-variables finish

This concludes the guided exercise.

W RH294-RHEL8.4-en-1-20210818

Chapter 3 | Managing Variables and Facts

Managing Secrets

Objectives

After completing this section, you should be able to encrypt sensitive variables using Ansible Vault,
and run playbooks that reference Vault-encrypted variable files.

Introducing Ansible Vault

Ansible may need access to sensitive data such as passwords or API keys in order to configure
managed hosts. Normally, this information might be stored as plain text in inventory variables

or other Ansible files. In that case, however, any user with access to the Ansible files or a version
control system which stores the Ansible files would have access to this sensitive data. This poses
an obvious security risk.

Ansible Vault, which is included with Ansible, can be used to encrypt and decrypt any structured
data file used by Ansible. To use Ansible Vault, a command-line tool named ansible-vault is
used to create, edit, encrypt, decrypt, and view files. Ansible Vault can encrypt any structured data
file used by Ansible. This might include inventory variables, included variable files in a playbook,
variable files passed as arguments when executing the playbook, or variables defined in Ansible
roles.

i~ | Important

Ansible Vault does not implement its own cryptographic functions but rather uses
an external Python toolkit. Files are protected with symmetric encryption using
AES256 with a password as the secret key. Note that the way this is done has not
been formally audited by a third party.

Creating an Encrypted File

To create a new encrypted file, use the ansible-vault create filename command. The
command prompts for the new vault password and then opens a file using the default editor, vi.
You can set and export the EDITOR environment variable to specify a different default editor by
setting and exporting. For example, to set the default editor to nano, export EDITOR=nano.

[student@demo ~]$ ansible-vault create secret.yml
New Vault password: redhat
Confirm New Vault password: redhat

Instead of entering the vault password through standard input, you can use a vault password file
to store the vault password. You need to carefully protect this file using file permissions and other
means.

[student@demo ~]$ ansible-vault create --vault-password-file=vault-pass secret.yml

The cipher used to protect files is AES256 in recent versions of Ansible, but files encrypted with
older versions may still use 128-bit AES.

Chapter 3 | Managing Variables and Facts

Viewing an Encrypted File

You can use the ansible-vault view filename command to view an Ansible Vault-
encrypted file without opening it for editing.

[student@demo ~]$ ansible-vault view secretl.yml
Vault password: secret
my_secret: "yJJvPghsiusmmPPZdnjndkdnYNDjdj782meUZcw"

Editing an Existing Encrypted File

To edit an existing encrypted file, Ansible Vault provides the ansible-vault edit filename
command. This command decrypts the file to a temporary file and allows you to edit it. When
saved, it copies the content and removes the temporary file.

[student@demo ~]$ ansible-vault edit secret.yml
Vault password: redhat

S Note
The edit subcommand always rewrites the file, so you should only use it when
making changes. This can have implications when the file is kept under version
control. You should always use the view subcommand to view the file's contents
without making changes.

Encrypting an Existing File

To encrypt a file that already exists, use the ansible-vault encrypt filename command.
This command can take the names of multiple files to be encrypted as arguments.

[student@demo ~]$ ansible-vault encrypt secreti.yml secret2.yml
New Vault password: redhat

Confirm New Vault password: redhat

Encryption successful

Use the - -output=0UTPUT_FILE option to save the encrypted file with a new name. You can
only use one input file with the - -output option.

Decrypting an Existing File

An existing encrypted file can be permanently decrypted by using the ansible-vault decrypt
filename command. When decrypting a single file, you can use the - -output option to save the
decrypted file under a different name.

[student@demo ~]$ ansible-vault decrypt secretl.yml --output=secreti-decrypted.yml
Vault password: redhat
Decryption successful

Chapter 3 | Managing Variables and Facts

Changing the Password of an Encrypted File

You can use the ansible-vault rekey filename command to change the password of an
encrypted file. This command can rekey multiple data files at once. It prompts for the original
password and then the new password.

[student@demo ~]$ ansible-vault rekey secret.yml
Vault password: redhat

New Vault password: RedHat

Confirm New Vault password: RedHat

Rekey successful

When using a vault password file, use the - -new-vault-password-file option:

[student@demo ~]$ ansible-vault rekey \
> --new-vault-password-file=NEW_VAULT_PASSWORD_FILE secret.yml

Playbooks and Ansible Vault

To run a playbook that accesses files encrypted with Ansible Vault, you need to provide the
encryption password to the ansible-playbook command. If you do not provide the password,
the playbook returns an error:

[student@demo ~]$ ansible-playbook site.yml
ERROR: A vault password must be specified to decrypt vars/api_key.yml

To provide the vault password to the playbook, use the - -vault-id option. For example, to
provide the vault password interactively, use - -vault-id @prompt as illustrated in the following
example:

[student@demo ~]$ ansible-playbook --vault-id @prompt site.yml
Vault password (default): redhat

i~ | Important
— If you are using a release of Ansible earlier than version 2.4, you need to use the - -
ask-vault-pass option to interactively provide the vault password. You can still
use this option if all vault-encrypted files used by the playbook were encrypted with
the same password.

[student@demo ~]$ ansible-playbook --ask-vault-pass site.yml
Vault password: redhat

Alternatively, you can use the - -vault-password-file option to specify a file that stores the
encryption password in plain text. The password should be a string stored as a single line in the file.
Because that file contains the sensitive plain text password, it is vital that it be protected through
file permissions and other security measures.

[student@demo ~]$ ansible-playbook --vault-password-file=vault-pw-file site.yml

Chapter 3 | Managing Variables and Facts

You can also use the ANSIBLE_VAULT_PASSWORD_FILE environment variable to specify the
default location of the password file.

i~ | Important

Starting with Ansible 2.4, you can use multiple Ansible Vault passwords with
ansible-playbook. To use multiple passwords, pass multiple - -vault-id or - -
vault-password-file options to the ansible-playbook command.

[student@demo ~]$ ansible-playbook \

> --vault-id one@prompt --vault-id two@prompt site.yml
Vault password (one):

Vault password (two):

...output omitted. ..

The vault IDs one and two preceding @prompt can be anything and you can even
omit them entirely. If you use the --vault-id id option when you encrypt a file
with ansible-vault command, however, when you run ansible-playbook then
the password for the matching ID is tried before any others. If it does not match, the
other passwords you provided will be tried next. The vault ID @prompt with no ID is
actually shorthand for default@prompt, which means to prompt for the password
for vault ID default.

Recommended Practices for Variable File Management

To simplify management, it makes sense to set up your Ansible project so that sensitive variables
and all other variables are kept in separate files. The files containing sensitive variables can then be
protected with the ansible-vault command.

Remember that the preferred way to manage group variables and host variables is to create
directories at the playbook level. The group_vars directory normally contains variable files with
names matching host groups to which they apply. The host_vars directory normally contains
variable files with names matching host names of managed hosts to which they apply.

However, instead of using files in group_vars or host_vars, you also can use directories for
each host group or managed host. Those directories can then contain multiple variable files, all of
which are used by the host group or managed host. For example, in the following project directory
for playbook.yml, members of the webservers host group uses variables in the group_vars/
webservers/vars file, and demo . example.com uses the variables in both host_vars/
demo.example.com/vars and host_vars/demo.example.com/vault:

|— ansible.cfg
— group_vars
| — webservers

| L— vars

— host_vars

| L— demo.example.com
|
|

|— vars

L— vault

— inventory
L— playbook.yml

Chapter 3 | Managing Variables and Facts

In this scenario, the advantage is that most variables for demo . example . com can be placed in
the vars file, but sensitive variables can be kept secret by placing them separately in the vault
file. Then the administrator can use ansible-vault to encrypt the vault file, while leaving the
vars file as plain text.

There is nothing special about the file names being used in this example inside the host_vars/
demo.example.com directory. That directory could contain more files, some encrypted by
Ansible Vault and some which are not.

Playbook variables (as opposed to inventory variables) can also be protected with Ansible Vault.
Sensitive playbook variables can be placed in a separate file which is encrypted with Ansible
Vault and which is included in the playbook through a vars_files directive. This can be useful,
because playbook variables take precedence over inventory variables.

If you are using multiple vault passwords with your playbook, make sure that each encrypted file
is assigned a vault ID, and that you enter the matching password with that vault ID when running
the playbook. This ensures that the correct password is selected first when decrypting the vault-
encrypted file, which is faster than forcing Ansible to try all the vault passwords you provided until
it finds the right one.

References
ansible-playbook(1) and ansible-vault(1) man pages

Encrypting content with Ansible Vault — Ansible Documentation
https://docs.ansible.com/ansible/2.9/user_guide/vault.html

Keep vaulted variables safely visible — Ansible Documentation
https://docs.ansible.com/ansible/2.9/user_guide/
playbooks_best_practices.html#keep-vaulted-variables-safely-visible

RH294-RHEL8.4-en-1-20210818 w

https://docs.ansible.com/ansible/2.9/user_guide/vault.html
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_best_practices.html#keep-vaulted-variables-safely-visible
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_best_practices.html#keep-vaulted-variables-safely-visible

Chapter 3 | Managing Variables and Facts

» Guided Exercise

Managing Secrets

In this exercise, you will encrypt sensitive variables with Ansible Vault to protect them, and
then run a playbook that uses those variables.

Outcomes
You should be able to:

+ Execute a playbook using variables defined in an encrypted file.

Before You Begin
Logintoworkstation as student using student as the password.

Onworkstation, runthe lab data-secret start command. This script ensures
that Ansible is installed on workstation and creates a working directory for this exercise.
This directory includes an inventory file that points to servera. lab.example.comas a
managed host, which is part of the devservers group.

[student@workstation ~]$ lab data-secret start

Instructions

[

Onworkstation, as the student user, change to the /home/student/data-secret
working directory.

[student@workstation ~]$ cd ~/data-secret
[student@workstation data-secret]$

) 2.

Edit the contents of the provided encrypted file, secret.yml. The file can be decrypted
using redhat as the password. Uncomment the username and pwhash variable entries.

2. Edit the encrypted file /home/student/data-secret/secret.yml. Provide a
password of redhat for the vault when prompted. The encrypted file opens in the
default editor, vim.

[student@workstation data-secret]$ ansible-vault edit secret.yml
Vault password: redhat

2.2. Uncomment the two variable entries, then save the file and exit the editor. They
should appear as follows:

username: ansibleuseril
pwhash: 6jf...uxhP1

Chapter 3 | Managing Variables and Facts

P 3. Create aplaybook named /home/student/data-secret/create_users.yml

that uses the variables defined in the /home/student/data-secret/secret.yml
encrypted file.

Configure the playbook to use the devservers host group. Run this playbook as

the devops user on the remote managed host. Configure the playbook to create the
ansibleuser1 user defined by the username variable. Set the user's password using the
password hash stored in the pwhash variable.

name: create user accounts for all our servers
hosts: devservers

become: True

remote_user: devops

vars_files:

- secret.yml
tasks:
- name: Creating user from secret.yml
user:

name: "{{ username }}"
password: "{{ pwhash }}"

P 4. Usethe ansible-playbook --syntax-check command to verify the syntax of the

create_users.yml playbook. Use the - -ask-vault-pass option to prompt for
the vault password, which decrypts secret.yml. Resolve any syntax errors before you

continue.

[student@workstation data-secret]$ ansible-playbook --syntax-check \

> --ask-vault-pass create_users.yml
Vault password (default): redhat

playbook: create_users.yml

i ; Note
Instead of using - -ask-vault-pass, you can use the newer --vault-id

>

@prompt option to do the same thing.

5. Create a password file named vault -pass to use for the playbook execution instead of
asking for a password. The file must contain the plain text redhat as the vault password.
Change the permissions of the file to 0600.

[student@workstation data-secret]$ echo 'redhat' > vault-pass
[student@workstation data-secret]$ chmod 0600 vault-pass

Chapter 3 | Managing Variables and Facts

) 6. Execute the Ansible Playbook using the vault -pass file, to create the ansibleuseril
user on a remote system using the passwords stored as variables in the secret.yml
Ansible Vault encrypted file.

[student@workstation data-secret]$ ansible-playbook \
> --vault-password-file=vault-pass create_users.yml

PLAY [create user accounts for all our servers] ****¥xixsdddiassddkxrddihxrsdsx

TASK [Gather‘ing FaCtS] khkkhkhkhhhhkhhhhhhhkhhhhhkhhhhhkhhhhkhhhhhkhhkhhhhhkhhkhhhkhkhkhhkkhk

ok: [servera.lab.example.com]

TASK [Cr‘eating users from secret ym‘L] khkhkhkkhhhkhhhhhhhhhhhhhkhhhhhhkhhhhhhkkkkk

changed: [servera.lab.example.com]

PLAY REGCAP % * % % % o % ok sk ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok o ok ok o ok ok ok ok ok ok ok ok ok ok ko ko ko ko ko ok ko

servera. lab.example.com 1 ok=2 changed=1 unreachable=0 failed=0

P 7. Verify that the playbook ran correctly. The user ansibleuserd should exist and have the
correct password on servera. lab.example.com. Test this by using ssh to log in as that
user on servera. lab.example.com. The password foransibleuserilis redhat. To
make sure that SSH only tries to authenticate by password and not by an SSH key, use the -
0 PreferredAuthentications=password option when you login.

Log off from servera when you have successfully logged in.

[student@workstation data-secret]$ ssh -o PreferredAuthentications=password \
> ansibleuseri@servera. lab.example.com

ansibleuseril@servera.lab.example.com's password: redhat

Activate the web console with: systemctl enable --now cockpit.socket

[ansibleuseri@servera ~]$ exit
logout
Connection to servera.lab.example.com closed.

Finish
Onworkstation, runthe lab data-secret finish scriptto clean up this exercise.

[student@workstation ~]$ lab data-secret finish

This concludes the guided exercise.

Chapter 3 | Managing Variables and Facts

Managing Facts

Objectives

After completing this section, you should be able to reference data about managed hosts using
Ansible facts, and configure custom facts on managed hosts.

Describing Ansible Facts

Ansible facts are variables that are automatically discovered by Ansible on a managed host. Facts
contain host-specific information that can be used just like regular variables in plays, conditionals,
loops, or any other statement that depends on a value collected from a managed host.

Some of the facts gathered for a managed host might include:
+ The host name

+ The kernel version

+ The network interfaces

+ The IP addresses

+ The version of the operating system

+ Various environment variables

+ The number of CPUs

+ The available or free memory

+ The available disk space

Facts are a convenient way to retrieve the state of a managed host and to determine what action
to take based on that state. For example:

+ Aserver can be restarted by a conditional task which is run based on a fact containing the
managed host's current kernel version.

+ The MySQL configuration file can be customized depending on the available memory reported
by a fact.

+ The IPv4 address used in a configuration file can be set based on the value of a fact.

Normally, every play runs the setup module automatically before the first task in order to gather
facts. This is reported as the Gathering Facts taskin Ansible 2.3 and later, or simply as setup
in older versions of Ansible. By default, you do not need to have a task to run setup in your play. It
is normally run automatically for you.

One way to see what facts are gathered for your managed hosts is to run a short playbook that
gathers facts and uses the debug module to print the value of the ansible_facts variable.

Chapter 3 | Managing Variables and Facts

- name: Fact dump
hosts: all
tasks:
- name: Print all facts
debug:
var: ansible_facts

When you run the playbook, the facts are displayed in the job output:

[user@demo ~]$%$ ansible-playbook facts.yml

PLAY [Fact dump] EIE R R R R R R R R R R R R R R R S R R R R S R R R R R R R

TASK [Gathering Facts] LR R R R R R R S R R S R R R R R R R R S R R S R R

ok: [demol.example.com]

TASK [Print a'L'L facts] R R R Sk S S R R R S S R S R S S S R S R R R R R S R S R S S R R

ok: [demol.example.com] => {
"ansible_facts": {
"all_ipv4_addresses": [
"172.25.250.10"
1,
"all_ipv6_addresses": [
"fe80::5054:ff:fe00:faba"
1,
"ansible_local": {3},
"apparmor": {

"status": "disabled"
H
"architecture": "x86_64",
"bios_date": "01/01/2011",
"bios_version": "0.5.1",

"cmdline": {
"BOOT_IMAGE": "/boot/vmlinuz-3.10.0-327.el7.x86_64",
"LANG": "en_US.UTF-8",
"console": "ttySe,115200n8",

"crashkernel": "auto",
"net.ifnames": "0",
"no_timer_check": true,
"ro": true,

"root": "UUID=2460ab6e-e869-4011-acae-31b2e8cO5a3b"
3

...output omitted...

The playbook displays the content of the ansible_facts variable in JSON format as a hash/
dictionary of variables. You can browse the output to see what facts are gathered, to find facts
that you might want to use in your plays.

The following table shows some facts which might be gathered from a managed node and may be
useful in a playbook:

Chapter 3 | Managing Variables and Facts

Examples of Ansible Facts

Fact Variable
Short host name ansible_facts['hostname']
Fully qualified domain name ansible_facts['fqdn']

Main IPv4 address (based on ansible_facts['default_ipv4']['address']
routing)

List of the names of all ansible_facts['interfaces']
network interfaces

Size of the /dev/vda1 disk ansible_facts['devices']['vda']['partitions']
partition ['vdal']['size']

List of DNS servers ansible_facts['dns']['nameservers']

Version of the currently ansible_facts['kernel']

running kernel

Note

E Remember that when a variable's value is a hash/dictionary, there are two syntaxes
that can be used to retrieve the value. To take two examples from the preceding
table:

- ansible_facts['default_ipv4']['address'] can also be written
ansible_facts.default_ipv4.address

+ ansible_facts['dns']['nameservers'] can also be written
ansible_facts.dns.nameservers

When a fact is used in a playbook, Ansible dynamically substitutes the variable name for the fact
with the corresponding value:

- hosts: all
tasks:
- name: Prints various Ansible facts
debug:
msg: >
The default IPv4 address of {{ ansible_facts.fqdn }}
is {{ ansible_facts.default_ipv4.address }}

The following output shows how Ansible was able to query the managed node and dynamically use
the system information to update the variable. Facts can also be used to create dynamic groups of
hosts that match particular criteria.

[user@demo ~]$ ansible-playbook playbook.yml

PLAY EEEEEEEEEEEEEEEEREEEEE R R R R R EREREEREREEEREREREREREEREREEEERERESESRESESEESS

TASK [Gathering FaCtS] EEEEEEEEEREEEEEEEEREEREEEEEEREEEEEEREESEERESEERERERERESESESESES

Chapter 3 | Managing Variables and Facts
ok: [demol.example.com]

TASK [PrlntS VarlOUS AnSlble facts] R R R R R R R R R R EEEEEEEEEEEEEEEEEEEEEEEEEE]
ok: [demol.example.com] => {
"msg": "The default IPv4 address of demol.example.com is
172.25.250.10"

PLAY RECAP ***%xkkkkkhkkhkkhkkk ok khk Ak ok kk ok kh ok k ok ok k ok ok k ok ok k ok ok k ok ok kk ok k ok ok k ok ok kk ok kkkxx

demol.example.com 1 ok=2 changed=0 unreachable=0 failed=0

Ansible Facts Injected as Variables

Before Ansible 2.5, facts were injected as individual variables prefixed with the string
ansible_ instead of being part of the ansible_facts variable. For example, the
ansible_facts['distribution'] fact would have been called ansible_distribution.

Many older playbooks still use facts injected as variables instead of the new syntax that is
namespaced under the ansible_facts variable. You can use an ad hoc command to run the
setup module to print the value of all facts in this form. In the following example, an ad hoc
command is used to run the setup module on the managed host demol.example.com:

[user@demo ~]$ ansible demol.example.com -m setup
demol.example.com | SUCCESS => {
"ansible_facts": {
"ansible_all _ipv4_addresses": [
"172.25.250.10"
1
"ansible_all _ipv6_addresses": [
"fe80::5054:ff:fe00:faba"
1

"ansible_apparmor": {

"status": "disabled"
H
"ansible_architecture": "x86_64",
"ansible_bios_date": "01/01/2011",
"ansible_bios_version": "0.5.1",

"ansible_cmdline": {

"BOOT_IMAGE": "/boot/vmlinuz-3.10.0-327.el7.x86_64",

"LANG": "en_US.UTF-8",

"console": "ttySO,115200n8",

"crashkernel": "auto",

"net.ifnames": "0",

"no_timer_check": true,

"ro": true,

"root": "UUID=2460ab6e-e869-4011-acae-31b2e8cO5a3b"
}

...output omitted. ..

The following table compares the old and new fact names.

Chapter 3 | Managing Variables and Facts

Comparison of Selected Ansible Fact Names

ansible_facts form
ansible_facts['hostname']
ansible_facts['fqdn']

ansible_facts['default_ipv4']
['address']

ansible_facts['interfaces']

ansible_facts['devices']['vda']
['partitions']['vdal']['size']

ansible_facts['dns']
["'nameservers']

ansible_facts['kernel']

Old fact variable form
ansible_hostname
ansible_fqgdn

ansible_default_ipv4['address']

ansible_interfaces

ansible_devices['vda']
['partitions']['vdal']['size']

ansible_dns['nameservers']

ansible_kernel

1| Important

Currently, Ansible recognizes both the new fact naming system (using
ansible_facts) and the old pre-2.5 "facts injected as separate variables" naming
system.

You can turn off the old naming system by setting the inject_facts_as_vars
parameter in the [default] section of the Ansible configuration file to false. The
default setting is currently true.

The default value of inject_facts_as_vars will probably change to false

in a future version of Ansible. If it is set to false, you can only reference Ansible
facts using the new ansible_facts.* naming system. In that case, attempts to
reference facts through the old namespace results in the following error:

...output omitted. ..

TASK [ShOW me the facts] kkhkkhkkkhkkhkkhkkhkkhkkhkhkkkkkkkkkkk*x*%

fatal: [demo.example.com]: FAILED! => {"msg": "The task includes an option
with an undefined variable. The error was: 'ansible_distribution' is
undefined\n\nThe error appears to have been in
'/home/student/demo/playbook.yml': line 5, column 7, but may\nbe elsewhere in
the file depending on the exact syntax problem.\n\nThe offending line appears
to be:\n\n tasks:\n - name: Show me the facts\n A here\n"}

...output omitted. ..

Turning Off Fact Gathering

Sometimes, you do not want to gather facts for your play. There are a couple of reasons why this
might be the case. It might be that you are not using any facts and want to speed up the play or
reduce load caused by the play on the managed hosts. It might be that the managed hosts cannot
run the setup module for some reason, or need to install some prerequisite software before
gathering facts.

Chapter 3 | Managing Variables and Facts

To disable fact gathering for a play, set the gather_facts keyword to no:

- name: This play gathers no facts automatically
hosts: large_farm
gather_facts: no

Evenif gather_facts: noisset fora play, you can manually gather facts at any time by running
a task that uses the setup module:

tasks:
- name: Manually gather facts
setup:
...output omitted. ..

Creating Custom Facts

Administrators can create custom facts which are stored locally on each managed host. These
facts are integrated into the list of standard facts gathered by the setup module when it runs on
the managed host. These allow the managed host to provide arbitrary variables to Ansible which
can be used to adjust the behavior of plays.

Custom facts can be defined in a static file, formatted as an INI file or using JSON. They can also
be executable scripts which generate JSON output.

Custom facts allow administrators to define certain values for managed hosts, which plays might
use to populate configuration files or conditionally run tasks. Dynamic custom facts allow the
values for these facts, or even which facts are provided, to be determined programmatically when
the play is run.

By default, the setup module loads custom facts from files and scripts in each managed host's
/etc/ansible/facts.d directory. The name of each file or script must end in . fact in
order to be used. Dynamic custom fact scripts must output JSON-formatted facts and must be
executable.

This is an example of a static custom facts file written in INI format. An INI-formatted custom facts
file contains a top level defined by a section, followed by the key-value pairs of the facts to define:

[packages]
web_package = httpd
db_package = mariadb-server

[users]
userl = joe
user2 = jane

The same facts could be provided in JSON format. The following JSON facts are equivalent to the
facts specified by the INI format in the preceding example. The JSON data could be stored in a
static text file or printed to standard output by an executable script:

{
"packages": {
"web_package": "httpd",

Chapter 3 | Managing Variables and Facts

"db_package": "mariadb-server"
3
"users": {

"user1i": "joe",

"user2": "jane"
}

Note
E Custom fact files cannot be in YAML format like a playbook. JSON format is the
closest equivalent.

Custom facts are stored by the setup module in the ansible_facts['ansible_local']
variable. Facts are organized based on the name of the file that defined them. For

example, assume that the preceding custom facts are produced by a file saved as /etc/
ansible/facts.d/custom.fact on the managed host. In that case, the value of
ansible_facts['ansible_local']['custom']['users']['userl']is joe.

You can inspect the structure of your custom facts by running the setup module on the managed
hosts with an ad hoc command.

[user@demo ~]$ ansible demol.example.com -m setup
demol.example.com | SUCCESS => {
"ansible_facts": {
...output omitted. ..
"ansible_local": {
"custom": {

"packages": {
"db_package": "mariadb-server",
"web_package": "httpd"

i

"users": {

"userli": "joe",
"user2": "jane"
}
}
}
...output omitted...

H

"changed": false

Custom facts can be used the same way as default facts in playbooks:

[user@demo ~]$ cat playbook.yml
- hosts: all
tasks:
- name: Prints various Ansible facts
debug:
msg: >
The package to install on {{ ansible_facts['fqdn'] }}

Chapter 3 | Managing Variables and Facts

is {{ ansible_facts['ansible_local']['custom']['packages']
['web_package'] }}

[user@demo ~]$ ansible-playbook playbook.yml

PLAY ***xdkkdkkhkkh ok kkkk ok ok Ak ok Ak kA ok ok Ak kA ok kA ok k Ak kA h ok Ak ok Ak ok Ak ok Ak ok k ok kk ok ok kkkkkokx

TASK [Gathering FaCtS] khkkkkkhhhhhhhkhhhhhhhhhh bk bk hhhk kb bk hhhkhk bk hhkhk bk khkhk*

ok: [demol.example.com]

TASK [PrlntS VarlOUS AnSlble facts] khkkhkkhkhkkhkhkhkhkhkhkhkhkhkhhkdkhkhkhhkhhdhdhkhkhhrdhdhhhxdx
ok: [demol.example.com] => {
"msg": "The package to install on demol.example.com 1is httpd"

PLAY RECAP ***xxkkkkkkdkkhkhhkhhkhhkhhkhhkhhkhhkdhdkdhkhhkrhkrhdkrhkrhdkrhdkrhdhxx

demol.example.com 1 ok=2 changed=0 unreachable=0 failed=0

Using Magic Variables

Some variables are not facts or configured through the setup module, but are also automatically
set by Ansible. These magic variables can also be useful to get information specific to a particular
managed host.

Four of the most useful are:

hostvars
Contains the variables for managed hosts, and can be used to get the values for another
managed host's variables. It does not include the managed host's facts if they have not yet
been gathered for that host.

group_names
Lists all groups the current managed host is in.

groups
Lists all groups and hosts in the inventory.

inventory_hostname
Contains the host name for the current managed host as configured in the inventory. This may
be different from the host name reported by facts for various reasons.

There are a number of other "magic variables" as well. For more information, see https://
docs.ansible.com/ansible/2.9/user_guide/playbooks_variables.html#variable-precedence-where-
should-i-put-a-variable. One way to get insight into their values is to use the debug module to
report on the contents of the hostvars variable for a particular host:

[user@demo ~]$ ansible localhost -m debug -a 'var=hostvars["localhost"]'
localhost | SUCCESS => {
"hostvars[\"localhost\"]": {
"ansible_check_mode": false,
"ansible_connection": "local",
"ansible_diff_mode": false,
"ansible_facts": {3},
"ansible_forks": 5,
"ansible_inventory_sources": [
"/home/student/demo/inventory"

1,

https://docs.ansible.com/ansible/2.9/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable

Chapter 3 | Managing Variables and Facts

"ansible_playbook_python": "/usr/bin/python2",
"ansible_python_interpreter": "/usr/bin/python2",
"ansible_verbosity": 0,
"ansible_version": {

"full": "2.7.0",

"major": 2,

"minor": 7,

"revision": 0,

"string": "2.7.0"

3
"group_names": [],
"groups": {
"all": [
"serverb.lab.example.com"
1
"ungrouped": [],
"webservers": [
"serverb.lab.example.com"
1
3
"inventory_hostname": "localhost",
"inventory_hostname_short": "localhost",
"omit": "__omit_place_holder__18d132963728b2cbf7143dd49dc4bf5745fe5ec3",
"playbook_dir": "/home/student/demo"
}
}
References

setup - Gathers facts about remote hosts — Ansible Documentation
https://docs.ansible.com/ansible/2.9/modules/setup_module.html

Variables discovered from systems: Facts — Ansible Documentation
https://docs.ansible.com/ansible/2.9/user_guide/
playbooks_variables.html#variables-discovered-from-systems-facts

RH294-RHEL8.4-en-1-20210818 “

https://docs.ansible.com/ansible/2.9/modules/setup_module.html
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_variables.html#variables-discovered-from-systems-facts
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_variables.html#variables-discovered-from-systems-facts

Chapter 3 | Managing Variables and Facts

» Guided Exercise

Managing Facts

In this exercise, you will gather Ansible facts from a managed host and use them in plays.

Outcomes
You should be able to:

+ Gather facts from a host.

- Create tasks that use the gathered facts.

Before You Begin
Logintoworkstation as student using student as the password.

Onworkstation, runthe lab data-facts start command. This script creates the
working directory, data-facts, and populates it with an Ansible configuration file and host
inventory.

[student@workstation ~]$ lab data-facts start

Instructions
P 1. Onworkstation, asthe student user, change into the /home/student/data-facts
directory.

[student@workstation ~]$ cd ~/data-facts
[student@workstation data-facts]$

P 2. The Ansible setup module retrieves facts from systems. Run an ad hoc command to
retrieve the facts for all servers in the webserver group. The output displays all the facts
gathered for servera. lab.example.comin JSON format. Review some of the variables
displayed.

[student@workstation data-facts]$ ansible webserver -m setup
...output omitted. ..
servera. lab.example.com | SUCCESS => {
"ansible_facts": {
"ansible_all_ipv4_addresses": [
"172.25.250.10"
1,
"ansible_all_ipv6_addresses": [
"fe80::2937:3aa3:ea8d:d3b1"
1,

...output omitted...

W RH294-RHEL8.4-en-1-20210818

Chapter 3 | Managing Variables and Facts

P 3. Onworkstation, create a fact file named /home/student/data-facts/
custom. fact. The fact file defines the package to install and the service to start on
servera. The file should read as follows:

[general]

package = httpd
service = httpd
state = started
enabled = true

) 4. Create the setup_facts.yml playbook to make the /etc/ansible/facts.d remote
directory and to save the custom. fact file to that directory.

- name: Install remote facts
hosts: webserver
vars:
remote_dir: /etc/ansible/facts.d
facts_file: custom.fact
tasks:
- name: Create the remote directory
file:
state: directory
recurse: yes
path: "{{ remote_dir }}"
- name: Install the new facts
copy':
src: "{{ facts_file }}"
dest: "{{ remote_dir }}"

P 5. Runanadhoc command with the setup module. Search for the ansible_local section
in the output. There should not be any custom facts at this point.

[student@workstation data-facts]$ ansible webserver -m setup
servera. lab.example.com | SUCCESS => {
"ansible_facts": {
...output omitted. ..
"ansible_local": {}
...output omitted. ..

H

"changed": false

P 6. Before running the playbook, verify its syntax is correct by running ansible-playbook
--syntax-check. If it reports any errors, correct them before moving to the next step.
You should see output similar to the following:

[student@workstation data-facts]$ ansible-playbook --syntax-check setup_facts.yml

playbook: setup_facts.yml

Chapter 3 | Managing Variables and Facts
P 7. Runthe setup_facts.yml playbook.

[student@workstation data-facts]$ ansible-playbook setup_facts.yml

PLAY [Insta‘L‘L remote faCtS] khkhkhkhkhhhhkhhhhhhhhhhhhhhhhhhhhkhhhhhhhkhhkhhhhkhkhhkkhk

TASK [Gather‘ing FaCtS] khhkhkhkhhhhkhhhhhhhkhhhhhhhhhhkhhhhkhhkhkhhkhhkhhhhhhhhhhhkhkhkkkhk

ok: [servera.lab.example.com]

TASK [Create the remote directory] khkhkhkhkhhkhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhkhkhhkkhk

changed: [servera.lab.example.com]

TASK [Insta‘L‘L the new faCtS] khkkhkhkhhhkhhhhhhhhhhhhhhkhhkhhhhhkhhkhhhhhhhkhhhhhhkhkkkk

changed: [servera.lab.example.com]

PLAY REGCAP % * % % % o % ok sk ok ok sk o ok ok ok ok ok ok ok ok ok ok ok ok ko ko ko ko ko ok ko

servera. lab.example.com : ok=3 changed=2 unreachable=0 failed=0

) 8. Itis now possible to create the main playbook that uses both default and user facts to
configure servera. Over the next several steps, you will add to the playbook file. Create
the playbook playbook.yml with the following:

- name: Install Apache and starts the service
hosts: webserver

P 9. Continue editing the playbook.yml file by creating the first task that installs the httpd
package. Use the user fact for the name of the package.

tasks:
- name: Install the required package
yum:
name: "{{ ansible_facts['ansible_local']['custom']['general']
['package'] }3}"
state: latest

P 10. Create another task that uses the custom fact to start the httpd service.

- name: Start the service
service:

name: "{{ ansible_facts['ansible_local']['custom']['general']
['service'] }}"

state: "{{ ansible_facts['ansible_local']['custom']['general']
['state'] }}"

enabled: "{{ ansible_facts['ansible_local']['custom']['general']
['enabled'] }3}"

Chapter 3 | Managing Variables and Facts

P 1. When completed with all the tasks, the full playbook should look like the following. Review
the playbook and ensure all the tasks are defined.

- name: Install Apache and starts the service
hosts: webserver

tasks:
- name: Install the required package
yum:
name: "{{ ansible_facts['ansible_local']['custom']['general']
['package'] }3}"
state: latest

- name: Start the service
service:

name: "{{ ansible_facts['ansible_local']['custom']['general']
['service'] }}"

state: "{{ ansible_facts['ansible_1local']['custom']['general']
['state'] }}"

enabled: "{{ ansible_facts['ansible_local']['custom']['general']
['enabled'] }3}"

P 12. Before running the playbook, use an ad hoc command to verify the ht tpd service is not
currently running on servera.

[student@workstation data-facts]$ ansible servera.lab.example.com -m command \
> -a 'systemctl status httpd'

servera.lab.example.com | FAILED | rc=4 >>

Unit httpd.service could not be found.non-zero return code

P 13. Verify the syntax of the playbook by running ansible-playbook --syntax-check. If
it reports any errors, correct them before moving to the next step. You should see output
similar to the following:

[student@workstation data-facts]$ ansible-playbook --syntax-check playbook.yml

playbook: playbook.yml

P 14. Run the playbook using the ansible-playbook command. Watch the output as Ansible
installs the package and then enables the service.

[student@workstation data-facts]$ ansible-playbook playbook.yml

PLAY [Insta‘L‘L Apache and start the Service] khkhkhkhkhkhhkhhhhhhhhhkhhhhhkhhhhhhkhkhdhkkhk

TASK [Gathering FaCtS] khhkkhkkhhkhhkhhhhhhhkhhhhhkhhkhhhhhkhhkhhhhhkhhkhhhkhhhhkhhhhkhkhdkkkhk

ok: [servera.lab.example.com]

TASK [InStall the requred package] R S
changed: [servera.lab.example.com]

Chapter 3 | Managing Variables and Facts

TASK [Start the Service] khhkkkkhhkhhhhhkhhhhkhhhhhhhhhhhhhhkhd bk kb kb h bk hkhk bk bk khkhk*

changed: [servera.lab.example.com]

PLAY REGCAP % * % % % o & ok sk ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok o o ok ok o ok o o ok o o ok o o ok o o ok ok ok ok ok ok ok ok ok R ok ko ko kK ko

servera. lab.example.com 1 ok=3 changed=2 unreachable=0 failed=0

P 15. Use an ad hoc command to execute systemct 1 to determine whether the httpd service
is now running on servera.

[student@workstation data-facts]$ ansible servera.lab.example.com -m command \
> -a 'systemctl status httpd'
servera.lab.example.com | CHANGED | rc=0 >>
e httpd.service - The Apache HTTP Server

Loaded: loaded (/usr/lib/systemd/system/httpd.service; enabled; vendor preset:
disabled)

Active: active (running) since Mon 2019-05-27 07:50:55 EDT; 50s ago

Docs: man:httpd.service(8)

Main PID: 11603 (httpd)

Status: "Running, listening on: port 80"

Tasks: 213 (limit: 4956)

Memory: 24.1M

CGroup: /system.slice/httpd.service
...output omitted. ..

Finish
Onworkstation, runthe lab data-facts finish script to clean up this exercise.

[student@workstation ~]$ lab data-facts finish

This concludes the guided exercise.

Chapter 3 | Managing Variables and Facts

» Lab

Managing Variables and Facts

Performance Checklist
In this lab, you will write and run an Ansible Playbook that uses variables, secrets, and facts.

Outcomes

You should be able to define variables and use facts in a playbook, as well as use variables
defined in an encrypted file.

Before You Begin
Logintoworkstation as student using student as the password.

Onworkstation, runthe lab data-review start command. The script creates

the /home/student/data-review working directory and populates it with an Ansible
configuration file and host inventory. The managed host serverb. lab.example.com

is defined in this inventory as a member of the webserver host group. A developer has
asked you to write an Ansible Playbook to automate the setup of a web server environment
on serverb. lab.example.com, which controls user access to its website using basic
authentication.

The files subdirectory contains:

+ Ahttpd.conf configuration file for the Apache web service for basic authentication
+ A .htaccess file, used to control access to the web server's document root directory
+ A htpasswd file containing credentials for permitted users

[student@workstation ~]$ lab data-review start

Instructions

1.

In the working directory, create the playbook.yml playbook and add the webserver host

group as the managed host. Define the following play variables:

RH294-RHEL8.4-en-1-20210818

Chapter 3 | Managing Variables and Facts

Variables

Variable
firewall_pkg
firewall_svc
web_pkg
web_svc
ssl_pkg
httpdconf_src
httpdconf_dest
htaccess_src
secrets_dir
secrets_src

secrets_dest

Values

firewalld
firewalld

httpd

httpd

mod_ssl
files/httpd.conf
/etc/httpd/conf/httpd.conf
files/.htaccess
/etc/httpd/secrets
files/htpasswd

"{{ secrets_dir }}/htpasswd"

web_root /var/www/html

2.

Add a tasks section to the play. Write a task that ensures the latest version of the necessary
packages are installed. These packages are defined by the firewall_pkg, web_pkg, and
ss1_pkg variables.

Add a second task to the playbook that ensures that the file specified by the
httpdconf_src variable has been copied (with the copy module) to the location specified
by the httpdconf_dest variable on the managed host. The file should be owned by the
root user and the root group. Also set 0644 as the file permissions.

Add a third task that uses the file module to create the directory specified by the
secrets_dir variable on the managed host. This directory holds the password files used
for the basic authentication of web services. The file should be owned by the apache user
and the apache group. Set 0500 as the file permissions.

Add a fourth task that uses the copy module to place a htpasswd file, used for basic
authentication of web users. The source should be defined by the secrets_src variable.
The destination should be defined by the secrets_dest variable. The file should be owned
by the apache user and group. Set 0400 as the file permissions.

Add a fifth task that uses the copy module to create a . htaccess file in the document
root directory of the web server. Copy the file specified by the htaccess_src variable to
{{ web_root }}/.htaccess. The file should be owned by the apache user and the
apache group. Set 0400 as the file permissions.

Add a sixth task that uses the copy module to create the web content file index.html

in the directory specified by the web_root variable. The file should contain the message
"HOSTNAME (IPADDRESS) has been customized by Ansible.", where HOSTNAME is the fully-
qualified host name of the managed host and IPADDRESS is its IPv4 IP address. Use the

Chapter 3 | Managing Variables and Facts

10.

.

12.

13.

14.

15.

content option to the copy module to specify the content of the file, and Ansible facts to
specify the host name and IP address.

Add a seventh task that uses the service module to enable and start the firewall service on
the managed host.

Add an eighth task that uses the firewalld module to allow the https service needed for
users to access web services on the managed host. This firewall change should be permanent
and should take place immediately.

Add a final task that uses the service module to enable and start the web service on the
managed host for all configuration changes to take effect. The name of the web service is
defined by the web_svc variable.

Define a second play targeted at Llocalhost which will test authentication to the web server.
It does not need privilege escalation. Define a variable named web_user with the value
guest.

Add a directive to the play that adds additional variables from a variable file named vars/
secret.yml. This file contains a variable named web_pass that specifies the password for
the web user. You will create this file later in the lab.

Define the start of the task list.

Add two tasks to the second play.

The first uses the uri module to request content from https://

serverb. lab.example.com using basic authentication. Use the web_user and
web_pass variables to authenticate to the web server. Note that the certificate presented by
serverb will not be trusted, so you will need to avoid certificate validation. The task should
verify a return HTTP status code of 200. Configure the task to place the returned content in
the task results variable. Register the task result in a variable.

The second task uses the debug module to print the content returned from the web server.
Create a file encrypted with Ansible Vault, named vars/secret.yml. Use the password

redhat to encryptit. It should set the web_pass variable to redhat, which will be the web
user's password.

Run the playbook.ym1l playbook. Verify that content is successfully returned from the web
server, and that it matches what was configured in an earlier task.

Evaluation

Run the lab data-review grade command on workstation to confirm success on this exercise.
Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab data-review grade

Finish

Onworkstation, runthe lab data-review finish command to clean up this exercise.

[student@workstation ~]$ lab data-review finish

This concludes the lab.

Chapter 3 | Managing Variables and Facts

» Solution

Managing Variables and Facts

Performance Checklist
In this lab, you will write and run an Ansible Playbook that uses variables, secrets, and facts.

Outcomes
You should be able to define variables and use facts in a playbook, as well as use variables
defined in an encrypted file.

Before You Begin
Logintoworkstation as student using student as the password.

Onworkstation, runthe lab data-review start command. The script creates

the /home/student/data-review working directory and populates it with an Ansible
configuration file and host inventory. The managed host serverb. lab.example.com

is defined in this inventory as a member of the webserver host group. A developer has
asked you to write an Ansible Playbook to automate the setup of a web server environment
on serverb. lab.example.com, which controls user access to its website using basic
authentication.

The files subdirectory contains:

+ Ahttpd.conf configuration file for the Apache web service for basic authentication
+ A .htaccess file, used to control access to the web server's document root directory
- A htpasswd file containing credentials for permitted users

[student@workstation ~]$ lab data-review start

Instructions

1. Inthe working directory, create the playbook.ym1 playbook and add the webserver host
group as the managed host. Define the following play variables:

W RH294-RHEL8.4-en-1-20210818

Chapter 3 | Managing Variables and Facts

Variables
Variable Values
firewall_pkg firewalld
firewall_svc firewalld
web_pkg httpd
web_svc httpd
ssl_pkg mod_ss1
httpdconf_src files/httpd.conf
httpdconf_dest /etc/httpd/conf/httpd.conf
htaccess_src files/.htaccess
secrets_dir /etc/httpd/secrets
secrets_src files/htpasswd
secrets_dest "{{ secrets_dir }}/htpasswd"
web_root /var/waw/html

11. Change to the /home/student/data-review working directory.

[student@workstation ~]$ cd ~/data-review
[student@workstation data-review]$

1.2. Create the playbook.ym1 playbook file and edit it in a text editor. The beginning of
the file should appear as follows:

- name: install and configure webserver with basic auth

hosts: webserver

vars:
firewall_pkg: firewalld
firewall_svc: firewalld
web_pkg: httpd
web_svc: httpd
ssl_pkg: mod_ssl
httpdconf_src: files/httpd.conf
httpdconf_dest: /etc/httpd/conf/httpd.conf
htaccess_src: files/.htaccess
secrets_dir: /etc/httpd/secrets
secrets_src: files/htpasswd
secrets_dest: "{{ secrets_dir }}/htpasswd"
web_root: /var/www/html

Chapter 3 | Managing Variables and Facts

2. Adda tasks section to the play. Write a task that ensures the latest version of the necessary
packages are installed. These packages are defined by the firewall_pkg, web_pkg, and
ss1_pkg variables.

2.1. Define the beginning of the tasks section by adding the following line to the
playbook:

tasks:

2.2. Add the following lines to the playbook to define a task that uses the yum module to
install the required packages.

- name: latest version of necessary packages installed
yum:
name:
- "{{ firewall_pkg }}"
- "{{ web_pkg }}"
- "{{ ssl_pkg }}"
state: latest

3. Add asecond task to the playbook that ensures that the file specified by the
httpdconf_src variable has been copied (with the copy module) to the location specified
by the httpdconf_dest variable on the managed host. The file should be owned by the
root user and the root group. Also set 0644 as the file permissions.

Add the following lines to the playbook to define a task that uses the copy module to copy
the contents of the file defined by the httpdconf_src variable to the location specified by
the httpdconf_dest variable.

- name: configure web service
copy':
src: "{{ httpdconf_src }}"
dest: "{{ httpdconf_dest }}"
owner: root
group: root
mode: 0644

4. Add a third task that uses the file module to create the directory specified by the
secrets_dir variable on the managed host. This directory holds the password files used
for the basic authentication of web services. The file should be owned by the apache user
and the apache group. Set 0500 as the file permissions.

Add the following lines to the playbook to define a task that uses the file module to create
the directory defined by the secrets_dir variable.

- name: secrets directory exists
file:
path: "{{ secrets_dir }}"
state: directory
owner: apache
group: apache
mode: 0500

5. Add afourth task that uses the copy module to place a htpasswd file, used for basic
authentication of web users. The source should be defined by the secrets_src variable.

Chapter 3 | Managing Variables and Facts

The destination should be defined by the secrets_dest variable. The file should be owned
by the apache user and group. Set 0400 as the file permissions.

- name: htpasswd file exists
copy':
src: "{{ secrets_src }}"
dest: "{{ secrets_dest }}"
owner: apache
group: apache
mode: 0400

6. Add afifth task that uses the copy module to create a . htaccess file in the document
root directory of the web server. Copy the file specified by the htaccess_src variable to
{{ web_root }}/.htaccess. The file should be owned by the apache user and the
apache group. Set 0400 as the file permissions.

Add the following lines to the playbook to define a task which uses the copy module to
create the . htaccess file using the file defined by the htaccess_src variable.

- name: .htaccess file installed in docroot
copy':
src: "{{ htaccess_src }}"
dest: "{{ web_root }}/.htaccess"
owner: apache
group: apache
mode: 0400

7. Add asixth task that uses the copy module to create the web content file index.html
in the directory specified by the web_root variable. The file should contain the message
"HOSTNAME (IPADDRESS) has been customized by Ansible.", where HOSTNAME is the fully-
qualified host name of the managed host and IPADDRESS is its IPv4 IP address. Use the
content option to the copy module to specify the content of the file, and Ansible facts to
specify the host name and IP address.

Add the following lines to the playbook to define a task that uses the copy module

to create the index. html file in the directory defined by the web_root variable.
Populate the file with the content specified using the ansible_facts['fqgdn'] and
ansible_facts['default_ipv4']['address'] Ansible facts retrieved from the
managed host.

- name: create index.html
copy':
content: "{{ ansible_facts['fqdn'] }} ({{ ansible_facts['default_ipv4']
['address'] }}) has been customized by Ansible.\n"
dest: "{{ web_root }}/index.html"

Chapter 3 | Managing Variables and Facts

8. Add aseventh task that uses the service module to enable and start the firewall service on
the managed host.

Add the following lines to the playbook to define a task that uses the service module to
enable and start the firewall service.

- name: firewall service enabled and started
service:
name: "{{ firewall_svc }}"
state: started
enabled: true

9. Add an eighth task that uses the firewalld module to allow the https service needed for
users to access web services on the managed host. This firewall change should be permanent
and should take place immediately.

Add the following lines to the playbook to define a task that uses the firewalld module to
open the HTTPS port for the web service.

- name: open the port for the web server
firewalld:
service: https
state: enabled
immediate: true
permanent: true

10. Add a final task that uses the service module to enable and start the web service on the
managed host for all configuration changes to take effect. The name of the web service is
defined by the web_svc variable.

- name: web service enabled and started
service:
name: "{{ web_svc }}"
state: started
enabled: true
M. Define a second play targeted at Localhost which will test authentication to the web server.
It does not need privilege escalation. Define a variable named web_user with the value

guest.

11.1. Add the following line to define the start of a second play. Note that there is no
indentation.

- name: test web server with basic auth

1.2. Add the following line to indicate that the play applies to the Localhost managed
host.

hosts: localhost

11.3. Add the following line to disable privilege escalation.

become: no

Chapter 3 | Managing Variables and Facts

12.

13.

1.4. Add the following lines to define a variables list and the web_user variable.

vars:
web_user: guest

Add a directive to the play that adds additional variables from a variable file named vars/
secret.yml. This file contains a variable named web_pass that specifies the password for
the web user. You will create this file later in the lab.

Define the start of the task list.

12.1. Using the vars_files keyword, add the following lines to the playbook to instruct
Ansible to use variables found in the vars/secret.yml variable file.

vars_files:
- vars/secret.yml

12.2. Add the following line to define the beginning of the tasks list.

tasks:

Add two tasks to the second play.

The first uses the uri module to request content from https://

serverb. lab.example.com using basic authentication. Use the web_user and
web_pass variables to authenticate to the web server. Note that the certificate presented by
serverb will not be trusted, so you will need to avoid certificate validation. The task should
verify a return HTTP status code of 200. Configure the task to place the returned content in
the task results variable. Register the task result in a variable.

The second task uses the debug module to print the content returned from the web server.

13.1. Add the following lines to create the task for verifying the web service from the control
node. Be sure to indent the first line with four spaces.

- name: connect to web server with basic auth
uri:
url: https://serverb.lab.example.com
validate_certs: no
force_basic_auth: yes
user: "{{ web_user }}"
password: "{{ web_pass }}"
return_content: yes
status_code: 200
register: auth_test

13.2. Create the second task using the debug module. The content returned from the web
server is added to the registered variable as the key content.

- debug:
var: auth_test.content

13.3. The completed playbook should appear as follows:

Chapter 3 | Managing Variables and Facts

- name: install and configure webserver with basic auth
hosts: webserver
vars:
firewall_pkg: firewalld
firewall_svc: firewalld
web_pkg: httpd
web_svc: httpd
ssl_pkg: mod_ssl
httpdconf_src: files/httpd.conf
httpdconf_dest: /etc/httpd/conf/httpd.conf
htaccess_src: files/.htaccess
secrets_dir: /etc/httpd/secrets
secrets_src: files/htpasswd
secrets_dest: "{{ secrets_dir }}/htpasswd"
web_root: /var/www/html
tasks:
- name: latest version of necessary packages installed
yum:
name:
- "{{ firewall_pkg }}"
- "{{ web_pkg }}"
- "{{ ssl_pkg }}"
state: latest

- name: configure web service
copy':
src: "{{ httpdconf_src }}"
dest: "{{ httpdconf_dest }}"
owner: root
group: root
mode: 0644

- name: secrets directory exists
file:
path: "{{ secrets_dir }}"
state: directory
owner: apache
group: apache
mode: 0500

- name: htpasswd file exists
copy':
src: "{{ secrets_src }}"
dest: "{{ secrets_dest }}"
owner: apache
group: apache
mode: 0400

- name: .htaccess file installed in docroot
copy':
src: "{{ htaccess_src }}"
dest: "{{ web_root }}/.htaccess"

Chapter 3 | Managing Variables and Facts

owner: apache
group: apache
mode: 0400

- name: create index.html
copy':
content: "{{ ansible_facts['fqdn'] }} ({{ ansible_facts['default_ipv4']
['address'] }}) has been customized by Ansible.\n"
dest: "{{ web_root }}/index.html"

- name: firewall service enable and started
service:
name: "{{ firewall_svc }}"
state: started
enabled: true

- name: open the port for the web server
firewalld:
service: https
state: enabled
immediate: true
permanent: true

- name: web service enabled and started
service:
name: "{{ web_svc }}"
state: started
enabled: true

- name: test web server with basic auth
hosts: localhost
become: no
vars:
- web_user: guest
vars_files:
- vars/secret.yml
tasks:
- name: connect to web server with basic auth
uri:
url: https://serverb.lab.example.com
validate_certs: no
force_basic_auth: yes
user: "{{ web_user }}"
password: "{{ web_pass }}"
return_content: yes
status_code: 200
register: auth_test

- debug:
var: auth_test.content

13.4. Save and close the playbook.ym1 file.

Chapter 3 | Managing Variables and Facts

14.

15.

Create a file encrypted with Ansible Vault, named vars/secret.yml. Use the password
redhat to encryptit. It should set the web_pass variable to redhat, which will be the web

user's password.

14.1. Create a subdirectory named vars in the working directory.

[student@workstation data-review]$ mkdir vars

14.2. Create the encrypted variable file, vars/secret.yml, using Ansible Vault. Set the
password for the encrypted file to redhat.

[student@workstation data-review]$ ansible-vault create vars/secret.yml
New Vault password: redhat
Confirm New Vault password: redhat

14.3. Add the following variable definition to the file.

web_pass: redhat

14.4. Save and close the file.

Run the playbook.ym1l playbook. Verify that content is successfully returned from the web
server, and that it matches what was configured in an earlier task.

15.1. Before running the playbook, verify that its syntax is correct by running ansible-
playbook --syntax-check.Use the --ask-vault-pass to be prompted for
the vault password. Enter redhat when prompted for the password. If it reports any
errors, correct them before moving to the next step. You should see output similar to

the following:

[student@workstation data-review]$ ansible-playbook --syntax-check \
> --ask-vault-pass playbook.yml
Vault password: redhat

playbook: playbook.yml

15.2. Using the ansible-playbook command, run the playbook with the - -ask-vault-
pass option. Enter redhat when prompted for the password.

[student@workstation data-review]$ ansible-playbook playbook.yml --ask-vault-pass

Vault password: redhat
PLAY [Install and configure webserver with basic auth] *****xxx*kakkxxsadrxx

...output omitted. ..

TASK [connect to web server with basic auth] ******xxxksaoxxsdddrxrdddhxxsdkhrrx
ok: [localhost]

TASK [debug] IR R R R R SRS RS SR SRS SR EEEEEEEREEREEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEESEEEESEESS
ok: [localhost] => {
"auth_test.content": "serverb.lab.example.com (172.25.250.11) has been
customized by Ansible.\n"

Chapter 3 | Managing Variables and Facts

}

PLAY RECAP R R R R RS RS RS EE SRS SRR R R RS REEEEEEEEEEEEEEREEREEEEEREEEEEEEEEREEEEEEEEEEEEEEES]

localhost 1 ok=3 changed=0 unreachable=0 failed=0

serverb.lab.example.com 1 ok=10 changed=8 unreachable=0 failed=0
Evaluation

Run the lab data-review grade command on workstation to confirm success on this exercise.
Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab data-review grade

Finish
Onworkstation, runthe lab data-review finish command to clean up this exercise

[student@workstation ~]$ lab data-review finish

This concludes the lab.

Chapter 3 | Managing Variables and Facts

Summary

In this chapter, you learned:

Ansible variables allow administrators to reuse values across files in an entire Ansible project.
Variables can be defined for hosts and host groups in the inventory file.

Variables can be defined for playbooks by using facts and external files. They can also be
defined on the command line.

The register keyword can be used to capture the output of a command in a variable.

Ansible Vault is one way to protect sensitive data such as password hashes and private keys for
deployment using Ansible Playbooks.

Ansible facts are variables that are automatically discovered by Ansible from a managed host.

w RH294-RHEL8.4-en-1-20210818

Chapter 4

Implementing Task Control

Goal Manage task control, handlers, and task errors in ¢
Ansible Playbooks.

Objectives + Use loops to write efficient tasks and use .
conditions to control when to run tasks. .
Implement a task that runs only when another ,
task changes the managed host. .
Control what happens when a task fails, and
what conditions cause a task to fail.

TN

Sections + Writing Loops and Conditional Tasks (and
Guided Exercise)

Implementing Handlers (and Guided Exercise)
Handling Task Failure (and Guided Exercise)

Lab + Implementing Task Control

r/

RH294-RHEL8.4-en-1-20210818

Chapter 4 | Implementing Task Control

Writing Loops and Conditional Tasks

Objectives

After completing this section, you should be able to use loops to write efficient tasks and use
conditions to control when to run tasks.

Task Iteration with Loops

Using loops saves administrators from the need to write multiple tasks that use the same module.
For example, instead of writing five tasks to ensure five users exist, you can write one task that
iterates over a list of five users to ensure they all exist.

Ansible supports iterating a task over a set of items using the Loop keyword. You can configure
loops to repeat a task using each item in a list, the contents of each of the files in a list, a
generated sequence of numbers, or using more complicated structures. This section covers simple
loops that iterate over a list of items. Consult the documentation for more advanced looping
scenarios.

Simple Loops

A simple loop iterates a task over a list of items. The Loop keyword is added to the task, and takes
as a value the list of items over which the task should be iterated. The loop variable item holds the
value used during each iteration.

Consider the following snippet that uses the service module twice in order to ensure two
network services are running:

- name: Postfix is running
service:
name: postfix
state: started

- name: Dovecot is running
service:
name: dovecot
state: started

These two tasks can be rewritten to use a simple loop so that only one task is needed to ensure
both services are running:

- name: Postfix and Dovecot are running
service:
name: "{{ item }}"
state: started
loop:
- postfix
- dovecot

Chapter 4 | Implementing Task Control

The list used by Loop can be provided by a variable. In the following example, the variable
mail_services contains the list of services that need to be running.

vars:
mail_services:
- postfix
- dovecot

tasks:
- name: Postfix and Dovecot are running
service:
name: "{{ item }}"
state: started
loop: "{{ mail_services }}"

Loops over a List of Hashes or Dictionaries

The loop list does not need to be a list of simple values. In the following example, each item in the
list is actually a hash or a dictionary. Each hash or dictionary in the example has two keys, name
and groups, and the value of each key in the current item loop variable can be retrieved with the
item.name and item.groups variables, respectively.

- name: Users exist and are in the correct groups
user:
name: "{{ item.name }}"
state: present
groups: "{{ item.groups }}"
loop:
- name: jane
groups: wheel
- name: joe
groups: root

The outcome of the preceding task is that the user jane is present and a member of the group
wheel, and that the user joe is present and a member of the group root.

Earlier-Style Loop Keywords

Before Ansible 2.5, most playbooks used a different syntax for loops. Multiple loop keywords were
provided, which were prefixed with with_, followed by the name of an Ansible look-up plug-in (an
advanced feature not covered in detail in this course). This syntax for looping is very common in
existing playbooks, but will probably be deprecated at some point in the future.

A few examples are listed in the table below:

Chapter 4 | Implementing Task Control
Earlier-Style Ansible Loops

Loop keyword Description

with_items Behaves the same as the Loop keyword for simple lists, such as a
list of strings or a list of hashes/dictionaries. Unlike Loop, if lists of
lists are provided to with_items, they are flattened into a single-
level list. The loop variable item holds the list item used during
each iteration.

with_file This keyword requires a list of control node file names. The loop
variable item holds the content of a corresponding file from the
file list during each iteration.

with_sequence Instead of requiring a list, this keyword requires parameters to
generate a list of values based on a numeric sequence. The loop
variable item holds the value of one of the generated items in the
generated sequence during each iteration.

An example of with_items in a playbook is shown below:

vars:
data:
- usero
- userl
- user2
tasks:
- name: "with_items"
debug:
msg: "{{ item }}"
with_items: "{{ data }}"

i~ | Important
Since Ansible 2.5, the recommended way to write loops is to use the Loop keyword.

However, you should still understand the old syntax, especially with_items,
because it is widely used in existing playbooks. You are likely to encounter playbooks
and roles that continue to use with_* keywords for looping.

Any task using the old syntax can be converted to use Loop in conjunction with Ansible filters.
You do not need to know how to use Ansible filters to do this. There is a good reference on how to
convert the old loops to the new syntax, as well as examples of how to loop over items that are not
simple lists, in the Ansible documentation in the section Migrating from with_X to loop [https:/
docs.ansible.com/ansible/2.9/user_guide/playbooks_loops.html#migrating-from-with-x-to-loop]
of the Ansible User Guide.

You will likely encounter tasks from older playbooks that contain with_* keywords.

Advanced looping techniques are beyond the scope of this course. All iteration tasks in this course
can be implemented with either the with_items or the Loop keyword.

https://docs.ansible.com/ansible/2.9/user_guide/playbooks_loops.html#migrating-from-with-x-to-loop
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_loops.html#migrating-from-with-x-to-loop
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_loops.html#migrating-from-with-x-to-loop

Chapter 4 | Implementing Task Contro

Using Register Variables with Loops

The register keyword can also capture the output of a task that loops. The following snippet
shows the structure of the register variable from a task that loops:

[student@workstation loopdemo]$ cat loop_register.yml
- name: Loop Register Test
gather_facts: no
hosts: localhost
tasks:
- name: Looping Echo Task
shell: "echo This is my item: {{ item }}"
loop:
- one
- two
register: echo_results"

- name: Show echo_results variable
debug:
var: echo_results¢3

© Theecho_results variable is registered.
© The contents of the echo_results variable are displayed to the screen.

Running the above playbook yields the following output:

[student@workstation loopdemo]$ ansible-playbook loop_register.yml
PLAY [LOOp Reglster Test] R R SRR SRR EEEEEEEEEEEREEEEEEEREEEEEEEEEEEEEEEEEEEEEEE RS

TASK [Looping Echo Task] khkkkkhkkhhkhhkhhhkhhh b bk hhhh bk bk hhhkhhk bk hhhk kb bk hkhkhhkhkkhkhk*

...output omitted...
TASK [Show eChO_results variable] ***%*kr ks sk sxsssssnkrkakakahakahsnsnsrknsx*
ok: [localhost] => {
"echo_results": {
"changed": true,
"msg": "All items completed",
"results": [t’
(©
"_ansible_ignore_errors": null,
...output omitted. ..
"changed": true,
"cmd": "echo This is my item: one",
"delta": "0:00:00.011865",
"end": "2018-11-01 16:32:56.080433",
"failed": false,
...output omitted. ..

"item": "one",

"rc": 0,

"start": "2018-11-01 16:32:56.068568",
"stderr": "",

"stderr_lines": [],

"stdout": "This is my item: one",

Chapter 4 | Implementing Task Contro

o
o

}

"stdout_lines": [
"This is my item: one"

1
}
@
"_ansible_ignore_errors": null,
...output omitted...
"changed": true,
"cmd": "echo This is my item: two",
"delta": "0:00:00.011142",
"end": "2018-11-01 16:32:56.828196",
"failed": false,
...output omitted...
"item": "two",
"rc": 0,
"start": "2018-11-01 16:32:56.817054",
"stderr": "",
"stderr_lines": [],
"stdout": "This is my item: two",
"stdout_lines": [
"This is my item: two"
]
}

10

.output omitted. ..

The { character indicates that the start of the echo_results variable is composed of key-
value pairs.

The results key contains the results from the previous task. The [character indicates the
start of a list.

The start of task metadata for the first item (indicated by the item key). The output of the
echo command is found in the stdout key.

The start of task result metadata for the second item.

The] character indicates the end of the results list.

In the above, the results key contains a list. Below, the playbook is modified such that the
second task iterates over this list:

[student@workstation loopdemo]$ cat new_loop_register.yml

name: Loop Register Test
gather_facts: no
hosts: localhost
tasks:
- name: Looping Echo Task
shell: "echo This is my item: {{ item }}"
loop:
- one
- two

Chapter 4 | Implementing Task Control
register: echo_results
- name: Show stdout from the previous task.
debug:

msg: "STDOUT from previous task: {{ item.stdout }}"
loop: "{{ echo_results['results'] }}"

After executing the above playbook, the output is:
PLAY [Loop Reglster Test] R R R Sk S S S S Sk S S S S R S S S kR R

TASK [LOOplng Echo Task] R R R S S Sk S Sk S S kS S kR R S

...output omitted...

TASK [ShOW stdout from the preVlOUS task.] EEE SRR SRS EEEEEEEEEEEEEEEEEEESEEEEESESE]
ok: [localhost] => (item={...output omitted...}) => {

"msg": "STDOUT from previous task: This is my item: one"
}
ok: [localhost] => (item={...output omitted...}) => {

"msg": "STDOUT from previous task: This is my item: two"
}

...output omitted. ..

Running Tasks Conditionally

Ansible can use conditionals to execute tasks or plays when certain conditions are met. For
example, a conditional can be used to determine available memory on a managed host before
Ansible installs or configures a service.

Conditionals allow administrators to differentiate between managed hosts and assign them
functional roles based on the conditions that they meet. Playbook variables, registered variables,
and Ansible facts can all be tested with conditionals. Operators to compare strings, numeric data,
and Boolean values are available.

The following scenarios illustrate the use of conditionals in Ansible:

+ A hard limit can be defined in a variable (for example, min_memory) and compared against the
available memory on a managed host.

+ The output of a command can be captured and evaluated by Ansible to determine whether or
not a task completed before taking further action. For example, if a program fails, then a batch is

skipped.

+ Use Ansible facts to determine the managed host network configuration and decide which
template file to send (for example, network bonding or trunking).

+ The number of CPUs can be evaluated to determine how to properly tune a web server.

+ Compare a registered variable with a predefined variable to determine if a service changed. For
example, test the MD5 checksum of a service configuration file to see if the service is changed.

Conditional Task Syntax

The when statement is used to run a task conditionally. It takes as a value the condition to test. If
the condition is met, the task runs. If the condition is not met, the task is skipped.

Chapter 4 | Implementing Task Control

One of the simplest conditions that can be tested is whether a Boolean variable is true or false.
The when statement in the following example causes the task to run only if run_my_task is true:

- name: Simple Boolean Task Demo
hosts: all
vars:
run_my_task: true

tasks:
- name: httpd package is installed
yum:
name: httpd
when: run_my_task

The next example is a bit more sophisticated, and tests whether the my_service variable has
avalue. If it does, the value of my_service is used as the name of the package to install. If the
my_service variable is not defined, then the task is skipped without an error.

- name: Test Variable is Defined Demo
hosts: all
vars:
my_service: httpd

tasks:
- name: "{{ my_service }} package is installed"
yum:
name: "{{ my_service }}"
when: my_service is defined

The following table shows some of the operations that administrators can use when working with
conditionals:

Example Conditionals

Operation Example

Equal (value is a string) ansible_machine == '"x86_64"
Equal (value is numeric) max_memory == 512

Less than min_memory < 128

Greater than min_memory > 256

Less than or equal to min_memory <= 256

Greater than or equal to min_memory >= 512

Not equal to min_memory != 512

Variable exists min_memory is defined

Chapter 4 | Implementing Task Control

Operation Example
Variable does not exist min_memory is not defined

Boolean variable is true. The | memory_available
values of 1, True, or yes
evaluate to true.

Boolean variable is false. not memory_available
The values of ©, False, or no
evaluate to false.

First variable's value is present | ansible_distribution in supported_distros
as a value in second variable's
list

The last entry in the preceding table might be confusing at first. The following example illustrates
how it works.

In the example, the ansible_distribution variable is a fact determined during

the Gathering Facts task, and identifies the managed host's operating system
distribution. The variable supported_distros was created by the playbook author, and
contains a list of operating system distributions that the playbook supports. If the value of
ansible_distributionisinthe supported_distros list, the conditional passes and the
task runs.

- name: Demonstrate the "in" keyword

hosts: all
gather_facts: yes
vars:
supported_distros:
- RedHat
- Fedora
tasks:
- name: Install httpd using yum, where supported
yum:
name: http

state: present
when: ansible_distribution in supported_distros

i~ | Important

Notice the indentation of the when statement. Because the when statementis not a
module variable, it must be placed outside the module by being indented at the top
level of the task.

A task is a YAML hash/dictionary, and the when statement is simply one more key in
the task like the task's name and the module it uses. A common convention places
any when keyword that might be present after the task's name and the module (and
module arguments).

Chapter 4 | Implementing Task Contro

Testing Multiple Conditions

One when statement can be used to evaluate multiple conditionals. To do so, conditionals can be
combined with either the and or or keywords, and grouped with parentheses.

The following snippets show some examples of how to express multiple conditions.

+ If a conditional statement should be met when either condition is true, then you should use
the or statement. For example, the following condition is met if the machine is running either
Red Hat Enterprise Linux or Fedora:

when: ansible_distribution == "RedHat" or ansible_distribution == "Fedora"

+ With the and operation, both conditions have to be true for the entire conditional statement
to be met. For example, the following condition is met if the remote host is a Red Hat
Enterprise Linux 7.5 host, and the installed kernel is the specified version:

when: ansible_distribution_version == "7.5" and ansible_kernel ==
"3.10.0-327.e17.x86_64"

The when keyword also supports using a list to describe a list of conditions. When a list is
provided to the when keyword, all of the conditionals are combined using the and operation.
The example below demonstrates another way to combine multiple conditional statements
using the and operator:

when:
- ansible_distribution_version == "7.5"
- ansible_kernel == "3.10.0-327.el7.x86_64"

This format improves readability, a key goal of well-written Ansible Playbooks.

+ More complex conditional statements can be expressed by grouping conditions with
parentheses. This ensures that they are correctly interpreted.

For example, the following conditional statement is met if the machine is running either Red Hat
Enterprise Linux 7 or Fedora 28. This example uses the greater-than character (>) so that the
long conditional can be split over multiple lines in the playbook, to make it easier to read.

when: >
(ansible_distribution == "RedHat" and
ansible_distribution_major_version == "7")
or
(ansible_distribution == "Fedora" and
ansible_distribution_major_version == "28")

Combining Loops and Conditional Tasks

You can combine loops and conditionals.

In the following example, the mariadb-server package is installed by the yum module if there is

a file system mounted on / with more than 300 MB free. The ansible_mounts factis a list of
dictionaries, each one representing facts about one mounted file system. The loop iterates over
each dictionary in the list, and the conditional statement is not met unless a dictionary is found
representing a mounted file system where both conditions are true.

Chapter 4 | Implementing Task Control

- name: install mariadb-server if enough space on root
yum:
name: mariadb-server
state: latest
loop: "{{ ansible_mounts }}"

when: item.mount == "/" and item.size_available > 300000000
| Important
= When you use when with loop for a task, the when statement is checked for each
item.

Here is another example that combines conditionals and register variables. The following
annotated playbook restarts the ht tpd service only if the postfix service is running:

- name: Restart HTTPD if Postfix is Running
hosts: all
tasks:
- name: Get Postfix server status
command: /usr/bin/systemctl is-active postfix (1]
ignore_errors: yese’
register: resulte’

- name: Restart Apache HTTPD based on Postfix status
service:
name: httpd
state: restarted
when: result.rc == 0"

Is Postfix running or not?
If it is not running and the command fails, do not stop processing.

Saves information on the module's result in a variable named result.

O 0 0 ©

Evaluates the output of the Postfix task. If the exit code of the systemct 1 commandis O,
then Postfix is active and this task restarts the httpd service.

Chapter 4 | Implementing Task Control

References

Loops — Ansible Documentation
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_loops.html

Tests — Ansible Documentation
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_tests.html

Conditionals — Ansible Documentation
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_conditionals.html

What Makes A Valid Variable Name — Variables — Ansible Documentation
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_variables.html#what-
makes-a-valid-variable-name

W RH294-RHEL8.4-en-1-20210818

https://docs.ansible.com/ansible/2.9/user_guide/playbooks_loops.html
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_tests.html
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_conditionals.html
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_variables.html#what-makes-a-valid-variable-name
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_variables.html#what-makes-a-valid-variable-name

Chapter 4 | Implementing Task Control

» Guided Exercise

Writing Loops and Conditional Tasks

In this exercise, you will write a playbook containing tasks that have conditionals and loops.

Outcomes
You should be able to:

+ Implement Ansible conditionals using the when keyword.

+ Implement task iteration using the Loop keyword in conjunction with conditionals.

Before You Begin
Logintoworkstation as student using student as the password.

Onworkstation, runthe lab control-flow start command. This script creates the
working directory, /home/student/control-flow.

[student@workstation ~]$ lab control-flow start

Instructions

P 1. Onworkstation.lab.example.com, change to the /home/student/control-flow
project directory.

[student@workstation ~]$ cd ~/control-flow
[student@workstation control-flow]$

P 2. The lab script created an Ansible configuration file as well as an inventory file. This inventory
file contains the server servera. lab.example.comin the database_dev host group,
and the serverb. lab.example.comin the database_prod host group. Review the file
before proceeding.

[student@workstation control-flow]$ cat inventory
[database_dev]
servera. lab.example.com

[database_prod]
serverb.lab.example.com

P 3. Create the playbook.yml playbook, which contains a play with two tasks. Use the
database_dev host group. The first task installs the MariaDB required packages, and the
second task ensures that the MariaDB service is running.

3.1. Open the playbook in a text editor. Define the variable mariadb_packages with two

values: mariadb-server, and python3-PyMySQL. The playbook uses the variable
to install the required packages. The file should read as follows:

Chapter 4 | Implementing Task Control

- name: MariaDB server is running
hosts: database_dev
vars:
mariadb_packages:
- mariadb-server
- python3-PyMySQL

3.2. Define a task that uses the yum module and the variable mariadb_packages. The
task installs the required packages. The task should read as follows:

tasks:
- name: MariaDB packages are installed
yum:
name: "{{ item }}"
state: present
loop: "{{ mariadb_packages }}"

3.3. Define a second task to start the mariadb service. The task should read as follows:

- name: Start MariaDB service
service:
name: mariadb
state: started
enabled: true

P 4. Run the playbook and watch the output of the play.

[student@workstation control-flow]$ ansible-playbook playbook.yml

PLAY [MariaDB server is running] R R R S R S S R R S S Sk S R S S R S R R S S R S

TASK [Gathering Facts] R R R SR R R R R R R S R R R R S R R S R R R R R S S S R S S R S R

ok: [servera.lab.example.com]

TASK [Mal"laDB packages are lnStalled] EIE R R SR R R S S S S S S S S S S S R R S S S
changed: [servera.lab.example.com] => (item=mariadb-server)
changed: [servera.lab.example.com] => (item=python3-PyMySQL)

TASK [Start MariaDB Service] R R R R Sk R R S R S R R R R R S R R R R S R S R R R R S S

changed: [servera.lab.example.com]

PLAY RECAP EE R R R S R S R R R R R R R R R R R R R S R R R R R S R R S S S

servera. lab.example.com 1 ok=3 changed=2 unreachable=0 failed=0

P 5. Update the first task to execute only if the managed host uses Red Hat Enterprise Linux
as its operating system. Update the play to use the database_prod host group. The task
should read as follows

Chapter 4 | Implementing Task Control

- name: MariaDB server is running
hosts: database_prod

vars:
..output omitted. ..
tasks:
- name: MariaDB packages are installed
yum:

name: "{{ item }}"
state: present
loop: "{{ mariadb_packages }}"
when: ansible_distribution == "RedHat"

P 6. Verify that the managed hosts in the database_prod host group use Red Hat
Enterprise Linux as its operating system.

[student@workstation control-flow]$ ansible database_prod -m command \
> -a 'cat /etc/redhat-release' -u devops --become
serverb.lab.example.com | CHANGED | rc=0 >>

Red Hat Enterprise Linux release 8.4 (Ootpa)

P 7. Runthe playbook again and watch the output of the play.

[student@workstation control-flow]$ ansible-playbook playbook.yml

PLAY [MariaDB server 1is running] khkkkhkkhhhhhhhhhhhkhdhhhhhhhhhhhhhhhhhhhhhhhhkhkkk

TASK [Gathering FaCtS] khkkhkhkhhkhhhhhhhhhkhhhhhhhhhhhhhhkhhhhhkhhkhhhhhhhkhhhhkhkhhkkhk

ok: [serverb.lab.example.com]

TASK [MarlaDB packages are lnsta'L'Led] R S R
changed: [serverb.lab.example.com] => (item=mariadb-server)
changed: [serverb.lab.example.com] => (item=python3-PyMySQL)

TASK [Start MariaDB Service] khkhkhkhkhhhhkhhhdhhhhhhhhhhhhhkhhhhhhhkhhhkhhhhkhhhhhhkhkkk

changed: [serverb.lab.example.com]

PLAY REGCAP % * % % % o % ok sk ok ok sk o ok ok o ok ok o ok ok ok ok ok ok ok ko ko ko ok ko ko ok ko

serverb.lab.example.com : ok=3 changed=2 unreachable=0 failed=0

Ansible executes the task because serverb. lab.example.com uses Red Hat
Enterprise Linux.

Finish
Onworkstation, runthe lab control-flow finish script to clean up the resources created

in this exercise.

[student@workstation ~]$ lab control-flow finish

This concludes the guided exercise.

Chapter 4 | Implementing Task Control

Implementing Handlers

Objectives

After completing this section, you should be able to implement a task that runs only when another
task changes the managed host.

Ansible Handlers

Ansible modules are designed to be idempotent. This means that in a properly written playbook,
the playbook and its tasks can be run multiple times without changing the managed host unless
they need to make a change to get the managed host to the desired state.

However, sometimes when a task does make a change to the system, a further task may need to
be run. For example, a change to a service's configuration file may then require that the service be
reloaded so that the changed configuration takes effect.

Handlers are tasks that respond to a notification triggered by other tasks. Tasks only notify their
handlers when the task changes something on a managed host. Each handler is triggered by its
name after the play's block of tasks. If no task notifies the handler by name then the handler will
not run. If one or more tasks notify the handler, the handler will run exactly once after all other
tasks in the play have completed. Because handlers are tasks, administrators can use the same
modules in handlers that they would use for any other task. Normally, handlers are used to reboot
hosts and restart services.

Note
S Use unique names for your handlers. When multiple handlers are defined with the
same name, only the last handler defined with the shared name will run.

Handlers can be considered as inactive tasks that only get triggered when explicitly invoked using
anotify statement. The following snippet shows how the Apache server is only restarted by the
restart apache handler when a configuration file is updated and notifies it:

tasks:
- name: copy demo.example.conf configuration template"
template:
src: /var/lib/templates/demo.example.conf.template
dest: /etc/httpd/conf.d/demo.example.conf
notify:o
- restart apachee’

handlers:"
- name: restart apache‘a
service:o
name: httpd
state: restarted

© The task that notifies the handler.

Chapter 4 | Implementing Task Control

2]
o
o
o

o

In

The notify statement indicates the task needs to trigger a handler.
The name of the handler to run.

The handlers keyword indicates the start of the list of handler tasks.
The name of the handler invoked by tasks.

The module to use for the handler.

the previous example, the restart apache handler triggers when notified by the template

task that a change happened. A task may call more than one handler in its notify section. Ansible
treats the notify statement as an array and iterates over the handler names:

tasks:
- name: copy demo.example.conf configuration template
template:

src: /var/lib/templates/demo.example.conf.template
dest: /etc/httpd/conf.d/demo.example.conf
notify:
- restart mysql
- restart apache

handlers:
- name: restart mysql
service:

name: mariadb
state: restarted

- name: restart apache
service:
name: httpd
state: restarted

Describing the Benefits of Using Handlers

As discussed in the Ansible documentation, there are some important things to remember about

us

ing handlers:

Handlers always run in the order specified by the handlers section of the play. They do not
run in the order in which they are listed by notify statements in a task, or in the order in which
tasks notify them.

Handlers normally run after all other tasks in the play complete. A handler called by a task in the
tasks part of the playbook will not run until all tasks under tasks have been processed. (There
are some minor exceptions to this.)

Handler names exist in a per-play namespace. If two handlers are incorrectly given the same
name, only one will run.

Even if more than one task notifies a handler, the handler only runs once. If no tasks notify it, a
handler will not run.

If a task that includes a notify statement does not report a changed result (for example, a
package is already installed and the task reports 0k), the handler is not notified. The handler
is skipped unless another task notifies it. Ansible notifies handlers only if the task reports the
changed status.

Chapter 4 | Implementing Task Control

i~ | Important

Handlers are meant to perform an extra action when a task makes a change to a
managed host. They should not be used as a replacement for normal tasks.

References

Intro to Playbooks — Ansible Documentation
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_intro.html

W RH294-RHEL8.4-en-1-20210818

https://docs.ansible.com/ansible/2.9/user_guide/playbooks_intro.html

Chapter 4 | Implementing Task Control

» Guided Exercise

Implementing Handlers

In this exercise, you will implement handlers in playbooks.

Outcomes

You should be able to define handlers in playbooks and notify them for configuration change.

Before You Begin

Run lab control-handlers start onworkstation to configure the environment
for the exercise. This script creates the /home/student/control-handlers project
directory and downloads the Ansible configuration file and the host inventory file needed
for the exercise. The project directory also contains a partially complete playbook,
configure_db.ymtl.

[student@workstation ~]$ lab control-handlers start

Instructions

P 1. Onworkstation.lab.example.com, open anew terminal and change to the /home/
student/control-handlers project directory.

[student@workstation ~]$ cd ~/control-handlers
[student@workstation control-handlers]$

P 2. Inthatdirectory, use a text editor to edit the configure_db.ym1 playbook file. This
playbook installs and configures a database server. When the database server configuration
changes, the playbook triggers a restart of the database service and configures the
database administrative password.

2.1, Using a text editor, review the configure_db.ym1 playbook. It begins with the
initialization of some variables:

- name: MariaDB server is installed
hosts: databases
vars:
db_packages: o
- mariadb-server
- python3-PyMySQL
db_service: mariadb
resources_url: http://materials.example.com/labs/control-handlers (3]
config_file_url: "{{ resources_url }}/my.cnf.standard" o
config_file_dst: /etc/my.cnf
tasks:

RH294-RHEL8.4-en-1-20210818 w

Chapter 4 | Implementing Task Control

© db_packages defines the name of the packages to install for the database
service.

©® db_service defines the name of the database service.

© resources_urlrepresents the URL for the resource directory where remote
configuration files are located.

O config_file_urlrepresents the URL of the database configuration file to
install.

© config_file_dst: Location of the installed configuration file on the managed
hosts.

2.2. Inthe configure_db.yml file, define a task that uses the yum module to install the
required database packages as defined by the db_packages variable. If the task
changes the system, the database was not installed, and you need to notify the set
db password handler to set your initial database user and password. Remember
that the handler task, if it is notified, will not run until every task in the tasks section
has run.

The task should read as follows:

tasks:
- name: "{{ db_packages }} packages are installed"
yum:
name: "{{ db_packages }}"
state: present
notify:
- set db password

2.3. 23)

Add a task to start and enable the database service. The task should read as follows:

- name: Make sure the database service is running
service:
name: "{{ db_service }}"
state: started
enabled: true

2.4. Add atask to download my.cnf.standard to /etc/my.cnf on the managed host,
using the get_ur 1 module. Add a condition that notifies the restart db service
handler to restart the database service after a configuration file change. The task
should read:

- name: The {{ config_file_dst }} file has been installed
get_url:
url: "{{ config_file_url }}"
dest: "{{ config_file_dst }}"
owner: mysql
group: mysql

Chapter 4 | Implementing Task Control

force: yes
notify:
- restart db service

2.5. Addthe handlers keyword to define the start of the handler tasks. Define the first
handler, restart db service, which restarts the mariadb service. It should read
as follows:

handlers:
- name: restart db service
service:
name: "{{ db_service }}"
state: restarted

2.6. Define the second handler, set db password, which sets the administrative
password for the database service. The handler uses the mysql_user module to
perform the command. The handler should read as follows

- name: set db password
mysql_user:
name: root
password: redhat

When completed, the playbook should appear as follows:

- name: MariaDB server is installed
hosts: databases
vars:
db_packages:
- mariadb-server
- python3-PyMySQL
db_service: mariadb
resources_url: http://materials.example.com/labs/control-handlers
config_file_url: "{{ resources_url }}/my.cnf.standard"
config_file_dst: /etc/my.cnf
tasks:
- name: "{{ db_packages }} packages are installed"
yum:
name: "{{ db_packages }}"
state: present
notify:
- set db password

- name: Make sure the database service is running
service:
name: "{{ db_service }}"
state: started
enabled: true

- name: The {{ config_file_dst }} file has been installed
get_url:
url: "{{ config_file_url }}"

Chapter 4 | Implementing Task Control

dest: "{{ config_file_dst }}"
owner: mysql
group: mysql
force: yes
notify:
- restart db service

handlers:
- name: restart db service
service:
name: "{{ db_service }}"
state: restarted

- name: set db password
mysql_user:

name: root
password: redhat

) 3. Before running the playbook, verify that its syntax is correct by running ansible-
playbook with the - -syntax-check option. If it reports any errors, correct them before
moving to the next step. You should see output similar to the following:

[student@workstation control-handlers]$ ansible-playbook configure_db.yml \
> --syntax-check

playbook: configure_db.yml

P 4. Runthe configure_db.yml playbook. The output shows that the handlers are being
executed.

[student@workstation control-handlers]$ ansible-playbook configure_db.yml

PLAY [InStalllng MarlaDB Server] R R R S S S S S R S S R R

TASK [Gatherlng Facts] R R SR Sk S Sk S S S S S S R S S R Sk

ok: [servera.lab.example.com]

TASK [['mariadb-server', 'python3-PyMySQL'] packages are installed] ****x****x*
changed: [servera.lab.example.com]

TASK [Make sure the database service is running] *****xxdakiiiiidddddxxrx
changed: [servera.lab.example.com]

TASK [The /etc/my.cnf file has been installed] ******kxxkkxhdkhdksthdkdhkkxhksrs
changed: [servera.lab.example.com]

RUNNING HANDLER [restart db Seerce] R R R R SRk S S S S R S R R R R
changed: [servera.lab.example.com]

RUNNING HANDLER [Set db password] R R R R S S R

Chapter 4 | Implementing Task Control

changed: [servera.lab.example.com]

PLAY RECAP ***&xkkkdkkhdkhhkhhkhhkhhhhhhhkhkkkhkhhkhhkkh ok k ok ok kk ok kk ok kk ok kkkdkkkkkdkkx

servera. lab.example.com : ok=6 changed=5 unreachable=0 failed=0

P 5. Run the playbook again.

[student@workstation control-handlers]$ ansible-playbook configure_db.yml

PLAY [Insta‘L‘Ling MariaDB Server] khkkhkhkhkhhhhkhhhhhhhhhhhhhhhhhhhhkhhhhhhkhkhkkkhk

TASK [Gather‘ing FaCtS] khkkhkhkhhhkhhhhhhhhhhhhhhhhhhhhhkhhkhhhhhhhkhhhhhhkhhkhkkkk

ok: [servera.lab.example.com]

TASK [['mariadb-server', 'python3-PyMySQL'] packages are installed] ****x****x*
ok: [servera.lab.example.com]

TASK [Make sure the database service is runnipg] *******kkkaxsscooirsddihxxsddx
ok: [servera.lab.example.com]

TASK [The /etc/my.cnf file has been installed] *****x****xxdkdddnadiddsrxhissx
ok: [servera.lab.example.com]

PLAY RECAP ****xkkkkkkkkkkkkkkkkkhkhhkhhkhhkrhkrhkrhkrhkrhkrhkrhkrhkrhdkrkkxrkx

servera. lab.example.com : ok=4 changed=0 unreachable=0 failed=0
This time the handlers are skipped. In the event that the remote configuration file is

changed in the future, executing the playbook would trigger the restart db service
handler but not the set db password handler.

Finish
Onworkstation, runthe lab control-handlers finish script to clean up the resources

created in this exercise.

[student@workstation ~]$ lab control-handlers finish

This concludes the guided exercise.

Chapter 4 | Implementing Task Control

Handling Task Failure

Objectives

After completing this section, you should be able to control what happens when a task fails, and
what conditions cause a task to fail.

Managing Task Errors in Plays

Ansible evaluates the return code of each task to determine whether the task succeeded or failed.
Normally, when a task fails Ansible immediately aborts the rest of the play on that host, skipping all
subsequent tasks.

However, sometimes you might want to have play execution continue even if a task fails. For
example, you might expect that a particular task could fail, and you might want to recover by
running some other task conditionally. There are a number of Ansible features that can be used to
manage task errors.

Ignoring Task Failure

By default, if a task fails, the play is aborted. However, this behavior can be overridden by ignoring
failed tasks. You can use the ignore_errors keyword in a task to accomplish this.

The following snippet shows how to use ignore_errors in a task to continue playbook execution
on the host even if the task fails. For example, if the notapkg package does not exist then the yum
module fails, but having ignore_errors set to yes allows execution to continue.

- name: Latest version of notapkg is installed
yum:
name: notapkg
state: latest
ignore_errors: yes

Forcing Execution of Handlers after Task Failure

Normally when a task fails and the play aborts on that host, any handlers that had been notified by
earlier tasks in the play will not run. If you set the force_handlers: yes keyword on the play,
then notified handlers are called even if the play aborted because a later task failed.

The following snippet shows hows to use the force_handlers keyword in a play to force
execution of the handler even if a task fails:

- hosts: all
force_handlers: yes
tasks:

- name: a task which always notifies its handler
command: /bin/true
notify: restart the database

Chapter 4 | Implementing Task Control

- name: a task which fails because the package doesn't exist
yum:
name: notapkg
state: latest

handlers:
- name: restart the database
service:

name: mariadb
state: restarted

Note
S Remember that handlers are notified when a task reports a changed result but are
not notified when it reports an ok or failed result.

Specifying Task Failure Conditions

You can use the failed_when keyword on a task to specify which conditions indicate that
the task has failed. This is often used with command modules that may successfully execute a
command, but the command's output indicates a failure.

For example, you can run a script that outputs an error message and use that message to define
the failed state for the task. The following snippet shows how the failed_when keyword can be
used in a task:

tasks:
- name: Run user creation script
shell: /usr/local/bin/create_users.sh
register: command_result
failed_when: "'Password missing' in command_result.stdout"

The fail module can also be used to force a task failure. The above scenario can alternatively be
written as two tasks:

tasks:
- name: Run user creation script
shell: /usr/local/bin/create_users.sh
register: command_result
ignore_errors: yes

- name: Report script failure
fail:
msg: "The password is missing in the output"
when: "'Password missing' in command_result.stdout"

You can use the fail module to provide a clear failure message for the task. This approach also
enables delayed failure, allowing you to run intermediate tasks to complete or roll back other
changes.

Chapter 4 | Implementing Task Control

Specifying When a Task Reports "Changed" Results

When a task makes a change to a managed host, it reports the changed state and notifies
handlers. When a task does not need to make a change, it reports ok and does not notify handlers.

The changed_when keyword can be used to control when a task reports that it has changed.

For example, the shell module in the next example is being used to get a Kerberos credential
which will be used by subsequent tasks. It normally would always report changed when it runs. To
suppress that change, changed_when: falseisset so thatit only reports ok or failed.

- name: get Kerberos credentials as "admin"
shell: echo "{{ krb_admin_pass }}" | kinit -f admin
changed_when: false

The following example uses the shel1l module to report changed based on the output of the
module that is collected by a registered variable:

tasks:
- shell:
cmd: /usr/local/bin/upgrade-database
register: command_result
changed_when: "'Success' in command_result.stdout"
notify:
- restart_database

handlers:
- name: restart_database
service:
name: mariadb
state: restarted

Ansible Blocks and Error Handling

In playbooks, blocks are clauses that logically group tasks, and can be used to control how tasks
are executed. For example, a task block can have a when keyword to apply a conditional to multiple
tasks:

- name: block example

hosts: all
tasks:
- name: installing and configuring Yum versionlock plugin
block:
- name: package needed by yum
yum:

name: yum-plugin-versionlock
state: present
- name: lock version of tzdata
lineinfile:
dest: /etc/yum/pluginconf.d/versionlock. list
line: tzdata-2016j-1
state: present
when: ansible_distribution == "RedHat"

Chapter 4 | Implementing Task Control

Blocks also allow for error handling in combination with the rescue and always statements. If
any task in a block fails, tasks in its rescue block are executed in order to recover. After the tasks
in the block clause run, as well as the tasks in the rescue clause if there was a failure, then tasks in
the always clause run. To summarize:

+ block: Defines the main tasks to run.
+ rescue: Defines the tasks to run if the tasks defined in the block clause fail.

- always: Defines the tasks that will always run independently of the success or failure of tasks
defined in the block and rescue clauses.

The following example shows how to implement a block in a playbook. Even if tasks defined in the
block clause fail, tasks defined in the rescue and always clauses are executed.

tasks:
- name: Upgrade DB
block:
- name: upgrade the database
shell:
cmd: /usr/local/lib/upgrade-database
rescue:
- name: revert the database upgrade
shell:
cmd: /usr/local/lib/revert-database
always:

- name: always restart the database
service:
name: mariadb
state: restarted

The when condition on a block clause also applies to its rescue and always clauses if present.

D References
Error Handling in Playbooks — Ansible Documentation
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_error_handling.html

Error Handling — Blocks — Ansible Documentation
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_blocks.html#blocks-
error-handling

RH294-RHEL8.4-en-1-20210818 w

https://docs.ansible.com/ansible/2.9/user_guide/playbooks_error_handling.html
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_blocks.html#blocks-error-handling
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_blocks.html#blocks-error-handling

Chapter 4 | Implementing Task Control

» Guided Exercise

Handling Task Failure

In this exercise, you will explore different ways to handle task failure in an Ansible Playbook.

Outcomes
You should be able to:

- Ignore failed commands during the execution of playbooks.
+ Force execution of handlers.

+ Override what constitutes a failure in tasks.

+ Override the changed state for tasks.

- Implement block, rescue, and always in playbooks.

Before You Begin

Onworkstation, run the lab start script to confirm the environment is ready for the lab to
begin. This script creates the working directory, /home/student/control-errors.

[student@workstation ~]$ lab control-errors start

Instructions

P 1. Onworkstation.lab.example.com, change tothe /home/student/control-
errors project directory.

[student@workstation ~]$ cd ~/control-errors
[student@workstation control-errors]$

P 2. The lab script created an Ansible configuration file as well as an inventory file that contains
the server servera. lab.example.comin the databases group. Review the file before
proceeding.

) 3. Create the playbook.yml playbook, which contains a play with two tasks. Write the first
task with a deliberate error to cause failure.

3.1. Open the playbook in a text editor. Define three variables: web_package with a value
of http, db_package with a value of mariadb-server, and db_service with a
value of mariadb. These variables will be used to install the required packages and
start the server.

The http value is an intentional error in the package name. The file should read as
follows:

Chapter 4 | Implementing Task Control

- name: Task Failure Exercise
hosts: databases
vars:
web_package: http
db_package: mariadb-server
db_service: mariadb

3.2. Define two tasks that use the yum module and the two variables, web_package and
db_package. The tasks will install the required packages. The tasks should read as

follows:
tasks:
- name: Install {{ web_package }} package
yum:

name: "{{ web_package }}"
state: present

- name: Install {{ db_package }} package
yum:
name: "{{ db_package }}"
state: present

P 4. Run the playbook and watch the output of the play.

[student@workstation control-errors]$ ansible-playbook playbook.yml

PLAY [Task Fallure EXerClse] R R Sk Sk Sk S S S S S R S R S

TASK [Gatherlng Facts] R R R Sk S Sk S R S S R R R R R

ok: [servera.lab.example.com]

TASK [Install http package] R R R R S S S S Sk S R kR R R
fatal: [servera.lab.example.com]: FAILED! => {"changed": false, "failures":
["No package http available."], "msg": "Failed to install some of the specified
packages", "rc": 1, "results": []}

PLAY RECAP R R Sk S Sk Sk S R S S R S S S R R S S S kR

servera. lab.example.com 1 ok=1 changed=0 unreachable=0 failed=1

The task failed because there is no existing package called ht tp. Because the first task
failed, the second task was not run.

P 5. Update the first task to ignore any errors by adding the ignore_errors keyword. The
tasks should read as follows:

tasks:
- name: Install {{ web_package }} package
yum:
name: "{{ web_package }}"
state: present
ignore_errors: yes

Chapter 4 | Implementing Task Control

- name: Install {{ db_package }} package
yum:
name: "{{ db_package }}"
state: present

P 6. Run the playbook again and watch the output of the play.

[student@workstation control-errors]$ ansible-playbook playbook.yml

PLAY [TaSk Failure Exercise] khkhkhkhkhhhkhhhhhhhhhhhhhhkhhkhdhhhhhhkhhhhhhhkhhhhhhkhkkk

TASK [Gather‘ing FaCtS] khkkhkhkhhhhkhhhhhhhkhhhkhhkhhhhhkhhhhkhhhhhkhhkhhhhhkhhkhhhkhkhkhkkkhk

ok: [servera.lab.example.com]

TASK [Insta‘L‘L http package] khkhkhkhkhhhhkhhhhhhhhhhhhhhhhhhhhkhhhhhhhhhkhhhhkhkhdhkkhk

fatal: [servera.lab.example.com]: FAILED! => {"changed": false, "failures":

["No package http available."], "msg": "Failed to install some of the specified
packages", "rc": 1, "results": []}
...ignoring

TASK [Insta‘L‘L mariadb-server package] khkkhkhkhkhhhhkhhhhhhhkhdhhhhhkhhhhhhkhhhhkhkhkkk

changed: [servera.lab.example.com]

PLAY REGCAP % * % % % o % ok sk ok ok sk o ok ok o ok ok o ok ok o ok ok ok ok ok ok ok ok ko ko ko ok ko ko

servera. lab.example.com : ok=3 changed=1 unreachable=0 failed=0
Despite the fact that the first task failed, Ansible executed the second one.
P 7. Inthis step, you will set up a block keyword so you can experiment with how they work.

71. Update the playbook by nesting the first task in a block clause. Remove the line that
setsignore_errors: yes. The block should read as follows

- name: Attempt to set up a webserver
block:
- name: Install {{ web_package }} package
yum:
name: "{{ web_package }}"
state: present

7.2. Nest the task that installs the mariadb-server package in a rescue clause. The task
will execute if the task listed in the block clause fails. The block clause should read as
follows:

rescue:
- name: Install {{ db_package }} package
yum:
name: "{{ db_package }}"
state: present

7.3. Finally, add an always clause to start the database server upon installation using the
service module. The clause should read as follows

Chapter 4 | Implementing Task Control

always:
- name: Start {{ db_service }} service
service:

name: "{{ db_service }}"
state: started

7.4. The completed task section should read as follows:

tasks:
- name: Attempt to set up a webserver
block:
- name: Install {{ web_package }} package
yum:
name: "{{ web_package }}"
state: present
rescue:
- name: Install {{ db_package }} package
yum:
name: "{{ db_package }}"
state: present
always:
- name: Start {{ db_service }} service
service:

name: "{{ db_service }}"
state: started

P 8. Now run the playbook again and observe the output.

8.1. Run the playbook. The task in the block that makes sure web_package is installed
fails, which causes the task in the rescue block to run. Then the task in the always
block runs.

[student@workstation control-errors]$ ansible-playbook playbook.yml

PLAY [Task Failure Exercise] khkhkhkhkhhhhkhhhhhhhhhhhhhhhhkhhhhhk bk bk hkhkhkhhkhhhkhkhkkk

TASK [Gathering Facts] khkkhkkhhkhhkhhhkhhhhkhhhhhkhhkhhhhhkhhkhhhhhkhhkhhhkhkhhkhhhkhkhkhkkkk

ok: [servera.lab.example.com]

TASK [Install http package] R R R R
fatal: [servera.lab.example.com]: FAILED! => {"changed": false, "failures":
["No package http available."], "msg": "Failed to install some of the specified
packages", "rc": 1, "results": []}

TASK [Insta‘L‘L mariadb-server package] khkkhkhkhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhkhkkk

ok: [servera.lab.example.com]

TASK [Start mariadb Service] khkhkhkhkhhhkhhhhhhhhhkhhhhhhhhhhhhhhkhhhhhhhhhhhhhkhkkk

changed: [servera.lab.example.com]

PLAY REGCAP % * % % % o % ok s ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok o ok ok ok ok ok o ok ok o ok ok o ok ok ok ok ok ok ok ok ko ok ko ok ko ok ok ok ko ok ko

servera. lab.example.com : ok=3 changed=1 unreachable=0 failed=1

Chapter 4 | Implementing Task Control

8.2. Edit the playbook, correcting the value of the web_package variable to read httpd.
That will cause the task in the block to succeed the next time you run the playbook.

vars:
web_package: httpd
db_package: mariadb-server
db_service: mariadb

8.3. Run the playbook again. This time, the task in the block does not fail. This causes the
task in the rescue section to be ignored. The task in the always will still run.

[student@workstation control-errors]$ ansible-playbook playbook.yml

PLAY [TaSk Failure Exercise] EEEEEREEEEEEEEEEEEEEEERERESRERESEEREESEEEEEEEEEEEERESEESEES

TASK [Gathering Facts] EEEEEEEEEEEEEEEEEEEEEREREEREEREREEREESERESEERERESRERESEESEESEESRESES

ok: [servera.lab.example.com]

TASK [Install httpd package] LR R R R R R R

changed: [servera.lab.example.com]

TASK [Start mariadb Service] LR R R R R S R R R R S R R R R R R R R S R

ok: [servera.lab.example.com]

PLAY RECAP EE R R R R R R R R R R R R R S R R R R R S R R S R R R R S S

servera. lab.example.com 1 ok=3 changed=1 unreachable=0 failed=0

P 9. This step explores how to control the condition that causes a task to be reported as
“changed" to the managed host.

9.1. Edit the playbook to add two tasks to the start of the play, preceding the block. The
first task uses the command module to run the date command and register the result
in the command_result variable. The second task uses the debug module to print
the standard output of the first task's command.

tasks:
- name: Check local time
command: date
register: command_result

- name: Print local time
debug:
var: command_result.stdout

9.2. Run the playbook. You should see that the first task, which runs the command module,
reports changed, even though it did not change the remote system; it only collected
information about the time. That is because the command module cannot tell the
difference between a command that collects data and a command that changes
state.

[student@workstation control-errors]$ ansible-playbook playbook.yml

PLAY [Task Failure Exercise] khhkkkkhhkhhkhhhhhhhhhhhhhhkhhhhhkhhhdhhhkhhkhdkhhhhhkhkhkk*

Chapter 4 | Implementing Task Control

TASK [Gathering FaCtS] khhkkkkhhkhhhhhhhkhhhhhhhhh bk hkh kb b bk hkhhkhhk bk hhkhd bk hkhk bk kkkkk

ok: [servera.lab.example.com]

TASK [CheCk local time] ER R X

changed: [servera.lab.example.com]

TASK [Prlnt local time] E X E]

ok: [servera.lab.example.com] => {
"command_result.stdout": "mié mar 27 08:07:08 EDT 2019"

TASK [Insta‘L‘L httpd paCkage] khkhkkkkhhkhkhhhhhhhhhhhhhhk bk bk hkhhk bk bk hhhkhdk bk hkhkhkhk k%

ok: [servera.lab.example.com]

TASK [Start mariadb SerViCe] khkhkhkhhhhhhhhhhhhhhhhhhhhhhhkhhkhhhhhkhhkhhk bk hkhkhkhkkk

ok: [servera.lab.example.com]

PLAY REGCAP % * % % % o % ok sk ok ok sk ok ok ok ok ok ok ok ok o ok ok ok ok o o ok o o ok ok o ok o o ok o o ok o o ok ok ok ok ok ok ok ok ok ok ok ok ok ok K ok kK ko

servera. lab.example.com : ok=5 changed=1 unreachable=0 failed=0
If you run the playbook again, the Check local time task returns changed again.

9.3. That command task should not report changed every time it runs because it is not
changing the managed host. Because you know that the task will never change a
managed host, add the line changed_when: false to the task to suppress the
change.

tasks:
- name: Check local time
command: date
register: command_result
changed_when: false

- name: Print local time
debug:
var: command_result.stdout

9.4. Run the playbook again and notice that the task now reports ok, but the task is still
being run and is still saving the time in the variable.

[student@workstation control-errors]$ ansible-playbook playbook.yml

PLAY [Task Failure Exercise] khkkkkkhhkhhkhhhkhhkhhhhhhhhhkhh bk hh kb h bk hk kb dkhhkhhkhkhk k%

TASK [Gathering FaCtS] o X

ok: [servera.lab.example.com]

TASK [CheCk local time] ER R X E]

ok: [servera.lab.example.com]

TASK [Prlnt local time] E R X E

ok: [servera.lab.example.com] => {
"command_result.stdout": "mié mar 27 08:08:36 EDT 2019"

Chapter 4 | Implementing Task Control

TASK [Insta‘L‘L httpd package] khkkkkhkhkhhkhhhhhkhhkhhhhhhhkhhhhhhhkhhhhhkhhkhd bk hhkhkhkkx

ok: [servera.lab.example.com]

TASK [Start mariadb Service] khkkkkkhkhkhkhhhhhkhhkhhhhhhhhh bk hhhkhdhhhhhkhhk bk khkhkhkkk

ok: [servera.lab.example.com]

PLAY REGCAP % * % % % o % sk sk ok ok ok ok ok ok ok ok o ok ok o ok o o ok o o ok o o ok o o ok o o ok o o ok o ok ok ok ok ok ok ok ok ok ok ok K ok K ok K ok kK ko

servera. lab.example.com : ok=5 changed=0 unreachable=0 failed=0

P 10. As afinal exercise, edit the playbook to explore how the failed_when keyword interacts
with tasks.

10.1. Editthe Install {{ web_package }} package task so that it reports as having
failed when web_package has the value httpd. Because this is the case, the task will
report failure when you run the play.

Be careful with your indentation to make sure the keyword is correctly set on the task.

- block:
- name: Install {{ web_package }} package
yum:
name: "{{ web_package }}"
state: present
failed_when: web_package == "httpd"

10.2. Run the playbook.

[student@workstation control-errors]$ ansible-playbook playbook.yml

PLAY [Task Fallure EXerClse] R R Sk Sk R S S S S S S S R S

TASK [Gatherlng Facts] R R R SR S R R R R S R R R R

ok: [servera.lab.example.com]

TASK [Check local tlme] EE R R R R SR R R R S R R R

ok: [servera.lab.example.com]

TASK [Prlnt 'Local tlme] R R R SR Sk S R R R R R R R

ok: [servera.lab.example.com] => {
"command_result.stdout": "mié mar 27 08:09:35 EDT 2019"

TASK [Install httpd package] R R R R R R R R R

fatal: [servera.lab.example.com]: FAILED! => {"changed": false,
"failed_when_result": true, "msg": "Nothing to do", "rc": 0, "results":
["Installed: httpd"]}

TASK [Insta‘L‘L mariadb-server package] khkkkkkhhhhkhhhkhhhhhhhhhhhhhhkhhkhhkhhhhhkhkhkkx

ok: [servera.lab.example.com]

TASK [Start mariadb Service] khkkhkkkhhkhkhkhhhhhhhhhhhhhhkhh bk hh kb h bk hhhkhhk bk khkhkhkkx

ok: [servera.lab.example.com]

Chapter 4 | Implementing Task Control

PLAY REGCAP % * % % % o & ok s ok ok ok ok ok ok ok ok o ok ok o ok o ok ok o o ok ok o ok o o ok o o ok o o ok o o ok ok ok ok ok ok ok ok ok ok R ok ko ko Kk kK ko

servera. lab.example.com 1 ok=5 changed=0 unreachable=0 failed=1

Look carefully at the output. The Install httpd package task reports that
it failed, but it actually ran and made sure the package is installed first. The
failed_when keyword changes the status the task reports after the task runs; it
does not change the behavior of the task itself.

However, the reported failure might change the behavior of the rest of the play.
Because that task was in a block and reported that it failed, the Install mariadb-
server package taskin the block's rescue section was run.

Finish
Onworkstation, runthe lab control-errors finish script to clean up the resources

created in this exercise.

[student@workstation ~]$ lab control-errors finish

This concludes the guided exercise.

Chapter 4 | Implementing Task Control

» Lab

Implementing Task Control

Performance Checklist

In this lab, you will install the Apache web server and secure it using mod_ss 1. You will use
conditions, handlers, and task failure handling in your playbook to deploy the environment.

Outcomes

You should be able to define conditionals in Ansible Playbooks, set up loops that iterate over
elements, define handlers in playbooks, and handle task errors.

Before You Begin

Login as the student user onworkstation andrun lab control-review start. This
script ensures that the managed host, serverhb, is reachable on the network. It also ensures
that the correct Ansible configuration file and inventory are installed on the control node.

[student@workstation ~]$ lab control-review start

Instructions

1.

2.

Onworkstation, change to the /home/student/control-review project directory.

The project directory contains a partially completed playbook, playbook.ym1. Using a text
editor, add a task that uses the fail module under the #Fail Fast Message comment.
Be sure to provide an appropriate name for the task. This task should only be executed when
the remote system does not meet the minimum requirements.

The minimum requirements for the remote host are listed below:

+ Has at least the amount of RAM specified by the min_ram_mb variable. The min_ram_mb
variable is defined in the vars.ym1 file and has a value of 256.

+ Isrunning Red Hat Enterprise Linux.

Add a single task to the playbook under the #Install all Packages comment to
install the latest version of any missing packages. Required packages are specified by the
packages variable, which is defined in the vars.yml file.

The task name should be Ensure required packages are present.

Add a single task to the playbook under the #Enable and start services comment
to start all services. All services specified by the services variable, which is defined in the
vars.yml file, should be started and enabled. Be sure to provide an appropriate name for
the task.

Add a task block to the playbook under the #B8lock of config tasks comment. This

block contains two tasks:

+ Atask to ensure the directory specified by the ss1_cert_dir variable exists on the
remote host. This directory stores the web server's certificates.

Chapter 4 | Implementing Task Control

+ Atask to copy all files specified by the web_config_files variable to the remote
host. Examine the structure of the web_config_files variable in the vars.yml file.
Configure the task to copy each file to the correct destination on the remote host.

This task should trigger the restart web service handler if any of these files are
changed on the remote server.

Additionally, a debug task is executed if either of the two tasks above fail. In this case, the
task prints the message: One or more of the configuration changes failed,
but the web service is still active.

Be sure to provide an appropriate name for all tasks.

6. The playbook configures the remote host to listen for standard HTTPS requests. Add a
single task to the playbook under the #Configure the firewall comment to configure
firewalld.

This task should ensure that the remote host allows standard HTTP and HTTPS connections.
These configuration changes should be effective immediately and persist after a system
reboot. Be sure to provide an appropriate name for the task.

7. Definethe restart web service handler.

When triggered, this task should restart the web service defined by the web_service
variable, defined in the vars.yml file.

8. From the project directory, ~/control-review, run the playbook.yml playbook. The
playbook should execute without errors, and trigger the execution of the handler task.

9. Verify that the web server now responds to HTTPS requests, using the self-signed custom
certificate to encrypt the connection. The web server response should match the string
Configured for both HTTP and HTTPS.

Evaluation

Run the lab control-review grade command onworkstation to confirm success on this
exercise. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab control-review grade

Finish
Run the lab control-review finish command to clean up after the lab.

[student@workstation ~]$ lab control-review finish

This concludes the lab.

Chapter 4 | Implementing Task Control

» Solution

Implementing Task Control

Performance Checklist

In this lab, you will install the Apache web server and secure it using mod_ss 1. You will use
conditions, handlers, and task failure handling in your playbook to deploy the environment.

Outcomes

You should be able to define conditionals in Ansible Playbooks, set up loops that iterate over
elements, define handlers in playbooks, and handle task errors.

Before You Begin

Login as the student user onworkstation andrun lab control-review start. This
script ensures that the managed host, serverhb, is reachable on the network. It also ensures
that the correct Ansible configuration file and inventory are installed on the control node.

[student@workstation ~]$ lab control-review start

Instructions

1. Onworkstation, change to the /home/student/control-review project directory.

[student@workstation ~]$ cd ~/control-review
[student@workstation control-review]$

2. The project directory contains a partially completed playbook, playbook.ym1l. Using a text
editor, add a task that uses the fail module under the #Fail Fast Message comment.
Be sure to provide an appropriate name for the task. This task should only be executed when
the remote system does not meet the minimum requirements.

The minimum requirements for the remote host are listed below:

+ Has at least the amount of RAM specified by the min_ram_mb variable. The min_ram_mb
variable is defined in the vars.yml file and has a value of 256.

+ Is running Red Hat Enterprise Linux.

The completed task matches:

tasks:
#Fail Fast Message
- name: Show Failed System Requirements Message

fail:

msg: "The {{ inventory_hostname }} did not meet minimum reqgs."
when: >

ansible_memtotal _mb < min_ram_mb or

ansible_distribution != "RedHat"

W RH294-RHEL8.4-en-1-20210818

Chapter 4 | Implementing Task Control

3.

Add a single task to the playbook under the #Install all Packages comment to
install the latest version of any missing packages. Required packages are specified by the
packages variable, which is defined in the vars.yml file.

The task name should be Ensure required packages are present.

The completed task matches:

#Install all Packages
- name: Ensure required packages are present
yum:
name: "{{ packages }}"
state: latest

Add a single task to the playbook under the #Enable and start services comment

to start all services. All services specified by the services variable, which is defined in the
vars.yml file, should be started and enabled. Be sure to provide an appropriate name for
the task.

The completed task matches:

#Enable and start services
- name: Ensure services are started and enabled
service:
name: "{{ item }}"
state: started
enabled: yes
loop: "{{ services }}"

Add a task block to the playbook under the #Block of config tasks comment. This
block contains two tasks:

+ Atask to ensure the directory specified by the ss1_cert_dir variable exists on the
remote host. This directory stores the web server's certificates.

+ A task to copy all files specified by the web_config_f1iles variable to the remote
host. Examine the structure of the web_config_files variable in the vars.yml file.
Configure the task to copy each file to the correct destination on the remote host.

This task should trigger the restart web service handler if any of these files are
changed on the remote server.

Additionally, a debug task is executed if either of the two tasks above fail. In this case, the
task prints the message: One or more of the configuration changes failed,
but the web service is still active.

Be sure to provide an appropriate name for all tasks.

The completed task block matches below:

#Block of config tasks
- name: Setting up the SSL cert directory and config files
block:
- name: Create SSL cert directory
file:
path: "{{ ssl_cert_dir }}"
state: directory

Chapter 4 | Implementing Task Control

- name: Copy Config Files
copy':
src: "{{ item.src }}"
dest: "{{ item.dest }}"
loop: "{{ web_config_files }}"
notify: restart web service

rescue:
- name: Configuration Error Message
debug:
msg: >

One or more of the configuration
changes failed, but the web service
is still active.

6. The playbook configures the remote host to listen for standard HTTPS requests. Add a
single task to the playbook under the #Configure the firewall comment to configure
firewalld.

This task should ensure that the remote host allows standard HTTP and HTTPS connections.
These configuration changes should be effective immediately and persist after a system
reboot. Be sure to provide an appropriate name for the task.

The completed task matches:

#Configure the firewall
- name: ensure web server ports are open
firewalld:
service: "{{ item }}"
immediate: true
permanent: true
state: enabled
loop:
- http
- https

7. Definetherestart web service handler.

When triggered, this task should restart the web service defined by the web_service
variable, defined in the vars.yml file.

A handlers section is added to the end of the playbook:

handlers:
- name: restart web service
service:

name: "{{ web_service }}"
state: restarted

The completed playbook contains:

- name: Playbook Control Lab
hosts: webservers
vars_files: vars.yml
tasks:

#Fail Fast Message

Chapter 4 | Implementing Task Control

- name: Show Failed System Requirements Message
fail:
msg: "The {{ inventory_hostname }} did not meet minimum reqgs."
when: >
ansible_memtotal_mb < min_ram_mb or
ansible_distribution != "RedHat"

#Install all Packages
- name: Ensure required packages are present
yum:
name: "{{ packages }}"
state: latest

#Enable and start services
- name: Ensure services are started and enabled
service:
name: "{{ item }}"
state: started
enabled: yes
loop: "{{ services }}"

#Block of config tasks
- name: Setting up the SSL cert directory and config files
block:
- name: Create SSL cert directory
file:
path: "{{ ssl_cert_dir }}"
state: directory

- name: Copy Config Files
copy':
src: "{{ item.src }}"
dest: "{{ item.dest }}"
loop: "{{ web_config_files }}"
notify: restart web service

rescue:
- name: Configuration Error Message
debug:
msg: >

One or more of the configuration
changes failed, but the web service
is still active.

#Configure the firewall
- name: ensure web server ports are open
firewalld:
service: "{{ item }}"
immediate: true
permanent: true
state: enabled
loop:
- http
- https

Chapter 4 | Implementing Task Control

#Add handlers
handlers:
- name: restart web service
service:
name: "{{ web_service }}"
state: restarted

8. From the project directory, ~/control-review, run the playbook.yml playbook. The
playbook should execute without errors, and trigger the execution of the handler task.

[student@workstation control-review]$ ansible-playbook playbook.yml

PLAY [P‘Laybook Control Lab] khkkhkhkhkhhkhhkhhhhhhhhhhhhhhkhhhhhkhhhhhhhhhkhhhhkhkhkkkhk

TASK [Gather‘ing FaCtS] khkhkhkhkhhhhkhhhhhhkhhhhhhhhhhhhhhkhhkhhhhhhhkhhhhhhkhhhhkhkk

ok: [serverb.lab.example.com]

TASK [Show Failed System Requirements Message] *******x*dddaassdhxrddhhrnsddx
skipping: [serverb.lab.example.com]

TASK [Ensure requred packages are present] R S I
changed: [serverb.lab.example.com]

TASK [Ensure services are started and enabled] *******x*sdiaxsadahxrdddhhxnsddx
changed: [serverb.lab.example.com] => (item=httpd)

ok: [serverb.lab.example.com] => (item=firewalld)

TASK [Create SSL cert directory] khkkhkhkhhhhkhhhhhhhhhhhhhhkhhhhhhkhhhhhhkhkhhkkhk

changed: [serverb.lab.example.com]

TASK [Copy Conflg Flles] khkkhkhkkhhhhkhhhhhhhkhhhhhhhhhhhhhhkhhhhhhhhhhhkhkhhhhkhk*

changed: [serverb.lab.example.com] => (item={'src': 'server.key',6 'dest': '/etc/
httpd/conf.d/ssl'})

changed: [serverb.lab.example.com] => (item={'src': 'server.crt', 'dest': '/etc/
httpd/conf.d/ssl'})

changed: [serverb.lab.example.com] => (item={'src': 'ssl.conf', 'dest': '/etc/
httpd/conf.d'})

changed: [serverb.lab.example.com] => (item={'src': 'index.html',6 ‘'dest': '/var/

www/html'})

TASK [ensure Web Server ports are open] R O O
changed: [serverb.lab.example.com] => (item=http)
changed: [serverb.lab.example.com] => (item=https)

RUNNING HANDLER [restart Web Seerce] R S
changed: [serverb.lab.example.com]

PLAY RECAP ****xkkkkkkkkkkkkkkkkkhkkkkhhkhhkrhkrhkrhkrhkrhkrhkrhkrhkrhkrrkxrkx

serverb. lab.example.com 1 ok=7 changed=6 unreachable=0 failed=0

Chapter 4 | Implementing Task Control

9.

Verify that the web server now responds to HTTPS requests, using the self-signed custom
certificate to encrypt the connection. The web server response should match the string
Configured for both HTTP and HTTPS.

[student@workstation control-review]$ curl -k -vvv https://serverb.lab.example.com
* About to connect() to serverb.lab.example.com port 443 (#0)

* Trying 172.25.250.11...

* Connected to serverb.lab.example.com (172.25.250.11) port 443 (#0)
* Initializing NSS with certpath: sql:/etc/pki/nssdb

* skipping SSL peer certificate verification

* SSL connection using TLS_ECDHE_RSA WITH_AES_256_GCM_SHA384

* Server certificate:

...output omitted. ..

* start date: Nov 13 15:52:18 2018 GMT

* expire date: Aug 09 15:52:18 2021 GMT

* common name: serverb.lab.example.com

..output omitted...

Accept-Ranges: bytes

Content-Length: 36

Content-Type: text/html; charset=UTF-8

AN NN A

Configured for both HTTP and HTTPS.
* Connection #0 to host serverb.lab.example.com left intact

Evaluation

Run the lab control-review grade command onworkstation to confirm success on this
exercise. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab control-review grade

Finish

Run the lab control-review finish command to clean up after the lab.

[student@workstation ~]$ lab control-review finish

This concludes the lab.

Chapter 4 | Implementing Task Control

Summary

In this chapter, you learned:

Loops are used to iterate over a set of values, for example, a simple list of strings, or a list of
either hashes or dictionaries.

Conditionals are used to execute tasks or plays only when certain conditions have been met.
Handlers are special tasks that execute at the end of the play if notified by other tasks.
Handlers are only notified when a task reports that it changed something on a managed host.

Tasks are configured to handle error conditions by ignoring task failure, forcing handlers to be
called even if the task failed, mark a task as failed when it succeeded, or override the behavior
that causes a task to be marked as changed.

Blocks are used to group tasks as a unit and to execute other tasks depending upon whether or
not all the tasks in the block succeed.

Chapter 5

Deploying Files to Managed
Hosts

Goal Deploy, manage, and adjust files on hosts managed U

by Ansible.

Objectives + Create, install, edit, and remove files on X
managed hosts, and manage permissions, .
ownership, SELinux context, and other
characteristics of those files. r-
Deploy files to managed hosts that are
customized by using Jinja2 templates. i

Sections * Modifying and Copying Files to Hosts (and
Guided Exercise)

Deploying Custom Files with Jinja2 Templates
(and Guided Exercise)

TN

Lab + Deploying Files to Managed Hosts

r/

RH294-RHEL8.4-en-1-20210818

Chapter 5 | Deploying Files to Managed Hosts

Modifying and Copying Files to Hosts

Objectives

After completing this section, you should be able to create, install, edit, and remove files on
managed hosts, and manage permissions, ownership, SELinux context, and other characteristics
of those files.

Describing Files Modules

Red Hat Ansible Automation Platform ships with a large collection of modules (the "module
library") that are developed as part of the upstream Ansible project. To make it easier to
organize, document, and manage them, they are organized into groups based on function in the
documentation and when installed on a system.

The Files modules library includes modules allowing you to accomplish most tasks related to
Linux file management, such as creating, copying, editing, and modifying permissions and other
attributes of files. The following table provides a list of frequently used file management modules:

Commonly Used Files Modules

Module name Module description

blockinfile Insert, update, or remove a block of multiline text surrounded by
customizable marker lines.

copy Copy a file from the local or remote machine to a location on a
managed host. Similar to the file module, the copy module can
also set file attributes, including SELinux context.

fetch This module works like the copy module, but in reverse. This module
is used for fetching files from remote machines to the control node
and storing them in a file tree, organized by host name.

file Set attributes such as permissions, ownership, SELinux contexts,
and time stamps of reqular files, symlinks, hard links, and directories.
This module can also create or remove regular files, symlinks,
hard links, and directories. A number of other file-related modules
support the same options to set attributes as the file module,
including the copy module.

lineinfile Ensure that a particular line is in a file, or replace an existing line
using a back-reference regular expression. This module is primarily
useful when you want to change a single line in a file.

stat Retrieve status information for a file, similar to the Linux stat
command.

Chapter 5 | Deploying Files to Managed Hosts

Module name Module description

synchronize A wrapper around the rsync command to make common tasks
quick and easy. The synchronize module is not intended to
provide access to the full power of the rsync command, but does
make the most common invocations easier to implement. You may
still need to call the rsync command directly via the run command
module depending on your use case.

Automation Examples with Files Modules

Creating, copying, editing, and removing files on managed hosts are common tasks that you can
implement using modules from the Files modules library. The following examples show ways that
you can use these modules to automate common file management tasks.

Ensuring a File Exists on Managed Hosts

Use the file module to touch a file on managed hosts. This works like the touch command,
creating an empty file if it does not exist, and updating its modification time if it does exist. In
this example, in addition to touching the file, Ansible ensures that the owning user, group, and
permissions of the file are set to specific values.

- name: Touch a file and set permissions
file:
path: /path/to/file
owner: userl
group: groupl
mode: 0640
state: touch

Example outcome:

[user@host ~]$ 1s -1 file
~rwW-r----- . userl groupl 0 Nov 25 08:00 file

Modifying File Attributes

You can use the file module to ensure that a new or existing file has the correct permissions or
SELinux type as well.

For example, the following file has retained the default SELinux context relative to a user's home
directory, which is not the desired context.

[user@host ~]$ ls -Z samba_file
-rw-r--r--. owner group unconfined_u:object_r:user_home_t:s0@ samba_file

The following task ensures that the SELinux context type attribute of the samba_f1ile file is the
desired samba_share_t type. This behavior is similar to the Linux chcon command.

Chapter 5 | Deploying Files to Managed Hosts

- name: SELinux type is set to samba_share_t
file:
path: /path/to/samba_file
setype: samba_share_t

Example outcome:

[user@host ~]$ ls -Z samba_file
-rw-r--r--. owner group unconfined_u:object_r:samba_share_t:s@ samba_file

Note

S File attribute parameters are available in multiple file management modules. Run
the ansible-doc file and ansible-doc copy commands for additional
information.

Making SELinux File Context Changes Persistent

The file module acts like chcon when setting file contexts. Changes made with that module
could be unexpectedly undone by running restorecon. After using file to set the context, you
can use sefcontext from the collection of System modules to update the SELinux policy like
semanage fcontext.

- name: SELinux type is persistently set to samba_share_t
sefcontext:
target: /path/to/samba_file
setype: samba_share_t
state: present

Example outcome:

[user@host ~]$ ls -Z samba_file
-rw-r--r--. owner group unconfined_u:object_r:samba_share_t:s0 samba_file

i~ | Important
— The sefcontext module updates the default context for the target in the SELinux
policy, but does not change the context on existing files.

Copying and Editing Files on Managed Hosts

In this example, the copy module is used to copy a file located in the Ansible working directory on
the control node to selected managed hosts.

By default this module assumes that force: yes is set. That forces the module to overwrite the
remote file if it exists but contains different contents from the file being copied. If force: nois
set, then it only copies the file to the managed host if it does not already exist.

Chapter 5 | Deploying Files to Managed Hosts

- name: Copy a file to managed hosts
copy':
src: file
dest: /path/to/file

To retrieve files from managed hosts use the fetch module. This could be used to retrieve a file
such as an SSH public key from a reference system before distributing it to other managed hosts.

- name: Retrieve SSH key from reference host
fetch:
src: "/home/{{ user }}/.ssh/id_rsa.pub
dest: "files/keys/{{ user }}.pub"

To ensure a specific single line of text exists in an existing file, use the Lineinfile module:

- name: Add a line of text to a file
lineinfile:
path: /path/to/file
line: 'Add this 1line to the file'
state: present

To add a block of text to an existing file, use the blockinfile module:

- name: Add additional lines to a file
blockinfile:
path: /path/to/file
block: |
First line in the additional block of text
Second line in the additional block of text

state: present

Note
S When using the blockinfile module, commented block markers are inserted at
the beginning and end of the block to ensure idempotency.

BEGIN ANSIBLE MANAGED BLOCK

First line in the additional block of text
Second line in the additional block of text
END ANSIBLE MANAGED BLOCK

You can use the marker parameter to the module to help ensure that the right
comment character or text is being used for the file in question.

Removing a File from Managed Hosts

A basic example to remove a file from managed hosts is to use the file module with the state:
absent parameter. The state parameter is optional to many modules. You should always make
your intentions clear whether you want state: present orstate: absent forseveral
reasons. Some modules support other options as well. It is possible that the default could change

Chapter 5 | Deploying Files to Managed Hosts

at some point, but perhaps most importantly, it makes it easier to understand the state the system
should be in based on your task.

- name: Make sure a file does not exist on managed hosts
file:
dest: /path/to/file
state: absent

Retrieving the Status of a File on Managed Hosts

The stat module retrieves facts for a file, similar to the Linux stat command. Parameters
provide the functionality to retrieve file attributes, determine the checksum of a file, and more.

The stat module returns a hash dictionary of values containing the file status data, which allows
you to refer to individual pieces of information using separate variables.

The following example registers the results of a stat module and then prints the MD5 checksum
of the file that it checked. (The more modern SHA256 algorithm is also available; MD5 is being
used here for easier legibility.)

- name: Verify the checksum of a file
stat:
path: /path/to/file
checksum_algorithm: md5
register: result

- debug
msg: "The checksum of the file is {{ result.stat.checksum }}"

The outcome should be similar to the following:

TASK [Get md5 CheCkSum Of a flle] EEEEE RS EEEEEEEEEEEEEEREEEEREEEEEESEEEEESESEESS
ok: [hostname]

TASK [debug] R R SR SR R S S Sk S S S S kR S R kR R

ok: [hostname] => {
"msg": "The checksum of the file is 5f76590425303022e933c43a7f2092a3"

Information about the values returned by the stat module are documented by ansible-doc, or
you can register a variable and display its contents to see what is available:

- name: Examine all stat output of /etc/passwd
hosts: localhost

tasks:
- name: stat /etc/passwd
stat:
path: /etc/passwd
register: results

188

Chapter 5 | Deploying Files to Managed Hosts

- name: Display stat results
debug:
var: results

Synchronizing Files Between the Control Node and Managed
Hosts

The synchronize module is a wrapper around the rsync tool, which simplifies common file
management tasks in your playbooks. The rsync tool must be installed on both the local and
remote host. By default, when using the synchronize module, the "local host" is the host that
the synchronize task originates on (usually the control node), and the "destination host" is the host
that synchronize connects to.

The following example synchronizes a file located in the Ansible working directory to the managed
hosts:

- name: synchronize local file to remote files
synchronize:
src: file
dest: /path/to/file

There are many ways to use the synchronize module and its many parameters, including
synchronizing directories. Run the ansible-doc synchronize command for additional
parameters and playbook examples.

References
ansible-doc(1), chmod(1), chown(l), rsync(l), stat(l) and touch(l) man pages

Files modules
https://docs.ansible.com/ansible/2.9/modules/list_of_files_modules.html

https://docs.ansible.com/ansible/2.9/modules/list_of_files_modules.html

Chapter 5 | Deploying Files to Managed Hosts

» Guided Exercise

Modifying and Copying Files to Hosts

In this exercise, you will use standard Ansible modules to create, install, edit, and remove files
on managed hosts and manage the permissions, ownership, and SELinux contexts of those
files.

Outcomes
You should be able to:

+ Retrieve files from managed hosts, by host name, and store them locally.

+ Create playbooks that use common file management modules such as copy, file,
lineinfile, and blockinfile.

Before You Begin
Logintoworkstation as student using student as the password.

Onworkstation, runthe lab file-manage start command. The script creates the
file-manage project directory, and downloads the Ansible configuration file and the host
inventory file needed for the exercise.

[student@workstation ~]$ lab file-manage start

Instructions

P 1. Asthe student useronworkstation, change to the /home/student/file-manage
working directory. Create a playbook called secure_log_backups.ymlin the current
working directory. Configure the playbook to use the fetch module to retrieve the /
var/log/secure log file from each of the managed hosts and store them on the control
node. The playbook should create the secure-backups directory with subdirectories
named after the host name of each managed host. Store the backup files in their respective
subdirectories.

11, Navigate to the /home/student/file-manage working directory.

[student@workstation ~]$ cd ~/file-manage
[student@workstation file-manage]$

1.2. Create the secure_log_backups.yml playbook with initial content:

- name: Use the fetch module to retrieve secure log files
hosts: all
remote_user: root

1.3. Add atask to the secure_log_backups.yml playbook that retrieves the /var/
log/secure log file from the managed hosts and stores it in the ~/file-manage/

Chapter 5 | Deploying Files to Managed Hosts

secure-backups directory. The fetch module creates the ~/file-manage/
secure-backups directory if it does not exist. Use the flat: no parameter to
ensure the default behavior of appending the host name, path, and file name to the
destination:

tasks:
- name: Fetch the /var/log/secure log file from managed hosts
fetch:
src: /var/log/secure
dest: secure-backups
flat: no

1.4. Before running the playbook, run the ansible-playbook --syntax-check
secure_log_backups.yml command to verify its syntax. Correct any errors before
moving to the next step.

[student@workstation file-manage]$ ansible-playbook --syntax-check \
> secure_log_backups.yml

playbook: secure_log_backups.yml

15. Runansible-playbook secure_log_backups.yml to execute the playbook:

[student@workstation file-manage]$ ansible-playbook secure_log_backups.yml
PLAY [Use the fetch module to retrieve secure log files] *****xx**kkkxxksdx

TASK [Gatherlng Facts] R R Sk Sk S S S S Sk S S S R S S S R Rk R

ok: [servera.lab.example.com]
ok: [serverb.lab.example.com]

TASK [Fetch the /var/log/secure file from managed hosts] *****xxxaiiaiiiiiix
changed: [serverb.lab.example.com]
changed: [servera.lab.example.com]

PLAY RECAP R R R R R R R R R R R R

servera. lab.example.com 1 ok=2 changed=1 unreachable=0 failed=0
serverb.lab.example.com 1 ok=2 changed=1 unreachable=0 failed=0

1.6. Verify the playbook results:

[student@workstation file-manage]$ tree -F secure-backups
secure-backups
|— servera.lab.example.com/
| L— var/
| — log/
| L— secure
L— serverb.lab.example.com/
L— var/
L— log/
L— secure

Chapter 5 | Deploying Files to Managed Hosts

P 2. Create the copy_file.yml playbook in the current working directory. Configure the
playbook to copy the /home/student/file-manage/files/users. txt file to all
managed hosts as the root user.

2.1. Add the following initial content to the copy_file.yml playbook:

- name: Using the copy module
hosts: all
remote_user: root

2.2. Add atask to use the copy module to copy the /home/student/file-manage/
files/users. txt file to all managed hosts. Use the copy module to set the
following parameters for the users. txt file:

Parameter Values
src files/users.txt
dest /home/devops/users. txt
owner devops
group devops
mode u+rw, g-wx, 0-rwx
setype samba_share_t
tasks:
- name: Copy a file to managed hosts and set attributes
copy:

src: files/users.txt

dest: /home/devops/users.txt
owner: devops

group: devops

mode: u+rw,g-wx, 0-rwx
setype: samba_share_t

2.3. Usethe ansible-playbook --syntax-check copy_file.yml command to
verify the syntax of the copy_file.yml playbook.

[student@workstation file-manage]$ ansible-playbook --syntax-check copy_file.yml

playbook: copy_file.yml

2.4. Run the playbook:

[student@workstation file-manage]$ ansible-playbook copy_file.yml
PLAY [USlng the COpy module] R R R Sk Sk S S S S S S

TASK [Gatherlng Facts] R R R Sk S Sk kS S S S R S S

Chapter 5 | Deploying Files to Managed Hosts

ok:
ok:

[serverb.lab.example.com]
[servera.lab.example.com]

TASK [Copy a file to managed hosts and set attributes] *****xxxiiiiiiiix
changed: [servera.lab.example.com]
changed: [serverb.lab.example.com]

PLAY REGCAP % * % % % % ok sk o ok ok ok ok ok ok ok o ok ok ok ok ok o ok ok o ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ok ko ko ko ko k

servera.lab.example.com : ok=2 changed=1 unreachable=0 failed=0
serverb.lab.example.com : ok=2 changed=1 unreachable=0 failed=0

2.5. Use an ad hoc command to execute the 1s -Z command as user devops to verify
the attributes of the users. txt file on the managed hosts.

[student@workstation file-manage]$ ansible all -m command -a 'ls -Z' -u devops
servera.lab.example.com | CHANGED | rc=0 >>
unconfined_u:object_r:samba_share_t:s0O users.txt

serverb.lab.example.com | CHANGED | rc=0 >>
unconfined_u:object_r:samba_share_t:s0O users.txt

b 3.

In a previous step, the samba_share_t SELinux type field was set for the users. txt file.
However, it is now determined that default values should be set for the SELinux file context.

Create a playbook called selinux_defaults.ymlin the current working directory.
Configure the playbook to use the file module to ensure the default SELinux context for
user, role, type, and level fields.

Note
S In the real world you would also edit copy_file.ym1l and remove the setype

keyword.

3.1. Create the selinux_defaults.yml playbook:

- name: Using the file module to ensure SELinux file context

hosts: all
remote_user: root
tasks:
- name: SELinux file context is set to defaults
file:

path: /home/devops/users.txt
seuser: _default
serole: _default
setype: _default
selevel: _default

3.2. Usethe ansible-playbook --syntax-check selinux_defaults.yml
command to verify the syntax of the selinux_defaults.yml playbook.

Chapter 5 | Deploying Files to Managed Hosts

[student@workstation file-manage]$ ansible-playbook --syntax-check \
> selinux_defaults.yml

playbook: selinux_defaults.yml

3.3. Run the playbook:

[student@workstation file-manage]$ ansible-playbook selinux_defaults.yml
PLAY [Using the file module to ensure SELinux file context] *******xxxxx

TASK [Gathering FaCtS] khhkkhkkhhhhhhhkhhhhhhhhhhhkhhhhhhhkhhkhhhhhk bk hhkhkhkkk

ok: [serverb.lab.example.com]
ok: [servera.lab.example.com]

TASK [SELinux file context is set to defaults] ******xx*sdkarsddhrxsddx
changed: [serverb.lab.example.com]
changed: [servera.lab.example.com]

PLAY REGCAP % * % % % o % ok s ok ok sk ok ok ok ok ok o ok ok ok ok ok o ok ok ok ok ok o ok ok ok ok ok o ok ok o ok ok ok ok ok ok ok ok ko ko ko ko k

servera.lab.example.com : ok=2 changed=1 unreachable=0 failed=0
serverb.lab.example.com : ok=2 changed=1 unreachable=0 failed=0

3.4. Use an ad hoc command to execute the 1s -Z command as user devops to verify
the default file attributes of unconfined_u:object_r:user_home_t:s0.

[student@workstation file-manage]$ ansible all -m command -a 'ls -Z' -u devops
servera. lab.example.com | CHANGED | rc=0 >>
unconfined_u:object_r:user_home_t:s0 users.txt

serverb.lab.example.com | CHANGED | rc=0 >>
unconfined_u:object_r:user_home_t:s@ users.txt

P 4. Create aplaybook called add_1line.yml in the current working directory. Configure the
playbook to use the 1ineinfile module to append the line This line was added
by the lineinfile module. to the /home/devops/users. txt file on all managed
hosts.

4. Create the add_1line.ym1 playbook:

- name: Add text to an existing file

hosts: all

remote_user: devops

tasks:

- name: Add a single line of text to a file
lineinfile:

path: /home/devops/users.txt
line: This line was added by the lineinfile module.
state: present

4.2. Useansible-playbook --syntax-check add_line.yml command to verify
the syntax of the add_1line.ym1 playbook.

Chapter 5 | Deploying Files to Managed Hosts

[student@workstation file-manage]$ ansible-playbook --syntax-check add_line.yml

playbook: add_line.yml

4.3. Run the playbook:

[student@workstation file-manage]$ ansible-playbook add_line.yml
PLAY [Add text to an eXlStlng fl'Le] IR EEEREEREEREEEEEEEEEEEEEEEEEEEEEEEESESESE]

TASK [Gathering FaCtS] LR EEEEEREEEEEEEEEEEEEEEEREERERERERESEEREEEEEESEESRERESESES

ok: [serverb.lab.example.com]
ok: [servera.lab.example.com]

TASK [Add a single line of text to a file] *****r*xkkahdksaidkahdsrikrhkx
changed: [servera.lab.example.com]
changed: [serverb.lab.example.com]

PLAY RECAP LR R R R R R R R R R R R R R R R R

servera. lab.example.com : ok=2 changed=1 unreachable=0 failed=0
serverb.lab.example.com : ok=2 changed=1 unreachable=0 failed=0

4.4. Use the command module with the cat option, as the devops user, to verify the
content of the users. txt file on the managed hosts.

[student@workstation file-manage]$ ansible all -m command \
> -a 'cat users.txt' -u devops

serverb.lab.example.com | CHANGED | rc=0 >>

This line was added by the lineinfile module.

servera.lab.example.com | CHANGED | rc=0 >>
This line was added by the lineinfile module.

P 5. Create a playbook called add_block.ymlin the current working directory. Configure the
playbook to use the blockinfile module to append the following block of text to the /
home/devops/users. txt file on all managed hosts.

This block of text consists of two lines.
They have been added by the blockinfile module.

5.1 Create the add_block.ym1l playbook:

- name: Add block of text to a file

hosts: all

remote_user: devops

tasks:

- name: Add a block of text to an existing file
blockinfile:

path: /home/devops/users.txt
block: |

Chapter 5 | Deploying Files to Managed Hosts

This block of text consists of two lines.
They have been added by the blockinfile module.
state: present

5.2. Usetheansible-playbook --syntax-check add_block.yml command to
verify the syntax of the add_block.ym1 playbook.

[student@workstation file-manage]$ ansible-playbook --syntax-check add_block.yml

playbook: add_block.yml

5.3. Run the playbook:

[student@workstation file-manage]$ ansible-playbook add_block.yml

PLAY [Add b'LOCk of text to a file] R R R Sk Sk R R S Sk S S R S S S R S S S

TASK [Gatherlng Facts] R R SR Sk S S S S Sk S S S S R S S Sk S S S S S S S S S S S

ok: [serverb.lab.example.com]
ok: [servera.lab.example.com]

TASK [Add a block of text to an existing File] *****kxrkkkrsskkhhskkhxskkhxs
changed: [servera.lab.example.com]
changed: [serverb.lab.example.com]

PLAY RECAP R R R R S S Sk kS S S S S R S S S kS kS kR

servera. lab.example.com : ok=2 changed=1 unreachable=0 failed=0
serverb.lab.example.com : ok=2 changed=1 unreachable=0 failed=0

5.4. Use the command module with the cat command to verify the correct content of the
/home/devops/users. txt file on the managed host.

[student@workstation file-manage]$ ansible all -m command \
> -a 'cat users.txt' -u devops

serverb.lab.example.com | CHANGED | rc=0 >>

This line was added by the lineinfile module.

BEGIN ANSIBLE MANAGED BLOCK

This block of text consists of two lines.

They have been added by the blockinfile module.

END ANSIBLE MANAGED BLOCK

servera.lab.example.com | CHANGED | rc=0 >>
This line was added by the lineinfile module.

BEGIN ANSIBLE MANAGED BLOCK

This block of text consists of two lines.

They have been added by the blockinfile module.
END ANSIBLE MANAGED BLOCK

) 6. Create a playbook called remove_file.ymlin the current working directory. Configure
the playbook to use the file module to remove the /home/devops/users. txt file
from all managed hosts.

6.1. Create the remove_file.yml playbook:

Chapter 5 | Deploying Files to Managed Hosts

- name: Use the file module to remove a file

hosts: all
remote_user: devops
tasks:
- name: Remove a file from managed hosts
file:

path: /home/devops/users.txt
state: absent

6.2. Usethe ansible-playbook --syntax-check remove_file.ymlcommand to
verify the syntax of the remove_file.yml playbook.

[student@workstation file-manage]$ ansible-playbook --syntax-check remove_file.yml

playbook: remove_file.yml

6.3. Run the playbook:

[student@workstation file-manage]$ ansible-playbook remove_file.yml
PLAY [Use the file module to remove a file] *******kkaaaaaaaaaddddddddddddxx

TASK [Gathering FaCtS] o X

ok: [serverb.lab.example.com]
ok: [servera.lab.example.com]

TASK [Remove a flle from managed hosts] EE R R R R R R EEREEEEEEEEEEEEEEEEESEEEEEEE]
changed: [serverb.lab.example.com]
changed: [servera.lab.example.com]

PLAY REGCAP % * % % % o & ok s ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok o o ok o o ok ok o ok o o ok ok o ok ok ok ok ok ok ok ko ko ko ko k

servera. lab.example.com 1 ok=2 changed=1 unreachable=0 failed=0
serverb.lab.example.com 1 ok=2 changed=1 unreachable=0 failed=0

6.4. Use an ad hoc command to execute the 1s -1 command to confirm that the
users. txt file no longer exists on the managed hosts.

[student@workstation file-manage]$ ansible all -m command -a 'ls -1' -u devops
serverb.lab.example.com | CHANGED | rc=0 >>
total ©

servera.lab.example.com | CHANGED | rc=0 >>
total ©

Finish
Onworkstation, runthe lab file-manage finish scriptto clean up this exercise.

[student@workstation ~]$ lab file-manage finish

This concludes the guided exercise.

Chapter 5 | Deploying Files to Managed Hosts

Deploying Custom Files with Jinja2
Templates

Objectives

After completing this section, you should be able to deploy files to managed hosts that are
customized by using Jinja2 templates.

Templating Files

Red Hat Ansible Automation Platform has a number of modules that can be used to modify
existing files. These include 1ineinfile and blockinfile, among others. However, they are
not always easy to use effectively and correctly.

A much more powerful way to manage files is to template them. With this method, you can write a
template configuration file that is automatically customized for the managed host when the file is
deployed, using Ansible variables and facts. This can be easier to control and is less error-prone.

Introduction to Jinja2

Ansible uses the Jinja2 templating system for template files. Ansible also uses Jinja2 syntax to
reference variables in playbooks, so you already know a little bit about how to use it.

Using Delimiters

Variables and logic expressions are placed between tags, or delimiters. For example, Jinja2
templates use {% EXPR %} for expressions or logic (for example, loops), while {{ EXPR }} are
used for outputting the results of an expression or a variable to the end user. The latter tag, when
rendered, is replaced with a value or values, and are seen by the end user. Use {# COMMENT #}
syntax to enclose comments that should not appear in the final file.

In the following example, the first line includes a comment that will not be included in the final file.
The variable references in the second line are replaced with the values of the system facts being
referenced.

{# /etc/hosts line #}
{{ ansible_facts['default_ipv4']['address'] }} {{ ansible_facts['hostname'] }}

Building a Jinja2 template

A Jinja2 template is composed of multiple elements: data, variables, and expressions. Those
variables and expressions are replaced with their values when the Jinja2 template is rendered. The
variables used in the template can be specified in the vars section of the playbook. It is possible
to use the managed hosts' facts as variables on a template.

Note
S Remember that the facts associated with a managed host can be obtained using
the ansible system_hostname -i inventory_file -m setup command.

Chapter 5 | Deploying Files to Managed Hosts

The following example shows how to create a template for /etc/ssh/sshd_config with
variables and facts retrieved by Ansible from managed hosts. When the associated playbook is
executed, any facts are replaced by their values in the managed host being configured.

Note

S A file containing a Jinja2 template does not need to have any specific file extension
(for example, . j2). However, providing such a file extension may make it easier for
you to remember that it is a template file.

{{ ansible_managed }}
DO NOT MAKE LOCAL MODIFICATIONS TO THIS FILE AS THEY WILL BE LOST

Port {{ ssh_port }}
ListenAddress {{ ansible_facts['default_ipv4']['address'] }}

HostKey /etc/ssh/ssh_host_rsa_key
HostKey /etc/ssh/ssh_host_ecdsa_key
HostKey /etc/ssh/ssh_host_ed25519_key

SyslogFacility AUTHPRIV

PermitRootLogin {{ root_allowed }}
AllowGroups {{ groups_allowed }}

AuthorizedKeysFile /etc/.rht_authorized_keys .ssh/authorized_keys
PasswordAuthentication {{ passwords_allowed }}
ChallengeResponseAuthentication no

GSSAPIAuthentication yes
GSSAPICleanupCredentials no

UsePAM yes

X11Forwarding yes
UsePrivilegeSeparation sandbox

AcceptEnv LANG LC_CTYPE LC_NUMERIC LC_TIME LC_COLLATE LC_MONETARY LC_MESSAGES
AcceptEnv LC_PAPER LC_NAME LC_ADDRESS LC_TELEPHONE LC_MEASUREMENT

AcceptEnv LC_IDENTIFICATION LC_ALL LANGUAGE

AcceptEnv XMODIFIERS

Subsystem sftp /usr/libexec/openssh/sftp-server

Deploying Jinja2 Templates

Jinja2 templates are a powerful tool to customize configuration files to be deployed on the
managed hosts. When the Jinja2 template for a configuration file has been created, it can be
deployed to the managed hosts using the temp late module, which supports the transfer of a
local file on the control node to the managed hosts.

Chapter 5 | Deploying Files to Managed Hosts

To use the template module, use the following syntax. The value associated with the src key
specifies the source Jinja2 template, and the value associated with the dest key specifies the file
to be created on the destination hosts.

tasks:
- name: template render
template:

src: /tmp/j2-template.j2
dest: /tmp/dest-config-file.txt

Note

E The template module also allows you to specify the owner (the user that owns the
file), group, permissions, and SELinux context of the deployed file, just like the file
module. It can also take a validate option to run an arbitrary command (such
as visudo -c) to check the syntax of a file for correctness before copying it into
place.

For more details, see ansible-doc template.

Managing Templated Files

To avoid having system administrators modify files deployed by Ansible, it is a good practice to
include a comment at the top of the template to indicate that the file should not be manually
edited.

One way to do this is to use the "Ansible managed" string set in the ansible_managed directive.
This is not a normal variable but can be used as one in a template. The ansible_managed
directive is setin the ansible.cfgfile:

ansible_managed = Ansible managed

To include the ansible_managed string inside a Jinja2 template, use the following syntax:

{{ ansible_managed }}

Control Structures

You can use Jinja2 control structures in template files to reduce repetitive typing, to enter entries
for each host in a play dynamically, or conditionally insert text into a file.

Using Loops
Jinja2 uses the for statement to provide looping functionality. In the following example, the user

variable is replaced with all the values included in the users variable, one value per line.

{% for user in users %}

{{ user }}
{% endfor %}

The following example template uses a for statement to run through all the values in the users
variable, replacing myuser with each value, except when the value is root.

Chapter 5 | Deploying Files to Managed Hosts

{# for statement #}

{% for myuser in users if not myuser == "root" %}
User number {{ loop.index }} - {{ myuser }}

{% endfor %}

The loop.index variable expands to the index number that the loop is currently on. It has a value
of 1the first time the loop executes, and it increments by 1through each iteration.

As another example, this template also uses a for statement, and assumes a myhosts variable
has been defined in the inventory file being used. This variable would contain a list of hosts to be
managed. With the following for statement, all hosts in the myhosts group from the inventory
would be listed in the file.

{% for myhost in groups['myhosts'] %}

{{ myhost }}
{% endfor %}

For a more practical example, you can use this to generate an /etc/hosts file from host facts
dynamically. Assume that you have the following playbook:

- name: /etc/hosts is up to date

hosts: all
gather_facts: yes
tasks:
- name: Deploy /etc/hosts
template:

src: templates/hosts.j2
dest: /etc/hosts

The following three-line templates/hosts. j2 template constructs the file from all hosts in the
group all. (The middle line is extremely long in the template due to the length of the variable
names.) It iterates over each host in the group to get three facts for the /etc/hosts file.

{% for host in groups['all'] %}

{{ hostvars[host]['ansible_facts']['default_ipv4']['address'] }} {{ hostvars[host]
['ansible_facts']['fqgdn'] }} {{ hostvars[host]['ansible_facts']['hostname'] }}

{% endfor %}

Using Conditionals

Jinja2 uses the if statement to provide conditional control. This allows you to put alinein a
deployed file if certain conditions are met.

In the following example, the value of the result variable is placed in the deployed file only if the
value of the finished variable is True.

{% if finished %}
{{ result }}
{% endif %}

Chapter 5 | Deploying Files to Managed Hosts

i~ | Important
You can use Jinja2 loops and conditionals in Ansible templates, but not in Ansible
Playbooks.

Variable Filters

Jinja2 provides filters which change the output format for template expressions (for example, to
JSON). There are filters available for languages such as YAML and JSON. The to_json filter
formats the expression output using JSON, and the to_yaml filter formats the expression output
using YAML.

{{ output | to_json }}
{{ output | to_yaml }}

Additional filters are available, such as the to_nice_jsonand to_nice_yaml filters, which
format the expression output in either JSON or YAML human readable format.

{{ output | to_nice_json }}
{{ output | to_nice_yaml }}

Both the from_json and from_yaml filters expect strings in either JSON or YAML format,
respectively, to parse them.

{{ output | from_json }}
{{ output | from_yaml }}

Variable Tests

The expressions used with when clauses in Ansible Playbooks are Jinja2 expressions. Built-in
Ansible tests used to test return values include failed, changed, succeeded, and skipped.
The following task shows how tests can be used inside of conditional expressions.

tasks:
...output omitted. ..
- debug: msg="the execution was aborted"
when: returnvalue is failed

References

template - Templates a file out to a remote server — Ansible Documentation
https://docs.ansible.com/ansible/2.9/modules/template_module.html

Variables — Ansible Documentation
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_variables.html

Filters — Ansible Documentation
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_filters.html

W RH294-RHEL8.4-en-1-20210818

https://docs.ansible.com/ansible/2.9/modules/template_module.html
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_variables.html
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_filters.html

Chapter 5 | Deploying Files to Managed Hosts

» Guided Exercise

Deploying Custom Files with Jinja2
Templates

In this exercise, you will create a simple template file that your playbook will use to install a
customized Message of the Day file on each managed host.

Outcomes
You should be able to:

+ Build a template file.

+ Use the template file in a playbook.

Before You Begin
Logintoworkstation as student using student as the password.

Onworkstation, runthe lab file-template start command. This script ensures
that Ansible is installed on workstation, creates the /home/student/file-template
directory, and downloads the ansible. cfg file into that directory.

[student@workstation ~]$ lab file-template start

g Note
All the files used during this exercise are available for reference on

workstationinthe /home/student/file-template/files directory.

Instructions

)1

Onworkstation, navigate to the /home/student/file-template working directory.
Review the inventory file in the current working directory. This file configures two
groups: webservers andworkstations. The servera. lab.example.comsystem is
in the webservers group, and the workstation. lab.example.comsystem isin the
workstations group.

11. Navigate to the /home/student/file-template working directory.

[student@workstation ~]$ cd ~/file-template
[student@workstation file-template]$

1.2. Display the content of the inventory file.

Chapter 5 | Deploying Files to Managed Hosts

[webservers]
servera. lab.example.com

[workstations]
workstation. lab.example.com

P 2. Create atemplate for the Message of the Day and include it in the motd. j2 file in the
current working directory. Include the following variables and facts in the template:

« ansible_facts['fqdn'], toinsert the FQDN of the managed host.

+ ansible_facts['distribution'] and
ansible_facts['distribution_version'], to provide distribution information.

« system_owner, for the system owner's email. This variable needs to be defined with an
appropriate value in the vars section of the playbook template.

This is the system {{ ansible_facts['fqdn'] }}.

This is a {{ ansible_facts['distribution'] }} version
{{ ansible_facts['distribution_version'] }} system.

Only use this system with permission.

Please report issues to: {{ system_owner }}.

) 3. Create a playbook file named motd.ymlin the current working directory. Define the
system_owner variable in the vars section, and include a task for the template module
that maps the motd. j2 Jinja2 template to the remote file /etc/motd on the managed
hosts. Set the owner and group to root, and the mode to 0644.

- name: configure SOE
hosts: all
remote_user: devops
become: true

vars:
- system_owner: clyde@example.com
tasks:
- name: configure /etc/motd
template:

src: motd.j2
dest: /etc/motd
owner: root
group: root
mode: 0644

P 4. Before running the playbook, use the ansible-playbook --syntax-check command
to verify the syntax. If it reports any errors, correct them before moving to the next step.
You should see output similar to the following:

[student@workstation file-template]$ ansible-playbook --syntax-check motd.yml

playbook: motd.yml

Chapter 5 | Deploying Files to Managed Hosts
P 5. Runthemotd.yml playbook.

[student@workstation file-template]$ ansible-playbook motd.yml

PLAY [a‘L‘L] khkhkhkhkhhhkhhhhhhhhhhhhhhhhhhhhhk bk hhhhkhhkhhhkhkhhkhhhhkhkhhhhkhkhkkkk

TASK [Gather‘ing FaCtS] khkkkhkkhhkhhkhhhhhhhhhhkhhkhhkhhhhhhhkhhhhkhhkhhhhkhkhhhhkkkkk

ok: [servera.lab.example.com]
ok: [workstation.lab.example.com]

TASK [template] khkkhkhkhkhhhhhhhhhkhhkhhhhhkhhkhhhkhhhhkhhhhhkhhkhhhhhkhhkhhhhkhhhhhhkhkkk

changed: [servera.lab.example.com]
changed: [workstation.lab.example.com]

PLAY REGCAP % * % % % o % ok sk ok ok sk o ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ko ko ok ok ko ko

servera. lab.example.com 1 ok=2 changed=1 unreachable=0 failed=0
workstation. lab.example.com : ok=2 changed=1 unreachable=0 failed=0

P 6. Logintoservera.lab.example.comas the devops user to verify that the MOTD is
correctly displayed when logged in. Log off when you have finished.

[student@workstation file-template]$ ssh devops@servera.lab.example.com
This is the system servera.lab.example.com.

This is a RedHat version 8.4 system.

Only use this system with permission.

Please report issues to: clyde@example.com.

...output omitted...

[devops@servera ~]# exit

Connection to servera.lab.example.com closed.

Finish
Run the lab file-template finish command to clean up after the exercise

[student@workstation ~]$ lab file-template finish

This concludes the guided exercise.

Chapter 5 | Deploying Files to Managed Hosts

» Lab

Deploying Files to Managed Hosts

Performance Checklist
In this lab, you will run a playbook that creates a customized file on your managed hosts by
using a Jinja2 template.

Outcomes
You should be able to:

+ Build a template file.

+ Use the template file in a playbook.

Before You Begin
Logintoworkstation as student using student as the password.

Onworkstation, runthe lab file-review start command. This ensures that Ansible
is installed on workstation, creates the /home/student/file-review directory, and
downloads the ansible.cfqg file into that directory. It also downloads the motd.ym1,
motd.j2, issue, and inventory filesinto the /home/student/file-review/files
directory.

[student@workstation ~]$ lab file-review start

Note
5 All files used in this exercise are available on workstation in the /home/
student/file-review/files directory.

Instructions

1.

Review the inventory file in the /home/student/file-review directory. This inventory
file defines the servers group, which has the serverb. lab.example.com managed host
associated with it.

Identify the facts on serverb. lab.example.com that show the total amount of system
memory, and the number of processors.

Create a template for the Message of the Day, named motd. j2, in the current

directory. When the devops user logsin to serverb. lab.example.com, a message
should display that shows the system's total memory and processor count. Use the
ansible_facts['memtotal_mb'] andansible_facts['processor_count'] facts
to provide the system resource information for the message.

Create a new playbook file called motd.ymlin the current directory. Using the template
module, configure the motd. j2 Jinja2 template file previously created to map to the file /
etc/motd on the managed hosts. This file has the root user as owner and group, and its

Chapter 5 | Deploying Files to Managed Hosts

permissions are 0644. Using the stat and debug modules, create tasks to verify that /etc/
motd exists on the managed hosts and displays the file information for /etc/motd. Use the
copy module to place files/issue into the /etc/ directory on the managed host, use the
same ownership and permissions as /etc/motd. Use the file module to ensure that /etc/
issue.net is a symboliclink to /etc/issue on the managed host. Configure the playbook
so that it uses the devops user, and sets the become parameter to true.

Run the playbook included in the motd.ym1 file.
6. Check that the playbook included in the motd.ym1 file has been executed correctly.

Evaluation

Onworkstation, runthe lab file-review grade script to confirm success on this exercise.

[student@workstation ~]$ lab file-review grade

Finish

Onworkstation, runthe lab file-review finish script to clean up after the lab.

[student@workstation ~]$ lab file-review finish

This concludes the guided exercise.

Chapter 5 | Deploying Files to Managed Hosts

» Solution

Deploying Files to Managed Hosts

Performance Checklist
In this lab, you will run a playbook that creates a customized file on your managed hosts by
using a Jinja2 template.

Outcomes

You should be able to:
+ Build a template file.

+ Use the template file in a playbook.

Before You Begin
Logintoworkstation as student using student as the password.

Onworkstation, runthe lab file-review start command. This ensures that Ansible
is installed on workstation, creates the /home/student/file-review directory, and
downloads the ansible.cfqg file into that directory. It also downloads the motd.ym1,
motd.j2, issue, and inventory files into the /home/student/file-review/files
directory.

[student@workstation ~]$ lab file-review start

E Note
All files used in this exercise are available on workstation in the /home/
student/file-review/files directory.

Instructions

1.

Review the inventory file in the /home/student/file-review directory. This inventory
file defines the servers group, which has the serverb. lab.example.com managed host

associated with it.

11. Onworkstation, change to the /home/student/file-review directory.

[student@workstation ~]$ cd ~/file-review/

1.2. Display the content of the inventory file.

[servers]
serverb.lab.example.com

RH294-RHEL8.4-en-1-20210818

Chapter 5 | Deploying Files to Managed Hosts

2.

4.

Identify the facts on serverb. lab.example.com that show the total amount of system
memory, and the number of processors.

Use the setup module to get a list of all the facts for the serverb. lab.example.com
managed host. The ansible_processor_count and ansible_memtotal_mb facts
provide information about the resource limits of the managed host.

[student@workstation file-review]$ ansible serverb.lab.example.com -m setup
serverb.lab.example.com | SUCCESS => {
"ansible_facts": {
...output omitted...
"ansible_processor_count": 1,
...output omitted...
"ansible_memtotal _mb": 821,
...output omitted...
H

"changed": false

Create a template for the Message of the Day, named motd. j2, in the current

directory. When the devops user logsin to serverb. lab.example.com, a message
should display that shows the system's total memory and processor count. Use the
ansible_facts['memtotal_mb'] andansible_facts['processor_count'] facts
to provide the system resource information for the message.

System total memory: {{ ansible_facts['memtotal mb'] }} MiB.
System processor count: {{ ansible_facts['processor_count'] }}

Create a new playbook file called motd.ymlin the current directory. Using the template
module, configure the motd. j2 Jinja2 template file previously created to map to the file /
etc/motd on the managed hosts. This file has the root user as owner and group, and its
permissions are 0644. Using the stat and debug modules, create tasks to verify that /etc/
motd exists on the managed hosts and displays the file information for /etc/motd. Use the
copy module to place files/issue into the /etc/ directory on the managed host, use the
same ownership and permissions as /etc/motd. Use the file module to ensure that /etc/
issue.net is a symboliclink to /etc/issue on the managed host. Configure the playbook
so that it uses the devops user, and sets the become parameter to true.

- name: Configure system
hosts: all
remote_user: devops
become: true

tasks:
- name: Configure a custom /etc/motd
template:

src: motd.j2
dest: /etc/motd
owner: root
group: root
mode: 0644

- name: Check file exists
stat:

Chapter 5 | Deploying Files to Managed Hosts

path: /etc/motd
register: motd

- name: Display stat results
debug:
var: motd

- name: Copy custom /etc/issue file
copy:
src: files/issue
dest: /etc/issue
owner: root
group: root
mode: 0644

- name: Ensure /etc/issue.net is a symlink to /etc/issue
file:
src: /etc/issue
dest: /etc/issue.net
state: link
owner: root
group: root
force: yes

5. Run the playbook included in the motd.yml file.
5.1. Before you run the playbook, use the ansible-playbook --syntax-check

command to verify its syntax. If it reports any errors, correct them before moving to the
next step. You should see output similar to the following:

[student@workstation file-review]$ ansible-playbook --syntax-check motd.yml

playbook: motd.yml

5.2. Run the playbook included in the motd.yml file.

[student@workstation file-review]$ ansible-playbook motd.yml

PLAY [Conflgure system] R R R SR S S S S Sk S S S R R R

TASK [Gatherlng Facts] R R R SR S S R S Sk R R R

ok: [serverb.lab.example.com]

TASK [Conflgure a Custom /etc/motd] R R R R R R R S S S R S
changed: [serverb.lab.example.com]

TASK [Check flle eXlStS] R R R R R S S R R R S R

ok: [serverb.lab.example.com]

TASK [DlSplay Stat results] R R R R R R R R R
ok: [serverb.lab.example.com] => {
"motd": {
"changed": false,
"failed": false,

Chapter 5 | Deploying Files to Managed Hosts
...output omitted. ..

TASK [Copy custom /etc/issue flle] khkkkhkkhhkhhkhhhhhhhkhhhhhhhkhhhhhhhkhhhhhkhkhkx

changed: [serverb.lab.example.com]

TASK [Ensure /etc/issue.net is a symlink to /etc/issue] ***x***kdkxxsddhxxxs
changed: [serverb.lab.example.com]

PLAY RECAP ***xxdkkkkkhdkkhkhh ok khkk Ak ok Ak ko hhk Ak ok Ak ok Ak ok k ok ok k ok ok kkkk ok ok kk ok kkkkk ok kkokxx

serverb.lab.example.com : ok=6 changed=3 unreachable=0 failed=0

6. Check that the playbook included in the motd.yml file has been executed correctly.

Loginto serverb.lab.example.com as the devops user, and verify that the /etc/motd
and /etc/issue contents are displayed when logging in. Log off when you have finished.

[student@workstation file-review]$ ssh devops@serverb.lab.example.com

L T PP PRIVATE SYSTEM = -------mmmmmmme e oo kJ
* Access to this computer system is restricted to authorised users only. *
* *
* Customer information is confidential and must not be disclosed. *
* *

System total memory: 821 MiB.
System processor count: 1
Activate the web console with: systemctl enable --now cockpit.socket

This system is not registered to Red Hat Insights. See https://cloud.redhat.com/
To register this system, run: insights-client --register

Last login: Thu Apr 25 22:09:33 2019 from 172.25.250.9
[devops@serverb ~]$ logout

Evaluation

Onworkstation, runthe lab file-review grade script to confirm success on this exercise.
[student@workstation ~]$ lab file-review grade

Finish

Onworkstation, runthe lab file-review finish script to clean up after the lab.

[student@workstation ~]$ lab file-review finish

This concludes the guided exercise.

Chapter 5 | Deploying Files to Managed Hosts

Summary

In this chapter, you learned:

The Files modules library includes modules that allow you to accomplish most tasks related
to file management, such as creating, copying, editing, and modifying permissions and other
attributes of files.

You can use Jinja2 templates to dynamically construct files for deployment.

A Jinja2 template is usually composed of two elements: variables and expressions. Those
variables and expressions are replaced with values when the Jinja2 template is rendered.

Jinja2 filters transform template expressions from one kind or format of data into another.

w RH294-RHEL8.4-en-1-20210818

Chapter 6

Managing Complex Plays and
Playbooks

Goal Write playbooks for larger, more complex plays and U
playbooks.

Objectives + Write sophisticated host patterns to efficiently .
select hosts for a play or ad hoc command. .
Manage large playbooks by importing or ,
including other playbooks or tasks from external '.
files, either unconditionally or based on a
conditional test. i

Sections + Selecting Hosts with Host Patterns (and
Guided Exercise)

Including and Importing Files (and Guided
Exercise)

TN

Lab + Managing Complex Plays and Playbooks

r/

RH294-RHEL8.4-en-1-20210818

Chapter 6 | Managing Complex Plays and Playbooks

Selecting Hosts with Host Patterns

Objectives

After completing this section, you will be able to write sophisticated host patterns to efficiently
select hosts for a play or ad hoc command.

Referencing Inventory Hosts

Host patterns are used to specify the hosts to target by a play or ad hoc command. In its simplest
form, the name of a managed host or a host group in the inventory is a host pattern that specifies
that host or host group.

You have already used host patterns in this course. In a play, the hosts directive specifies the
managed hosts to run the play against. For an ad hoc command, provide the host pattern as a
command line argument to the ansible command.

It is usually easier to control what hosts a play targets by carefully using host patterns and
having appropriate inventory groups, instead of setting complex conditionals on the play's tasks.
Therefore, it is important to have a robust understanding of host patterns.

The following example inventory is used throughout this section to illustrate host patterns.

[student@controlnode ~]$ cat myinventory
web.example.com
data.example.com

[lab]
labhostl.example.com
labhost2.example.com

[test]
testl.example.com
test2.example.com

[datacenter1l]
labhostl.example.com
testl.example.com

[datacenter2]
labhost2.example.com
test2.example.com

[datacenter:children]
datacenteril
datacenter2

[new]

192.168.2.1
192.168.2.2

Chapter 6 | Managing Complex Plays and Playbooks

To demonstrate how host patterns are resolved, you will execute an Ansible Playbook,
playbook.ym1, using different host patterns to target different subsets of managed hosts from
this example inventory.

Managed Hosts

The most basic host pattern is the name for a single managed host listed in the inventory. This
specifies that the host will be the only one in the inventory that will be acted upon by the ansible
command.

When the playbook runs, the first Gathering Facts task should run on all managed hosts that
match the host pattern. A failure during this task can cause the managed host to be removed from
the play.

If an IP address is listed explicitly in the inventory, instead of a host name, then it can be used as
a host pattern. If the IP address is not listed in the inventory, then you cannot use it to specify the
host even if the IP address resolves to that host name in the DNS.

The following example shows how a host pattern can be used to reference an IP address contained
in an inventory.

[student@controlnode ~]$ cat playbook.yml

- hosts: 192.168.2.1
...output omitted...

[student@controlnode ~]$ ansible-playbook playbook.yml

PLAY [Test Host Patterns] khkkkhkkhhkhhkhhhkhhhhhhhhhh bk bk hhhhh bk hhhk bk hhkhh kb kkkkkk

TASK [Gathering FaCtS] khkkkkkhhkhhkhhhhhh b bk hhhh bk bk hhhk kb bk hhhkhkhhkhkhhkhhkhkkhkhk*

ok: [192.168.2.1]
...output omitted...

g Note

One problem with referring to managed hosts by IP address in the inventory is that
it can be hard to remember which IP address matches which host for your plays and
ad hoc commands. However, you may have to specify the host by IP address for
connection purposes if the host does not have a resolvable host name.

It is possible to point an alias at a particular IP address in your inventory by setting
the ansible_host host variable. For example, you could have a host in your
inventory named dummy . examp le, and then direct connections using that name
to the IP address 192.168.2.1 by creating a host_vars/dummy . examp le file
containing the following host variable:

ansible_host: 192.168.2.1

Specifying Hosts Using a Group

You have already used inventory host groups as host patterns. When a group name is used as a
host pattern, it specifies that Ansible will act on the hosts that are members of the group.

Chapter 6 | Managing Complex Plays and Playbooks

[student@controlnode ~]$ cat playbook.yml

- hosts: lab

...output omitted...

[student@controlnode ~]$ ansible-playbook playbook.yml

PLAY [TeSt HOSt Patterns] Rk R Sk Sk Sk Sk S S S S Sk S R S Sk kS S R R

TASK [Gatherlng Facts] R R R S S S S Sk S Sk S kR R S S R R

ok: [labhostl.example.com]
ok: [labhost2.example.com]
...output omitted...

Remember that there is a special group named all that matches all managed hosts in the
inventory.

[student@controlnode ~]$ cat playbook.yml

- hosts: all

...output omitted...

[student@controlnode ~]$ ansible-playbook playbook.yml

PLAY [Test HOSt Patterns] R R Sk Sk Sk R S S S S Sk S R S Sk kS S S R S S R

TASK [Gatherlng Facts] R R R S S Sk S Sk S S S S S S S S S R S S S R S S S S R S

ok: [labhost2.example.com]
ok: [test2.example.com]
ok: [web.example.com]

ok: [data.example.com]

ok: [labhostil.example.com]
ok: [192.168.2.1]

ok: [testl.example.com]
ok: [192.168.2.2]

There is also a special group named ungrouped, which includes all managed hosts in the
inventory that are not members of any other group:

[student@controlnode ~]$ cat playbook.yml

- hosts: ungrouped
...output omitted. ..
[student@controlnode ~]$ ansible-playbook playbook.yml

PLAY [Test HOSt Patterns] R R Rk R S R R R R R R R S R R R R R S R R R S

TASK [Gathering Facts] LR R R R R R R SR R R S R R S R R R S R R R R R S S R R R

ok: [web.example.com]
ok: [data.example.com]

Chapter 6 | Managing Complex Plays and Playbooks

Matching Multiple Hosts with Wildcards

Another method of accomplishing the same thing as the all host pattern is to use the asterisk (*)
wildcard character, which matches any string. If the host pattern is just a quoted asterisk, then all
hosts in the inventory will match.

[student@controlnode ~]$ cat playbook.yml

- hosts: '*
...output omitted...
[student@controlnode ~]$ ansible-playbook playbook.yml

PLAY [Test Host Patterns] khkhkkhkkhhhhkhhhhhhhhhhhhhh bk hhhkh b bk ko kb hk bk hhk bk kkkkk

TASK [Gathering FaCtS] o X

ok: [labhost2.example.com]
ok: [test2.example.com]
ok: [web.example.com]

ok: [data.example.com]

ok: [labhostil.example.com]
ok: [192.168.2.1]

ok: [testl.example.com]
ok: [192.168.2.2]

i~ | Important
Some characters that are used in host patterns also have meaning for the shell.
This can be a problem when using host patterns to run ad hoc commands from the
command line with ansible. It is a recommended practice to enclose host patterns
used on the command line in single quotes to protect them from unwanted shell
expansion.

Likewise, if you are using any special wildcards or list characters in an Ansible
Playbook, then you must put your host pattern in single quotes to ensure it is parsed
correctly.

hosts: '!testl.example.com,development'

The asterisk character can also be used to match any managed hosts or groups that contain a
particular substring.

For example, the following wildcard host pattern matches all inventory names that end in
.example.com:

[student@controlnode ~]$ cat playbook.yml

- hosts: '*.example.com'
...output omitted. ..
[student@controlnode ~]$ ansible-playbook playbook.yml

PLAY [Test Host Patterns] o

Chapter 6 | Managing Complex Plays and Playbooks

TASK [Gathering FaCtS] khhkkkkhhkhhhhhkhhhhhhhhhhhhhhhhkh b bk hhhkh bk bk hhkhhk bk khkhk*

ok: [labhostil.example.com]
ok: [testl.example.com]
ok: [labhost2.example.com]
ok: [test2.example.com]
ok: [web.example.com]

ok: [data.example.com]

The following example uses a wildcard host pattern to match the names of hosts or host groups
that start with 192.168.2.:

[student@controlnode ~]$ cat playbook.yml

- hosts: '192.168.2.*'
...output omitted...
[student@controlnode ~]$ ansible-playbook playbook.yml

PLAY [Test Host Patterns] Rk Rk S Sk R S S S S Sk S R S S R R

TASK [Gatherlng Facts] R R R R S S S SR R R R R R R R

ok: [192.168.2.1]
ok: [192.168.2.2]

The next example uses a wildcard host pattern to match the names of hosts or host groups that
begin with datacenter.

[student@controlnode ~]$ cat playbook.yml

- hosts: 'datacenter*'

...output omitted...

[student@controlnode ~]$ ansible-playbook playbook.yml

PLAY [TeSt HOSt Patterns] Rk R Sk Sk Sk Sk S S S S Sk S R S S kR S R

TASK [Gatherlng Facts] R R R S S Sk S Sk S S Sk S S S kR S R S

ok: [labhostl.example.com]
ok: [testl.example.com]
ok: [labhost2.example.com]
ok: [test2.example.com]

Chapter 6 | Managing Complex Plays and Playbooks

i~ | Important
= The wildcard host patterns match all inventory names, hosts, and host groups. They
do not distinguish between names that are DNS names, IP addresses, or groups,
which can lead to some unexpected matches.

For example, compare the results of specifying the datacenter* host pattern
from the preceding example with the results of the data* host pattern based on
the example inventory:

[student@controlnode ~]$ cat playbook.yml

- hosts: 'data*'
...output omitted. ..
[student@controlnode ~]$ ansible-playbook playbook.yml

PLAY [Test Host Patterns] hkhkkhhkhhkhkhhkhhkhhkhkhhkhhkhhkkhhkhhkhhkkhhkhhkhhkkhkhhkhkkkhkkkk k%

TASK [GAthering Facts] *** % & skssshshsrkakaka kb kaka kb ks hkhk kA KA KA KA KN KKK ¥
ok: [labhostl.example.com]

ok: [testl.example.com]

ok: [labhost2.example.com]

ok: [test2.example.com]

ok: [data.example.com]

Lists

Multiple entries in an inventory can be referenced using logical lists. A comma-separated list of
host patterns matches all hosts that match any of those host patterns.

If you provide a comma-separated list of managed hosts, then all those managed hosts will be
targeted:

[student@controlnode ~]$ cat playbook.yml

- hosts: labhostl.example.com, test2.example.com,192.168.2.2
...output omitted. ..
[student@controlnode ~]$ ansible-playbook playbook.yml

PLAY [Test Host Patterns] R R R S R R S S Sk R R R

TASK [Gatherlng Facts] R R R R S R S R R R R R R

ok: [labhostil.example.com]
ok: [test2.example.com]
ok: [192.168.2.2]

If you provide a comma-separated list of groups, then all hosts in any of those groups will be
targeted:

[student@controlnode ~]$ cat playbook.yml

- hosts: lab,datacenteril
...output omitted...

Chapter 6 | Managing Complex Plays and Playbooks
[student@controlnode ~]$ ansible-playbook playbook.yml

PLAY [TeSt Host Patterns] khkhkkhkkhhkhhkhhhhhhhhhhhhh b bk hhhkhh bk kb kb h bk hkh kb dhkkkk

TASK [Gatherlng FaCtS] R R R SR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE RS EEEEEEEEEEESS
ok: [labhostl.example.com]

ok: [labhost2.example.com]
ok: [testl.example.com]

You can also mix managed hosts, host groups, and wildcards, as shown below:

[student@controlnode ~]$ cat playbook.yml

- hosts: lab,data*,192.168.2.2

...output omitted...

[student@controlnode ~]$ ansible-playbook playbook.yml

PLAY [Test Host Patterns] Rk Rk S Sk R S S S S Sk S R S S R R

TASK [Gatherlng Facts] R R R R S S S SR R R R R R R R

ok: [labhostl.example.com]
ok: [labhost2.example.com]
ok: [testl.example.com]
ok: [test2.example.com]
ok: [data.example.com]

ok: [192.168.2.2]

Note

E The colon character (:) can be used instead of a comma. However, the comma is the
preferred separator, especially when working with IPv6 addresses as managed host
names. You may see the colon syntax in older examples.

If an item in a list starts with an ampersand character (&), then hosts must match that item in order
to match the host pattern. It operates similarly to a logical AND.

For example, based on our example inventory, the following host pattern matches machines in the
lab group only if they are also in the datacenterl group:

[student@controlnode ~]$ cat playbook.yml

- hosts: lab,&datacenteri
...output omitted...
[student@controlnode ~]$ ansible-playbook playbook.yml

PLAY [TeSt HOSt Patterns] R R Sk Sk Sk Sk S S S S Sk S R S S S R R R

TASK [Gatherlng Facts] R R R S S S S Sk S S kS S S R S S S R S R

ok: [labhostil.example.com]

You could also specify that machines in the datacenter1 group match only if they are in the lab
group with the host patterns &lab, datacenterl or datacenteri, &lab.

Chapter 6 | Managing Complex Plays and Playbooks

You can exclude hosts that match a pattern from a list by using the exclamation point or "bang"
character (!) in front of the host pattern. This operates like a logical NOT.

This example matches all hosts defined in the datacenter group, except test2.example.com
based on the example inventory:

[student@controlnode ~]$ cat playbook.yml

- hosts: datacenter, !test2.example.com

...output omitted...

[student@controlnode ~]$ ansible-playbook playbook.yml

PLAY [Test HOSt Patterns] Rk R Sk Sk Sk R S S S S S S S R S S S R R

TASK [Gatherlng Facts] R R R SR S Sk S S S S S S S R S S R S

ok: [labhostil.example.com]
ok: [testl.example.com]
ok: [labhost2.example.com]

The pattern ' I test2.example.com, datacenter' could have been used in the preceding
example to achieve the same result.

The final example shows the use of a host pattern that matches all hosts in the test inventory,
except the managed hosts in the datacenterl group.

[student@controlnode ~]$ cat playbook.yml

- hosts: all, !datacenterl

...output omitted...

[student@controlnode ~]$ ansible-playbook playbook.yml

PLAY [Test Host Patterns] khkhkhkhhkhhhhhkdhhhhhhhhhhhhhhhhkhhhhhhhhhhhhhk bk hkkkk

TASK [Gathering FaCtS] khkhkhkkhhhkhkhhhkhhhhhhhdhhhhhhhhhhhkhhhhhh bk bk hhkhkhkhkhkhk*

ok: [web.example.com]

ok: [data.example.com]

ok: [labhost2.example.com]
ok: [test2.example.com]
ok: [192.168.2.1]

ok: [192.168.2.2]

References

Working with Patterns — Ansible Documentation
https://docs.ansible.com/ansible/2.9/user_guide/intro_patterns.html

Working with Inventory — Ansible Documentation
https://docs.ansible.com/ansible/2.9/user_guide/intro_inventory.html

https://docs.ansible.com/ansible/2.9/user_guide/intro_patterns.html
https://docs.ansible.com/ansible/2.9/user_guide/intro_inventory.html

Chapter 6 | Managing Complex Plays and Playbooks

» Guided Exercise

Selecting Hosts with Host Patterns

In this exercise, you will explore how to use host patterns to specify hosts from the inventory
for plays or ad hoc commands. You will be provided with several example inventories to
explore host patterns.

Outcomes

You will be able to use different host patterns to access various hosts in an inventory.

Before You Begin
Logintoworkstation as student using student as the password.

Onworkstation, runthe lab projects-host start command. The script creates the
projects-host project directory, and then downloads the Ansible configuration file and
the host inventory file needed for this exercise.

[student@workstation ~]$ lab projects-host start

Instructions

P 1. Onworkstation, change to the working directory for the exercise, /home/student/
projects-host, and review the contents of the directory.

[student@workstation ~]$ cd ~/projects-host
[student@workstation projects-host]$

11, List the contents of the directory.

[student@workstation projects-host]$ 1s
ansible.cfg inventoryl inventory2 playbook.yml

1.2. Inspect the example inventory file, inventoryl. Notice how the inventory is
organized. Explore which hosts and groups are in the inventory, and which domains
are used.

srvl.example.com
srv2.example.com
s1.lab.example.com
s2.lab.example.com

[web]
jupiter.lab.example.com

saturn.example.com

[db]

Chapter 6 | Managing Complex Plays and Playbooks

dbl.example.com
db2.example.com
db3.example.com

[1b]
1b1.lab.example.com
1b2.lab.example.com

[boston]
dbl.example.com
jupiter.lab.example.com
1b2.lab.example.com

[london]
db2.example.com
db3.example.com
filel.lab.example.com
1b1.lab.example.com

[dev]
webl. lab.example.com
db3.example.com

[stage]
file2.example.com
db2.example.com

[prod]
1b2.lab.example.com

dbl.example.com
jupiter.lab.example.com

[function:children]
web

db

1b

city

[city:children]
boston

london
environments

[environments:children]
dev

stage

prod

new

[new]

172.25.252.23
172.25.252.44
172.25.252.32

Chapter 6 | Managing Complex Plays and Playbooks

1.3. Inspect the example inventory file, inventory2. Notice how the inventory is
organized. Explore which hosts and groups are in the inventory, and which domains
are used.

workstation. lab.example.com

[london]
servera. lab.example.com

[berlin]
serverb.lab.example.com

[tokyo]
serverc. lab.example.com

[atlanta]
serverd. lab.example.com

[europe:children]
london
berlin

1.4. Lastly, inspect the contents of the playbook, playbook.ym1l. Notice how the
playbook uses the debug module to display the name of each managed host.

- name: Resolve host patterns
hosts:
tasks:
- name: Display managed host name
debug:
msg: "{{ inventory_hostname }}"

P 2. Using an ad hoc command, determine if the db1.example.com server is present in the
inventory1l inventory file.

[student@workstation projects-host]$ ansible dbil.example.com -i inventoryil \
> --list-hosts
hosts (1):
db1.example.com

P 3. Using an ad hoc command, reference an IP address contained in the inventoryil
inventory with a host pattern.

[student@workstation projects-host]$ ansible 172.25.252.44 -i inventoryl \
> --list-hosts
hosts (1):
172.25.252.44

P 4. With an ad hoc command, use the all group to list all managed hosts in the inventoryil
inventory file.

Chapter 6 | Managing Complex Plays and Playbooks

[student@workstation projects-host]$ ansible all -i inventoryl --list-hosts

) 5.

hosts (17):

srvl.example.com
srv2.example.com
sl.lab.example.com
s2.lab.example.com
jupiter.lab.example.com
saturn.example.com
db1.example.com
db2.example.com
db3.example.com
1b1.lab.example.com
1b2.1lab.example.com
filel.lab.example.com
webl.lab.example.com
file2.example.com
172.25.252.23
172.25.252.44
172.25.252.32

With an ad hoc command, use the asterisk (*) character to list all hosts that end in
.example.cominthe inventoryl inventory file.

[student@workstation projects-host]$ ansible '*.example.com' -i inventoryl \
> --list-hosts

) 6.

hosts (14):

jupiter.lab.example.com
saturn.example.com
dbl.example.com
db2.example.com
db3.example.com
1b1.lab.example.com
1b2.lab.example.com
filel.lab.example.com
webl. lab.example.com
file2.example.com
srvl.example.com
srv2.example.com
sl.lab.example.com
s2.lab.example.com

As you can see in the output of the preceeding command, there are 14 hosts in the
* . example.com domain. Modify the host pattern in the previous ad hoc command so that
hosts in the *. lab.example.com domain are ignored.

[student@workstation projects-host]$ ansible '*.example.com, !*.lab.example.com' \
> -i inventoryl --list-hosts

hosts (7):

saturn.example.com
dbl.example.com
db2.example.com

Chapter 6 | Managing Complex Plays and Playbooks

db3.example.com
file2.example.com
srvl.example.com
srv2.example.com

P 7. Without accessing the groups in the inventory1 inventory file, use an ad hoc command
to list these three hosts: 1b1l. lab.example.com, s1. lab.example.com, and
dbl.example.com.

[student@workstation projects-host]$ ansible \
> 1b1.lab.example.com, s1. lab.example.com,dbl.example.com -i inventoryl \
> --list-hosts
hosts (3):
1b1.lab.example.com
sl.lab.example.com
dbl.example.com

P 8. Use awildcard host pattern in an ad hoc command to list hosts that start with a 172.25. IP
address in the inventory1 inventory file.

[student@workstation projects-host]$ ansible '172.25.*' -i inventoryl --list-hosts
hosts (3):
172.25.252.23
172.25.252.44
172.25.252.32

P 9. Use ahost patternin an ad hoc command to list all hosts in the inventory1 inventory file
that start with the letter "s."

[student@workstation projects-host]$ ansible 's*' -i inventoryl --list-hosts
hosts (7):
saturn.example.com
srvl.example.com
srv2.example.com
sl.lab.example.com
s2.lab.example.com
file2.example.com
db2.example.com

Notice the file2.example.comand db2.example.com hosts in the output of the
preceding command. They appear in the list because they are both members of a group
called stage, which also begins with the letter "s."

P 10. Using a list and wildcard host patterns in an ad hoc command, list all hosts in the
inventoryl inventory in the prod group, those hosts with an IP address beginning with
172, and hosts that contain 1ab in their name.

[student@workstation projects-host]$ ansible 'prod,172*,*1lab*' -i inventoryl \
> --list-hosts
hosts (11):
1b2.1lab.example.com
db1.example.com

Chapter 6 | Managing Complex Plays and Playbooks

jupiter.lab.example.com
172.25.252.23
172.25.252.44
172.25.252.32
1b1.lab.example.com
filel.lab.example.com
webl. lab.example.com
sl.lab.example.com
s2.lab.example.com

P 1. Use an ad hoc command to list all hosts that belong to both the db and london groups.

[student@workstation projects-host]$ ansible 'db,&london' -i inventoryl \
> --list-hosts
hosts (2):
db2.example.com
db3.example.com

P 12. Modify the hosts value in the playbook.ym1 file so that all servers in the London group
are targeted. Execute the playbook using the inventory2 inventory file.

...output omitted...
hosts: london
...output omitted...

[student@workstation projects-host]$ ansible-playbook -i inventory2 playbook.yml
...output omitted. ..

TASK [Gatherlng FaCtS] R R R EEEEEEEEEEREEEEEEEEEREEREEREEEEEEEEEEEEEEEEEEEESS

ok: [servera.lab.example.com]

...output omitted. ..

P 13. Modify the hosts value in the playbook.yml file so that all servers in the europe nested
group are targeted. Execute the playbook using the inventory2 inventory file.

...output omitted. ..
hosts: europe
...output omitted. ..

[student@workstation projects-host]$ ansible-playbook -i inventory2 playbook.yml
...output omitted...

TASK [Gathel’lng FaCtS] R SR Sk S Sk S Sk S S S S Sk S S S S

ok: [servera.lab.example.com]

ok: [serverb.lab.example.com]

...output omitted...

Chapter 6 | Managing Complex Plays and Playbooks

) 14. Modify the hosts value in the playbook.yml file so that all servers that do not belong to
any group are targeted. Execute the playbook using the inventory2 inventory file.

...output omitted. ..
hosts: ungrouped
...output omitted. ..

[student@workstation projects-hosts]$ ansible-playbook -i inventory2 playbook.yml
...output omitted...

TASK [Gatherlng Facts] R SR Sk S S S S S S S S S Sk S S S S R

ok: [workstation.lab.example.com]
...output omitted...

Finish
Onworkstation, runthe lab projects-host finish scriptto clean up this exercise

[student@workstation ~]$ lab projects-host finish

This concludes the guided exercise.

W RH294-RHEL8.4-en-1-20210818

Chapter 6 | Managing Complex Plays and Playbooks

Including and Importing Files

Objectives

After completing this section, you will be able to manage large playbooks by importing or including
other playbooks or tasks from external files, either unconditionally or based on a conditional test.

Managing Large Playbooks

When a playbook gets long or complex, you can divide it up into smaller files to make it easier to
manage. You can combine multiple playbooks into a main playbook modularly, or insert lists of
tasks from a file into a play. This can make it easier to reuse plays or sequences of tasks in different
projects.

Including or Importing Files

There are two operations that Ansible can use to bring content into a playbook. You can include
content, or you can import content.

When you include content, it is a dynamic operation. Ansible processes included content during
the run of the playbook, as content is reached.

When you import content, it is a static operation. Ansible preprocesses imported content when the
playbook is initially parsed, before the run starts.

Importing Playbooks

The import_playbook directive allows you to import external files containing lists of plays into
a playbook. In other words, you can have a master playbook that imports one or more additional
playbooks.

Because the content being imported is a complete playbook, the import_playbook feature can
only be used at the top level of a playbook and cannot be used inside a play. If you import multiple
playbooks, then they will be imported and run in order.

A simple example of a master playbook that imports two additional playbooks is shown below:

- name: Prepare the web server
import_playbook: web.yml

- name: Prepare the database server
import_playbook: db.yml

You can also interleave plays in your master playbook with imported playbooks.

RH294-RHEL8.4-en-1-20210818 w

Chapter 6 | Managing Complex Plays and Playbooks

- name: Play 1
hosts: localhost
tasks:

- debug:
msg: Play 1

- name: Import Playbook
import_playbook: play2.yml

In the preceding example, the Play 1 runs first, followed by the plays imported from the
play2.yml playbook.

Importing and Including Tasks

You can import or include a list of tasks from a task file into a play. A task file is a file that contains a
flat list of tasks:

[admin@node ~]$ cat webserver_tasks.yml
- name: Installs the httpd package
yum:
name: httpd
state: latest

- name: Starts the httpd service
service:
name: httpd
state: started

Importing Task Files

You can statically import a task file into a play inside a playbook by using the import_tasks
feature. When you import a task file, the tasks in that file are directly inserted when the playbook is
parsed. The location of import_tasks in the playbook controls where the tasks are inserted and
the order in which multiple imports are run.

- name: Install web server
hosts: webservers
tasks:
- import_tasks: webserver_tasks.yml

When you import a task file, the tasks in that file are directly inserted when the playbook is parsed.
Because import_tasks statically imports the tasks when the playbook is parsed, there are some
effects on how it works.

+ When using the import_tasks feature, conditional statements set on the import, such as
when, are applied to each of the tasks that are imported.

+ You cannot use loops with the import_tasks feature.

+ If you use a variable to specify the name of the file to import, then you cannot use a host or
group inventory variable.

Chapter 6 | Managing Complex Plays and Playbooks

Including Task Files

You can also dynamically include a task file into a play inside a playbook by using the
include_tasks feature.

- name: Install web server
hosts: webservers
tasks:
- include_tasks: webserver_tasks.yml

The include_tasks feature does not process content in the playbook until the play is running
and that part of the play is reached. The order in which playbook content is processed impacts
how the include tasks feature works.

+ When using the include_tasks feature, conditional statements such as when set on the
include determine whether or not the tasks are included in the play at all.

+ Ifyourunansible-playbook --list-tasks to listthe tasks in the playbook, then tasks in
the included task files are not displayed. The tasks that include the task files are displayed. By
comparison, the import_tasks feature would not list tasks that import task files, but instead
would list the individual tasks from the imported task files.

+ You cannot use ansible-playbook --start-at-task to startplaybook execution from a
task that is in an included task file.

+ You cannot use a notify statement to trigger a handler name that is in an included task file.
You can trigger a handler in the main playbook that includes an entire task file, in which case all
tasks in the included file will run.

Note

S You can find a more detailed discussion of the differences in behavior
between import_tasks and include_tasks when conditionals are
used at "Conditionals" [https://docs.ansible.com/ansible/2.9/user_guide/
playbooks_conditionals.html#applying-when-to-roles-imports-and-includes] in the
Ansible User Guide.

Use Cases for Task Files

Consider the following examples where it might be useful to manage sets of tasks as external files
separate from the playbook:

+ If new servers require complete configuration, then administrators could create various sets
of tasks for creating users, installing packages, configuring services, configuring privileges,
setting up access to a shared file system, hardening the servers, installing security updates, and
installing a monitoring agent. Each of these sets of tasks could be managed through a separate
self-contained task file.

+ If servers are managed collectively by the developers, the system administrators, and the
database administrators, then every organization can write its own task file which can then be
reviewed and integrated by the system manager.

« If a server requires a particular configuration, then it can be integrated as a set of tasks that are
executed based on a conditional. In other words, including the tasks only if specific criteria are
met.

https://docs.ansible.com/ansible/2.9/user_guide/playbooks_conditionals.html#applying-when-to-roles-imports-and-includes
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_conditionals.html#applying-when-to-roles-imports-and-includes
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_conditionals.html#applying-when-to-roles-imports-and-includes

Chapter 6 | Managing Complex Plays and Playbooks

+ If a group of servers need to run a particular task or set of tasks, then the tasks might only be
run on a server if it is part of a specific host group.

Managing Task Files

You can create a dedicated directory for task files, and save all task files in that directory. Then
your playbook can simply include or import task files from that directory. This allows construction
of a complex playbook while making it easy to manage its structure and components.

Defining Variables for External Plays and Tasks

The incorporation of plays or tasks from external files into playbooks using Ansible's import

and include features greatly enhance the ability to reuse tasks and playbooks across an Ansible
environment. To maximize the possibility of reuse, these task and play files should be as generic as
possible. Variables can be used to parameterize play and task elements to expand the application
of tasks and plays.

For example, the following task file installs the package needed for a web service, and then
enables and starts the necessary service.

- name: Install the httpd package
yum:
name: httpd
state: latest
- name: Start the httpd service
service:
name: httpd
enabled: true
state: started

If you parameterize the package and service elements as shown in the following example, then
the task file can also be used for the installation and administration of other software and their
services, rather than being useful for web service only.

- name: Install the {{ package }} package
yum:
name: "{{ package }}"
state: latest
- name: Start the {{ service }} service
service:
name: "{{ service }}"
enabled: true
state: started

Subsequently, when incorporating the task file into a playbook, define the variables to use for the
task execution as follows:

Chapter 6 | Managing Complex Plays and Playbooks

...output omitted...

tasks:
- name: Import task file and set variables

import_tasks: task.yml
vars:
package: httpd
service: httpd

Ansible makes the passed variables available to the tasks imported from the external file.

You can use the same technique to make play files more reusable. When incorporating a play file
into a playbook, pass the variables to use for the play execution as follows:

...output omitted. ..
- name: Import play file and set the variable

import_playbook: play.yml
vars:
package: mariadb

Important

Earlier versions of Ansible used an include feature to include both playbooks and
task files, depending on context. This functionality is being deprecated for a number
of reasons.

Prior to Ansible 2.0, inc lude operated like a static import. In Ansible 2.0 it was
changed to operate dynamically, but this created some limitations. In Ansible 2.1t
became possible for include to be dynamic or static depending on task settings,
which was confusing and error-prone. There were also issues with ensuring that
include worked correctly in all contexts.

Thus, include was replaced in Ansible 2.4 with new directives such as
include_tasks, import_tasks, and import_playbook. You might find
examples of include in older playbooks, but you should avoid using it in new ones.

References

Including and Importing — Ansible Documentation
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_reuse_includes.html

Creating Reusable Playbooks — Ansible Documentation
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_reuse.html

Conditionals — Ansible Documentation
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_conditionals.html

RH294-RHEL8.4-en-1-20210818

https://docs.ansible.com/ansible/2.9/user_guide/playbooks_reuse_includes.html
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_reuse.html
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_conditionals.html

Chapter 6 | Managing Complex Plays and Playbooks

» Guided Exercise

Including and Importing Files

In this exercise, you will include and import playbooks and tasks in a top-level Ansible
Playbook.

Outcomes

You will be able to include task and playbook files in playbooks.

Before You Begin
Logintoworkstation as student using student as the password.

Onworkstation, runthe lab projects-file start command. The script creates the
working directory, /home/student/projects-file, and associated project files.

[student@workstation ~]$ lab projects-file start

Instructions

P 1. Onworkstation, asthe student user, change to the /home/student/projects-
file directory.

[student@workstation ~]$ cd ~/projects-file
[student@workstation projects-file]$

P 2. Review the contents of the three files in the tasks subdirectory.

2.1. Review the contents of the tasks/environment.yml file. The file contains tasks
for package installation and service administration.

- name: Install the {{ package }} package
yum:
name: "{{ package }}"
state: latest
- name: Start the {{ service }} service
service:
name: "{{ service }}"
enabled: true
state: started

2.2. Review the contents of the tasks/firewall.yml file. The file contains tasks for
installation, administration, and configuration of firewall software.

W RH294-RHEL8.4-en-1-20210818

Chapter 6 | Managing Complex Plays and Playbooks

- name: Install the firewall
yum:
name: "{{ firewall_pkg }}"
state: latest

- name: Start the firewall
service:
name: "{{ firewall_svc }}"
enabled: true
state: started

- name: Open the port for {{ rule }}
firewalld:
service: "{{ item }}"
immediate: true
permanent: true
state: enabled
loop: "{{ rule }}"

2.3. Review the contents of the tasks/placeholder.yml file. This file contains a task
for populating a placeholder web content file.

- name: Create placeholder file
copy:
content: "{{ ansible_facts['fqgdn'] }} has been customized using Ansible.\n"
dest: "{{ file }}"

P 3. Review the contents of the test.yml file in the plays subdirectory. This file contains a
play which tests connections to a web service.

- name: Test web service

hosts: localhost

become: no

tasks:

- name: connect to internet web server
uri:

url: "{{ url }}"
status_code: 200

P 4. Create a playbook named playbook.yml. Define the first play with the name Configure
web server. The play should execute against the servera. lab.example.com
managed host defined in the inventory file. The beginning of the file should look like the
following:

- name: Configure web server
hosts: servera.lab.example.com

Chapter 6 | Managing Complex Plays and Playbooks

P 5. Inthe playbook.yml playbook, define the tasks section with three sets of tasks. Include
the first set of tasks from the tasks/environment.yml tasks file. Define the necessary
variables to install the httpd package and to enable and start the httpd service. Import
the second set of tasks from the tasks/firewall.yml tasks file. Define the necessary
variables to install the firewalld package to enable and start the firewalld service, and
to allow http connections. Import the third task set from the tasks/placeholder.yml
task file.

5.1. Create the tasks section in the first play by adding the following entry to the
playbook.ym1l playbook.

tasks:

5.2. Include the first set of tasks from tasks/environment.yml using the
include_tasks feature. Set the package and service variables to httpd.

- name: Include the environment task file and set the variables
include_tasks: tasks/environment.yml
vars:
package: httpd
service: httpd

5.3. Import the second set of tasks from tasks/firewall.ym1l using the
import_tasks feature. Set the firewall_pkgand firewall_svc variables to
firewalld. Set the rule variable to http.

- name: Import the firewall task file and set the variables
import_tasks: tasks/firewall.yml
vars:
firewall _pkg: firewalld
firewall_svc: firewalld
rule:
- http
- https

5.4. Import the last task set from tasks/placeholder.yml using the import_tasks
feature. Set the file variable to /var/www/html/index.html.

- name: Import the placeholder task file and set the variable
import_tasks: tasks/placeholder.yml
vars:
file: /var/www/html/index.html

) 6. Addasecond and final play to the playbook.ym1 playbook using the contents of the
plays/test.yml playbook.

6.]. Add asecond play to the playbook.ym1 playbook to validate the web server
installation. Import the play from plays/test.yml. Set the ur 1 variable to
http://servera. lab.example.com.

Chapter 6 | Managing Complex Plays and Playbooks

- name: Import test play file and set the variable
import_playbook: plays/test.yml
vars:
url: 'http://servera.lab.example.com'

6.2. Your playbook should look like the following after the changes are complete:

- name: Configure web server
hosts: servera.lab.example.com

tasks:
- name: Include the environment task file and set the variables
include_tasks: tasks/environment.yml
vars:
package: httpd
service: httpd

- name: Import the firewall task file and set the variables
import_tasks: tasks/firewall.yml
vars:
firewall _pkg: firewalld
firewall_svc: firewalld
rule:
- http
- https

- name: Import the placeholder task file and set the variable
import_tasks: tasks/placeholder.yml
vars:
file: /var/www/html/index.html

- name: Import test play file and set the variable
import_playbook: plays/test.yml

vars:
url: 'http://servera.lab.example.com'

6.3. Save the changes to the playbook.ym1 playbook.

P 7. Before running the playbook, verify its syntax is correct by running ansible-playbook
--syntax-check. If errors are reported, correct them before moving to the next step.

[student@workstation projects-file]$ ansible-playbook playbook.yml --syntax-check

playbook: playbook.yml

) 8. Execute the playbook.yml playbook. The output of the playbook shows the import of the
task and play files.

Chapter 6 | Managing Complex Plays and Playbooks

[student@workstation projects-file]$ ansible-playbook playbook.yml

PLAY [Conflgure Web SerVer] R R Sk S S Sk Sk Sk kS S S Sk S S S S S R S S S S S O

TASK [Gatherlng Facts] R R R Sk S S S S Sk S S S R S Sk S S S S S S S S kR

ok: [servera.lab.example.com]

TASK [Install the httpd package] R R R Sk Sk S S S S S S S S S S S kR S R S R S
changed: [servera.lab.example.com]

TASK [Start the httpd Seerce] R R SR R S Sk S S S S kS
changed: [servera.lab.example.com]

TASK [Install the flrewall] R SR Sk S S Sk Sk Sk S S S S Sk S S S S R S S S

ok: [servera.lab.example.com]

TASK [Start the flrewall] Rk Sk S S Sk S S S S S S S R S S R S S S S S S

ok: [servera.lab.example.com]
TASK [Open the port for [lhttpl, lhttpsl]] EE R Rk Sk Sk Sk R Sk S S S S S kS S S S S S
changed: [servera.lab.example.com] => (item=http)

changed: [servera.lab.example.com] => (item=https)

TASK [Create placeho‘l_der flle] R R SR R R SR S S S S Sk
changed: [servera.lab.example.com]

PLAY [TeSt Web Seerce] Rk Sk Sk S S S S S Sk S S R S S S S S R S S S

TASK [Gatherlng Facts] R R Sk S S S S S Sk S S S R R S S kR S R R

ok: [localhost]

TASK [COnneCt to lntel’net Web Servel’] R R R Sk Sk Sk Sk S S S S S S S S S S S S S S S
ok: [localhost]

PLAY RECAP EE R R R S S R kS kS S S S S R S S S S S kS R Sk S kS kS R

localhost : ok=2 changed=0 unreachable=0 failed=0
servera. lab.example.com : ok=8 changed=4 unreachable=0 failed=0

Finish
Onworkstation, runthe lab projects-file finish scriptto clean up this exercise.

[student@workstation ~]$ lab projects-file finish

This concludes the guided exercise.

Chapter 6 | Managing Complex Plays and Playbooks

» Lab

Managing Complex Plays and Playbooks

Performance Checklist

In this lab, you will modify a complex playbook to be easier to manage by using host patterns,
includes, and imports.

Outcomes
You should be able to:

« Simplify host references in a playbook by specifying host patterns.

+ Restructure a playbook so that tasks are imported from external task files.

Before You Begin
Logintoworkstation as student using student as the password.

Onworkstation, runthe lab projects-review start command. This setup script
ensures that the managed hosts are reachable on the network. It also ensures that the
correct Ansible configuration file, inventory file, and playbook are installed on the control
node in the /home/student/projects-review directory.

[student@workstation ~]$ lab projects-review start

Instructions

You have inherited a playbook from the previous administrator. The playbook is used to

configure a web service on servera. lab.example.com, serverb. lab.example.com,
serverc. lab.example.com, and serverd. lab.example.com. The playbook also configures
the firewall on the four managed hosts so that web traffic is allowed.

Make the following changes to the playbook.yml playbook file so that it is easier to manage.

1.

Simplify the list of managed hosts in the /home/student/projects-review/
playbook.ym1l playbook by using a wildcard host pattern.

Restructure the playbook so that the first three tasks in the playbook are kept in an external
task file located at tasks/web_tasks.yml. Use the import_tasks feature to incorporate
this task file into the playbook.

Restructure the playbook so that the fourth, fifth, and sixth tasks in the playbook are kept
in an external task file located at tasks/firewall_tasks.yml. Use the import_tasks
feature to incorporate this task file into the playbook.

There is some duplication of tasks between the tasks/web_tasks.yml and tasks/
firewall_tasks.yml files. Move the tasks that install packages and enable services into
a new file named tasks/install_and_enable.ym1l and update them to use variables.
Replace the original tasks with import_tasks statements, passing in appropriate variable
values.

Chapter 6 | Managing Complex Plays and Playbooks

5. Verify the changes to the playbook.ym1l playbook were correctly made and then execute
the playbook.

Evaluation

Run the lab projects-review grade command fromworkstation to confirm success on
this exercise. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab projects-review grade
Finish
Onworkstation, runthe lab projects-review finish scriptto clean up the resources

created in this lab.

[student@workstation ~]$ lab projects-review finish

This concludes the lab.

W RH294-RHEL8.4-en-1-20210818

Chapter 6 | Managing Complex Plays and Playbooks

» Solution
Managing Complex Plays and Playbooks

Performance Checklist
In this lab, you will modify a complex playbook to be easier to manage by using host patterns,
includes, and imports.

Outcomes
You should be able to:

« Simplify host references in a playbook by specifying host patterns.

+ Restructure a playbook so that tasks are imported from external task files.

Before You Begin
Logintoworkstation as student using student as the password.

Onworkstation, runthe lab projects-review start command. This setup script
ensures that the managed hosts are reachable on the network. It also ensures that the
correct Ansible configuration file, inventory file, and playbook are installed on the control
node in the /home/student/projects-review directory.

[student@workstation ~]$ lab projects-review start

Instructions

You have inherited a playbook from the previous administrator. The playbook is used to

configure a web service on servera. lab.example.com, serverb. lab.example.com,
serverc. lab.example.com, and serverd. lab.example.com. The playbook also configures
the firewall on the four managed hosts so that web traffic is allowed.

Make the following changes to the playbook.yml playbook file so that it is easier to manage.

1. Simplify the list of managed hosts in the /home/student/projects-review/
playbook.ym1l playbook by using a wildcard host pattern.

11. Change directory to the /home/student/projects-review working directory.
Review the hosts parameter in the playbook.yml file.

[student@workstation ~]$ cd ~/projects-review
[student@workstation projects-review]$ cat playbook.yml
- name: Install and configure web service
hosts:
- servera.lab.example.com
- serverb.lab.example.com

Chapter 6 | Managing Complex Plays and Playbooks

- serverc. lab.example.com
- serverd. lab.example.com
...output omitted. ..

1.2. Verify that the host pattern server*. lab.example.com correctly identifies the four
managed hosts that are targeted by the playbook.ym1l playbook.

[student@workstation projects-review]$ ansible server*.lab.example.com \
> --list-hosts
hosts (4):
servera. lab.example.com
serverb.lab.example.com
serverc. lab.example.com
serverd. lab.example.com

1.3. Replace the host list in the playbook.ym1l playbook with the
server*.lab.example.comhost pattern.

- name: Install and configure web service
hosts: server*.lab.example.com
...output omitted...

2. Restructure the playbook so that the first three tasks in the playbook are kept in an external
task file located at tasks/web_tasks.yml. Use the import_tasks feature to incorporate
this task file into the playbook.

2.1. Create the tasks subdirectory.

[student@workstation projects-review]$ mkdir tasks

2.2. Place the contents of the first three tasks in the playbook.yml playbook into the
tasks/web_tasks.yml file. The task file should contain the following content:

- name: Install httpd
yum:
name: httpd
state: latest

- name: Enable and start httpd
service:
name: httpd
enabled: true
state: started

- name: Tuning configuration installed
copy':
src: files/tune.conf
dest: /etc/httpd/conf.d/tune.conf
owner: root
group: root

Chapter 6 | Managing Complex Plays and Playbooks

mode: 0644
notify:
- restart httpd

2.3. Remove the first three tasks from the playbook.ym1l playbook and put the following
lines in their place to import the tasks/web_tasks.yml task file.

- name: Import the web_tasks.yml task file
import_tasks: tasks/web_tasks.yml

3. Restructure the playbook so that the fourth, fifth, and sixth tasks in the playbook are kept
in an external task file located at tasks/firewall_tasks.yml. Use the import_tasks
feature to incorporate this task file into the playbook.

3.1. Place the contents of the three remaining tasks in the playbook.ym1 playbook into
the tasks/firewall_tasks.yml file. The task file should contain the following
content.

- name: Install firewalld
yum:
name: firewalld
state: latest

- name: Enable and start the firewall
service:
name: firewalld
enabled: true
state: started

- name: Open the port for http
firewalld:
service: http
immediate: true
permanent: true
state: enabled

3.2. Remove the remaining three tasks from the playbook.yml playbook and put the
following lines in their place to import the tasks/firewall_tasks.yml task file.

- name: Import the firewall_tasks.yml task file
import_tasks: tasks/firewall_tasks.yml

4. Thereis some duplication of tasks between the tasks/web_tasks.yml and tasks/
firewall_tasks.yml files. Move the tasks that install packages and enable services into
a new file named tasks/install_and_enable.ym1l and update them to use variables.
Replace the original tasks with import_tasks statements, passing in appropriate variable
values.

41. Copy the yum and service tasks from tasks/web_tasks.ymlinto a new file named
tasks/install_and_enable.yml.

Chapter 6 | Managing Complex Plays and Playbooks

- name: Install httpd
yum:
name: httpd
state: latest

- name: Enable and start httpd
service:
name: httpd
enabled: true
state: started

4.2. Replace the package and service namesin tasks/install_and_enable.yml with
the variables package and service.

- name: Install {{ package }}
yum:
name: "{{ package }}"
state: latest

- name: Enable and start {{ service }}
service:
name: "{{ service }}"
enabled: true
state: started

4.3. Replace the yum and service tasks in tasks/web_tasks.yml and tasks/
firewall_tasks.yml with import_tasks statements.

- name: Install and start httpd
import_tasks: install_and_enable.yml
vars:

package: httpd
service: httpd

- name: Install and start firewalld
import_tasks: install_and_enable.yml
vars.:

package: firewalld
service: firewalld

5. Verify the changes to the playbook.ym1l playbook were correctly made and then execute
the playbook.

5.1 Verify that the playbook.ym1 playbook contains the following contents.

Chapter 6 | Managing Complex Plays and Playbooks

- name: Install and configure web service
hosts: server*.lab.example.com

tasks:
- name: Import the web_tasks.yml task file
import_tasks: tasks/web_tasks.yml

- name: Import the firewall_tasks.yml task file
import_tasks: tasks/firewall_tasks.yml

handlers:
- name: restart httpd
service:
name: httpd
state: restarted

5.2. Execute the playbook with ansible-playbook --syntax-check to verify
the playbook contains no syntax errors. If errors are present, correct them before
preceding.

[student@workstation projects-review]$ ansible-playbook playbook.yml \
> --syntax-check

playbook: playbook.yml

5.3. Execute the playbook.

[student@workstation projects-review]$ ansible-playbook playbook.yml

PLAY [Insta‘L‘L and Configure web Service] khkhkhkkhhhkhkhhhhhhkhhhhhhhhhhhhhkhkkk

TASK [Gathering FaCtS] khkkhkhkkhhhhkhhhhhhhkhhhhhhhkhhhhhkhhkhhkhhhkhhkhhkhhkhkhhkkhkhk*

ok: [serverd.lab.example.com]
ok: [serverc.lab.example.com]
ok: [serverb.lab.example.com]
ok: [servera.lab.example.com]

TASK [Insta‘L‘L httpd] khkkhkhkhhhhhhhhhhhhhhhhhhhhkhhhhhhhkhhhhhhhkhhhhhhkhhhkhkhkk

changed: [serverb.lab.example.com]
changed: [servera.lab.example.com]
changed: [serverd.lab.example.com]
changed: [serverc.lab.example.com]

TASK [Enable and Start httpd] R S
changed: [servera.lab.example.com]
changed: [serverb.lab.example.com]
changed: [serverd.lab.example.com]
changed: [serverc.lab.example.com]

TASK [Tuning Configuration installed] IR EREEREEREEEEEEEEEEEEEEEEEEEEEEEEEEEEESSE]

changed: [serverd.lab.example.com]

Chapter 6 | Managing Complex Plays and Playbooks

changed: [serverc.lab.example.com]
changed: [serverb.lab.example.com]
changed: [servera.lab.example.com]

TASK [InStall flrewalld] EEEEE RS RS EEREEEEEREEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEE RS
ok: [serverb.lab.example.com]
ok: [servera.lab.example.com]
ok: [serverd.lab.example.com]
ok: [serverc.lab.example.com]

TASK [Enable and Start flrewalld] khkkhkkhkhkkhkhkkhkhkhkhkhkhkhkdhkdhkhbhhkhhdrdrhkrhdhrdhrdhhhxdx
ok: [servera.lab.example.com]
ok: [serverb.lab.example.com]
ok: [serverc.lab.example.com]
ok: [serverd.lab.example.com]

TASK [Open the port for http] khkkhkkhkhkkhkhkdhhkdkhkhhhkdhhkdhkhhhdhhdrhhhkhhdhrdhrkhbrhdhdhdhdk
changed: [serverd.lab.example.com]
changed: [serverb.lab.example.com]
changed: [servera.lab.example.com]
changed: [serverc.lab.example.com]

RUNNING HANDLER [restart httpd] khkkhkkhkhkkhkhkdkhkhkhkhkhhkdhhkdkhhhhdhrdhhhhdrdhkrhhhhdhdkhxk
changed: [serverd.lab.example.com]
changed: [serverb.lab.example.com]
changed: [serverc.lab.example.com]
changed: [servera.lab.example.com]

PLAY RECAP ***xxkkkokkkkkkkrhkhhkkhkhhkkhkkhkkhkhhkrhkhhkrhdkrhdkrhkrhkrhdkxrhkxx

servera. lab.example.com : ok=8 changed=5 unreachable=0 failed=0

serverb.lab.example.com : ok=8 changed=5 unreachable=0 failed=0

serverc. lab.example.com : ok=8 changed=5 unreachable=0 failed=0

serverd. lab.example.com : ok=8 changed=5 unreachable=0 failed=0
Evaluation

Run the lab projects-review grade command from workstation to confirm success on
this exercise. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab projects-review grade
Finish
Onworkstation, runthe lab projects-review finish script to clean up the resources

created in this lab.

[student@workstation ~]$ lab projects-review finish

This concludes the lab.

Chapter 6 | Managing Complex Plays and Playbooks

Summary

In this chapter, you learned:

Host patterns are used to specify the managed hosts to be targeted by plays or ad hoc
commands.

Dynamic inventory scripts can be used to generate dynamic lists of managed hosts from
directory services or other sources external to Ansible.

The forks parameter in the Ansible configuration file sets the maximum number of parallel
connections to managed hosts.

The serial parameter can be used to implement rolling updates across managed hosts by
defining the number of managed hosts in each rolling update batch.

You can use the import_playbook feature to incorporate external play files into playbooks.

You can use the include_tasks or import_tasks features to incorporate external task files
into playbooks.

For use by La Pyayt lapy

al

yt2015 lapyayt@infratechmm.com

(.

_opyright © 2022 Red Hat, Inc.

RH294-RHEL8.4-en-1-20210818

Chapter 7

Simplifying Playbooks with
Roles

Goal Use Ansible roles to develop playbooks more ¢
quickly and to reuse Ansible code.

Objectives * Describe what arole is, how it is structured, and .

how you can use it in a playbook. .

+ Write playbooks that take advantage of ,
Red Hat Enterprise Linux System Roles to .
perform standard operations.

Create a role in a playbook's project directory
and run it as part of one of the plays in the

i
o
P playbook.

. + Select and retrieve roles from Ansible Galaxy or
other sources such as a Git repository, and use
them in your playbooks.

+ Obtain a set of related roles, supplementary
modules, and other content from content
collections, and use them in a playbook.

Sections + Describing Role Structure (and Quiz)

+ Reusing Content with System Roles (and
Guided Exercise)

+ Creating Roles (and Guided Exercise)

+ Deploying Roles with Ansible Galaxy (and

Guided Exercise)

+ Getting Roles and Modules from Content
Collections (and Guided Exercise)

Lab + Simplifying Playbooks with Roles

74

RH294-RHEL8.4-en-1-20210818

Chapter 7 | Simplifying Playbooks with Roles

Describing Role Structure

Objectives

After completing this section, you should be able to describe what a role is, how it is structured,
and how you can use it in a playbook.

Structuring Ansible Playbooks with Roles

As you develop more playbooks, you will probably discover that you have many opportunities to
reuse code from playbooks that you have already written. Perhaps a play to configure a MySQL
database for one application could be re-purposed, with different hostnames, passwords, and
users, to configure a MySQL database for another application.

But in the real world, that play might be long and complex, with many included or imported files,
and with tasks and handlers to manage various situations. Copying all that code into another
playbook might be nontrivial work.

Ansible roles provide a way for you to make it easier to reuse Ansible code generically. You can
package, in a standardized directory structure, all the tasks, variables, files, templates, and other
resources needed to provision infrastructure or deploy applications. Copy that role from project to
project simply by copying the directory. You can then simply call that role from a play to execute it.

A well-written role will allow you to pass variables to the role from the playbook that adjust its
behavior, setting all the site-specific hostnames, IP addresses, user names, secrets, or other
locally-specific details you need. For example, a role to deploy a database server might have been
written to support variables which set the hostname, database admin user and password, and
other parameters that need customization for your installation. The author of the role can also
ensure that reasonable default values are set for those variables if you choose not to set them in
the play.

Ansible roles have the following benefits:
+ Roles group content, allowing easy sharing of code with others

+ Roles can be written that define the essential elements of a system type: web server, database
server, Git repository, or other purpose

+ Roles make larger projects more manageable
+ Roles can be developed in parallel by different administrators

In addition to writing, using, reusing, and sharing your own roles, you can get roles from other
sources. Some roles are included as part of Red Hat Enterprise Linux, in the rhel-system-roles
package. You can also get numerous community-supported roles from the Ansible Galaxy website.
Later in this chapter, you will learn more about these roles.

Examining the Ansible Role Structure

An Ansible role is defined by a standardized structure of subdirectories and files. The top-level
directory defines the name of the role itself. Files are organized into subdirectories that are
named according to each file's purpose in the role, such as tasks and handlers. The files and
templates subdirectories contain files referenced by tasks in other YAML files.

W RH294-RHEL8.4-en-1-20210818

Chapter 7 | Simplifying

Playbooks with Roles

The following tree command displays the directory structure of the user.example role.

[user@host roles
user .example/
|— defaults

| L— main.yml
— files

— handlers

| L— main.yml
— meta

| L— main.yml
— README.md
— tasks

| L— main.yml
|— templates

|— tests

]1$ tree user.example

| — inventory

| L— test.yml
L— vars
L— main.yml

Ansible role subdirectories

Subdirectory

defaults

files
handlers

meta

tasks
templates

tests

vars

Function

The main.yml file in this directory contains the default values of role
variables that can be overwritten when the role is used. These variables
have low precedence and are intended to be changed and customized in

plays.
This directory contains static files that are referenced by role tasks.
The main.yml file in this directory contains the role's handler definitions.

The main.yml file in this directory contains information about the role,
including author, license, platforms, and optional role dependencies.

The main.yml file in this directory contains the role's task definitions.
This directory contains Jinja2 templates that are referenced by role tasks.

This directory can contain an inventory and test.yml playbook that can be
used to test the role.

The main.yml file in this directory defines the role's variable values. Often
these variables are used for internal purposes within the role. These
variables have high precedence, and are not intended to be changed when
used in a playbook.

Not every role will have all of these directories.

Chapter 7 | Simplifying Playbooks with Roles

Defining Variables and Defaults

Role variables are defined by creating a vars/main.yml file with key: value pairs in the

role directory hierarchy. They are referenced in the role YAML file like any other variable: {{
VAR_NAME }}. These variables have a high precedence and can not be overridden by inventory
variables. The intent of these variables is that they are used by the internal functioning of the role.

Default variables allow default values to be set for variables that can be used in a play to configure
the role or customize its behavior. They are defined by creating a defaults/main.yml file with
key: value pairs in the role directory hierarchy. Default variables have the lowest precedence of
any variables available. They can be easily overridden by any other variable, including inventory
variables. These variables are intended to provide the person writing a play that uses the role

with a way to customize or control exactly what it is going to do. They can be used to provide
information to the role that it needs to configure or deploy something properly.

Define a specific variable in either vars/main.yml or defaults/main.ym1, but notin both
places. Default variables should be used when it is intended that their values will be overridden.

i~ | Important

Roles should not have site-specific data in them. They definitely should not contain
any secrets like passwords or private keys.

This is because roles are supposed to be generic, reusable, and freely shareable.
Site-specific details should not be hard coded into them.

Secrets should be provided to the role through other means. This is one reason you
might want to set role variables when calling a role. Role variables set in the play
could provide the secret, or point to an Ansible Vault-encrypted file containing the
secret.

Using Ansible Roles in a Playbook

Using roles in a playbook is straightforward. The following example shows one way to call Ansible
roles.

- hosts: remote.example.com
roles:
- rolel
- role2

For each role specified, the role tasks, role handlers, role variables, and role dependencies

will be imported into the playbook, in that order. Any copy, script, template, or
include_tasks/import_tasks tasksin the role can reference the relevant files, templates, or
task files in the role without absolute or relative path names. Ansible looks for them in the role's
files, templates, or tasks subdirectories respectively.

When you use a roles section to import roles into a play, the roles will run first, before any tasks
that you define for that play.

The following example sets values for two role variables of role2, varl and var2. Any defaults
and vars variables are overridden when role2 is used.

Chapter 7 | Simplifying Playbooks with Roles

- hosts: remote.example.com
roles:
- role: rolel
- role: role2
varl: vall
var2: val2

Another equivalent YAML syntax which you might see in this case is:

- hosts: remote.example.com
roles:
- role: rolel
- { role: role2, vari: vali, var2: val2 }

There are situations in which this can be harder to read, even though it is more compact.

i~ | Important

Role variables set inline (role parameters), as in the preceding examples, have very
high precedence. They will override most other variables.

Be very careful not to reuse the names of any role variables that you set inline
anywhere else in your play, since the values of the role variables will override
inventory variables and any play vars.

Controlling Order of Execution

For each play in a playbook, tasks execute as ordered in the tasks list. After all tasks execute, any
notified handlers are executed.

When a role is added to a play, role tasks are added to the beginning of the tasks list. If a second
role is included in a play, its tasks list is added after the first role.

Role handlers are added to plays in the same manner that role tasks are added to plays. Each play
defines a handlers list. Role handlers are added to the handlers list first, followed by any handlers
defined in the handlers section of the play.

In certain scenarios, it may be necessary to execute some play tasks before the roles. To support
such scenarios, plays can be configured with a pre_tasks section. Any task listed in this section
executes before any roles are executed. If any of these tasks notify a handler, those handler tasks
execute before the roles or normal tasks.

Plays also support a post_tasks keyword. These tasks execute after the play's normal tasks, and
any handlers they notify, are run.

The following play shows an example with pre_tasks, roles, tasks, post_tasks and
handlers. Itis unusual that a play would contain all of these sections.

- name: Play to illustrate order of execution
hosts: remote.example.com
pre_tasks:

Chapter 7 | Simplifying Playbooks with Roles

- debug:
msg: 'pre-task'
notify: my handler
roles:
- rolel
tasks:
- debug:
msg: 'first task'
notify: my handler
post_tasks:
- debug:
msg: 'post-task'
notify: my handler
handlers:
- name: my handler
debug:
msg: Running my handler

In the above example, a debug task executes in each section to notify the my handler handler.
The my handler task is executed three times:

« after all the pre_tasks tasks execute
« after all role tasks and tasks from the tasks section execute
- after all the post_tasks execute

Roles can be added to a play using an ordinary task, not just by including them in the roles
section of a play. Use the include_role module to dynamically include a role, and use the
import_role module to statically import a role.

The following playbook demonstrates how a role can be included using a task with the
include_role module.

- name: Execute a role as a task
hosts: remote.example.com
tasks:
- name: A normal task
debug:
msg: 'first task'
- name: A task to include role2 here
include_role: role2

Note
E The include_role module was added in Ansible 2.3, and the import_role
module in Ansible 2.4.

References

Roles — Ansible Documentation
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_reuse_roles.html

https://docs.ansible.com/ansible/2.9/user_guide/playbooks_reuse_roles.html

Chapter 7 | Simplifying Playbooks with Roles

» Quiz

Describing Role Structure

Choose the correct answer to the following questions:

When you have completed the quiz, click check. If you wish to try again, click reset. Click
show solution to see all of the correct answers.

b1

b 2.

P 3.

P 4.

Which of the following statements best describes roles?

a. Configuration settings that allow specific users to run Ansible Playbooks.

b. Playbooks for a data center.

c. Collection of YAML task files and supporting items arranged in a specific structure for
easy sharing, portability, and reuse.

Which of the following can be specified in roles?
a. Handlers

b. Tasks

c. Templates

d. Variables

e. All of the above

Which file declares role dependencies?

a. The Ansible Playbook that uses the role.

b. The meta/main.yml file inside the role hierarchy.
c. Themeta/main.yml file in the project directory.

d. Role dependencies cannot be defined in Ansible.

Which file in a role's directory hierarchy should contain the initial values of variables
that might be used as parameters to the role?

a. defaults/main.yml

b. meta/main.yml

c. vars/main.yml

d. The host inventory file.

RH294-RHEL8.4-en-1-20210818

Chapter 7 | Simplifying Playbooks with Roles

» Solution

Describing Role Structure

Choose the correct answer to the following questions:

When you have completed the quiz, click check. If you wish to try again, click reset. Click
show solution to see all of the correct answers.

P 1. Which of the following statements best describes roles?
a. Configuration settings that allow specific users to run Ansible Playbooks.
b. Playbooks for a data center.
c. Collection of YAML task files and supporting items arranged in a specific structure for
easy sharing, portability, and reuse.

P 2. Which of the following can be specified in roles?
a. Handlers
b. Tasks
c. Templates
d. Variables
e. All of the above

P 3. Which file declares role dependencies?
a. The Ansible Playbook that uses the role.
b. The meta/main.yml file inside the role hierarchy.
c. Themeta/main.yml file in the project directory.

d. Role dependencies cannot be defined in Ansible.

P 4. Which file in a role's directory hierarchy should contain the initial values of variables
that might be used as parameters to the role?
a. defaults/main.yml
b. meta/main.yml
c. vars/main.yml

d. The host inventory file.

W RH294-RHEL8.4-en-1-20210818

Chapter 7 | Simplifying Playbooks with Roles

Reusing Content with System Roles

Objectives

After completing this section, you should be able to write playbooks that take advantage of
Red Hat Enterprise Linux System Roles to perform standard operations.

Red Hat Enterprise Linux System Roles

Beginning with Red Hat Enterprise Linux 7.4, a number of Ansible roles have been provided with
the operating system as part of the rhel-system-roles package. In Red Hat Enterprise Linux 8 the
package is available in the AppStream channel. A brief description of each role:

RHEL System Roles
Name State Role Description
rhel-system-roles.kdump Fully Supported Configures the kdump crash
recovery service.
rhel-system-roles.network Fully Supported Configures network interfaces.
rhel-system-roles.selinux Fully Supported Configures and manages SELinux
customization, including SELinux
mode, file and port contexts,
Boolean settings, and SELinux
users.
rhel-system-roles.timesync Fully Supported Configures time synchronization
using Network Time Protocol or
Precision Time Protocol.
rhel-system-roles.postfix Technology Configures each host as a Mail
Preview Transfer Agent using the Postfix
service.
rhel-system-roles.firewall In Development Configures a host's firewall.
rhel-system-roles.tuned In Development Configures the tuned service to

tune system performance.

System roles aim to standardize the configuration of Red Hat Enterprise Linux subsystems across
multiple versions. Use system roles to configure any Red Hat Enterprise Linux, version 6.10 and
onward.

Simplified Configuration Management

As an example, the recommended time synchronization service for Red Hat Enterprise Linux 7
is the chronyd service. In Red Hat Enterprise Linux 6 however, the recommended service is the
ntpd service. In an environment with a mixture of Red Hat Enterprise Linux 6 and 7 hosts, an
administrator must manage the configuration files for both services.

Chapter 7 | Simplifying Playbooks with Roles

With RHEL System Roles, administrators no longer need to maintain configuration files for

both services. Administrators can use rhel-system-roles. timesync role to configure time
synchronization for both Red Hat Enterprise Linux 6 and 7 hosts. A simplified YAML file containing
role variables defines the configuration of time synchronization for both types of hosts.

Support for RHEL System Roles

RHEL System Roles are derived from the open source Linux System Roles project, found on
Ansible Galaxy. Unlike Linux System Roles, RHEL System Roles are supported by Red Hat as part
of a standard Red Hat Enterprise Linux subscription. RHEL System Roles have the same life cycle
support benefits that come with a Red Hat Enterprise Linux subscription.

Every system role is tested and stable. The Fully Supported system roles also have stable
interfaces. For any Fully Supported system role, Red Hat will endeavour to ensure that role
variables are unchanged in future versions. Playbook refactoring due to system role changes
should be minimal.

The Technology Preview system roles may utilize different role variables in future versions.
Integration testing is recommended for playbooks that incorporate any Technology Preview
role. Playbooks may require refactoring if role variables change in a future version of the role.

Other roles are in development in the upstream Linux System Roles project, but are not yet
available through a RHEL subscription. These roles are available through Ansible Galaxy.

Installing RHEL System Roles

The RHEL System Roles are provided by the rhel-system-roles package, which is available in the
AppStream channel. Install this package on the Ansible control node.

Use the following procedure to install the rhel-system-roles package. The procedure assumes the
control node is registered to a Red Hat Enterprise Linux subscription and that Ansible is installed.
See the section on Installing Ansible for more information.

1. Install RHEL System Roles.

[root@host ~]# yum install rhel-system-roles

After installation, the RHEL System roles are located in the /usr/share/ansible/roles
directory:

[root@host ~]# 1s -1 /usr/share/ansible/roles/

total 20

...output omitted... linux-system-roles.kdump -> rhel-system-roles.kdump
..output omitted... linux-system-roles.network -> rhel-system-roles.network
..output omitted... linux-system-roles.postfix -> rhel-system-roles.postfix
..output omitted... linux-system-roles.selinux -> rhel-system-roles.selinux
..output omitted... linux-system-roles.timesync -> rhel-system-roles.timesync
..output omitted... rhel-system-roles.kdump
..output omitted... rhel-system-roles.network
..output omitted... rhel-system-roles.postfix
..output omitted... rhel-system-roles.selinux
..output omitted... rhel-system-roles.timesync

The corresponding upstream name of each role is linked to the RHEL System Role. This allows a
role to be referenced in a playbook by either name.

Chapter 7 | Simplifying Playbooks with Roles

The default roles_path on Red Hat Enterprise Linux includes /usr/share/ansible/roles in
the path, so Ansible should automatically find those roles when referenced by a playbook.

Note

S Ansible might not find the system roles if roles_path has been overridden
in the current Ansible configuration file, if the environment variable
ANSIBLE_ROLES_PATH is set, or if there is another role of the same name in a
directory listed earlier in roles_path.

Accessing Documentation for RHEL System Roles

After installation, documentation for the RHEL System Roles is found in the /usr/share/doc/
rhel-system-roles-<version>/ directory. Documentation is organized into subdirectories
by subsystem:

[root@host ~]# 1s -1 /usr/share/doc/rhel-system-roles/

total 4

drwxr-xr-x. ...output omitted... kdump
drwxr-xr-x. ...output omitted... network
drwxr-xr-x. ...output omitted... postfix
drwxr-xr-x. ...output omitted... selinux
drwxr-xr-x. ...output omitted... timesync

Each role's documentation directory contains a README . md file. The README . md file contains a
description of the role, along with role usage information.

The README . md file also describes role variables that affect the behavior of the role. Often the
README . md file contains a playbook snippet that demonstrates variable settings for a common
configuration scenario.

Some role documentation directories contain example playbooks. When using a role for the first
time, review any additional example playbooks in the documentation directory.

Role documentation for RHEL System Roles matches the documentation for Linux System Roles.
Use a web browser to access role documentation for the upstream roles at the Ansible Galaxy site,
https://galaxy.ansible.com.

Time Synchronization Role Example

Suppose you need to configure NTP time synchronization on your servers. You could write
automation yourself to perform each of the necessary tasks. But RHEL System Roles includes a
role that can do this, rhel-system-roles. timesync.

The role is documented in its README . md in the /usr/share/doc/rhel-system-roles/
timesync directory. The file describes all the variables that affect the role's behavior and
contains three playbook snippets illustrating different time synchronization configurations.

To manually configure NTP servers, the role has a variable named timesync_ntp_servers. It
takes a list of NTP servers to use. Each item in the list is made up of one or more attributes. The
two key attributes are:

Chapter 7 | Simplifying Playbooks with Roles

timesync_ntp_servers attributes

Attribute Purpose
hostname The hostname of an NTP server with which to synchronize.
iburst A Boolean that enables or disables fast initial synchronization.

Defaults to no in the role, you should normally set this to yes.

Given this information, the following example is a play that uses the rhel-system-
roles.timesync role to configure managed hosts to get time from three NTP servers using fast
initial synchronization. In addition, a task has been added that uses the timezone module to set
the hosts' time zone to UTC.

- name: Time Synchronization Play
hosts: servers
vars:
timesync_ntp_servers:
- hostname: 0.rhel.pool.ntp.org
iburst: yes
- hostname: 1.rhel.pool.ntp.org
iburst: yes
- hostname: 2.rhel.pool.ntp.org
iburst: yes
timezone: UTC

roles:
- rhel-system-roles.timesync

tasks:
- name: Set timezone
timezone:
name: "{{ timezone }}"

E Note
If you want to set a different time zone, you can use the tzselect command to
look up other valid values. You can also use the timedatect 1 command to check
current clock settings.

This example sets the role variables in a vars section of the play, but a better practice might be to
configure them as inventory variables for hosts or host groups.

Consider a playbook project with the following structure:

Chapter 7 | Simplifying Playbooks with Roles

[root@host playbook-project]# tree

— ansible.cfg

— group_vars

| L— servers

| — timesync.yml"
— inventory

— timesync_playbook.ymlt?

© Defines the time synchronization variables overriding the role defaults for hosts in group
servers in the inventory. This file would look something like:

timesync_ntp_servers:
- hostname: 0.rhel.pool.ntp.org
iburst: yes
- hostname: 1.rhel.pool.ntp.org
iburst: yes
- hostname: 2.rhel.pool.ntp.org
iburst: yes
timezone: UTC

© The content of the playbook simplifies to:

- name: Time Synchronization Play

hosts: servers
roles:

- rhel-system-roles.timesync
tasks:

- name: Set timezone

timezone:
name: "{{ timezone }}"

This structure cleanly separates the role, the playbook code, and configuration settings. The
playbook code is simple, easy to read, and should not require complex refactoring. The role
content is maintained and supported by Red Hat. All the settings are handled as inventory
variables.

This structure also supports a dynamic, heterogeneous environment. Hosts with new time
synchronization requirements may be placed in a new host group. Appropriate variables are
defined in a YAML file, and placed in the appropriate group_vars (or host_vars) subdirectory.

SELinux Role Example

As another example, the rhel-system-roles.selinux role simplifies management of
SELinux configuration settings. It is implemented using the SELinux-related Ansible modules.
The advantage of using this role instead of writing your own tasks is that it relieves you from the
responsibility of writing those tasks. Instead, you provide variables to the role to configure it, and
the maintained code in the role will ensure your desired SELinux configuration is applied.

Among the tasks this role can perform:
+ Set enforcing or permissive mode

+ Run restorecon on parts of the file system hierarchy

Chapter 7 | Simplifying Playbooks with Roles

+ Set SELinux Boolean values
+ Set SELinux file contexts persistently

+ Set SELinux user mappings

Calling the SELinux Role

Sometimes, the SELinux role must ensure the managed hosts are rebooted in order to completely
apply its changes. However, it does not ever reboot hosts itself. This is so that you can control how
the reboot is handled. But it means that it is a little more complicated than usual to properly use
this role in a play.

The way this works is that the role will set a Boolean variable, selinux_reboot_required, to
true and fail if a reboot is needed. You can use a block/rescue structure to recover from the
failure, by failing the play if that variable is not set to true or rebooting the managed host and
rerunning the role if it is true. The block in your play should look something like this:

- name: Apply SELinux role
block:
- include_role:
name: rhel-system-roles.selinux
rescue:
- name: Check for failure for other reasons than required reboot
fail:
when: not selinux_reboot_required

- name: Restart managed host
reboot:

- name: Reapply SELinux role to complete changes
include_role:
name: rhel-system-roles.selinux

Configuring the SELinux Role

The variables used to configure the rhel-system-roles.selinux role are documented in its
README . md file. The following examples show some ways to use this role.

The selinux_state variable sets the mode SELinux runs in. It can be set to enforcing,
permissive, or disabled. If it is not set, the mode is not changed.

selinux_state: enforcing

The selinux_booleans variable takes a list of SELinux Boolean values to adjust. Each item in
the list is a hash/dictionary of variables: the name of the Boolean, the state (whether it should be
on or of), and whether the setting should be persistent across reboots.

This example sets httpd_enable_homedirs to on persistently:

selinux_booleans:
- name: 'httpd_enable_homedirs'
state: 'on'
persistent: 'yes'

Chapter 7 | Simplifying Playbooks with Roles

The selinux_fcontext variable takes a list of file contexts to persistently set (or remove). It
works much like the selinux fcontext command.

The following example ensures the policy has a rule to set the default SELinux type for all files
under /srv/www to httpd_sys_content_t.

selinux_fcontexts:
- target: '/srv/www(/.*)?'
setype: 'httpd_sys_content_t'
state: 'present'

The selinux_restore_dirs variable specifies a list of directories on which to run
restorecon:

selinux_restore_dirs:
- /srv/waw

The selinux_ports variable takes a list of ports that should have a specific SELinux type.

selinux_ports:

- ports: '82'
setype: 'http_port_t'
proto: 'tcp'

state: 'present'

There are other variables and options for this role. See its README . md file for more information.

References

Red Hat Enterprise Linux (RHEL) System Roles
https://access.redhat.com/articles/3050101

Linux System Roles
https://linux-system-roles.github.io/

RH294-RHEL8.4-en-1-20210818 w

https://access.redhat.com/articles/3050101
https://linux-system-roles.github.io/

Chapter 7 | Simplifying Playbooks with Roles

» Guided Exercise

Reusing Content with System Roles

In this exercise, you will use one of the Red Hat Enterprise Linux System Roles in conjunction
with a normal task to configure time synchronization and the time zone on your managed
hosts.

Outcomes
You should be able to:

+ Install the Red Hat Enterprise Linux System Roles.
+ Find and use the RHEL System Roles documentation.

+ Use therhel-system-roles.timesync rolein a playbook to configure time
synchronization on remote hosts.

Scenario Overview

Your organization maintains two data centers: one in the United States (Chicago) and one
in Finland (Helsinki). To aid log analysis of database servers across data centers, ensure the
system clock on each host is synchronized using Network Time Protocol. To aid time-of-day
activity analysis across data centers, ensure each database server has a time zone set that
corresponds to the host's data center location.

Time synchronization has the following requirements:

+ Use the NTP server located at classroom.example.com. Enable the iburst option to
accelerate initial time synchronization.

+ Use the chrony package for time synchronization.

Before You Begin
Logintoworkstation as student using student as the password.

Onworkstation, runthe lab role-system start command. This creates the working
directory, /home/student/role-system, and populates it with an Ansible configuration
file and host inventory.

[student@workstation ~]$ lab role-system start

Instructions
P 1. Change to the /home/student/role-system working directory.

[student@workstation ~]$ cd ~/role-system
[student@workstation role-system]$

Chapter 7 | Simplifying Playbooks with Roles

P 2. |Install the Red Hat Enterprise Linux system roles on the control node,
workstation. lab.example.com. Verify the installed location of the roles on the control
node.

21. Use the ansible-galaxy command to verify that no roles are initially available for
use in the playbook project.

[student@workstation role-system]$ ansible-galaxy list
/home/student/role-system/roles

/usr/share/ansible/roles

/etc/ansible/roles

The ansible-galaxy command searches three directories for roles, as indicated by
the roles_path entryin the ansible.cfg file:

+ ./roles

« /usr/share/ansible/roles

- /etc/ansible/roles

The above output indicates there are no roles in any of these directories.

2.2. Install the rhel-system-roles package.

[student@workstation role-system]$ sudo yum install rhel-system-roles
Enter y when prompted to install the package.

2.3. Use the ansible-galaxy command to verify that the system roles are now
available.

[student@workstation role-system]$ ansible-galaxy list
/home/student/role-system/roles

/usr/share/ansible/roles

...output omitted...

- rhel-system-roles.timesync, (unknown version)

- rhel-system-roles.tlog, (unknown version)

/etc/ansible/roles

The roles are located in the /usr/share/ansible/roles directory. Any role
beginning with linux-system-roles is actually a symlink to the corresponding
rhel-system-roles role.

) 3. Create aplaybook, configure_time.ym1, with one play that targets the
database_servers host group. Include the rhel-system-roles. timesync rolein the
roles section of the play.

- name: Time Synchronization
hosts: database_servers

roles:
- rhel-system-roles.timesync

Chapter 7 | Simplifying Playbooks with Roles

P 4. The role documentation contains a description of each role variable, including the default
value for the variable. Determine the role variables to override to meet the requirements for
time synchronization.

Place role variable values in a file named timesync.ym1l. Because these variable values
apply to all hosts in the inventory, place the timesync.yml file in the group_vars/all
subdirectory.

4. Review the Role Variables section of the README . md file for the rhel-system-
roles.timesync role.

[student@workstation role-system]$ cat \

> /usr/share/doc/rhel-system-roles/timesync/README.md
...output omitted. ..

Role Variables

...output omitted...

List of NTP servers

timesync_ntp_servers:

- hostname: foo.example.com Hostname or address of the server
minpoll: 4 Minimum polling interval (default 6)
maxpoll: 8 Maximum polling interval (default 10)

iburst: yes Flag enabling fast initial synchronization
(default no)

pool: no Flag indicating that each resolved address
of the hostname is a separate NTP server
(default no)

...output omitted. ..

Name of the package which should be installed and configured for NTP.

Possible values are "chrony" and "ntp". If not defined, the currently active
or enabled service will be configured. If no service is active or enabled, a
package specific to the system and its version will be selected.
timesync_ntp_provider: chrony

...output omitted...

4.2. Create the group_vars/all subdirectory.

[student@workstation role-system]$ mkdir -pv group_vars/all
mkdir: created directory 'group_vars'
mkdir: created directory 'group_vars/all'

4.3. Create anew file group_vars/all/timesync.yml using a text editor. Add
variable definitions to satisfy the time synchronization requirements. The file now
contains:

#rhel-system-roles.timesync variables for all hosts
timesync_ntp_provider: chrony
timesync_ntp_servers:

- hostname: classroom.example.com
iburst: yes

Chapter 7 | Simplifying Playbooks with Roles

P 5. Addatasktoconfigure_time.yml, to set the time zone for each host. Ensure the task
uses the timezone module and executes after the rhel-system-roles.timesync
role.

Because hosts do not belong to the same time zone, use a variable (host_timezone) for
the time zone name.

5.1. Review the Examples section of the timezone module documentation.

[student@workstation role-system]$ ansible-doc timezone | grep -A 4 "EXAMPLES"
EXAMPLES:

- name: set timezone to Asia/Tokyo
timezone:
name: Asia/Tokyo

5.2. Add atask to the post_tasks section of the play in the configure_time.yml
playbook. Model the task after the example from the documentation, but use the
host_timezone variable for the time zone name.

The documentation in ansible-doc timezone recommends a restart of the Cron
service if the module changes the timezone, to make sure Cron jobs run at the right
times. Since system logging and other services use the system time zone, reboot
each host when the time zone is modified. Add a notify keyword to the task, with an
associated value of reboot host. The post_tasks section of the play should read:

post_tasks:
- name: Set timezone
timezone:
name: "{{ host_timezone }}"
notify: reboot host

5.3. Addthereboot host handler tothe Time Synchronization play. The complete
playbook now contains:

- name: Time Synchronization
hosts: database_servers

roles:
- rhel-system-roles.timesync

post_tasks:
- name: Set timezone
timezone:
name: "{{ host_timezone }}"
notify: reboot host

handlers:
- name: reboot host
reboot:

Chapter 7 | Simplifying Playbooks with Roles

P 6. Foreach data center, create a file named timezone.ym1 that contains an appropriate
value for the host_timezone variable. Use the timedatectl list-timezones
command to find the valid time zone string for each data center.

6.1. Create the group_vars subdirectories for the na_datacenter and
europe_datacenter host groups.

[student@workstation role-system]$ mkdir -pv \

> group_vars/{na_datacenter, europe_datacenter}

mkdir: created directory 'group_vars/na_datacenter'
mkdir: created directory 'group_vars/europe_datacenter'

6.2. Usethe timedatectl list-timezones command to determine the time zone for
both the US and European data centers:

[student@workstation role-system]$ timedatectl list-timezones | grep Chicago
America/Chicago

[student@workstation role-system]$ timedatectl list-timezones | grep Helsinki
Europe/Helsinki

6.3. Create the timezone.yml for both data centers:

[student@workstation role-system]$ echo "host_timezone: America/Chicago" > \
> group_vars/na_datacenter/timezone.yml

[student@workstation role-system]$ echo "host_timezone: Europe/Helsinki" > \
> group_vars/europe_datacenter/timezone.yml

P 7. Runthe playbook.

[student@workstation role-system]$ ansible-playbook configure_time.yml

PLAY [Time Synchronization] khkhkkhkkhhkhhkhhhkhhkhhhhhhhhhhhhhhkhhhhhhhkhh bk hkh kb khkkkk

TASK [Gathering FaCtS] khhkkkkhhkhhhhhkhhhhhhhhhhhhhhhhkhhkhd bk kb kb dk bk hkh kb d bk khkhk*

ok: [serverb.lab.example.com]
ok: [servera.lab.example.com]

TASK [rhel-system-roles.timesync : Check if only NTP is needed] ******xxxiiiix
ok: [servera.lab.example.com]
ok: [serverb.lab.example.com]

...output omitted. ..

TASK [rhel-system-roles.timesync : Enable timemaster] *****x**kddkxrsddkhxxsddx
skipping: [servera.lab.example.com]
skipping: [serverb.lab.example.com]

RUNNING HANDLER [rhel-system-roles.timesync : restart chronyd] ********kskdasax
changed: [servera.lab.example.com]
changed: [serverb.lab.example.com]

1 EEE SRR EEEEEEE SRS EEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEE]
TASK [Set timezone]

changed: [serverb.lab.example.com]

Chapter 7 | Simplifying Playbooks with Roles
changed: [servera.lab.example.com]
RUNNING HANDLER [reboot host] R EEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEESS

changed: [serverb.lab.example.com]
changed: [servera.lab.example.com]

servera. lab.example.com 1 ok=17 changed=6 unreachable=0 failed=0
skipped=20 rescued=0 ignored=6
serverb.lab.example.com 1 ok=17 changed=6 unreachable=0 failed=0

skipped=20 rescued=0 ignored=6

P 8. Verify the time zone settings of each server. Use an Ansible ad hoc command to see the
output of the date command on all the database servers.

Note
S The actual timezones listed will vary depending on the time of year, and whether
daylight savings is active.

[student@workstation role-system]$ ansible database_servers -m shell -a date
servera.lab.example.com | CHANGED | rc=0 >>

Fri Jul 16 17:38:40 CDT 2021

serverb.lab.example.com | CHANGED | rc=0 >>

Sat Jul 17 01:38:40 EEST 2021

Each server has a time zone setting based on its geographic location.

Finish

Run the lab role-system finish command to cleanup the managed host.

[student@workstation ~]$ lab role-system finish

This concludes the guided exercise.

Chapter 7 | Simplifying Playbooks with Roles

Creating Roles

Objectives

After completing this section, you should be able to create a role in a playbook's project directory
and run it as part of one of the plays in the playbook.

The Role Creation Process

Creating roles in Ansible requires no special development tools. Creating and using a role is a three
step process:

1. Create the role directory structure.
2. Define the role content.

3. Use therole in a playbook.

Creating the Role Directory Structure

By default, Ansible looks for roles in a subdirectory called roles in the directory containing your
Ansible Playbook. This allows you to store roles with the playbook and other supporting files.

If Ansible cannot find the role there, it looks at the directories specified by the Ansible
configuration setting roles_path, in order. This variable contains a colon-separated list of
directories to search. The default value of this variable is:

~/.ansible/roles:/usr/share/ansible/roles:/etc/ansible/roles

This allows you to install roles on your system that are shared by multiple projects. For example,
you could have your own roles installed your home directory in the ~/.ansible/roles
subdirectory, and the system can have roles installed for all users in the /usr/share/ansible/
roles directory.

Each role has its own directory with a standardized directory structure. For example, the following
directory structure contains the files that define the motd role.

[user@host ~]$ tree roles/
roles/
L— motd

|— defaults

| L— main.yml

— files

— handlers

— meta

| L— main.yml

— README.md

— tasks

W RH294-RHEL8.4-en-1-20210818

Chapter 7 | Simplifying Playbooks with Roles

| L— main.yml
L— templates
L— motd.j2

The README . md provides a basic human-readable description of the role, documentation and
examples of how to use it, and any non-Ansible requirements it might have in order to work. The
meta subdirectory contains a main.yml file that specifies information about the author, license,
compatibility, and dependencies for the module. The files subdirectory contains fixed-content
files and the templates subdirectory contains templates that can be deployed by the role when
itis used. The other subdirectories can contain main.yml files that define default variable values,
handlers, tasks, role metadata, or variables, depending on the subdirectory they are in.

If a subdirectory exists but is empty, such as handlers in this example, it is ignored. If a role does
not use a feature, the subdirectory can be omitted altogether. For example, the vars subdirectory
has been omitted from this example.

Creating a Role Skeleton

You can create all the subdirectories and files needed for a new role using standard Linux
commands. Alternatively, command line utilities exist to automate the process of new role
creation.

The ansible-galaxy command line tool (covered in more detail later in this course) is used to
manage Ansible roles, including the creation of new roles. You can run ansible-galaxy init
to create the directory structure for a new role. Specify the name of the role as an argument to the
command, which creates a subdirectory for the new role in the current working directory.

[user@host playbook-project]$ cd roles

[user@host roles]$ ansible-galaxy init my_new_role

- my_new_role was created successfully

[user@host roles]$ 1s my_new_role/

defaults files handlers meta README.md tasks templates tests vars

Defining the Role Content

Once you have created the directory structure, you must write the content of the role. A good
place to start is the ROLENAME/tasks/main.yml task file, the main list of tasks run by the role.

The following tasks/main.ym1 file manages the /etc/motd file on managed hosts. It uses
the template module to deploy the template named motd. j2 to the managed host. Because
the template module is configured within a role task, instead of a playbook task, the motd. j2
template is retrieved from the role's templates subdirectory.

[user@host ~]$ cat roles/motd/tasks/main.yml

tasks file for motd

- name: deliver motd file
template:
src: motd.j2
dest: /etc/motd
owner: root
group: root
mode: 0444

Chapter 7 | Simplifying Playbooks with Roles

The following command displays the contents of the motd. j2 template of the motd role. It
references Ansible facts and a system_owner variable.

[user@host ~]$ cat roles/motd/templates/motd.j2
This is the system {{ ansible_facts['hostname'] }}.

Today's date is: {{ ansible_facts['date_time']['date'] }}.

Only use this system with permission.
You can ask {{ system_owner }} for access.

The role defines a default value for the system_owner variable. The defaults/main.ym1 file in
the role's directory structure is where this value is set.

The following defaults/main.yml file sets the system_owner variable to
user@host.example.com. This will be the email address that is written in the /etc/motd file of
managed hosts that this role is applied to.

[user@host ~]$ cat roles/motd/defaults/main.yml

system_owner: user@host.example.com

Recommended Practices for Role Content Development

Roles allow playbooks to be written modularly. To maximize the effectiveness of newly developed
roles, consider implementing the following recommended practices into your role development:

+ Maintain each role in its own version control repository. Ansible works well with git-based
repositories.

+ Sensitive information, such as passwords or SSH keys, should not be stored in the role
repository. Sensitive values should be parameterized as variables with default values that are
not sensitive. Playbooks that use the role are responsible for defining sensitive variables through
Ansible Vault variable files, environment variables, or other ansible-playbook options.

« Use ansible-galaxy init to startyourrole, and then remove any directories and files that
you do not need.

+ Create and maintain README . md and meta/main.yml files to document what your role is for,
who wrote it, and how to use it.

+ Keep your role focused on a specific purpose or function. Instead of making one role do many
things, you might write more than one role.

+ Reuse and refactor roles often. Resist creating new roles for edge configurations. If an existing
role accomplishes a majority of the required configuration, refactor the existing role to integrate
the new configuration scenario. Use integration and regression testing techniques to ensure that
the role provides the required new functionality and also does not cause problems for existing
playbooks.

Defining Role Dependencies

Role dependencies allow a role to include other roles as dependencies. For example, a role that
defines a documentation server may depend upon another role that installs and configures a web
server. Dependencies are defined in the meta/main.ym1 file in the role directory hierarchy.

Chapter 7 | Simplifying Playbooks with Roles

The following is a sample meta/main.yml file.

dependencies:
- role: apache
port: 8080

- role: postgres
dbname: serverlist
admin_user: felix

By default, roles are only added as a dependency to a playbook once. If another role also lists

it as a dependency it will not be run again. This behavior can be overridden by setting the
allow_duplicates variable to yes in the meta/main.yml file.

i | Important

— Limit your role's dependencies on other roles. Dependencies make it harder to
maintain your role, especially if it has many complex dependencies.

Using the Role in a Playbook

To access a role, reference it in the roles: section of a play. The following playbook refers to the
motd role. Because no variables are specified, the role is applied with its default variable values.

[user@host ~]$ cat use-motd-role.yml
- name: use motd role playbook
hosts: remote.example.com
remote_user: devops
become: true
roles:
- motd

When the playbook is executed, tasks performed because of a role can be identified by the role
name prefix. The following sample output illustrates this with the motd : prefix in the task name:

[user@host ~]$ ansible-playbook -i inventory use-motd-role.yml

PLAY [Use motd role playbook] khkhkkhkkhhhhkhhhhhhhkhhhhhhhkhhhhhkhhhhhhhkhhk bk kb kb khkkkk

TASK [Setup] khkhkhkkhhhhhhhhhhhhhhhhhhkhhkhhhhh bk hhhkhhkhhhhhkhhkhhkhhhkhhkhhhkhhkhhkhhkhkhkhk*

ok: [remote.example.com]

TASK [motd. deliver motd fl‘Le] khkkhkkhhhkhhhhhhhhhhhdhhhhhhhhhhhkhhhhhkhhkhkhhhhkhk*

changed: [remote.example.com]

PLAY REGCAP % * % % % o % ok sk ok ok sk ok ko K ko

remote.example.com 1 ok=2 changed=1 unreachable=0 failed=0

The above scenario assumes that the motd role is located in the roles directory. Later in the
course you will see how to use a role that is remotely located in a version control repository.

Chapter 7 | Simplifying Playbooks with Roles

Changing a Role's Behavior with Variables

A well-written role uses default variables to alter the role's behavior to match a related
configuration scenario. This helps make the role more generic and reusable in a variety of contexts.

The value of any variable defined in a role's defaults directory will be overwritten if that same
variable is defined:

+ in aninventory file, either as a host variable or a group variable.
+ in a YAML file under the group_vars or host_vars directories of a playbook project
+ as avariable nested in the vars keyword of a play

+ as a variable when including the role in roles keyword of a play

The following example shows how to use the motd role with a different value for the
system_owner role variable. The value specified, someone@host .example.com, will replace
the variable reference when the role is applied to a managed host.

[user@host ~]$ cat use-motd-role.yml
- name: use motd role playbook
hosts: remote.example.com
remote_user: devops
become: true
vars:
system_owner: someone@host.example.com
roles:
- role: motd

When defined in this way, the system_owner variable replaces the value of the default variable of
the same name. Any variable definitions nested within the vars keyword will not replace the value
of the same variable if defined in a role's vars directory.

The following example also shows how to use the motd role with a different value for the
system_owner role variable. The value specified, someone@host .example.com, will replace
the variable reference regardless of being defined in the role's vars or defaults directory.

[user@host ~]$ cat use-motd-role.yml
- name: use motd role playbook

hosts: remote.example.com

remote_user: devops

become: true

roles:

- role: motd
system_owner: someone@host.example.com

Chapter 7 | Simplifying Playbooks with Roles

i~ | Important
Variable precedence can be confusing when working with role variables in a play.

+ Almost any other variable will override a role's default variables: inventory
variables, play vars, inline role parameters, and so on.

+ Fewer variables can override variables defined in a role's vars directory. Facts,
variables loaded with include_vars, registered variables, and role parameters
are some variables that can do that. Inventory variables and play vars cannot.
This is important because it helps keep your play from accidentally changing the
internal functioning of the role.

+ However, variables declared inline as role parameters, like the last of the
preceding examples, have very high precedence. They can override variables
definedin a role's vars directory. If a role parameter has the same name as a
variable set in play vars, arole's vars, or an inventory or playbook variable, the
role parameter overrides the other variable.

References

Using Roles — Ansible Documentation
https://docs.ansible.com/ansible/2.9/user_guide/
playbooks_reuse_roles.html#using-roles

Using Variables — Ansible Documentation
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_variables.html

RH294-RHEL8.4-en-1-20210818 w

https://docs.ansible.com/ansible/2.9/user_guide/playbooks_reuse_roles.html#using-roles
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_reuse_roles.html#using-roles
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_variables.html

Chapter 7 | Simplifying Playbooks with Roles

» Guided Exercise

Creating Roles

In this exercise, you will create an Ansible role that uses variables, files, templates, tasks, and
handlers to deploy a network service.

Outcomes

You should be able to create a role that uses variables and parameters.

The myvhost role installs and configures the Apache service on a host. A template named
vhost.conf.j2is provided that will be used to generate /etc/httpd/conf.d/
vhost.conf.

Before You Begin
Logintoworkstation as student using student as the password.

Onworkstation, runthe lab role-create start command. This creates the working
directory, /home/student/role-create, and populates it with an Ansible configuration
file and host inventory.

[student@workstation ~]$ lab role-create start

Instructions

P 1. Change to the /home/student/role-create working directory.

[student@workstation ~]$ cd ~/role-create
[student@workstation role-createl]$

P 2. Create the directory structure for a role called myvhost. The role includes fixed files,
templates, tasks, and handlers.

[student@workstation role-create]$ mkdir -v roles; cd roles
mkdir: created directory 'roles'

[student@workstation roles]$ ansible-galaxy init myvhost

- myvhost was created successfully

[student@workstation roles]$ rm -rvf myvhost/{defaults,vars, tests}
removed 'myvhost/defaults/main.yml'

removed directory: 'myvhost/defaults'

removed 'myvhost/vars/main.yml'

removed directory: 'myvhost/vars'

removed 'myvhost/tests/inventory'

removed 'myvhost/tests/test.yml'

removed directory: 'myvhost/tests'

[student@workstation roles]$ cd ..

[student@workstation role-create]$

Chapter 7 | Simplifying Playbooks with Roles

) 3. Editthemain.yml file in the tasks subdirectory of the role. The role should perform the
following tasks:

» The httpd package is installed
+ The httpd service is started and enabled
» The web server configuration file is installed, using a template provided by the role

3.1. Editthe roles/myvhost/tasks/main.yml file. Include code to use the yum
module to install the httpd package. The file contents should look like the following:

tasks file for myvhost

- name: Ensure httpd is installed
yum:
name: httpd
state: latest

3.2. Add additional code to the roles/myvhost/tasks/main.yml file to use the
service module to start and enable the httpd service.

- name: Ensure httpd is started and enabled
service:
name: httpd
state: started
enabled: true

3.3. Add another stanza to use the template module to create /etc/httpd/conf.d/
vhost.conf on the managed host. It should call a handler to restart the httpd
daemon when this file is updated.

- name: vhost file is installed
template:
src: vhost.conf.j2
dest: /etc/httpd/conf.d/vhost.conf
owner: root
group: root
mode: 0644
notify:
- restart httpd

3.4. Save your changes and exit the roles/myvhost/tasks/main.yml file.

P 4. Create the handler for restarting the ht tpd service. Edit the roles/myvhost/
handlers/main.yml file and include code to use the service module, then save and
exit. The file contents should look like the following:

Chapter 7 | Simplifying Playbooks with Roles

handlers file for myvhost

- name: restart httpd
service:
name: httpd
state: restarted

P 5. Move the vhost.conf. j2 template from the project directory to the role's templates
subdirectory.

[student@workstation role-create]$ mv -v vhost.conf.j2 roles/myvhost/templates/
renamed 'vhost.conf.j2' -> 'roles/myvhost/templates/vhost.conf.j2'

P 6. Create the HTML content to be served by the web server.

6.1. Create the files/html/ directory to store the contentin.

[student@workstation role-create]$ mkdir -pv files/html
mkdir: created directory 'files/html'

6.2. Create an index.html file below that directory with the contents: simple index.

[student@workstation role-create]$ echo \
> 'simple index' > files/html/index.html

p 7. Testthe myvhost role to make sure it works properly.

7.1. Write a playbook that uses the role, called use-vhost-role.yml. Include a task
to copy the HTML content from files/html/. Use the copy module and include a
trailing slash after the source directory name. It should have the following content:

- name: Use myvhost role playbook
hosts: webservers
pre_tasks:
- name: pre_tasks message
debug:
msg: 'Ensure web server configuration.'

roles:
- myvhost

post_tasks:
- name: HTML content is installed
copy':
src: files/html/
dest: "/var/www/vhosts/{{ ansible_hostname }}"

Chapter 7 | Simplifying Playbooks with Roles

- name: post_tasks message
debug:
msg: 'Web server is configured.'

Note
S The trailing slash causes the source directory and all of its contents to be copied to
the managed host.

7.2. Before running the playbook, verify that its syntax is correct by running ansible-
playbook with the - -syntax-check. If it reports any errors, correct them before
moving to the next step. You should see output similar to the following:

[student@workstation role-create]$ ansible-playbook use-vhost-role.yml \
> --syntax-check

playbook: use-vhost-role.yml

7.3. Run the playbook. Review the output to confirm that Ansible performed the actions
on the web server, servera.

[student@workstation role-create]$ ansible-playbook use-vhost-role.yml

PLAY [Use myVhOSt role playbook] khkkhkhkhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhkhkhhkkhk

TASK [Gathering FaCtS] khkhkhhkhhhhkhhhhhhhhhhhhhhhhhhhhhkhhkhhhhhhhkhhhhhhkhhhhkhk*

ok: [servera.lab.example.com]

TASK [pr‘eftasks message] khkkhkhkhkhhhhkhhhhhhhhhhhhhhhhhhhhhkhhhhhhhkhhhhhkhhhhhhkhkk*

ok: [servera.lab.example.com] => {
"msg": "Ensure web server configuration."

TASK [myvhost 2 Ensure httpd lS lnStalled] EEE R R EEEEEEEEEEEEEEEEREEEEEEREEEEESES
changed: [servera.lab.example.com]

TASK [myvhost : Ensure httpd is started and enabled] ******xxxxdkdddddidikiiix
changed: [servera.lab.example.com]

TASK [myvhost 2 VhOSt -f:l'Le lS lnStalled] LR R R R R R R R R
changed: [servera.lab.example.com]

RUNNING HANDLER [myvhost 2 restart httpd] EE R R R R S
changed: [servera.lab.example.com]

TASK [HTML Content lS lnStalled] R R R R R R R S R R S S R R R S S
changed: [servera.lab.example.com]

TASK [postitasks message] LR R R S R R R R R R R S R S R R R R R R R R

ok: [servera.lab.example.com] => {
"msg": "Web server is configured."

Chapter 7 | Simplifying Playbooks with Roles

PLAY RECAP ***®xkkkkkkdkkhkhhkhhkhhkhhkhhkhhkhhkhhkkhkhhkkhkkhkkhkkhkkkkkkkxkkx

servera. lab.example.com : ok=8 changed=5 unreachable=0 failed=0

74. Run ad hoc commands to confirm that the role worked. The httpd package should be
installed and the ht tpd service should be running.

[student@workstation role-create]$ ansible webservers -a \
> 'systemctl is-active httpd'

servera.lab.example.com | CHANGED | rc=0 >>

active

[student@workstation role-create]$ ansible webservers -a \
> 'systemctl is-enabled httpd'

servera.lab.example.com | CHANGED | rc=0 >>

enabled

7.5. The Apache configuration should be installed with template variables expanded.

[student@workstation role-create]$ ansible webservers -a \
> 'cat /etc/httpd/conf.d/vhost.conf'
servera.lab.example.com | CHANGED | rc=0 >>

Ansible managed:

<VirtualHost *:80>
ServerAdmin webmaster@servera.lab.example.com
ServerName servera.lab.example.com
ErrorLog logs/servera-error.log
CustomLog logs/servera-common.log common
DocumentRoot /var/www/vhosts/servera/

<Directory /var/www/vhosts/servera/>
Options +Indexes +FollowSymlinks +Includes
Order allow, deny
Allow from all
</Directory>
</VirtualHost>

7.6. The HTML content should be found in a directory called /var/www/vhosts/
servera. The index.html file should contain the string "simple index".

[student@workstation role-create]$ ansible webservers -a \
> 'cat /var/www/vhosts/servera/index.html'
servera.lab.example.com | CHANGED | rc=0 >>

simple index

7.7. Use the uri module in an ad hoc command to check that the web content is available
locally. Set the return_content parameter to true to have the content of the
server's response added to the output. The server content should be the string
simple index\n.

Chapter 7 | Simplifying Playbooks with Roles

[student@workstation role-create]$ ansible webservers -m uri \
> -a 'url=http://localhost return_content=true'
servera.lab.example.com | SUCCESS => {

"accept_ranges": "bytes",

"changed": false,

"connection": "close",

"content": "simple index\n",
...output omitted...

"status": 200,

"url": "http://localhost"

7.8. Confirm that the web server content is available to remote clients.

[student@workstation role-create]$ curl http://servera.lab.example.com
simple index

Finish

Run the lab role-create finish command to clean up the managed host.

[student@workstation ~]$ lab role-create finish

This concludes the guided exercise.

Chapter 7 | Simplifying Playbooks with Roles

Deploying Roles with Ansible Galaxy

Objectives

After completing this section, you should be able to select and retrieve roles from Ansible Galaxy
or other sources such as a Git repository, and use them in your playbooks.

Introducing Ansible Galaxy

Ansible Galaxy [https://galaxy.ansible.com] is a public library of Ansible content written by a
variety of Ansible administrators and users. It contains thousands of Ansible roles and it has a
searchable database that helps Ansible users identify roles that might help them accomplish an
administrative task. Ansible Galaxy includes links to documentation and videos for new Ansible
users and role developers.

O Ansible Galaxy 53| s
&« c @ ® @ https://galaxy.ansible.com 120%) | - @ ¢ Search LN &~ @D

e GALAXY @nabout @Help M Documentation %) Login

Home A Home

Search

¥ Most Popular

Community

G system </> Development sk Networking & Cloud
€ Database Ll Monitoring © Packaging ¥ Playbook Bundles
& Security @ Web

& Download 3 share * Featured

Jump-start your automation project with Help other Ansible users by sharing the Read the latest from The Inside Playbook,
great content from the Ansible community. awesome roles you create. and keep up with what's happening in the

Figure 7.1: Ansible Galaxy home page

In addition, the ansible-galaxy command that you use to get and manage roles from
Ansible Galaxy can also be used to get and manage roles your projects need from your own Git
repositories.

Getting Help with Ansible Galaxy

The Documentation tab on the Ansible Galaxy website home page leads to a page that describes
how to use Ansible Galaxy. There is content that describes how to download and use roles from
Ansible Galaxy. Instructions on how to develop roles and upload them to Ansible Galaxy are also
on that page.

Browsing Ansible Galaxy for Roles

The Search tab on the left side of the Ansible Galaxy website home page gives users access to
information about the roles published on Ansible Galaxy. You can search for an Ansible role by
its name, using tags, or by other role attributes. Results are presented in descending order of the

w RH294-RHEL8.4-en-1-20210818

https://galaxy.ansible.com
https://galaxy.ansible.com

Chapter 7 | Simplifying Playbooks with Roles

Best Match score, which is a computed score based on role quality, role popularity, and search

criteria.

{4

Note

Content Scoring [https://galaxy.ansible.com/docs/contributing/

content_scoring.html] in the documentation has more information on how roles are

scored by Ansible Galaxy.

@ Ansible Galaxy b AF
T c @ @ @ htps://galaxy.ansible.com/search?dej o 120%) | - @ t¥||Q Search m ~ @ =
= e GALAXY ®About @Help [MiDocumentation M &dk14142
Home Q Search
Search ~ Fi 18502 lts
Q Filters (results) ® Popular Tags
Community w
My Content c“ £ java [®5/5 Score
Ej/ Java for Linux £.1280657 Downloads m
L
@9 Watchers
wetny W Tt
crade sy; web
ki
Last Imported 3 days ago
Best Match 0.5147
s
Q £ docker 13 712
i @5 /5 Score
3 Docker for Linux.
) 1069555 Downloads = B
geerinzray W @20 Watchers

Figure 7.2: Ansible Galaxy search screen

Ansible Galaxy reports the number of times each role has been downloaded from Ansible Galaxy.
In addition, Ansible Galaxy also reports the number of watchers, forks, and stars the role's GitHub
repository has. Users can use this information to help determine how active development is for a
role and how popular it is in the community.

The following figure shows the search results that Ansible Galaxy displayed after a keyword search
for redis was performed. Notice the first result has a Best Match score of ©.9009.

@ Ansible Galaxy x |+

N
= @Qornaxy

Home

@ @ httpsi//galaxy.ansible.com/search? deprecatec

120%) | e @ 17

Q search (1]}

~ @ =

@nabout @rHelp Mpocumentation M & dk14142

Q Search

Search redis

Q ~Filters (302 results)

W Popular Tags

BestMatch v | |$

Active filters: [P Clear All Filters

Content Type
Community system

302 Results

) ©o
o N
2 I
o =

development

2,227
:
erivag
m £ redis 3 ©5/5 Score
a Redis for Linux 2146013 Downloads. networking
L
@8 Watchers
geerlingguy L %98 Stars database 914
bodu

Last Imported 5 hours ago
Best Match 0.9009

build | passing

Figure 7.3: Ansible Galaxy search results example

packaging

BHAB

RH294-RHEL8.4-en-1-20210818

https://galaxy.ansible.com/docs/contributing/content_scoring.html
https://galaxy.ansible.com/docs/contributing/content_scoring.html
https://galaxy.ansible.com/docs/contributing/content_scoring.html

Chapter 7 | Simplifying Playbooks with Roles

The Filters pulldown menu to the right of the search box allow searches to be performed on
keywords, author IDs, platform, and tags. Possible platform values include EL for Red Hat
Enterprise Linux (and closely related distributions such as CentOS) and Fedora, among others.

Tags are arbitrary single-word strings set by the role author that describe and categorize the role.
Users can use tags to find relevant roles. Possible tag values include system, development, web,
monitoring, and others. A role can have up to 20 tags in Ansible Galaxy.

i~ | Important

In the Ansible Galaxy search interface, keyword searches match words or phrases in
the README file, content name, or content description. Tag searches, by contrast,
specifically match tag values set by the author for the role.

The Ansible Galaxy Command-Line Tool

The ansible-galaxy command line tool can be used to search for, display information about,
install, list, remove, or initialize roles.

Searching for Roles from the Command Line

The ansible-galaxy search subcommand searches Ansible Galaxy for roles. If you specify a
string as an argument, it is used to search Ansible Galaxy for roles by keyword. You can use the - -
author, --platforms, and - -galaxy-tags options to narrow the search results. You can also
use those options as the main search key. For example, the command ansible-galaxy search
--author geerlingguy will display all roles submitted by the user geer 1ingguy.

Results are displayed in alphabetical order, not by descending Best Match score. The following
example displays the names of roles that include redis, and are available for the Enterprise Linux
(EL) platform.

[user@host ~]$ ansible-galaxy search 'redis' --platforms EL

Found 124 roles matching your search:

Name Description

1it.sudo Ansible role for managing sudoers
AerisCloud. librato Install and configure the Librato Agent
AerisCloud.redis Installs redis on a server
AlbanAndrieu. java Manage Java installation
andrewrothstein.redis builds Redis from src and installs
...output omitted. ..

geerlingguy.php-redis PhpRedis support for Linux
geerlingguy.redis Redis for Linux

gikoluo.filebeat Filebeat for Linux.

...output omitted. ..

The ansible-galaxy info subcommand displays more detailed information about a

role. Ansible Galaxy gets this information from a number of places including the role's meta/
main.yml file and its GitHub repository. The following command displays information about the
geerlingguy.redis role, available from Ansible Galaxy.

Chapter 7 | Simplifying Playbooks with Roles

[user@host ~]$ ansible-galaxy info geerlingguy.redis

Role: geerlingguy.redis
description: Redis for Linux
active: True
...output omitted...
download_count: 146209
forks_count: 82
github_branch: master
github_repo: ansible-role-redis
github_user: geerlingguy
...output omitted...
license: license (BSD, MIT)
min_ansible_version: 2.4
modified: 2018-11-19T14:53:29.722718Z
open_issues_count: 11
path: [u'/etc/ansible/roles', u'/usr/share/ansible/roles']
role_type: ANS
stargazers_count: 98
...output omitted...

Installing Roles from Ansible Galaxy

The ansible-galaxy install subcommand downloads a role from Ansible Galaxy, then
installs it locally on the control node.

By default, roles are installed into the first directory that is writable in the user's roles_path.
Based on the default roles_path set for Ansible, normally the role will be installed into the user's
~/.ansible/roles directory. The default roles_path might be overridden by your current
Ansible configuration file or by the environment variable ANSIBLE_ROLES_PATH, which affects
the behavior of ansible-galaxy.

You can also specify a specific directory to install the role into by using the -p DIRECTORY option.

In the following example, ansible-galaxy installs the geerlingguy.redis roleinto a
playbook project's roles directory. The command's current working directory is /opt/project.

[user@host project]$ ansible-galaxy install geerlingguy.redis -p roles/

- downloading role 'redis', owned by geerlingguy

- downloading role from https://github.com/geerlingguy/...output omitted. ..
- extracting geerlingguy.redis to /opt/project/roles/geerlingguy.redis

- geerlingguy.redis (1.6.0) was installed successfully

[user@host project]$ 1s roles/

geerlingguy.redis

Installing Roles Using a Requirements File

You can also use ansible-galaxy to install a list of roles based on definitions in a text file.
For example, if you have a playbook that needs to have specific roles installed, you can create a
roles/requirements.yml file in the project directory that specifies which roles are needed.
This file acts as a dependency manifest for the playbook project which enables playbooks to be
developed and tested separately from any supporting roles.

For example, a simple requirements.yml to install geer Lingguy . redis might read like this:

Chapter 7 | Simplifying Playbooks with Roles

src: geerlingguy.redis
version: "1.5.0"

The src attribute specifies the source of the role, in this case the geer lingguy.redis role from
Ansible Galaxy. The version attribute is optional, and specifies the version of the role to install, in
this case 1.5.0.

Important

You should specify the version of the role in your requirements.yml file,
especially for playbooks in production.

If you do not specify a version, you will get the latest version of the role. If the
upstream author makes changes to the role that are incompatible with your
playbook, it may cause an automation failure or other problems.

To install the roles using a role file, use the -r REQUIREMENTS-FILE option:

[user@host project]$ ansible-galaxy install -r roles/requirements.yml \

>

-p roles
downloading role 'redis', owned by geerlingguy
downloading role from https://github.com/geerlingguy/ansible-role-redis/

archive/1.6.0.tar.gz

extracting geerlingguy.redis to /opt/project/roles/geerlingguy.redis
geerlingguy.redis (1.6.0) was installed successfully

You can use ansible-galaxy to install roles that are not in Ansible Galaxy. You can host your
own proprietary or internal roles in a private Git repository or on a web server. The following
example shows how to configure a requirements file using a variety of remote sources.

[user@host project]$ cat roles/requirements.yml

#

from Ansible Galaxy, using the latest version
src: geerlingguy.redis

from Ansible Galaxy, overriding the name and using a specific version
src: geerlingguy.redis

version: "1.5.0"

name: redis_prod

from any Git-based repository, using HTTPS

src: https://gitlab.com/guardianproject-ops/ansible-nginx-acme.git
scm: git

version: 56e00a54

name: nginx-acme

from any Git-based repository, using SSH

src: git@gitlab.com:guardianproject-ops/ansible-nginx-acme.git
scm: git

version: master

name: nginx-acme-ssh

from a role tar ball, given a URL;

Chapter 7 | Simplifying Playbooks with Roles

supports 'http', 'https', or 'file' protocols
- src: file:///opt/local/roles/myrole.tar
name: myrole

The src keyword specifies the Ansible Galaxy role name. If the role is not hosted on Ansible
Galaxy, the src keyword indicates the role's URL.

If the role is hosted in a source control repository, the scm attribute is required. The ansible-
galaxy command is capable of downloading and installing roles from either a Git-based or
mercurial-based software repository. A Git-based repository requires an scm value of git, while a
role hosted on a mercurial repository requires a value of hg. If the role is hosted on Ansible Galaxy
or as a tar archive on a web server, the scm keyword is omitted.

The name keyword is used to override the local name of the role. The version keyword is used to
specify a role's version. The version keyword can be any value that corresponds to a branch, tag,
or commit hash from the role's software repository.

To install the roles associated with a playbook project, execute the ansible-galaxy install
command:

[user@host project]$ ansible-galaxy install -r roles/requirements.yml \

> -p roles

- downloading role 'redis', owned by geerlingguy

- downloading role from https://github.com/geerlingguy/ansible-role-redis/
archive/1.6.0.tar.gz

- extracting geerlingguy.redis to /opt/project/roles/geerlingguy.redis

- geerlingguy.redis (1.6.0) was installed successfully

- downloading role 'redis', owned by geerlingguy

- downloading role from https://github.com/geerlingguy/ansible-role-redis/
archive/1.5.0.tar.gz

- extracting redis_prod to /opt/project/roles/redis_prod

- redis_prod (1.5.0) was installed successfully

- extracting nginx-acme to /opt/project/roles/nginx-acme

- nginx-acme (56e00a54) was installed successfully

- extracting nginx-acme-ssh to /opt/project/roles/nginx-acme-ssh

- nginx-acme-ssh (master) was installed successfully

- downloading role from file:///opt/local/roles/myrole.tar

- extracting myrole to /opt/project/roles/myrole

- myrole was installed successfully

Managing Downloaded Roles

The ansible-galaxy command can also manage local roles, such as those roles found in the
roles directory of a playbook project. The ansible-galaxy list subcommand lists the roles
that are found locally.

[user@host project]$ ansible-galaxy list
- geerlingguy.redis, 1.6.0

- myrole, (unknown version)

- nginx-acme, 56e00a54

- nginx-acme-ssh, master

- redis_prod, 1.5.0

Arole can be removed locally with the ansible-galaxy remove subcommand.

Chapter 7 | Simplifying Playbooks with Roles

[user@host ~]$ ansible-galaxy remove nginx-acme-ssh

successfully removed nginx-acme-ssh

[user@host ~]$ ansible-galaxy list

geerlingguy.redis, 1.6.0
myrole, (unknown version)
nginx-acme, 56e00a54
redis_prod, 1.5.0

Use downloaded and installed roles in playbooks like any other role. They may be referenced in the
roles section using their downloaded role name. If a role is not in the project's roles directory,
the roles_path will be checked to see if the role is installed in one of those directories, first
match being used. The following use-role.yml playbook references the redis_prod and
geerlingguy.redis roles:

[user@host project]$ cat use-role.yml

name: use redis_prod for Prod machines
hosts: redis_prod_servers
remote_user: devops
become: true
roles:
- redis_prod

name: use geerlingguy.redis for Dev machines
hosts: redis_dev_servers
remote_user: devops
become: true
roles:
- geerlingguy.redis

This playbook causes different versions of the geer lingguy . redis role to be applied to the
production and development servers. In this manner, changes to the role can be systematically
tested and integrated before deployment to the production servers. If a recent change to a role
causes problems, using version control to develop the role allows you to roll back to a previous,
stable version of the role.

288

References

Ansible Galaxy — Ansible Documentation
https://docs.ansible.com/ansible/2.9/cli/ansible-galaxy.html

https://docs.ansible.com/ansible/2.9/cli/ansible-galaxy.html

Chapter 7 | Simplifying Playbooks with Roles

» Guided Exercise

Deploying Roles with Ansible Galaxy

In this exercise, you will use Ansible Galaxy to download and install an Ansible role.

Outcomes
You should be able to:

+ create a roles file to specify role dependencies for a playbook
« install roles specified in a roles file

- list roles using the ansible-galaxy command

Scenario Overview

Your organization places custom files in the /etc/skel directory on all hosts. As a
result, new user accounts are configured with a standardized organization-specific Bash
environment.

You will test the development version of the Ansible role responsible for deploying Bash
environment skeleton files.

Before You Begin
Logintoworkstation as student using student as the password.

Onworkstation, runthe lab role-galaxy start command. This creates the working
directory, /home/student/role-galaxy, and populates it with an Ansible configuration
file and host inventory.

[student@workstation ~]$ lab role-galaxy start

Instructions
P 1. Change to the role-galaxy working directory.

[student@workstation ~]$ cd ~/role-galaxy
[student@workstation role-galaxy]$

P 2. To test the Ansible role that configures skeleton files, add the role specification to a roles
file.

Launch your favorite text editor and create a file called requirements.yml

in the roles subdirectory. The URL of the role's Git repository is:

git@workstation. lab.example.com:student/bash_env. To see how the role
affects the behavior of production hosts, use the master branch of the repository. Set the
local name of the role to student .bash_env.

The roles/requirements.yml now contains the following content:

Chapter 7 | Simplifying Playbooks with Roles

requirements.yml

- src: git@workstation.lab.example.com:student/bash_env
scm: git
version: master
name: student.bash_env

P 3. Usethe ansible-galaxy command to process the roles file you just created and install
the student.bash_env role.

3.1. For comparison, display the contents of the roles subdirectory before the role is
installed.

[student@workstation role-galaxy]$ ls roles/
requirements.yml

3.2. Use Ansible Galaxy to download and install the roles listed in the roles/
requirements.yml file. Be sure that any downloaded roles are stored in the roles
subdirectory.

[student@workstation role-galaxy]$ ansible-galaxy install -r \

> roles/requirements.yml -p roles

- extracting student.bash_env to /home/student/role-galaxy/roles/student.bash_env
- student.bash_env (master) was installed successfully

3.3. Display the roles subdirectory after the role has been installed. Confirm that it has a
new subdirectory called student . bash_env, matching the name value specified in
the YAML file.

[student@workstation role-galaxy]$ ls roles/
requirements.yml student.bash_env

3.4. Tryusing the ansible-galaxy command, without any options, to list the project
roles:

[student@workstation role-galaxy]$ ansible-galaxy list
/usr/share/ansible/roles
...output omitted. ..
- rhel-system-roles.postfix, (unknown version)
- rhel-system-roles.selinux, (unknown version)
- rhel-system-roles.timesync, (unknown version)
/etc/ansible/roles
[WARNING]: - the configured path /home/student/.ansible/roles does not exist.

Because you used the -p option with the ansible-galaxy install command,
the student.bash_env role was not installed in the default location. Use the -p
option with the ansible-galaxy 1list command to list the downloaded roles:

Chapter 7 | Simplifying Playbooks with Roles

[student@workstation role-galaxy]$ ansible-galaxy list -p roles

/home/student/role-galaxy/roles

- student.bash_env, master

...output omitted...

[WARNING]: - the configured path /home/student/.ansible/roles does not exist.

Note

E The /home/student/.ansible/roles directory isin your default roles_path,
but since you have not attempted to install a role without using the -p option,
ansible-galaxy has not yet created the directory.

P 4. Create a playbook, called use-bash_env-role.yml, that uses the student.bash_env
role. The contents of the playbook should match the following:

- name: use student.bash_env role playbook
hosts: devservers

vars:
default_prompt: '[\u on \h in \W dir]\$ '
pre_tasks:
- name: Ensure test user does not exist
user:
name: student2
state: absent
force: yes
remove: yes
roles:

- student.bash_env

post_tasks:
- name: Create the test user
user:
name: student2
state: present
password: "{{ 'redhat' | password_hash('sha512', 'mysecretsalt') }}"

To see the effects of the configuration change, a new user account must be created. The
pre_tasks and post_tasks section of the playbook ensure that the student2 user
account is created each time the playbook is executed. After playbook execution, the
student?2 account is accessed with a password of redhat.

Note

E The user2 password is generated using a filter. Filters take data and modify it; here,
the string redhat is modified by passing it to the password_hash module. Filters
are an advanced topic not covered in this course.

Chapter 7 | Simplifying Playbooks with Roles

P 5. Runthe playbook. The student .bash_env role creates standard template configuration
filesin /etc/skel on the managed host. The files it creates include . bashrc,
.bash_profile, and .vimrc.

[student@workstation role-galaxy]$ ansible-playbook use-bash_env-role.yml

PLAY [Use student.bash env role playbook] khkhkhkkhhkhkhhhhhhhkhhhhhkhhkhhhhkhkhdkkkhk

TASK [Gather‘ing FaCtS] khkhkhkhkhhhhkhhhhhhhhhhhhhhhhkhhhhhkhhhhhhhkhhkhhhhhhhkhhhhkhk*

ok: [servera.lab.example.com]

TASK [Ensure test user does not eXiSt] khkhkhkkhhkhhkhhhkhhhhhhhhhhhkhhhhhkhhkhhhhkhk*

ok: [servera.lab.example.com]

TASK [Student.bash env : put away .bashrc] R I R R
changed: [servera.lab.example.com]

TASK [student.bash_env : put away .bash_profile] ********kxxsadakxxdddihxxsdsx
ok: [servera.lab.example.com]

TASK [Student bash env . put away Vler] R S
changed: [servera.lab.example.com]

TASK [Create the test User] khkkhkhkhkhhkhhhhhhhhhhhhhhhhkhhhhhhhhhhhhhhkhhhhkhkhdhkkhk

changed: [servera.lab.example.com]

PLAY RECAP ****xkkkkkkkkkkkhkkkkkhkhkkhhkrhkrhkrhkrhkrhdkrhkrhkrhkrhkrhkrhkxrkx

servera. lab.example.com : ok=6 changed=4 unreachable=0 failed=0

P 6. Connectto servera asthe student2 user using SSH. Observe the custom prompt for
the student?2 user, and then disconnect from servera.

[student@workstation role-galaxy]$ ssh student2@servera
Activate the web console with: systemctl enable --now cockpit.socket

[student2 on servera in ~ dir]$ exit
logout

Connection to servera closed.
[student@workstation role-galaxy]$

P 7. Execute the playbook using the development version of the student .bash_env role.

The development version of the role is located in the dev branch of the Git repository. The
development version of the role uses a new variable, prompt_color. Before executing the
playbook, add the prompt_color variable to the vars section of the playbook and set its
value to blue.

71. Update the roles/requirements.yml file, and set the version value to dev.
The roles/requirements.yml file now contains:

Chapter 7 | Simplifying Playbooks with Roles

requirements.yml

- src: git@workstation.lab.example.com:student/bash_env
scm: git
version: dev
name: student.bash_env

7.2. Usethe ansible-galaxy install command to install the role using the updated
roles file. Use the - -force option to overwrite the existing master version of the
role with the dev version of the role.

[student@workstation role-galaxy]$ ansible-galaxy install \

> -r roles/requirements.yml --force -p roles

- changing role student.bash_env from master to dev

- extracting student.bash_env to /home/student/role-galaxy/roles/student.bash_env
- student.bash_env (dev) was installed successfully

7.3. Edittheuse-bash_env-role.yml file. Add the prompt_color variable with a
value of blue to the vars section of the playbook. The file now contains:

- name: use student.bash_env role playbook
hosts: devservers
vars:
prompt_color: blue
default_prompt: '[\u on \h in \W dir]\$ '
pre_tasks:
...output omitted. ..

7.4. Execute the use-bash_env-role.yml playbook.

[student@workstation role-galaxy]$ ansible-playbook use-bash_env-role.yml

PLAY [Use student.bash env role playbook] khkhkkkhhkhhkhhhkhhhhhhhhhhhhhhhhhkhdkkkhk

TASK [Gathering Facts] khkhkhkkhhhhhhhhhhhhhhhhhhkhhkhhhh kb hkhhhhhk bk hhkhhk bk hkkhkhk*

ok: [servera.lab.example.com]

TASK [Ensure test user does not eXiSt] khhkhkhkkhhkhhhhhhhhhhhhhhhhkhhhhhkhhkhhhhkhk*

changed: [servera.lab.example.com]

TASK [Student.bash env : put away .bashrc] khkkhkkhkhkkhhkdhkhkhkhkhhkdhrdhhhhkhhkdrrdrhhhhxdx
changed: [servera.lab.example.com]

TASK [student.bash_env : put away .bash_profile] *******kkaxsadahrxsdddihxxsdsx
changed: [servera.lab.example.com]

TASK [Student bash env . put away Vler] R S S
okay: [servera.lab.example.com]

TASK [Create the test User] khkhkhkkhhkhhkhhhhhhhhhhhhhhkhhhhhhhhhhhhhhkhhhhkhkhhkkhk

Chapter 7 | Simplifying Playbooks with Roles

changed: [servera.lab.example.com]

PLAY RECAP *** %k kkdkkkdkkhkhhhhhhhhhhhhkhkhhkhhkkhkhhkhhkkhkkhkdhkkhkkhkdhkxhkx

servera. lab.example.com : ok=6 changed=4 unreachable=0 failed=0

) 8. Connectagainto servera as the student2 using SSH. Observe the error for the
student?2 user, and then disconnect from servera.

[student@workstation role-galaxy]$ ssh student2@servera
Activate the web console with: systemctl enable --now cockpit.socket

-bash: [: missing "]'
[student2@servera ~]$ exit

logout

Connection to servera closed.
[student@workstation role-galaxy]$

A Bash error occurred while parsing the student2 user's . bash_profile file.

P 9. Correct the errorin the development version of the student .bash_env role, and re-
execute the playbook.

9.1. Edittheroles/student.bash_env/templates/_bash_profile.j2 file. Add
the missing] character to line 4 and save the file. The top of the file is now:

.bash_profile
Get the aliases and functions
if [-f ~/.bashrc]; then
~/ .bashrc
fi
User specific environment and startup programs
PATH=$PATH:$HOME/ . local/bin:$HOME/bin
export PATH

Save the file.

9.2. Execute the use-bash_env-role.yml playbook.

[student@workstation role-galaxy]$ ansible-playbook use-bash_env-role.yml

PLAY [use student.bash env role playbook] EE R R R R R R

TASK [Gatherlng Facts] R R R R R R R R S R R R

ok: [servera.lab.example.com]

TASK [Ensure test user does not eXlSt] R R R S R R S S S S

changed: [servera.lab.example.com]

TASK [Student bash env . put away bashrc] EEEE R R EEEEEEEEEEEEEEEEEEEEEESEEEEEEE]
ok: [servera.lab.example.com]

Chapter 7 | Simplifying Playbooks with Roles

TASK [student.bash_env : put away .bash_profile] *******kdkkxxsaadakxrdddhrrsdsx
changed: [servera.lab.example.com]

TASK [Student bash env : put away Vier] khkkkhkkhhkhhkhhhkhhkhhhhhkhhkhhhhhhhkhkhkhkkhk

ok: [servera.lab.example.com]

TASK [Create the test User] khkkkhkkhhkhhkhhhkhhhhhhhhhhhhhhhhkhhhhhhhkh b bk hkhk bk kkkkk

changed: [servera.lab.example.com]

PLAY RECAP ***®xkkkdkkkkkhkkhkkhkkhkkhkkhkkh ok kk ok kk ok kk ok kk ok kk ok kkkkkdkkkdkkkkkkkxkkx

servera. lab.example.com : ok=6 changed=3 unreachable=0 failed=0

9.3. Connect again to servera as the student2 using SSH.

[student@workstation role-galaxy]$ ssh student2@servera
Activate the web console with: systemctl enable --now cockpit.socket

[student2 on servera in ~ dir]$ exit
logout

Connection to servera closed.
[student@workstation role-galaxy]$

The error message is no longer present. The custom prompt for the student2 user
now displays with blue characters.

P 10. The steps above demonstrate that the development version of the student.bash_env
role is defective. Based on testing results, developers will commit necessary fixes back to
the development branch of the role. When the development branch passes required quality
checks, developers merge features from the development branch into the master branch.

Committing role changes to a Git repository is beyond the scope of this course.

i~ | Important

= When tracking the latest version of a role in a project, periodically reinstall the role
to update it. This ensures that the local copy stays current with bug fixes, patches,
and other features.

However, if using a third-party role in production, specify the version to use in order
to avoid breakage due to unexpected changes. Periodically update to the latest
role version in your test environment so as to adopt improvements and changes in a
controlled manner.

Finish
Run the lab role-galaxy finish command to clean up the managed host.

[student@workstation ~]$ lab role-galaxy finish

This concludes the guided exercise.

Chapter 7 | Simplifying Playbooks with Roles

Getting Roles and Modules from Content
Collections

Objectives

After completing this section, you should be able to obtain a set of related roles, supplementary
modules, and other content from content collections, and use them in a playbook.

Discussing Content Collections

Ansible content collections are a distribution format for Ansible content. A collection provides a set
of related modules, roles, and plug-ins that you can download to your control node and then use in
your playbooks.

For example:

+ The redhat.insights collection groups modules and roles that you can use to register a
system with Red Hat Insights for Red Hat Enterprise Linux.

+ The cisco.ios collection groups modules and plug-ins that manage Cisco IOS network
appliances. The Cisco company supports and maintains that collection.

« The community.crypto collection provides modules that create SSL/TLS certificates.

Content collections allow updates to the core Ansible code to be separated from updates to
modules and plug-ins. This allows vendors and developers to maintain and distribute their
collections at their own pace, independently of Ansible releases. You can develop your own
collections to provide custom roles and modules to your teams.

Content collections also give you more flexibility. By using collections, you can install only the
content you need instead of installing all supported modules. You can also select a specific
version of a collection (possibly an earlier or later one) or choose between a version of a collection
supported by Red Hat or vendors or one provided by the community.

Ansible 2.9 and later support collections. Later versions of Ansible and Red Hat Ansible
Automation Platform will provide further enhancements to collection support and will use them
extensively. Understanding how collections work will be important.

The ansible RPM package provided with Red Hat Ansible Automation Platform 1.2 and

Ansible 2.9 automatically installs all the modules that earlier versions of Ansible did. Future
versions of Ansible and Red Hat Ansible Automation Platform will remove most modules from the
main RPM package and place them in collections that might be included or that you might have to
download.

Organizing Collections in Namespaces

To make it easier to specify collections and their contents by name, collection names are
organized into namespaces. Vendors, partners, developers, and content creators can use
namespaces to assign unique names to their collections without conflicting with other developers.

The namespace is the first part of a collection name. For example, all the collections that
the Ansible community maintains are in the community namespace, and have names like
community.crypto, community.postgresql, and community.rabbitmg. Collections

Chapter 7 | Simplifying Playbooks with Roles

that Red Hat maintains and supports might use the redhat namespace, and have names like
redhat.rhv, redhat.satellite, and redhat.insights.

Selecting Collection Sources

Ansible provides two official sources to download and install collections: Ansible automation hub
and Ansible Galaxy.

Ansible automation hub
Ansible automation hub hosts Ansible content collections that Red Hat and its partners
support for their customers. Red Hat reviews, maintains, updates, and fully supports those
collections. For example, the redhat.rhv, redhat.satellite, redhat.insights, and
cisco.ios collections are available on that platform.

You need a valid Red Hat Ansible Automation Platform subscription to access Ansible
automation hub. Use the Ansible automation hub web Ul at https://cloud.redhat.com/ansible/
automation-hub/ to list and access the collections.

Ansible Galaxy
Ansible Galaxy hosts collections that have been submitted by a variety of Ansible developers
and users. Ansible Galaxy is a public library with no formal support guarantees, but which
allows public access. For example, the community.crypto, community.postgresql, and
community.rabbitmq collections are all available from that platform.

Use the Ansible Galaxy web Ul at https://galaxy.ansible.com/ to search it for collections.

Installing Content Collections

Before your playbooks can use content from a collection, you must install that collection on your
control node. Use the ansible-galaxy command to download collections from a number of
possible sources, including Ansible Galaxy.

The following example uses the ansible-galaxy command with the collection argument to
download and then install the community.crypto collection on the local system.

[user@controlnode ~]$ ansible-galaxy collection install community.crypto

The command can also install a collection from a local or a remote tar archive.

[user@controlnode ~]$ ansible-galaxy collection install \
> /tmp/community-dns-1.2.0.tar.gz

[user@controlnode ~]$ ansible-galaxy collection install \
> http://www.example.com/redhat-insights-1.0.5.tar.gz

The Ansible configuration directive collections_paths specifies a colon-separated list of
paths on the system where Ansible looks for installed collections. You can set this directive in

the ansible.cfg configuration file. By default, the ansible-galaxy command installs the
collections in the first directory that the collections_paths directive defines.

The default value for collections_pathsis~/.ansible/collections:/usr/share/
ansible/collections. Therefore, the ansible-galaxy command installs collections in the
~/.ansible/collections directory by default.

If you want to install a collection in a different directory, use the - -collections-path (or -p)
option.

https://cloud.redhat.com/ansible/automation-hub/
https://cloud.redhat.com/ansible/automation-hub/
https://galaxy.ansible.com/

Chapter 7 | Simplifying Playbooks with Roles

[root@controlnode ~]# ansible-galaxy collection install \
> -p /usr/share/ansible/collections community.postgresql

1| Important

= Whenusing the - -collections-path (or -p) option, ensure you select a
directory listed in the collections_paths directive. The ansible-playbook
command also uses that directive to locate collections. If you do not use a path
definedin the collections_paths directive, then your playbooks will not find the
collections that you installed.

Installing Collections with a Requirements File

You can create a requirements.yml file to list all the collections that you need to install. By
addingacollections/requirements.yml file in your Ansible project, your team members
can immediately identify the required collections. Also, automation controller detects that file and
automatically installs the collections before running your playbooks.

The following requirements.yml file lists several collections to install. Notice that you can
target a specific collection version and also provide local or remote tar archives.

collections:
- name: community.crypto

- name: ansible.posix
version: 1.2.0

- name: /tmp/community-dns-1.2.0.tar.gz

- name: http://www.example.com/redhat-insights-1.0.5.tar.gz

The ansible-galaxy command can then use that file to install all those collections. Use the - -
requirements-file (or -r) option to provide the requirements.yml file to the command.

[root@controlnode ~]# ansible-galaxy collection install -r requirements.yml

Configuring Collection Sources

By default, the ansible-galaxy command uses Ansible Galaxy at https://galaxy.ansible.com/ to
download collections.

For the command to also use Ansible automation hub, add the following directives to the
ansible.cfqgfile.

...output omitted. ..

[galaxy]
server_list = automation_hub, galaxy (1]

[galaxy_server.automation_hub]
url=https://cloud.redhat.com/api/automation-hub/ (2]

https://galaxy.ansible.com/

Chapter 7 | Simplifying Playbooks with Roles

auth_url=https://sso.redhat.com/auth/realms/redhat-external/protocol/openid-
connect/token ©
token=eyJh...Jf0o o

[galaxy_server.galaxy]
url=https://galaxy.ansible.com/

© List all the repositories that the ansible-galaxy command must use in order. For each
name you define, add a [galaxy_server .name] section to provide the connection
parameters. Because Ansible automation hub might not provide all the collections that your
playbooks need, you can add Ansible Galaxy in the last position as a fallback. This way, if the
collection is not available in Ansible automation hub, then the ansible-galaxy command
uses Ansible Galaxy to retrieve it.

© Provide the URL to access the repository.

o

Provide the URL for authentication.

O To access Ansible automation hub, you need an authentication token associated with your
account. Use the Ansible automation hub web Ul to generate that token. For more details on
that process, see the links in the References section.

Instead of a token, you can use the username and password parameters to provide your
customer portal user name and password.

...output omitted. ..
[galaxy_server.automation_hub]
url=https://cloud.redhat.com/api/automation-hub/
username=operatori

password=Sup3r53cR3t

...output omitted. ..

You might not want to expose your credentials in the ansible. cfg file because the file

could potentially get committed using version control. In that case, remove the authentication
parameters from the ansible.cfg file and define them as environment variables. You define the
environment variables as follows:

ANSIBLE_GALAXY_SERVER_<server_id>_<key>=value

server_id
Server identifier in uppercase. The server identifier is the name you use in the server_1list
parameter and in the name of the [galaxy_server.server_id] section.

key
Name of the parameter in uppercase.

The following example provides the token parameter as an environment variable:

Chapter 7 | Simplifying Playbooks with Roles

[user@controlnode ~]$ cat ansible.cfg

...output omitted...

[galaxy_server.automation_hub]
url=https://cloud.redhat.com/api/automation-hub/
auth_url=https://sso.redhat.com/auth/realms/redhat-external/protocol/openid-
connect/token

[user@controlnode ~]$ export \

> ANSIBLE_GALAXY_SERVER_AUTOMATION_HUB_TOKEN='eyJh...Jf0o'

[user@controlnode ~]$ ansible-galaxy collection install ansible.posix

Using Collections

After you install a collection, you can use it with ad hoc commands and playbooks. Access the
collection documentation from Ansible automation hub or the Ansible Galaxy web Ul to retrieve
information about the roles and modules it provides. Alternatively, you can inspect the collection
directory structure on your system. The collection stores the modules in the plugins/modules/
directory and the roles in the roles/ directory.

[user@controlnode ~]$ tree \
> ~/.ansible/collections/ansible_collections/redhat/insights/
/home/user/.ansible/collections/ansible_collections/redhat/insights/
...output omitted. ..
— plugins
— action
| L— insights_config.py
— inventory
| L— insights.py
L— modules
— insights_config.py
L— insights_register.py
...output omitted. ..

I— roles

— compliance
| — meta
| L— main.yml
— README.md
— tasks
| I— install.yml

|

|

|

|

| | — main.yml
| | L— run.yml
|

|

|

|

L— tests
— compliance.yml
— install-only.yml
L— run-only.yml
L— insights_client

...output omitted. ..

To use a module or a role, refer to it with its fully qualified collection name (FQCN).
Based on the preceding output, you refer to the insights_client role as
redhat.insights.insights_client.

The following ad hoc command calls the mail module from the community.general collection.

Chapter 7 | Simplifying Playbooks with Roles

[user@controlnode ~]$ ansible localhost -m community.general.mail \
> -a 'subject="Hello World" to=root'

The following playbook invokes the mysql_user module from the community.mysql collection.

- name: Create the operatorl user in the test database
hosts: db.example.com

tasks:
- name: Ensure the operatorl database user is defined
community.mysql.mysql _user:
name: operatoril
password: Secret0451
priv: '.:ALL'
state: present

The following playbook uses the organizations role from the redhat.satellite collection.

- name: Add the test organizations to Red Hat Satellite
hosts: localhost

tasks:
- name: Ensure the organizations exist
include_role:
name: redhat.satellite.organizations
vars:
satellite_server_url: https://sat.example.com
satellite_username: admin
satellite_password: Sup3r53cr3t
satellite_organizations:
- name: testl
label: tsti
state: present
description: Test organization 1
- name: test2
label: tst2
state: present
description: Test organization 2

Using Ansible Built-in Collections after Ansible 2.9

In future versions of Ansible, the core installation will always include a special collection named
ansible.builtin. This collection will include a set of common modules, such as copy,
template, file, yum, command, and service.

You will always be able to use the short names of these modules in your playbooks. For example,
you will still be able to use file instead of ansible.builtin.file. This will allow many
Ansible 2.9 playbooks to work without modification, although you might need to install additional
collections for modules that are not included in ansible.builtin.

Chapter 7 | Simplifying Playbooks with Roles

However, Red Hat recommends that you use the FQCN notation to prevent future conflicts with
collections that might use the same module names.

The following playbook uses the FQCN notation for the yum, copy, and service modules.

- name: Install and start Apache HTTPD
hosts: web

tasks:
- name: Ensure the httpd package is present
ansible.builtin.yum:
name: httpd
state: present

- name: Ensure the index.html file is present
ansible.builtin.copy:
src: files/index.html
dest: /var/www/html/index.html
owner: root
group: root
mode: 0644
setype: httpd_sys_content_t

- name: Ensure the httpd service is started
ansible.builtin.service:
name: httpd
state: started
enabled: true

References

Using collections — Ansible Documentation
https://docs.ansible.com/ansible/2.9/user_guide/collections_using.html

Galaxy User Guide — Ansible Documentation
https://docs.ansible.com/ansible/2.9/galaxy/user_guide.html

W RH294-RHEL8.4-en-1-20210818

https://docs.ansible.com/ansible/2.9/user_guide/collections_using.html
https://docs.ansible.com/ansible/2.9/galaxy/user_guide.html

Chapter 7 | Simplifying Playbooks with Roles

» Guided Exercise

Getting Roles and Modules from Content
Collections

In this exercise, you will install a content collection and use a role or module from that
content collection in a playbook.

Outcomes
You should be able to:

+ Use the ansible-galaxy command to install a content collection.
« Usearequirements.yml file to install multiple collections.
+ Invoke content collections roles and modules from playbooks.

Before You Begin
Logintoworkstation as student using student as the password.

Onworkstation, runthe lab role-collections start command. This command
creates the working directory, /home/student/role-collections, and populates it
with an Ansible project.

[student@workstation ~]$ lab role-collections start

Instructions

P 1. Install and then inspect the gls.utils collection.

11, Install the gls.utils collection from the tar file at http://
materials.example.com/labs/role-collections/gls-
utils-0.0.1.tar.gz. You can copy and paste that URL from the /home/
student/role-collections/url. txt file.

[student@workstation ~]$ ansible-galaxy collection install \

> http://materials.example.com/labs/role-collections/gls-utils-0.0.1.tar.gz
Process install dependency map

Starting collection install process

Installing 'gls.utils:0.0.1"' to '/home/student/.ansible/collections/
ansible_collections/gls/utils'

Notice that the preceding command installs the collection in the /home/
student/.ansible/collections/ansible_collections/gls/utils

directory.

1.2. List the roles that the collection provides.

Chapter 7 | Simplifying Playbooks with Roles

[student@workstation ~]$ 1ls \
> ~/.ansible/collections/ansible_collections/gls/utils/roles
backup restore

From the preceding output, notice that the collection provides two roles: backup and
restore.

1.3. Each role provides a README . md file. Consult the README . md file for the backup
role.

[student@workstation ~]$ cat \
> ~/.ansible/collections/ansible_collections/gls/utils/roles/backup/README.md
...output omitted...

1.4. List the modules that the collection provides.

[student@workstation ~]$ 1s \
> ~/.ansible/collections/ansible_collections/gls/utils/plugins/modules
newping.py

The collection provides the newping module.

15. Use the ansible-doc command to consult the newping module documentation.

[student@workstation ~]$ ansible-doc gls.utils.newping
...output omitted. ..

P 2. Complete and then run the /home/student/role-collections/bck.yml playbook.
That playbook uses the gls.utils.newping module and the gls.utils.backup role.

2.1. Changetothe role-collections working directory.

[student@workstation ~]$ cd ~/role-collections
[student@workstation role-collections]$

2.2. Edit the bck.ym1 playbook. In the first task, invoke the gls.utils.newping
module.

...output omitted...
tasks:
- name: Ensure the machine is up
gls.utils.newping:
data: pong
...output omitted. ..

Do not close the file yet.

2.3. Inthe second task, invoke the gls.utils.backup role. When done, save and close
the file.

Chapter 7 | Simplifying Playbooks with Roles

...output omitted...
- name: Ensure configuration files are saved
include_role:
name: gls.utils.backup
vars:
backup_id: backup_etc
backup_files:
- /etc/sysconfig
- /etc/yum.repos.d
...output omitted...

The resulting file should display as follows

- name: Backup the system configuration
hosts: servera.lab.example.com
become: true
gather_facts: false

tasks:
- name: Ensure the machine is up
gls.utils.newping:
data: pong

- name: Ensure configuration files are saved
include_role:
name: gls.utils.backup
vars:
backup_id: backup_etc
backup_files:
- /etc/sysconfig
- /etc/yum.repos.d

2.4. Verify the syntax of the bck.ym1 playbook.

[student@workstation role-collections]$ ansible-playbook --syntax-check bck.yml

playbook: bck.yml

2.5. Run the playbook.

[student@workstation role-collections]$ ansible-playbook bck.yml
...output omitted...

P 3. Inthe second part of this exercise, install content collections specified by a
requirements.yml file.

To test your work when done, run the new_system.ym1 playbook. That playbook uses the
redhat.insights.insights_client and redhat.rhel_system_roles.selinux
roles to configure Red Hat Insights and SELinux on the servera machine.

3.1. Reviewthe requirements.yml file. The file lists two collections to install from tar
files hosted on the materials.example.comweb server.

Chapter 7 | Simplifying Playbooks with Roles

collections:

- name: http://materials.example.com/labs/role-collections/redhat-
insights-1.0.5.tar.gz

- name: http://materials.example.com/labs/role-collections/redhat-
rhel_system_roles-1.0.1.tar.gz

3.2. Usethe ansible-galaxy command with the requirements.yml file to install the
collections.

[student@workstation role-collections]$ ansible-galaxy collection install \
> -r requirements.yml

Process install dependency map

Starting collection install process

Installing 'redhat.insights:1.0.5"' to '/home/student/.ansible/collections/
ansible_collections/redhat/insights'

Installing 'redhat.rhel_system_roles:1.0.1"' to '/home/student/.ansible/
collections/ansible_collections/redhat/rhel_system_roles'

3.3. Review the new_system.yml playbook.

- name: Configure the system
hosts: servera.lab.example.com
become: true
gather_facts: true

tasks:
- name: Ensure the system is registered with Insights
include_role:
name: redhat.insights.insights_client
vars:
auto_config: false
insights_proxy: http://proxy.example.com:8080

- name: Ensure SELinux mode is Enforcing
include_role:
name: redhat.rhel_system_roles.selinux
vars:
selinux_state: enforcing

3.4. Runthe new_system.yml playbook in check mode to confirm that you correctly
installed the required collections. Because the classroom systems are not registered
with Red Hat and might not have internet access, the new_system.yml playbook
cannot complete successfully. However, to confirm that you correctly installed the
required collections, you can still run the playbook in check mode

[student@workstation role-collections]$ ansible-playbook --check new_system.yml

Chapter 7 | Simplifying Playbooks with Roles
Finish
Run the lab role-collections finish command to clean up the managed host.

[student@workstation ~]$ lab role-collections finish

This concludes the guided exercise.

RH294-RHEL8.4-en-1-20210818

Chapter 7 | Simplifying Playbooks with Roles

» Lab

Simplifying Playbooks with Roles

Performance Checklist
In this lab, you will create Ansible roles that use variables, files, templates, tasks, and
handlers.

Outcomes
You should be able to:

+ Create Ansible roles that use variables, files, templates, tasks, and handlers to configure a
development web server.

+ Use arole that is hosted in a remote repository in a playbook.

+ Use a Red Hat Enterprise Linux system role in a playbook.
Before You Begin

Logintoworkstation as student using student as the password.

Onworkstation, runthe lab role-review start command. The script creates
the working directory, /home/student/role-review, and populates it with an Ansible
configuration file, host inventory, and other lab files.

[student@workstation ~]$ lab role-review start

Instructions

Your organization must provide a single web server to host development code for all web
developers. You are tasked with writing a playbook to configure this development web server.

The development web server must satisfy several requirements:

+ The development server configuration matches the production server configuration. The
production server is configured using an Ansible role, developed by the organization's
infrastructure team.

+ Each developer is given a directory on the development server to host code and content. Each
developer's content is accessed using an assigned, nonstandard port.

« SELinux is set to enforcing and targeted.
Your playbook will:

+ Use a role to configure directories and ports for each developer on the web server. You must
write this role.

This role has a dependency on a role written by the organization to configure Apache. You
should define the dependency using version v1. 4 of the organizational role. The URL of the
dependency's repository is: git@workstation. lab.example.com:infra/apache

W RH294-RHEL8.4-en-1-20210818

Chapter 7 | Simplifying Playbooks with Roles

+ Use the rhel-system-roles.selinux role to configure SELinux for the nonstandard HTTP
ports used by your web server. You will be provided with a selinux.ym1 variable file that can
be installed as a group_vars file to pass the correct settings to the role.

1. Change to the /home/student/role-review working directory.

2. Create a playbook named web_dev_server.yml with a single play named Configure
Dev Web Server. Configure the play to target the host group dev_webserver. Do not
add any roles or tasks to the play yet.

Ensure that the play forces handlers to execute, because you may encounter an error while
developing the playbook.

3. Check the syntax of the playbook. Run the playbook. The syntax check should pass and the
playbook should run successfully.

4. Make sure that playbook's role dependencies are installed.

The apache.developer_configs role that you will create depends on the
infra.apacherole. Create aroles/requirements.yml file. It should install the role
from the Git repository at git@workstation. lab.example.com:infra/apache, use
version v1.4, and name it infra.apache locally. You can assume that your SSH keys are
configured to allow you to get roles from that repository automatically. Install the role with
the ansible-galaxy command.

In addition, install the rhel-system-roles package if not present.

5. Initialize a new role named apache.developer_configs in the roles subdirectory.

Add the infra.apache role as a dependency for the new role, using the same information
for name, source, version, and version control system as the roles/requirements.yml
file.

The developer_tasks.yml file in the project directory contains tasks for the role. Move
this file to the correct location to be the tasks file for this role, and replace the existing file in
that location.

The developer.conf. j2 file in the project directory is a Jinja2 template used by the tasks
file. Move it to the correct location for template files used by this role.

6. Theapache.developer_configs role will process a list of users defined in a variable
named web_developers. The web_developers.yml file in the project directory
defines the web_developers user list variable. Review this file and use it to define the
web_developers variable for the development web server host group.

7. Addtherole apache.developer_configs to the play in the web_dev_server.yml
playbook.

8. Check the syntax of the playbook. Run the playbook. The syntax check should pass, but the
playbook should fail when the infra.apache role attempts to restart Apache HTTPD.

9. Apache HTTPD failed to restart in the preceding step because the network ports it uses for
your developers are labeled with the wrong SELinux contexts. You have been provided with
a variable file, selinux.ym1, which can be used with the rhel-system-roles.selinux
role to fix the issue.

Create a pre_tasks section for your play in the web_dev_server.yml playbook. In that
section, use a task to include the rhel-system-roles.selinuxroleinablock/rescue
structure so that it is properly applied. Review the lecture or the documentation for this role
to see how to do this.

Inspect the selinux.yml file. Move it to the correct location so that its variables are set for
the dev_webserver host group.

Chapter 7 | Simplifying Playbooks with Roles

10. Verify the final web_dev_server.yml playbook and run a syntax check. The syntax check
should pass.

Validate that the web_dev_server.yml playbook passes a syntax check.
M. Run the playbook. It should succeed.

12. Test the configuration of the development web server. Verify that all endpoints are accessible
and serving each developer's content.

Evaluation

Grade your work by running the lab role-review grade command from yourworkstation
machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab role-review grade

Finish
Onworkstation, runthe lab role-review finish script to clean up this exercise.

[student@workstation ~]$ lab role-review finish

This concludes the lab.

Chapter 7 | Simplifying Playbooks with Roles

» Solution

Simplifying Playbooks with Roles

Performance Checklist
In this lab, you will create Ansible roles that use variables, files, templates, tasks, and
handlers.

Outcomes
You should be able to:

+ Create Ansible roles that use variables, files, templates, tasks, and handlers to configure a
development web server.

+ Use arole that is hosted in a remote repository in a playbook.

+ Use a Red Hat Enterprise Linux system role in a playbook.
Before You Begin

Logintoworkstation as student using student as the password.

Onworkstation, runthe lab role-review start command. The script creates
the working directory, /home/student/role-review, and populates it with an Ansible
configuration file, host inventory, and other lab files.

[student@workstation ~]$ lab role-review start

Instructions

Your organization must provide a single web server to host development code for all web
developers. You are tasked with writing a playbook to configure this development web server.

The development web server must satisfy several requirements:

+ The development server configuration matches the production server configuration. The
production server is configured using an Ansible role, developed by the organization's
infrastructure team.

+ Each developer is given a directory on the development server to host code and content. Each
developer's content is accessed using an assigned, nonstandard port.

+ SELinux is set to enforcing and targeted.
Your playbook will:

+ Use a role to configure directories and ports for each developer on the web server. You must
write this role.

This role has a dependency on a role written by the organization to configure Apache. You
should define the dependency using version v1. 4 of the organizational role. The URL of the
dependency's repository is: git@workstation. lab.example.com:infra/apache

RH294-RHEL8.4-en-1-20210818 “

Chapter 7 | Simplifying Playbooks with Roles

+ Use the rhel-system-roles.selinux role to configure SELinux for the nonstandard HTTP
ports used by your web server. You will be provided with a selinux.ym1 variable file that can
be installed as a group_vars file to pass the correct settings to the role.

1. Change to the /home/student/role-review working directory.

[student@workstation ~]$ cd ~/role-review
[student@workstation role-review]$

2. Create a playbook named web_dev_server.yml with a single play named Configure
Dev Web Server. Configure the play to target the host group dev_webserver. Do not
add any roles or tasks to the play yet.

Ensure that the play forces handlers to execute, because you may encounter an error while
developing the playbook.

Once complete, the /home/student/role-review/web_dev_server.yml playbook
contains:

- name: Configure Dev Web Server
hosts: dev_webserver
force_handlers: yes

3. Check the syntax of the playbook. Run the playbook. The syntax check should pass and the
playbook should run successfully.

[student@workstation role-review]$ ansible-playbook \
> --syntax-check web_dev_server.yml

playbook: web_dev_server.yml
[student@workstation role-review]$ ansible-playbook web_dev_server.yml
PLAY [Conflgure DeV Web SerVer] R R

TASK [Gathering FaCtS] khkkhkhkkhhhkhhhhhhhhhhhhhhhhhhhhhkhhkhhkhhhkhhhhkhhhkhkhhkhkhkhk*

ok: [servera.lab.example.com]

PLAY REGCAP % * % % % o sk ok sk ok ok sk ok ok ok ok ok o ok ok o ok ok ok ok ok o ok o o ok o o ok ok o ok o o ok ok ok ok ok ok ok ok ok ok ok ko ko ko ko k

servera. lab.example.com : ok=1 changed=0 unreachable=0 failed=0

4. Make sure that playbook's role dependencies are installed.

The apache.developer_configs role that you will create depends on the
infra.apache role. Create aroles/requirements.yml file. It should install the role
from the Git repository at git@workstation. lab.example.com:infra/apache, use
version v1.4, and name it infra.apache locally. You can assume that your SSH keys are
configured to allow you to get roles from that repository automatically. Install the role with
the ansible-galaxy command.

In addition, install the rhel-system-roles package if not present.

4. Create aroles subdirectory for the playbook project.

[student@workstation role-review]$ mkdir -v roles
mkdir: created directory 'roles'

Chapter 7 | Simplifying Playbooks with Roles

4.2. Createaroles/requirements.yml file and add an entry for the infra.apache
role. Use version v1. 4 from the role's git repository.

Once complete, the roles/requirements.yml file contains:

- name: infra.apache
src: git@workstation.lab.example.com:infra/apache
scm: git
version: v1.4

4.3. Install the project dependencies.

[student@workstation role-review]$ ansible-galaxy install \

> -r roles/requirements.yml -p roles

- extracting infra.apache to /home/student/role-review/roles/infra.apache
- infra.apache (v1.4) was installed successfully

4.4. Install the RHEL System Roles package if not present. This was installed during an
earlier exercise.

[student@workstation role-review]$ sudo yum install rhel-system-roles

5. Initialize a new role named apache.developer_configs in the roles subdirectory.

Add the infra.apache role as a dependency for the new role, using the same information
for name, source, version, and version control system as the roles/requirements.yml
file.

The developer_tasks.yml file in the project directory contains tasks for the role. Move
this file to the correct location to be the tasks file for this role, and replace the existing file in
that location.

The developer.conf. j2 file in the project directory is a Jinja2 template used by the tasks
file. Move it to the correct location for template files used by this role.

51. Usetheansible-galaxy init to create arole skeleton for the
apache.developer_configs role.

[student@workstation role-review]$ cd roles

[student@workstation roles]$ ansible-galaxy init apache.developer_configs
- apache.developer_configs was created successfully

[student@workstation roles]$ cd ..

[student@workstation role-review]$

5.2. Update the roles/apache.developer_configs/meta/main.yml file of the
apache.developer_configs role to reflect a dependency on the infra.apache
role.

After editing, the dependencies variable is defined as follows:

dependencies:
- name: infra.apache
src: git@workstation.lab.example.com:infra/apache
scm: git
version: vi1.4

Chapter 7 | Simplifying Playbooks with Roles

7.

8.

5.3. Overwrite the role's tasks/main.ym1 file with the developer_tasks.ym1 file.

[student@workstation role-review]$ mv -v developer_tasks.yml \
> roles/apache.developer_configs/tasks/main.yml
renamed 'developer_tasks.yml' -> 'roles/apache.developer_configs/tasks/main.yml'

5.4. Place the developer.conf.j2 filein therole's templates directory.

[student@workstation role-review]$ mv -v developer.conf.j2 \

> roles/apache.developer_configs/templates/

renamed 'developer.conf.j2' -> 'roles/apache.developer_configs/templates/
developer.conf.j2'

The apache.developer_configs role will process a list of users defined in a variable
named web_developers. The web_developers.yml file in the project directory
defines the web_developers user list variable. Review this file and use it to define the
web_developers variable for the development web server host group.

6.1. Review the web_developers.yml file.

web_developers:

- username: jdoe
name: John Doe
user_port: 9081

- username: jdoe2
name: Jane Doe
user_port: 9082

A name, username, user_port is defined for each web developer.

6.2. Place the web_developers.ymlinthe group_vars/dev_webserver subdirectory.

[student@workstation role-review]$ mkdir -pv group_vars/dev_webserver

mkdir: created directory 'group_vars'

mkdir: created directory 'group_vars/dev_webserver'

[student@workstation role-review]$ mv -v web_developers.yml \

> group_vars/dev_webserver/

renamed 'web_developers.yml' -> 'group_vars/dev_webserver/web_developers.yml'

Add the role apache.developer_configs to the play in the web_dev_server.yml
playbook.

The edited playbook:

- name: Configure Dev Web Server
hosts: dev_webserver
force_handlers: yes
roles:

- apache.developer_configs

Check the syntax of the playbook. Run the playbook. The syntax check should pass, but the
playbook should fail when the infra.apache role attempts to restart Apache HTTPD.

Chapter 7 | Simplifying Playbooks with Roles

[student@workstation role-review]$ ansible-playbook \
> --syntax-check web_dev_server.yml

playbook: web_dev_server.yml
[student@workstation role-review]$ ansible-playbook web_dev_server.yml

PLAY [Conflgure Dev Web Server] EE R R SR S S S S Sk S S S S R S S S S R S S S

TASK [Gatherlng Facts] R E R SR Sk S Sk S S Sk S Sk S R S S S S R S S

ok: [servera.lab.example.com]
...output omitted...

TASK [infra.apache : Install a skeleton index.html] ******xdxxksdkadkrkdkoddhxxtddx
skipping: [servera.lab.example.com]

TASK [apache.developer_configs : Create user accounts] ****xx*kkdkxkskddkhxxkddx
changed: [servera.lab.example.com] => (item={u'username': u'jdoe', u'user_port':
9081, u'name': u'John Doe'})

changed: [servera.lab.example.com] => (item={u'username': u'jdoe2', u'user_port':
9082, u'name': u'Jane Doe'})

...output omitted...

RUNNING HANDLER [infra.apache : restart firewalld] *******xiikssxiaiddadsxaiidsx
changed: [servera.lab.example.com]

RUNNING HANDLER [infra.apache : restart apache] *********xxxxxxxfxfxxfxx %% %% %%
fatal: [servera.lab.example.com]: FAILED! => {"changed": false, "msg": "Unable to
restart service httpd: Job for httpd.service failed because the control process
exited with error code. See \"systemctl status httpd.service\" and \"journalctl -

xe\" for details.\n"}

NO MORE HOSTS LEFT R R SRk S Sk S R S S S S S S S S S S S S R R S S

to retry, use: --limit @/home/student/role-review/web_dev_server.retry

PLAY RECAP R Sk Sk Sk Sk Sk S S Sk S S S R R S S S R R R S S kS kS S

servera. lab.example.com : ok=13 changed=11 unreachable=0 failed=1
skipped=1 rescued=0 ignored=0

An error occurs when the httpd service is restarted. The httpd service daemon cannot bind
to the non-standard HTTP ports, due to the SELinux context on those ports.

9. Apache HTTPD failed to restart in the preceding step because the network ports it uses for
your developers are labeled with the wrong SELinux contexts. You have been provided with
a variable file, selinux.ym1, which can be used with the rhel-system-roles.selinux
role to fix the issue.

Create a pre_tasks section for your play in the web_dev_server.yml playbook. In that
section, use a task to include the rhel-system-roles.selinuxroleinablock/rescue
structure so that it is properly applied. Review the lecture or the documentation for this role
to see how to do this.

Inspect the selinux.yml file. Move it to the correct location so that its variables are set for
the dev_webserver host group.

Chapter 7 | Simplifying Playbooks with Roles

9.1. The pre_tasks section can be added to the end of the play in the
web_dev_server.yml playbook.

You can look at the block in /usr/share/doc/rhel-system-roles/selinux/
example-selinux-playbook.yml for a basic outline of how to apply the role.
Replace the complex shell andwait_for_connection logic with the reboot
module.

The pre_tasks section should contain:

pre_tasks:
- name: Check SELinux configuration
block:
- include_role:
name: rhel-system-roles.selinux
rescue:
Fail if failed for a different reason than selinux_reboot_required.
- name: Check for general failure
fail:
msg: "SELinux role failed."
when: not selinux_reboot_required

- name: Restart managed host
reboot:
msg: "Ansible rebooting system for updates."

- name: Reapply SELinux role to complete changes
include_role:
name: rhel-system-roles.selinux

9.2. The selinux.yml file contains variable definitions for the rhel-system-
roles.selinux role. Use the file to define variables for the play's host group.

[student@workstation role-review]$ cat selinux.yml

variables used by rhel-system-roles.selinux

selinux_policy: targeted
selinux_state: enforcing

selinux_ports:
- ports:
- "9e81"
- "9e82"
proto: 'tcp'
setype: 'http_port_t'
state: 'present'

[student@workstation role-review]$ mv -v selinux.yml \
> group_vars/dev_webserver/
renamed 'selinux.yml' -> 'group_vars/dev_webserver/selinux.yml'

10. Verify the final web_dev_server .yml playbook and run a syntax check. The syntax check

should pass.

The final web_dev_server.yml playbook should read as follows

Chapter 7 | Simplifying Playbooks with Roles

- name: Configure Dev Web Server
hosts: dev_webserver
force_handlers: yes
roles:
- apache.developer_configs
pre_tasks:
- name: Check SELinux configuration
block:
- include_role:
name: rhel-system-roles.selinux
rescue:
Fail if failed for a different reason than selinux_reboot_required.
- name: Check for general failure
fail:
msg: "SELinux role failed."
when: not selinux_reboot_required

- name: Restart managed host
reboot:
msg: "Ansible rebooting system for updates."
- name: Reapply SELinux role to complete changes

include_role:
name: rhel-system-roles.selinux

Note

S Whether pre_tasks is at the end of the play or in the "correct” position in terms of
execution order in the playbook file does not matter to ansible-playbook. It wil
still run the play's tasks in the correct order.

Validate that the web_dev_server.yml playbook passes a syntax check.

[student@workstation role-review]$ ansible-playbook \
> --syntax-check web_dev_server.yml

playbook: web_dev_server.yml
M. Run the playbook. It should succeed.

[student@workstation role-review]$ ansible-playbook web_dev_server.yml

PLAY [Configure Dev Web Server] khkhkhkkhhkhhkhhhhhhhhhhhhhhhhhhhhkhhhhhkhkhhhhkhkk

TASK [Gathering FaCtS] khkhkhkhkhhhkhhhhhhhhhhhhhhhhhhhhhkhhkhhhhhhhkhhhhhkhkhhhhkhkk

ok: [servera.lab.example.com]
TASK [include_role : rhel-system-roles.selinux] ******x*sddkaxssdohxwdddhhxrsddx

TASK [rhel-system-roles.selinux : Install SELinux python3 tools] *******xx*ssx

Chapter 7 | Simplifying Playbooks with Roles
ok: [servera.lab.example.com]
...output omitted. ..

TASK [infra.apache : Apache Service 1is started] ********kddaxssddhrrdddhrrsddx
changed: [servera.lab.example.com]

...output omitted. ..

TASK [apache.developer_configs : Copy Per-Developer Config fileg] *****xxxxiix

ok: [servera.lab.example.com] => (item={'username': 'jdoe', 'name': 'John Doe',
'user_port': 9081})
ok: [servera.lab.example.com] => (item={'username': 'jdoe2', 'name': 'Jane Doe',

'user_port': 9082})

PLAY RECAP ***®xkkkdkkhkkhkkhkkhhhhkkhkkkhkhh ok hhkhh ok k ok ok kk ok kk ok kk ok kk ok kkkkkkkkkxkkx

servera. lab.example.com 1 ok=19 changed=3 unreachable=0 failed=0
skipped=14 rescued=0 ignored=0

12. Test the configuration of the development web server. Verify that all endpoints are accessible
and serving each developer's content.

[student@workstation role-review]$ curl servera

This is the production server on servera.lab.example.com
[student@workstation role-review]$ curl servera:9081
This is index.html for user: John Doe (jdoe)
[student@workstation role-review]$ curl servera:9082
This is index.html for user: Jane Doe (jdoe2)
[student@workstation role-review]$

Evaluation

Grade your work by running the lab role-review grade command from yourworkstation
machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab role-review grade

Finish

Onworkstation, runthe lab role-review finish script to clean up this exercise.

[student@workstation ~]$ lab role-review finish

This concludes the lab.

Chapter 7 | Simplifying Playbooks with Roles

Summary

In this chapter, you learned:

Roles organize Ansible code in a way that allows reuse and sharing.

Red Hat Enterprise Linux System Roles are a collection of tested and supported roles intended
to help you configure host subsystems across versions of Red Hat Enterprise Linux.

Ansible Galaxy [https://galaxy.ansible.com] is a public library of Ansible roles written by Ansible
users. The ansible-galaxy command can search for, display information about, install, list,
remove, or initialize roles.

External roles needed by a playbook may be defined in the roles/requirements.yml file.
The ansible-galaxy install -r roles/requirements.yml command uses this file to
install the roles on the control node.

https://galaxy.ansible.com
https://galaxy.ansible.com

For use by La Pyayt lapyayt2015 lapyayt@infratechmm.com Copyright © 2022 Red Hat, Inc.

RH294-RHEL8.4-en-1-20210818

Chapter 8

Troubleshooting Ansible

Goal Troubleshoot playbooks and managed hosts. ¢
Objectives + Troubleshoot generic issues with a new
playbook and repair them. ' :
Troubleshoot failures on managed hosts when
running a playbook. r-
Sections + Troubleshooting Playbooks (and Guided i
Exercise)

Troubleshooting Ansible Managed Hosts (and
Guided Exercise)

TN

Lab + Troubleshooting Ansible

r/

RH294-RHEL8.4-en-1-20210818

Chapter 8 | Troubleshooting Ansible

Troubleshooting Playbooks

Objectives

After completing this section, you should be able to troubleshoot generic issues with a new
playbook and repair them.

Log Files for Ansible

By default, Ansible is not configured to log its output to any log file. It provides a built-in logging
infrastructure that can be configured through the log_path parameter in the default section of
the ansible.cfg configuration file, or through the $ANSIBLE_LOG_PATH environment variable.
If any or both are configured, Ansible stores output from both the ansible and ansible-
playbook commands in the log file configured, either through the ansible.cfg configuration
file or the $ANSIBLE_LOG_PATH environment variable.

If you configure Ansible to write log files to /var/log, then Red Hat recommends that you
configure logrotate to manage the Ansible log files.

The Debug Module

The debug module provides insight into what is happening in the play. This module can display the
value for a certain variable at a certain point in the play. This feature is key to debugging tasks that
use variables to communicate with each other (for example, using the output of a task as the input
to the following one).

The following examples use the msg and var settings inside of debug tasks. The first example
displays the value at run time of the ansible_facts['memfree_mb'] fact as part of a
message printed to the output of ansible-playbook. The second example displays the value of
the output variable.

- name: Display free memory
debug:
msg: "Free memory for this system is {{ ansible_facts['memfree_mb'] }}"

- name: Display the "output" variable
debug:
var: output
verbosity: 2

Managing Errors

There are several issues than can occur during a playbook run, mainly related to the syntax

of either the playbook or any of the templates it uses, or due to connectivity issues with the
managed hosts (for example, an error in the host name of the managed host in the inventory file).
Those errors are issued by the ansible-playbook command at execution time.

Chapter 8 | Troubleshooting Ansible

Earlier in this course, you learned about the - -syntax-check option, which checks the YAML
syntax for the playbook. It is a good practice to run a syntax check on your playbook before using
it or if you are having problems with it.

[student@demo ~]$ ansible-playbook play.yml --syntax-check

You can also use the - -step option to step through a playbook one task at a time. The ansible-
playbook --step command interactively prompts for confirmation that you want each task to
run.

[student@demo ~]$ ansible-playbook play.yml --step

The --start-at-task option allows you to start execution of a playbook from a specific task. It
takes as an argument the name of the task at which to start.

[student@demo ~]$ ansible-playbook play.yml --start-at-task="start httpd service"

Debugging

The output given by a playbook that was run with the ansible-playbook commandis a good
starting point for troubleshooting issues related to hosts managed by Ansible. Consider the
following output from a playbook execution:

PLAY [Seerce Deployment] LR R R R R R R R R R R R R
...output omitted. ..

TASK. [InStall a Seerce] LR R R R R R R R S R R R R S R R S R S
ok: [demoserveral]

ok: [demoserverb]

PLAY RECAP R R R R R R S S R R R R R R S R R R R R S R R S S R R R R R S

demoservera 1 ok=2 changed=0 unreachable=0 failed=0
demoserverb : ok=2 changed=0 unreachable=0 failed=0

The previous output shows a PLAY header with the name of the play to be executed, followed
by one or more TASK headers. Each of these headers represents their associated task in the
playbook, and it is executed in all the managed hosts belonging to the group included in the
playbook in the hosts parameter.

As each managed host executes each play's tasks, the name of the managed host is displayed
under the corresponding TASK header, along with the task state on that managed host. Task
states can appear as ok, fatal, changed, or skipping.

At the bottom of the output for each play, the PLAY RECAP section displays the number of tasks
executed for each managed host.

As discussed earlier in the course, you can increase the verbosity of the output from ansible-
playbook by adding one or more -v options. The ansible-playbook -v command provides
additional debugging information, with up to four total levels.

Chapter 8 | Troubleshooting Ansible

Verbosity Configuration
Option Description
-V The output data is displayed.
-VV Both the output and input data are displayed.
-VVV Includes information about connections to managed hosts.
-VVVV Includes additional information such scripts that are executed on

each remote host, and the user that is executing each script.

Recommended Practices for Playbook Management

Although the previously discussed tools can help to identify and fix issues in playbooks, when
developing those playbooks it is important to keep in mind some recommended practices that can
help ease the troubleshooting process. Some recommended practices for playbook development

are listed below:

+ Use a concise description of the play's or task's purpose to name plays and tasks. The play name
or task name is displayed when the playbook is executed. This also helps document what each
play or task is supposed to accomplish, and possibly why it is needed.

+ Include comments to add additional inline documentation about tasks.

+ Make effective use of vertical white space. In general, organize task attributes vertically to make

them easier to read.

+ Consistent horizontal indentation is critical. Use spaces, not tabs, to avoid indentation errors.
Set up your text editor to insert spaces when you press the Tab key to make this easier.

+ Try to keep the playbook as simple as possible. Only use the features that you need.

References

Configuring Ansible — Ansible Documentation
https://docs.ansible.com/ansible/2.9/installation_guide/intro_configuration.html

debug — Print statements during execution — Ansible Documentation
https://docs.ansible.com/ansible/2.9/modules/debug_module.html

Best Practices — Ansible Documentation
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_best_practices.html

RH294-RHEL8.4-en-1-20210818

https://docs.ansible.com/ansible/2.9/installation_guide/intro_configuration.html
https://docs.ansible.com/ansible/2.9/modules/debug_module.html
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_best_practices.html

Chapter 8 | Troubleshooting Ansible

» Guided Exercise

Troubleshooting Playbooks

In this exercise, you will troubleshoot a playbook that has been given to you that does not
work properly.

Outcomes

You should be able to troubleshoot and resolve issues in playbooks.

Before You Begin
Logintoworkstation as student using student as the password.

Onworkstation, runthe lab troubleshoot-playbook start script. It verifies
whether Ansible is installed on workstation. It also creates the /home/student/
troubleshoot-playbook/ directory, and downloads to this directory the inventory,
samba.yml, and samba.conf. j2 files from http://materials.example.com/labs/
troubleshoot-playbook/.

[student@workstation ~]$ lab troubleshoot-playbook start

Instructions
P 1. Onworkstation, change tothe /home/student/troubleshoot-playbook/
directory.

[student@workstation ~]$ cd ~/troubleshoot-playbook/
[student@workstation troubleshoot-playbook]$

P 2. Create afile named ansible.cfgin the current directory. It should set the log_path
parameter to write Ansible logs to the /home/student/troubleshoot-playbook/
ansible. log file. It should set the inventory parameter to use the /home/student/
troubleshoot-playbook/inventory file deployed by the lab script.

When you are finished, ansible.cfg should have the following contents:

[defaults]
log_path = /home/student/troubleshoot-playbook/ansible. log
inventory = /home/student/troubleshoot-playbook/inventory

P 3. Runthe playbook. It will fail with an error.

This playbook would set up a Samba server if everything were correct. However, the run
will fail due to missing double quotes on the random_var variable definition. Read the
error message to see how ansible-playbook reports the problem. Notice the variable
random_var is assigned a value that contains a colon and is not quoted.

Chapter 8 | Troubleshooting Ansible

[student@workstation troubleshoot-playbook]$ ansible-playbook samba.yml
ERROR! We were unable to read either as JSON nor YAML, these are the errors we got

from each:
JSON: Expecting value: line 1 column 1 (char 0)

Syntax Error while loading YAML.
mapping values are not allowed in this context

The error appears to be in '/home/student/troubleshoot-playbook/samba.yml': line
8, column 30, but may be elsewhere in the file depending on the exact syntax

problem.
The offending line appears to be:

install_state: installed
random_var: This is colon: test
A here

P 4. Confirm that the error has been properly logged to the /home/student/
troubleshoot-playbook/ansible. logfile.

[student@workstation troubleshoot-playbook]$ tail ansible. log

The error appears to be in '/home/student/troubleshoot-playbook/samba.yml': line
8, column 30, but may be elsewhere in the file depending on the exact syntax

problem.
The offending line appears to be:

install_state: installed
random_var: This is colon: test
A here

) 5. Edit the samba.yml playbook and correct the error by adding quotes to the entire value
being assigned to random_var. The corrected version of the playbook contains the

following content:

...output omitted. ..
vars:
install_state: installed
random_var: "This is colon: test"
...output omitted...

P 6. Check the playbook using the - -syntax-check option. Another error is issued due to
extra white space in the indentation on the last task, deliver samba config.

[student@workstation troubleshoot-playbook]$ ansible-playbook --syntax-check \

> samba.yml
ERROR! We were unable to read either as JSON nor YAML, these are the errors we got

from each:
JSON: Expecting value: line 1 column 1 (char 0)

Chapter 8 | Troubleshooting Ansible

Syntax Error while loading YAML.
did not find expected key

The error appears to be in '/home/student/troubleshoot-playbook/samba.yml': line
44, column 4, but may be elsewhere in the file depending on the exact syntax

problem.

The offending line appears to be:

- name: deliver samba config
A here

) 7. Edit the playbook and remove the extra space for all lines in that task. The corrected
playbook should appear as follows:

...output omitted. ..
- name: configure firewall for samba
firewalld:
state: enabled
permanent: true
immediate: true
service: samba

- name: deliver samba config
template:
src: templates/samba.conf.j2
dest: /etc/samba/smb.conf
owner: root
group: root
mode: 0644

P 8. Run the playbook using the - -syntax-check option. An error is issued due to the

install_state variable being used as a parameter in the install samba task. Itis not

quoted.

[student@workstation troubleshoot-playbook]$ ansible-playbook --syntax-check \

> samba.yml
ERROR! We were unable to read either as JSON nor YAML, these are the errors we got

from each:
JSON: Expecting value: line 1 column 1 (char 0)

Syntax Error while loading YAML.
found unacceptable key (unhashable type: 'AnsibleMapping')

The error appears to be in '/home/student/troubleshoot-playbook/samba.yml': line
14, column 15, but may be elsewhere in the file depending on the exact syntax

problem.
The offending line appears to be:

name: samba

Chapter 8 | Troubleshooting Ansible

state: {{ install_state }}
A here
We could be wrong, but this one looks like it might be an issue with missing
quotes. Always quote template expression brackets when they start a value. For
instance:

with_items:

- {{ foo }}
Should be written as:

with_items:

"{{ foo }}"

P 9. Edit the playbook and correct the install samba task. The reference to the
install_state variable should be in quotes. The resulting file content should look like

the following:

...output omitted. ..
tasks:
- name: install samba
yum:
name: samba
state: "{{ install_state }}"
...output omitted. ..

P 10. Run the playbook using the - -syntax-check option. It should not show any additional
syntax errors.

[student@workstation troubleshoot-playbook]$ ansible-playbook --syntax-check \
> samba.yml

playbook: samba.yml

P 1. Run the playbook. An error, related to SSH, will be issued.

[student@workstation troubleshoot-playbook]$ ansible-playbook samba.yml
PLAY [InStall a Samba Server] EEE SRR EEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEE SRS RS RS

TASK [Gathering FaCtS] o X

fatal: [servera.lab.exammple.com]: UNREACHABLE! => {"changed": false,
"msg": "Failed to connect to the host via ssh: ssh: connect to host
servera. lab.exammple.com port 22: Connection timed out", "unreachable": true}

PLAY REGCAP % * % % % o & sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok o ok o o ok o o ok o o ok o o ok o o ok ok ok ok ok ok ok ok ok ok R ok ok ok ok kK ko

servera. lab.exammple.com 1 ok=0 changed=0 unreachable=1 failed=0

Chapter 8 | Troubleshooting Ansible

) 12. Ensure the managed host servera. lab.example.comis running, using the ping
command

[student@workstation troubleshoot-playbook]$ ping -c3 servera.lab.example.com
PING servera.lab.example.com (172.25.250.10) 56(84) bytes of data.

64 bytes from servera.lab.example.com (172.25.250.10): icmp_seq=1 ttl=64
time=0.247 ms

64 bytes from servera.lab.example.com (172.25.250.10): icmp_seq=2 ttl=64
time=0.329 ms

64 bytes from servera.lab.example.com (172.25.250.10): icmp_seq=3 ttl=64
time=0.320 ms

--- servera.lab.example.com ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 1999ms
rtt min/avg/max/mdev = 0.247/0.298/0.329/0.041 ms

P 13. Ensure that you can connect to the managed host servera. lab.example.com as the
devops user using SSH, and that the correct SSH keys are in place. Log off again when you
have finished.

[student@workstation troubleshoot-playbook]$ ssh devops@servera.lab.example.com
Activate the web console with: systemctl enable --now cockpit.socket

...output omitted...

[devops@servera ~]$ exit

logout

Connection to servera.lab.example.com closed.

P 14. Rerun the playbook with -vvvv to get more information about the run. An error is issued
because the servera. lab.example.com managed host is not reachable.

[student@workstation troubleshoot-playbook]$ ansible-playbook -vvvv samba.yml
...output omitted. ..

PLAYBOOK: samba ym‘L khkkkkkhhkhhhhhkhhkhhhhhhhhhhhhhhkhd bk hh kb hhhhkhdkhhhhhkhkhkkk

1 plays in samba.yml

PLAY [Insta‘L‘L a samba SerVer] khkkkhkkhhkhhkhhhhhhhhhhhhhhhhhhhhhkhhhhhkhhkhkhkkx

TASK [Gathering FaCtS] khkkkkkhhkhhkhhhhhkhhhhhhhhhhhhhhhhkhhhhhkhhkhhhhhhhkhdkhkhk*

task path: /home/student/troubleshoot-playbook/samba.yml:2
<servera.lab.exammple.com> ESTABLISH SSH CONNECTION FOR USER: devops
...output omitted. ..

fatal: [servera.lab.exammple.com]: UNREACHABLE! => {

"changed": false,

"msg": "Failed to connect to the host via ssh: OpenSSH_8.0pl1, OpenSSL ...
Control socket \"/home/student/.ansible/cp/d4775f48c9\" does not exist\r\ndebug2:
resolving \"servera. lab.exammple.com\" port 22\r\ndebug2: ssh_connect_direct

\r\ndebugl: Connecting to servera.lab.exammple.com [3.223.115.185] port 22.\r
\ndebug2: fd 4 setting O_NONBLOCK\r\ndebugl: connect to address 3.223.115.185 port
22: Connection timed out\r\nssh: connect to host servera.lab.exammple.com port
22: Connection timed out",

"unreachable": true

Chapter 8 | Troubleshooting Ansible

...output omitted. ..

PLAY REGCAP % * % % % o & ok sk ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok o o ok ok o ok o o ok o o ok o o ok ok ok ok ok ok ok ok ok ok ok ok kK ok ok K ko

servera. lab.exammple.com 1 ok=0 changed=0 unreachable=1 failed=0

P 15. When using the highest level of verbosity with Ansible, examining the Ansible log file is a
better option than checking console output. You might view the log file using the less
command, or you might search for patterns in the log file using the grep command. Search
for the word fatalin the /home/student/troubleshoot-playbook/ansible. log
file.

[student@workstation troubleshoot-playbook]$ grep -i fatal ansible. log

2021-07-15 13:56:21,766 p=45752 u=student n=ansible | fatal:
[servera.lab.exammple.com]: UNREACHABLE! => {'"changed": false, "msg": "Failed to
connect to the host via ssh: ssh: connect to host servera.lab.exammple.com port
22: Connection timed out", "unreachable": true}

2021-07-15 14:22:43,262 p=46055 u=student n=ansible | fatal:
[servera.lab.exammple.com]: UNREACHABLE! => {

P 16. Investigate the inventory file for errors. Notice the [samba_servers] group has
misspelled servera. lab.example.com. Correct this error as shown below:

[samba_servers]
servera. lab.example.com
...output omitted...

P 17. Run the playbook again. The debug install_state variable task returns the message The state
for the samba service is installed. This task makes use of the debug module, and displays
the value of the install_state variable. An error is also shown in the deliver samba config
task, because no samba. j2 file is available in the working directory, /home/student/
troubleshoot-playbook/.

[student@workstation troubleshoot-playbook]$ ansible-playbook samba.yml

PLAY [INStall @ Samba SErver] ****% %tk sssssssasakakakkahahs ks ks hkdkdkk kb kxkx
...output omitted. ..
TASK [debug install state variable] ***#*kr sk sxsssssssnkakakakakahshsnshkrknk sk
ok: [servera.lab.example.com] => {

"msg": "The state for the samba service is installed"
}
...output omitted. ..

TASK [deliver Samba CORFig] ******* %%k kkrkakakakaha ks ks hkdk dk Ak Ak Ak KKK KK RN KN K XK
fatal: [servera.lab.example.com]: FAILED! => {"changed": false, "msg": "Could not
find or access 'samba.j2'\nSearched in:\n\t/home/student/troubleshoot-playbook/

templates/samba.j2\n\t/home/student/troubleshoot-playbook/samba. j2\n\t/home/
student/troubleshoot -playbook/templates/samba.j2\n\t/home/student/troubleshoot -
playbook/samba.j2 on the Ansible Controller.\nIf you are using a module and expect
the file to exist on the remote, see the remote_src option"}

...output omitted. ..

PLAY REGCAP % * % % % o & sk ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok o o ok o o ok o o ok o o ok o o ok o o ok o ok ok ok ok ok ok ok ok ok kR ok ok ok ko K kK ko

servera. lab.example.com 1 ok=7 changed=3 unreachable=0 failed=1

Chapter 8 | Troubleshooting Ansible

) 18. Edit the playbook, and correct the src parameter in the deliver samba config task to be
samba.conf.j2. When you are finished it should look like the following:

...output omitted. ..
- name: deliver samba config
template:
src: samba.conf.j2
dest: /etc/samba/smb.conf
owner: root
...output omitted. ..

P 19. Run the playbook again. Execute the playbook using the - - step option. It should run
without errors.

[student@workstation troubleshoot-playbook]$ ansible-playbook samba.yml --step

PLAY [InStall a Samba Servel’] IR E R RS SRS RS SR SRS RS EEEE SRS EEEEEEEEEREEREEEESEESEERESEESS
Perform task: TASK: Gathering Facts (N)o/(y)es/(c)ontinue: y

...output omitted...

Perform task: TASK: install samba (N)o/(y)es/(c)ontinue: y

...output omitted...

Perform task: TASK: install firewalld (N)o/(y)es/(c)ontinue: y

...output omitted...

Perform task: TASK: debug install_state variable (N)o/(y)es/(c)ontinue: y
...output omitted...

Perform task: TASK: start samba (N)o/(y)es/(c)ontinue: y

...output omitted...

Perform task: TASK: start firewalld (N)o/(y)es/(c)ontinue: y

...output omitted...

Perform task: TASK: configure firewall for samba (N)o/(y)es/(c)ontinue: y
...output omitted...

Perform task: TASK: deliver samba config (N)o/(y)es/(c)ontinue: y
...output omitted...

PLAY RECAP R R R Sk S S Sk S R S S R S S S kS R S S Sk kR S R S S

servera. lab.example.com : ok=8 changed=1 unreachable=0 failed=0

Finish
Onworkstation, runthe lab troubleshoot-playbook finish scriptto clean up this

exercise.

[student@workstation ~]$ lab troubleshoot-playbook finish

This concludes the guided exercise.

Chapter 8 | Troubleshooting Ansible

Troubleshooting Ansible Managed Hosts

Objectives

After completing this section, you should be able to troubleshoot failures on managed hosts when
running a playbook.

Using Check Mode as a Testing Tool

You can use the ansible-playbook --check command to run smoke tests on a playbook. This
option executes the playbook without making changes to the managed hosts' configuration. If a
module used within the playbook supports check mode then the changes that would have been
made to the managed hosts are displayed but not performed. If check mode is not supported by a
module then the changes are not displayed but the module still takes no action.

[student@demo ~]$ ansible-playbook --check playbook.yml

Note
S The ansible-playbook --check command might not work properly if your
tasks use conditionals.

You can also control whether individual tasks run in check mode with the check_mode setting. If
a task has check_mode: yes set, it always runs in check mode, whether or not you passed the
- -check option to ansible-playbook. Likewise, if a task has check_mode: no set, it always
runs normally, even if you pass - -check to ansible-playbook.

The following task is always run in check mode, and does not make changes.

tasks:
- name: task always in check mode
shell: uname -a
check_mode: yes

The following task is always run normally, even when started with ansible-playbook --check.

tasks:
- name: task always runs even in check mode
shell: uname -a
check_mode: no

This can be useful because you can run most of a playbook normally while testing individual tasks
with check_mode: yes. Likewise, you can make test runs in check mode more likely to provide
reasonable results by running selected tasks that gather facts or set variables for conditionals but
do not change the managed hosts with check_mode: no.

Chapter 8 | Troubleshooting Ansible

A task can determine if the playbook is running in check mode by testing the value of the magic
variable ansible_check_mode. This Boolean variable is set to true if the playbook is running in
check mode.

Warning

A Tasks that have check_mode: no set will run even when the playbook is run with
ansible-playbook --check. Therefore, you cannot trust that the - -check
option will make no changes to managed hosts, without confirming this to be the
case by inspecting the playbook and any roles or tasks associated with it.

g Note

If you have older playbooks that use always_run: yes to force tasks to run
normally even in check mode, you will have to replace that code with check_mode:
no in Ansible 2.6 and later.

The ansible-playbook command also provides a - -diff option. This option reports the
changes made to the template files on managed hosts. If used with the - -check option, those
changes are displayed in the command's output but not actually made.

[student@demo ~]$ ansible-playbook --check --diff playbook.yml

Testing with Modules

Some modules can provide additional information about the status of a managed host. The
following list includes some of the Ansible modules that can be used to test and debug issues on
managed hosts.

+ The uri module provides a way to check that a RESTful APl is returning the required content.

tasks:
- uri:
url: http://api.myapp.com
return_content: yes
register: apiresponse

- fail:
msg: 'version was not provided'
when: "'version' not in apiresponse.content"

+ The script module supports executing a script on managed hosts, and fails if the return code
for that script is nonzero. The script must exist on the control node and is transferred to and
executed on the managed hosts.

tasks:
- script: check_free_memory

+ The stat module gathers facts for a file much like the stat command. You can use it to
register a variable and then test to determine if the file exists or to get other information about

Chapter 8 | Troubleshooting Ansible

the file. If the file does not exist, the stat task will not fail, but its registered variable will report
false for *.stat.exists.

In this example, an application is still running if /var/run/app. lock exists, in which case the
play should abort.

tasks:
- name: Check if /var/run/app.lock exists
stat:
path: /var/run/app.lock
register: lock

- name: Fail if the application is running
fail:
when: lock.stat.exists

+ The assert module is an alternative to the fail module. The assert module supports a
that option that takes a list of conditionals. If any of those conditionals are false, the task fails.
You can use the success_msg and fail_msg options to customize the message it prints if it
reports success or failure.

The following example repeats the preceding one, but uses assert instead of fail.

tasks:
- name: Check if /var/run/app.lock exists
stat:
path: /var/run/app. lock
register: lock

- name: Fail if the application is running
assert:
that:
- not lock.stat.exists

Troubleshooting Connections

Many common problems when using Ansible to manage hosts are associated with connections to
the host and with configuration problems around the remote user and privilege escalation.

If you are having problems authenticating to a managed host, make sure that you have
remote_user set correctly in your configuration file or in your play. You should also confirm that
you have the correct SSH keys set up or are providing the correct password for that user.

Make sure that become is set properly, and that you are using the correct become_user (thisis
root by default). You should confirm that you are entering the correct sudo password and that
sudo on the managed host is configured correctly.

A more subtle problem has to do with inventory settings. For a complex server with multiple
network addresses, you may need to use a particular address or DNS name when connecting

to that system. You might not want to use that address as the machine's inventory name for
better readability. You can set a host inventory variable, ansible_host, that will override the
inventory name with a different name or IP address and be used by Ansible to connect to that
host. This variable could be setin the host_vars file or directory for that host, or could be set in
the inventory file itself.

Chapter 8 | Troubleshooting Ansible

For example, the following inventory entry configures Ansible to connect to 192.0.2.4 when
processing the host web4 . phx.example.com

web4.phx.example.com ansible_host=192.0.2.4

This is a useful way to control how Ansible connects to managed hosts. However, it can also cause
problems if the value of ansible_host isincorrect.

Testing Managed Hosts Using Ad Hoc Commands

The following examples illustrate some of the checks that can be made on a managed host
through the use of ad hoc commands.

You have used the ping module to test whether you can connect to managed hosts. Depending
on the options you pass, you can also use it to test whether privilege escalation and credentials are
correctly configured.

[student@demo ~]$ ansible demohost -m ping
demohost | SUCCESS => {
"ansible_facts": {
"discovered_interpreter_python": "/usr/libexec/platform-python"
H
"changed": false,
"ping": "pong"
}
[student@demo ~]$ ansible demohost -m ping --become
demohost | FAILED! => {
"ansible_facts": {

"discovered_interpreter_python": "/usr/libexec/platform-python"
H
"changed": false,
"module_stderr": "sudo: a password is required\n",
"module_stdout": "",
"msg": "MODULE FAILURE\nSee stdout/stderr for the exact error",
"rc": 1

This example returns the currently available space on the disks configured in the demohost
managed host. That can be useful to confirm that the file system on the managed host is not full.

[student@demo ~]$ ansible demohost -m command -a 'df'

This example returns the currently available free memory on the demohost managed host.

[student@demo ~]$ ansible demohost -m command -a 'free -m'

The Correct Level of Testing

Ansible is designed to ensure that the configuration included in playbooks and performed by
its modules is correct. It monitors all modules for reported failures, and stops the playbook
immediately if any failure is encountered. This helps ensure that any task performed before the
failure has no errors.

Chapter 8 | Troubleshooting Ansible

Because of this, there is usually no need to check if the result of a task managed by Ansible has
been correctly applied on the managed hosts. It makes sense to add some health checks either
to playbooks, or run those directly as ad hoc commands, when more direct troubleshooting is
required. But, you should be careful about adding too much complexity to your tasks and plays in
an effort to double check the tests performed by the modules themselves.

References

Check Mode ("Dry Run") — Ansible Documentation
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_checkmode.html

Testing Strategies — Ansible Documentation
https://docs.ansible.com/ansible/2.9/reference_appendices/test_strategies.html

W RH294-RHEL8.4-en-1-20210818

https://docs.ansible.com/ansible/2.9/user_guide/playbooks_checkmode.html
https://docs.ansible.com/ansible/2.9/reference_appendices/test_strategies.html

Chapter 8 | Troubleshooting Ansible

» Guided Exercise

Troubleshooting Ansible Managed Hosts

In this exercise, you will troubleshoot task failures that are occurring on one of your managed
hosts when running a playbook.

Outcomes

You should be able to troubleshoot managed hosts.

Before You Begin
Logintoworkstation as student using student as the password.

Onworkstation, runthe lab troubleshoot-host start script. It ensures that
Ansible is installed on workstation. It also downloads the inventory, mailrelay.yml,
and postfix-relay-main.conf.j2 files fromhttp://materials.example.com/
labs/troubleshoot-host/ to the /home/student/troubleshoot-host/ directory.

[student@workstation ~]$ lab troubleshoot-host start

Instructions
P 1. Onworkstation, change to the /home/student/troubleshoot-host/ directory.

[student@workstation ~]$ cd ~/troubleshoot-host/
[student@workstation troubleshoot-host]$

P 2. Runthemailrelay.yml playbook using check mode.

[student@workstation troubleshoot-host]$ ansible-playbook mailrelay.yml --check
PLAY [Create mall relay Servers] EEESE]
...output omitted. ..

TASK [CheCk main.cf flle] khkkkkkhhkhhkhhhhhkhhhhhhhhhhhhhhkhd bk hkh kb dhhhkhhkhhhhhhk k%

ok: [servera.lab.example.com]

TASK [Verlfy maln Cf flle eXlStS] EEEE R EEEEEEEEEEEEEEEEEEEEEEEEEESEEEEEEESEEEEEEESS
ok: [servera.lab.example.com] => {
"msg": "The main.cf file exists"
...output omitted. ..
TASK [email notification of always_bcc config] ****xxxxaiiiiiiiiiiiaxdxirx

fatal: [servera.lab.example.com]: FAILED! => {"msg": "The conditional check
'bcc_state.stdout != 'always _bcc ='' failed. The error was: error while
evaluating conditional (bcc_state.stdout != 'always bcc ='): 'dict object'

has no attribute 'stdout'\n\nThe error appears to have been in '/home/student/
troubleshoot-host/mailrelay.yml': line 42, column 7, but may\nbe elsewhere in the
file depending on the exact syntax problem.\n\nThe offending line appears to be:
\n\n\n - name: email notification of always_bcc config\n N here\n"}

Chapter 8 | Troubleshooting Ansible

...output omitted. ..

PLAY REGCAP % * % % % o & sk sk o ok ok ok ok ok ok ok ok ok ok o ok ok ok ok o o ok o o ok ok o ok o o ok o o ok o o ok ok ok ok ok ok R ok ok ok R ok ok ok kK ko

servera. lab.example.com : ok=6 changed=3 unreachable=0 failed=1

The verify main.cf file exists task uses the stat module. It confirmed that main.cf exists
on servera. lab.example.com.

The email notification of always_bcc config task failed. It did not receive output from the
check for always_bcc task because the playbook was executed using check mode.

P 3. Using an ad hoc command, check the header for the /etc/postfix/main.cf file.

[student@workstation troubleshoot-host]$ ansible servera.lab.example.com \
> -u devops -b -a "head /etc/postfix/main.cf"

servera.lab.example.com | FAILED | rc=1 >>

head: cannot open '/etc/postfix/main.cf' for reading: No such file or
directorynon-zero return code

The command failed because the playbook was executed using check mode. Postfix is not
installed on servera. lab.example.com

P 4. Run the playbook again, but without specifying check mode. The error in the email
notification of always_bcc config task should disappear.

[student@workstation troubleshoot-host]$ ansible-playbook mailrelay.yml

PLAY [Cl’eate mall relay Servel’S] R R Sk S S Sk S Sk kS S S S Sk S S S S S kR S S S S S S O
...output omitted...

TASK [CheCk for always bCC] R R Sk Sk S S S S Sk S S S S S R S Sk S S S S R R S S S R

changed: [servera.lab.example.com]

TASK [email notification of always_bcc config] *****xxdkkskktrkohdkkdtdkdkokskddxkkkkx
skipping: [servera.lab.example.com]

RUNNING HANDLER [restart pOStle] R R Sk S S Sk S Sk S S S R S S S R S S
changed: [servera.lab.example.com]

PLAY RECAP R R Sk Sk S S Sk S R S S R S S kS S S kS kR S R S S

servera. lab.example.com : ok=8 changed=5 unreachable=0 failed=0
skipped=1 rescued=0 ignored=0

P 5. Using an ad hoc command, display the top of the /etc/postfix/main.cf file.

[student@workstation troubleshoot-host]$ ansible servera.lab.example.com \
> -u devops -b -a "head /etc/postfix/main.cf"

servera.lab.example.com | SUCCESS | rc=0 >>

Ansible managed

Global Postfix configuration file. This file 1lists only a subset
of all parameters. For the syntax, and for a complete parameter

#
#
#
#
list, see the postconf(5) manual page (command: "man 5 postconf").
#

Chapter 8 | Troubleshooting Ansible

For common configuration examples, see BASIC_CONFIGURATION_README
and STANDARD_CONFIGURATION_README. To find these documents, use

the command "postconf html_directory readme_directory", or go to
http://www.postfix.org/BASIC_CONFIGURATION_README.html etc.

Now it starts with a line that contains the string, "Ansible managed". This file was updated
and is now managed by Ansible.

) 6. Editthemailrelay.yml playbook and add a task to enable the smtp service through the
firewall. Add the task as the last task, before the handlers.

...output omitted...
- name: postfix firewalld config
firewalld:

state: enabled
permanent: true
immediate: true
service: smtp

...output omitted...

P 7. Runthe playbook. The postfix firewalld config task should have been executed
with no errors.

[student@workstation troubleshoot-host]$ ansible-playbook mailrelay.yml

PLAY [Create mall relay Servers] EEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEE]
...output omitted. ..

TASK [pOStle flrewalld Conflg] R R R R R EEEEEEEEREEEEEEEEEEEEEREEEEEEEEEEEEEEEEEE S LSS

changed: [servera.lab.example.com]

PLAY REGCAP % * % % % o % sk sk ok ok o ok ok ok ok ok ok ok ok ok ok ok o ok o o ok ok ok ok o o ok ok o ok o o ok o o ok ok ok ok ok ok ok ok ko ko ko ko kK ko

servera. lab.example.com : ok=8 changed=2 unreachable=0 failed=0
skipped=1 rescued=0 ignored=0

P 8. Usingan ad hoc command, check that the smtp service is now configured on the firewall at
servera. lab.example.com.

[student@workstation troubleshoot-host]$ ansible servera.lab.example.com \
> -u devops -b -a "firewall-cmd --list-services"

servera.lab.example.com | CHANGED | rc=0 >>

cockpit dhcpv6-client samba smtp ssh

P 9. Use telnet to testif the SMTP service is listening on port TCP/25 on
servera.lab.example.com. Disconnect when you are finished.

[student@workstation troubleshoot-host]$ telnet servera.lab.example.com 25
Trying 172.25.250.10...

Connected to servera.lab.example.com.

Escape character is 'A]'.

220 servera.lab.example.com ESMTP Postfix

quit

221 2.0.0 Bye

Connection closed by foreign host.

Chapter 8 | Troubleshooting Ansible

Finish
Onworkstation, runthe lab troubleshoot-host finish scriptto clean up this exercise.

[student@workstation ~]$ lab troubleshoot-host finish

This concludes the guided exercise.

w RH294-RHEL8.4-en-1-20210818

Chapter 8 | Troubleshooting Ansible

» Lab

Troubleshooting Ansible

Performance Checklist

In this lab, you will troubleshoot problems that occur when you try to run a playbook that has
been provided to you.

Outcomes
You should be able to:

+ Troubleshoot playbooks.

+ Troubleshoot managed hosts.

Before You Begin

Logintoworkstation as student using student as the password. Run the lab
troubleshoot-review start command.

[student@workstation ~]$ lab troubleshoot-review start

This script verifies that Ansible is installed on workstation, and creates the ~student/
troubleshoot-review/html/ directory. It downloads the ansible.cfg,
inventory-lab, secure-web.yml, and vhosts.conf files from http://
materials.example.com/labs/troubleshoot-review/ tothe /home/student/
troubleshoot-review/ directory. It also downloads the index.html file to the /home/
student/troubleshoot-review/html/ directory.

Instructions

1.

From the ~/troubleshoot-review directory, check the syntax of the secure-web.yml
playbook. This playbook contains one play that sets up Apache HTTPD with TLS/SSL for
hosts in the group webservers. Fix the issue that is reported.

Check the syntax of the secure-web.yml playbook again. Fix the issue that is reported.

Check the syntax of the secure-web.yml playbook a third time. Fix the issue that is
reported.

Check the syntax of the secure-web.yml playbook a fourth time. It should not show any
syntax errors.

Run the secure-web.yml playbook. Ansible is not able to connect to
serverb. lab.example.com. Fix this problem.

Run the secure-web.yml playbook again. Ansible should authenticate as the devops
remote user on the managed host. Fix this issue.

Run the secure-web.yml playbook a third time. Fix the issue that is reported.

Run the secure-web.yml playbook one more time. It should complete successfully. Use an
ad hoc command to verify that the httpd service is running.

Chapter 8 | Troubleshooting Ansible

Evaluation

Onworkstation, runthe lab troubleshoot-review grade scriptto confirm success on
this exercise.

[student@workstation ~]$ lab troubleshoot-review grade

Finish
Onworkstation, runthe lab troubleshoot-review finish scriptto clean up this lab.

[student@workstation ~]$ lab troubleshoot-review finish

This concludes the lab.

W RH294-RHEL8.4-en-1-20210818

Chapter 8 | Troubleshooting Ansible

» Solution

Troubleshooting Ansible

Performance Checklist
In this lab, you will troubleshoot problems that occur when you try to run a playbook that has
been provided to you.

Outcomes
You should be able to:

+ Troubleshoot playbooks.

+ Troubleshoot managed hosts.

Before You Begin
Logintoworkstation as student using student as the password. Run the lab
troubleshoot-review start command.

[student@workstation ~]$ lab troubleshoot-review start

This script verifies that Ansible is installed on workstation, and creates the ~student/
troubleshoot-review/html/ directory. It downloads the ansible.cfg,
inventory-lab, secure-web.yml, and vhosts. conf files from http://
materials.example.com/labs/troubleshoot-review/ to the /home/student/
troubleshoot-review/ directory. It also downloads the index.html file to the /home/
student/troubleshoot-review/html/ directory.

Instructions

1.

From the ~/troubleshoot -review directory, check the syntax of the secure-web.yml
playbook. This playbook contains one play that sets up Apache HTTPD with TLS/SSL for
hosts in the group webservers. Fix the issue that is reported.

11. Onworkstation, change to the /home/student/troubleshoot-review project
directory.

[student@workstation ~]$ cd ~/troubleshoot-review/

1.2. Check the syntax of the secure-web.ym1 playbook. This playbook sets up Apache
HTTPD with TLS/SSL for hosts in the webservers group when everything is correct.

[student@workstation troubleshoot-review]$ ansible-playbook --syntax-check \

> secure-web.yml

ERROR! We were unable to read either as JSON nor YAML, these are the errors we got
from each:

JSON: Expecting value: line 1 column 1 (char 0)

Chapter 8 | Troubleshooting Ansible

Syntax Error while loading YAML.
mapping values are not allowed in this context

The error appears to be in '/home/student/troubleshoot-review/secure-web.yml':
line 7, column 30, but may be elsewhere in the file depending on the exact syntax

problem.
The offending line appears to be:

vars:
random_var: This is colon: test
A here

1.3. Correct the syntax issue in the definition of the random_var variable by adding double
quotes tothe This is colon: test string. The resulting change should appear as
follows

..output omitted...
vars:

random_var: "This is colon: test"
..output omitted...

2. Check the syntax of the secure-web.yml playbook again. Fix the issue that is reported.

2.1. Check the syntax of secure-web.yml using ansible-playbook --syntax-
check again.

[student@workstation troubleshoot-review]$ ansible-playbook --syntax-check \

> secure-web.yml
ERROR! We were unable to read either as JSON nor YAML, these are the errors we got

from each:
JSON: Expecting value: line 1 column 1 (char 0)

Syntax Error while loading YAML.
did not find expected '-' indicator

The error appears to be in '/home/student/troubleshoot-review/secure-web.yml':
line 38, column 10, but may be elsewhere in the file depending on the exact
syntax problem.

The offending line appears to be:

- name: start and enable web services
A here

2.2. Correct any syntax issues in the indentation. Remove the extra space at the beginning
of the start and enable web services task elements. The resulting change should appear
as follows:

...output omitted. ..
args:
creates: /etc/pki/tls/certs/serverb.lab.example.com.crt

Chapter 8 | Troubleshooting Ansible

- name: start and enable web services
service:
name: httpd
state: started
enabled: yes

- name: deliver content

copy:
dest: /var/www/vhosts/serverb-secure
src: html/

...output omitted...

3. Check the syntax of the secure-web.yml playbook a third time. Fix the issue that is
reported.

3.1. Check the syntax of the secure-web.ym1 playbook.

[student@workstation troubleshoot-review]$ ansible-playbook --syntax-check \

> secure-web.yml

ERROR! We were unable to read either as JSON nor YAML, these are the errors we got
from each:

JSON: Expecting value: line 1 column 1 (char 0)

Syntax Error while loading YAML.
found unacceptable key (unhashable type: 'AnsibleMapping')

The error appears to be in '/home/student/troubleshoot-review/secure-web.yml':
line 13, column 20, but may
be elsewhere in the file depending on the exact syntax problem.

The offending line appears to be:

yum:
name: {{ item }}
A here
We could be wrong, but this one looks like it might be an issue with
missing quotes. Always quote template expression brackets when they
start a value. For instance:

with_items:

- {{ foo }}

Should be written as:

with_items:

- "{{ foo }}"

3.2. Correct the itemvariable inthe install web server packages task. Add double
quotes to {{ item }}. The resulting change should appear as follows:

...output omitted. ..
- name: install web server packages
yum:

Chapter 8 | Troubleshooting Ansible

name: "{{ item }}"

state: latest
notify:

- restart services
loop:

- httpd

- mod_ssl

...output omitted...

4. Check the syntax of the secure-web.ym1 playbook a fourth time. It should not show any
syntax errors.

4]. Review the syntax of the secure-web.ym1 playbook. It should not show any syntax
errors.

[student@workstation troubleshoot-review]$ ansible-playbook --syntax-check \

> secure-web.yml

playbook: secure-web.yml

5. Runthe secure-web.yml playbook. Ansible is not able to connect to
serverb. lab.example.com. Fix this problem.

51. Runthe secure-web.yml playbook. This will fail with an error.

[student@workstation troubleshoot-review]$ ansible-playbook secure-web.yml

PLAY [Create secure Web Service] EE R R R S R R R R S S R R S R R S R S

TASK [Gatherlng FaCtS] LR R R R R R R R R R R R R R S R R R R R R R R S R S R R R R R

fatal: [serverb.lab.example.com]: UNREACHABLE! => {"changed": false, "msg":
"Failed to connect to the host via ssh: students@serverc.lab.example.com:
Permission denied (publickey, gssapi-keyex,gssapi-with-mic, password).",
"unreachable": true}

PLAY RECAP R R R R S S S S R R S S S R S S S S R R R S S S S kR R S R S S S

serverb.lab.example.com : ok=0 changed=0 unreachable=1 failed=0

5.2. Runthe secure-web.yml playbook again, adding the -vvv parameter to increase the
verbosity of the output.

Notice that Ansible appears to be connecting to serverc. lab.example.com
instead of serverb. lab.example.com.

Chapter 8 | Troubleshooting Ansible

[student@workstation troubleshoot-review]$ ansible-playbook secure-web.yml -vvv
...output omitted...
TASK [Gathel’lng FaCtS] R Rk R Sk Sk Sk Sk S R S S S R S S R R S R R S S S S
task path: /home/student/troubleshoot-review/secure-web.yml:3
<serverc.lab.example.com> ESTABLISH SSH CONNECTION FOR USER: students
<serverc.lab.example.com> SSH: EXEC ssh -C -o ControlMaster=auto
-0 ControlPersist=60s -o KbdInteractiveAuthentication=no -o
PreferredAuthentications=gssapi-with-mic, gssapi-keyex, hostbased, publickey

-0 PasswordAuthentication=no -o 'User="students"' -o ConnectTimeout=10 -0
ControlPath=/home/student/.ansible/cp/bc@cB5136a serverc.lab.example.com '/bin/sh
-c '"'""'echo ~students && sleep @'"'""'

...output omitted...

5.3. Correct the line in the inventory file. Delete the ansible_host host variable so the
file appears as shown below:

[webservers]
serverb.lab.example.com

6. Runthe secure-web.yml playbook again. Ansible should authenticate as the devops
remote user on the managed host. Fix this issue.

6.. Runthe secure-web.yml playbook.

[student@workstation troubleshoot-review]$ ansible-playbook secure-web.yml -vvv
...output omitted. ..

TASK [Gatherlng FaCtS] EEEEE R SRR EEEEEREEEEREEEEEEEEEEEEEEEEEEEEEEEEEEESEEEEEEEEEEEE
task path: /home/student/troubleshoot-review/secure-web.yml:3
<serverb.lab.example.com> ESTABLISH SSH CONNECTION FOR USER: students

...output omitted. ..
fatal: [serverb.lab.example.com]: UNREACHABLE! => {
...output omitted...

6.2. Edit the secure-web.ym1l playbook to make sure devops is the remote_user for
the play. The first lines of the playbook should appear as follows:

start of secure web server playbook
- name: create secure web service
hosts: webservers
remote_user: devops
...output omitted. ..

7. Runthe secure-web.yml playbook a third time. Fix the issue that is reported.

71. Runthe secure-web.yml playbook.

[student@workstation troubleshoot-review]$ ansible-playbook secure-web.yml -vvv

...output omitted. ..
failed: [serverb.lab.example.com] (item=mod_ssl) => {
"ansible_loop_var": "item",

Chapter 8 | Troubleshooting Ansible

"changed": false,
"invocation": {

"module_args": {
"allow_downgrade": false,
"autoremove": false,

.output omitted. ..
"validate_certs": true

}
}
"item": "mod_ssl",
"msg": "This command has to be run under the root user.",

"results": []

.output omitted. ..

7.2. Edit the play to make sure that it has become: true or become: yesset. The
resulting change should appear as follows:

start of secure web server playbook
- name: create secure web service
hosts: webservers
remote_user: devops
become: true
...output omitted...

8. Runthe secure-web.yml playbook one more time. It should complete successfully. Use an
ad hoc command to verify that the httpd service is running.

8.1. Runthe secure-web.yml playbook.

[student@workstation troubleshoot-review]$ ansible-playbook secure-web.yml

PLAY [Create Secure Web Seerce] khkkhkkhkhkkhkhkdhkhkhkhhhkdhkdhkhhhdhhkdhkhbhkhkdhhrdhkdbhkhkrhrdrhdhhhdkx
...output omitted...

TASK [lnStall Web server packages] khkkkhkkhkhkkhkhkkhhkdkhkhkhkhkhhkdhhdbhhhhkdhrdhrdhhkdhhrdhrdbhhhhkdxdxx
changed: [serverb.lab.example.com] => (item=httpd)

changed: [serverb.lab.example.com] => (item=mod_ssl)

...output omitted...

TASK [httpd Conf SyntaX Varlable] khkkhkkhkhkkhkhkkhhkdkhkhkhkhkdhkdhkhhhdhhdhrhbrhhhdhhrdhrkhbhhdhrdhdhhk
ok: [serverb.lab.example.com] => {

"msg": "The httpd_conf_syntax variable value is {'cmd': ['/sbin/httpd',
'-t'], 'stdout': '', 'stderr': 'Syntax OK', 'rc': O, 'start': '2021-07-16
14:08:35.304347', 'end': '2021-07-16 14:08:35.342415', 'delta': '0:00:00.038068',
'changed': True, 'stdout_lines': [], 'stderr_lines': ['Syntax OK'], 'failed':
False, 'failed_when_result': False}"

}
...output omitted...
RUNNING HANDLER [restart seerceS] R R R R

changed: [serverb.lab.example.com]

PLAY REGCAP % * % % % o % ok sk ok ok sk ok ok ok ok ok ok ok ok o ok ok ok ok o o ok o ok ok o ok ok o ok ok o o ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok K ok kK ko

serverb.lab.example.com : ok=10 changed=7 unreachable=0 failed=0

Chapter 8 | Troubleshooting Ansible

8.2. Use an ad hoc command to determine the state of the httpd service on
serverb.lab.example.com. The httpd service should now be running on
serverb.lab.example.com.

[student@workstation troubleshoot-review]$ ansible all -u devops -b \
> -m command -a 'systemctl status httpd'
serverb.lab.example.com | CHANGED | rc=0 >>
e httpd.service - The Apache HTTP Server
Loaded: loaded (/usr/lib/systemd/system/httpd.service; enabled; vendor preset:

disabled)
Active: active (running) since Fri 2021-07-16 14:08:37 EDT; 3min 1s ago
...output omitted. ..

Evaluation

Onworkstation, runthe lab troubleshoot-review grade scriptto confirm success on
this exercise.

[student@workstation ~]$ lab troubleshoot-review grade

Finish

Onworkstation, runthe lab troubleshoot-review finish scriptto clean up this lab.

[student@workstation ~]$ lab troubleshoot-review finish

This concludes the lab.

Chapter 8 | Troubleshooting Ansible

Summary

In this chapter, you learned:
+ Ansible provides built-in logging. This feature is not enabled by default.

+ The log_path parameter in the default section of the ansible.cfg configuration file
specifies the location of the log file to which all Ansible output is redirected.

+ The debug module provides additional debugging information while running a playbook (for
example, current value for a variable).

+ The -v option of the ansible-playbook command provides several levels of output
verbosity. This is useful for debugging Ansible tasks when running a playbook.

+ The --check option enables Ansible modules with check mode support to display the changes
to be performed, instead of applying those changes to the managed hosts.

+ Additional checks can be executed on the managed hosts using ad hoc commands.

Chapter 9

Automating Linux
Administration Tasks

Goal Automate common Linux system administration ¢

tasks with Ansible.

Objectives * Subscribe systems, configure software .
channels and repositories, enable module 4
streams, and manage RPM packages on
managed hosts. ,..-

+ Manage Linux users and groups, configure SSH,
and modify Sudo configuration on managed
hosts.

.u ‘ i
-
e
P + Manage service startup, schedule processes
. with at, cron, and systemd, reboot, and control
the default boot target on managed hosts.

+ Partition storage devices, configure LVM,
format partitions or logical volumes, mount file
systems, and add swap files or spaces.

+ Configure network settings and name
resolution on managed hosts, and collect
network-related Ansible facts.

Sections * Managing Software and Subscriptions (Guided
Exercise)
+ Managing Users and Authentication (Guided

Exercise)

+ Managing the Boot Process and Scheduled
Processes (Guided Exercise)

Managing Storage (Guided Exercise)

+ Managing Network Configuration (Guided
Exercise)

Lab + Automating Linux Administration Tasks

74

RH294-RHEL8.4-en-1-20210818

Chapter 9 | Automating Linux Administration Tasks

Managing Software and Subscriptions

Objectives

After completing this section, you should be able to subscribe systems, configure software
channels and repositories, enable module streams, and manage RPM packages on managed hosts.

Managing Packages with Ansible

The yum Ansible module uses the Yum Package Manager on the managed hosts to handle the
package operations. The following example is a playbook that installs the httpd package on the
servera. lab.example.com managed host.

- name: Install the required packages on the web server
hosts: servera.lab.example.com
tasks:
- name: Install the httpd packages
yum:
name: httpd (1]
state: present

© The name keyword gives the name of the package to install.
© The state keyword indicates the expected state of the package on the managed host:

present
Ansible installs the package if it is not already there.

absent
Ansible removes the package if it is installed.

latest
Ansible updates the package if it is not already at the most recent available version. If the
package is not installed, Ansible installs it.

The following table compares some usage of the yum Ansible module with the equivalent yum
command.

Ansible task Yum command

i 11 h
- name: Install httpd yum insta ttpd

yum:
name: httpd
state: present

Chapter 9 | Automating Linux Administration Tasks

Ansible task Yum command

yum update httpdoryum install

- WENIRY ANSERLL @ LEekiEe (EEpe httpd if the package is not yet installed.

yum:
name: httpd
state: latest

- name: Update all packages yum update
yum:
name: '*'

state: latest

um remove httpd
- name: Remove httpd y P

yum:
name: httpd
state: absent

yum group install "Development

- name: Install Development Tools "
Tools

yum:
name: '@Development Tools' 1]
state: present

© with the yum Ansible module, you must
prefix group names with @. Remember
that you can retrieve the list of groups
with the yum group 1list command.

yum group remove "Development

- name: Remove Development Tools Tools"

yum:
name: '@Development Tools'
state: absent

yum module install perl:5.26/

- name: Inst perl AppStream minimal

module

yum:
name: '@perl:5.26/minimal'’ o
state: present

O T manage a Yum AppStream module,
prefix its name with @. The syntax is the
same as with the yum command. For
example, you can omit the profile part
to use the default profile: @per1:5.26.
Remember that you can list the available
Yum AppStream modules with the yum
module list command.

Run the ansible-doc yum command for additional parameters and playbook examples.

Chapter 9 | Automating Linux Administration Tasks

Optimizing Multiple Package Installation

To operate on several packages, the name keyword accepts a list. The following example shows a
playbook that installs three packages on servera. lab.example.com.

- name: Install the required packages on the web server
hosts: servera.lab.example.com

tasks:
- name: Install the packages
yum:
name:
- httpd
- mod_ssl

- httpd-tools
state: present

With this syntax, Ansible installs the packages in a single Yum transaction. This is equivalent to
running the yum install httpd mod_ssl httpd-tools command.

A commonly seen but less efficient and slower version of this task is to use a loop.

- name: Install the required packages on the web server
hosts: servera.lab.example.com

tasks:
- name: Install the packages

yum:
name: "{{ item }}""
state: present

loop:
- httpd
- mod_ss1l

- httpd-tools

Avoid using this method as it requires the module to perform three individual transactions, one for
each package.

Gathering Facts about Installed Packages

The package_facts Ansible module collects the installed package details on managed hosts. It
sets the ansible_facts.packages variable with the package details.

The following playbook calls the package_facts module, the debug module to display the
content of the ansible_facts.packages variable, and the debug module again to view the
version of the installed NetworkManager package.

- name: Display installed packages
hosts: servera.lab.example.com
tasks:
- name: Gather info on installed packages
package_facts:
manager: auto

Chapter 9 | Automating Linux Administration Tasks

- name: List installed packages
debug:
var: ansible_facts.packages

- name: Display NetworkManager version

debug:
msg: "Version {{ansible_facts.packages['NetworkManager'][Q].version}}"
when: "'NetworkManager' in ansible_facts.packages"

When run, the playbook displays the package list and the version of the NetworkManager package:

[user@controlnode ~]$ ansible-playbook lspackages.yml

PLAY [Dlsplay lnStalled packages] R R R Sk Sk S S S S S kR

TASK [Gatherlng Facts] R R R SR S S S S S S R S S S R S

ok: [servera.lab.example.com]

TASK [Gather info on installed packages] R R R SR R R S S S S S
ok: [servera.lab.example.com]

TASK [List installed packages] LR R R S R R R R
ok: [servera.lab.example.com] => {
"ansible_facts.packages": {
"NetworkManager": [

{
"arch": '"x86_64",
"epoch": 1,
"name": "NetworkManager",
"release": "14.el18",
"source": "rpm",
"version": "1.14.0"
}
1,
...output omitted...
"zlib": [
{
"arch": '"x86_64",
"epoch": null,
"name": "zlib",
"release": "10.el8",
"source": "rpm",
"version": "1.2.11"
}
1

TASK [DiSplay NetworkManager Version] khkkhkhkhkkhkhkhhkdkhkhhhdhhdhhhhhkhkdhrdrhrhkhhhhdxdkxx
ok: [servera.lab.example.com] => {
"msg": "Version 1.14.0"

Chapter 9 | Automating Linux Administration Tasks

PLAY RECAP ***&xkkkdkkhkkhhhhhhhhhhkhhkkkkhhkhh ok hhkk ok ok k ok ok kk ok kkkkkkkkkkkkxkkxx

servera. lab.example.com 1 ok=4 changed=0 unreachable=0 failed=0

Reviewing Alternative Modules to Manage Packages

The yum Ansible module works on managed hosts that are using the Yum Package Manager. For
other package managers, Ansible usually provides a dedicated module. For example, the dnf
module manages packages on operating systems such as Fedora using the DNF package manager.
The apt module uses the APT package tool available on Debian or Ubuntu. The win_package
module can install software on Microsoft Windows systems.

The following playbook uses conditionals to select the appropriate module in an environment
composed of Red Hat Enterprise Linux and Fedora systems.

- name: Install the required packages on the web servers
hosts: webservers
tasks:
- name: Install httpd on RHEL
yum:
name: httpd
state: present
when: "ansible_distribution == 'RedHat'"

- name: Install httpd on Fedora

dnf:
name: httpd
state: present
when: "ansible_distribution == 'Fedora'"

As an alternative, the generic package module automatically detects and uses the package
manager available on the managed hosts. With the package module, you can rewrite the previous
playbook as follows.

- name: Install the required packages on the web servers
hosts: webservers
tasks:
- name: Install httpd
package:
name: httpd
state: present

However, notice that the package module does not support all the features that the more
specialized modules provide. Also, operating systems often have different names for the packages
they provide. For example, the package that installs the Apache HTTP Server is httpd on Red Hat
Enterprise Linux and apache2 on Ubuntu. In that situation, you still need a conditional for selecting
the correct package name depending on the operating system of the managed host.

Chapter 9 | Automating Linux Administration Tasks

Registering and Managing Systems with Red Hat
Subscription Management

To entitle your new Red Hat Enterprise Linux systems to product subscriptions, Ansible provides
the redhat_subscriptionand rhsm_repository modules. These modules interface with the
Red Hat Subscription Management tool on the managed hosts.

Registering and Subscribing New systems

The first two tasks you usually perform with the Red Hat Subscription Management tool is to
register the new system and attach an available subscription.

Without Ansible, you perform these tasks with the subscription-manager command:

[user@host ~]$ subscription-manager register --username=yourusername \
> --password=yourpassword
[user@host ~]$%$ subscription-manager attach --pool=poolID

Remember that you list the available pools in your account with the subscription-manager
list --available command.

The redhat_subscription Ansible module performs the registration and the subscription in
one task.

- name: Register and subscribe the system
redhat_subscription:
username: yourusername
password: yourpassword
pool_ids: poolID
state: present

A state keyword set to present indicates to register and to subscribe the system. When it is set
to absent, the module unregisters the system.

Enabling Red Hat Software Repositories

The next task after the subscription is to enable Red Hat software repositories on the new system.

Without Ansible, you usually execute the subscription-manager command for that purpose:

[user@host ~]$ subscription-manager repos \
> --enable "rhel-8-for-x86_64-baseos-rpms" \
> --enable "rhel-8-for-x86_64-baseos-debug-rpms"

Remember that you can list the available repositories with the subscription-manager repos
--list command.

With Ansible, use the rhsm_repository module:

Chapter 9 | Automating Linux Administration Tasks

- name: Enable Red Hat repositories
rhsm_repository:
name:
- rhel-8-for-x86_64-baseos-rpms
- rhel-8-for-x86_64-baseos-debug-rpms
state: present

Configuring a Yum Repository

To enable support for a third-party repository on a managed host, Ansible provides the
yum_repository module.

Declaring a Yum Repository

When run, the following playbook declares a new repository on servera. lab.example.com.

- name: Configure the company Yum repositories
hosts: servera.lab.example.com
tasks:
- name: Ensure Example Repo exists
yum_repository:

file: example (1]
name: example-internal
description: Example Inc. Internal YUM repo
baseurl: http://materials.example.com/yum/repository/
enabled: yes
gpgcheck: yes
state: present (3]

© The file keyword gives the name of the file to create under the /etc/yum. repos.d/
directory. The module automatically adds the . repo extension to that name.

© Typically, software providers digitally sign RPM packages using GPG keys. By setting the
gpgcheck keyword to yes, the RPM system verifies package integrity by confirming that the
package was signed by the appropriate GPG key. It refuses to install a package if the GPG
signature does not match. Use the rpm_key Ansible module, described later on, to install the
required GPG public key.

© When you set the state keyword to present, Ansible creates or updates the . repo file.
When state is set to absent, Ansible deletes the file.

The resulting /etc/yum.repos.d/example.repo file on servera. lab.example.comis as
follows.

[example-internal]

baseurl = http://materials.example.com/yum/repository/
enabled = 1

gpgcheck = 1

name = Example Inc. Internal YUM repo

Chapter 9 | Automating Linux Administration Tasks

The yum_repository module exposes most of the Yum repository configuration parameters as
keywords. Run the ansible-doc yum_repository command for additional parameters and
playbook examples.

Note

S Some third-party repositories provide the configuration file and the GPG public
key as part of an RPM package that can be downloaded and installed using the
yum install command. For example, the Extra Packages for Enterprise Linux
(EPEL) project provides the https;//dl.fedoraproject.org/pub/epel/epel-release-
latest-VER.noarch.rpm package that deploys the /etc/yum.repos.d/
epel. repo configuration file. For this repository, use the yum Ansible module to
install the EPEL package instead of the yum_repository module.

Importing an RPM GPG key

When the gpgcheck keyword is set to yes in the yum_repository module, you also need to
install the GPG key on the managed host. The rpm_key module in the following example deploys
onservera. lab.example.comthe GPG public key hosted on a remote web server.

- name: Configure the company Yum repositories
hosts: servera.lab.example.com

tasks:
- name: Deploy the GPG public key
rpm_key:

key: http://materials.example.com/yum/repository/RPM-GPG-KEY-example
state: present

- name: Ensure Example Repo exists

yum_repository:
file: example
name: example-internal
description: Example Inc. Internal YUM repo
baseurl: http://materials.example.com/yum/repository/
enabled: yes
gpgcheck: yes
state: present

Chapter 9 | Automating Linux Administration Tasks

References
yum(8), yum.conf(5), and subscription-manager(8) man pages

yum — Manages packages with the yum package manager — Ansible
Documentation
https://docs.ansible.com/ansible/2.9/modules/yum_module.html

package_facts — package information as facts — Ansible Documentation
https://docs.ansible.com/ansible/2.9/modules/package_facts_module.html

redhat_subscription — Manage registration and subscriptions to RHSM using
the subscription-manager command — Ansible Documentation
https://docs.ansible.com/ansible/2.9/modules/redhat_subscription_module.html

rhsm_repository — Manage RHSM repositories using the subscription-manager
command — Ansible Documentation
https://docs.ansible.com/ansible/2.9/modules/rhsm_repository_module.html

yum_repository — Add or remove YUM repositories — Ansible Documentation
https://docs.ansible.com/ansible/2.9/modules/yum_repository_module.html

rpm_key — Adds or removes a gpg key from the rpm db — Ansible
Documentation
https://docs.ansible.com/ansible/2.9/modules/rpm_key_module.html

W RH294-RHEL8.4-en-1-20210818

https://docs.ansible.com/ansible/2.9/modules/yum_module.html
https://docs.ansible.com/ansible/2.9/modules/package_facts_module.html
https://docs.ansible.com/ansible/2.9/modules/redhat_subscription_module.html
https://docs.ansible.com/ansible/2.9/modules/rhsm_repository_module.html
https://docs.ansible.com/ansible/2.9/modules/yum_repository_module.html
https://docs.ansible.com/ansible/2.9/modules/rpm_key_module.html

Chapter 9 | Automating Linux Administration Tasks

» Guided Exercise

Managing Software and Subscriptions

In this exercise you will configure a new Yum repository and install packages from it on your
managed hosts.

Outcomes
You should be able to:

+ Configure a yum repository using the yum_repository module.
+ Manage RPM GPG keys using the rpm_key module.

+ Obtain information about the installed packages on a host using the package_facts
module.

Before You Begin

Onworkstation, run the lab start script to confirm that the environment is ready for
the lab to begin. The script creates the working directory, called system-software, and
populates it with an Ansible configuration file, a host inventory, and lab files.

[student@workstation ~]$ lab system-software start

Instructions

Your organization requires that all hosts have the example-motd package installed. This package
is provided by an internal Yum repository maintained by your organization to host internally
developed software packages.

You are tasked with writing a playbook to ensure that the example-motd package is installed on
the remote host. The playbook must ensure the configuration of the internal Yum repository.

The repository is located at http://materials.example.com/yum/repository. AllRPM
packages are signed with an organizational GPG key pair. The GPG public key is available at
http://materials.example.com/yum/repository/RPM-GPG-KEY -example.

P 1. Asthe student user onworkstation, change to the /home/student/system-
software working directory.

[student@workstation ~]$ cd ~/system-software
[student@workstation system-software]$

) 2. Begin writing the repo_playbook.ym1 playbook. Define a single play in the playbook that
targets all hosts. Add a vars clause that defines a single variable custom_pkg with a value
of example-motd. Add the tasks clause to to the playbook.

The playbook now contains:

Chapter 9 | Automating Linux Administration Tasks

- name: Repository Configuration

hosts: all
vars:

custom_pkg: example-motd
tasks:

P 3. Add two tasks to the playbook.
Use the package_facts module in the first task to gather information about installed
packages on the remote host. This task populates the ansible_facts.packages fact.

Use the debug module in the second task to print the installed version of the package
referenced by the custom_pkg variable. Only execute this task if the custom package is
foundin the ansible_facts.packages fact.

Execute the repo_playbook.ym1 playbook.

3.1. Add the first task to the playbook. Configure the manager keyword of the
package_facts module with a value of auto. The first task contains the following:

- name: Gather Package Facts
package_facts:
manager: auto

3.2. Add asecond task to the playbook that uses the debug module to display the value
of the ansible_facts.packages[custom_pkg] variable. Add a when clause
to the task to check if the value of the custom_pkg variable is contained in the
ansible_facts.packages variable. The second task contains the following:

- name: Show Package Facts for the custom package
debug:
var: ansible_facts.packages[custom_pkg]
when: custom_pkg in ansible_facts.packages

3.3. Execute the playbook:

[student@workstation system-software]$ ansible-playbook repo_playbook.yml

PLAY [Repository Configuration] khkkhkhkkhhhhkhhhkhhhhhhhhhhhkhhhhhhhk bk hkhhkhhkhhhkhkhk*

TASK [Gathering FaCtS] khkkkhkkhhhhhhhdhhhhhhhdhhhhhhhhhhhhhhhhhhhhkhhhhhhhkhhhhkhk*

ok: [servera.lab.example.com]

TASK [Gather Package FaCtS] R S
ok: [servera.lab.example.com]

TASK [Show Package Facts for the custom package] ********xkxxsadakxrsddhhxxsddx
skipping: [servera.lab.example.com]

PLAY RECAP ***xxkkkkkkkkkkkkkkkkkhkkhkkhkhhkrhkrhkrkkhhdkrhkrhdkrhkrhkrhkrkkxrkx

servera. lab.example.com 1 ok=2 changed=0 unreachable=0 failed=0
skipped=1 rescued=0 ignored=0

Chapter 9 | Automating Linux Administration Tasks

) 4.

) 5.

) 6.

b7

The debug task is skipped because the example-motd package is not installed on the
remote host.

Add a third task that uses the yum_repository module to ensure the configuration of the
internal yum repository on the remote host. Ensure that:

* The repository's configuration is stored in the file /etc/yum.repos.d/example.repo
* The repository ID is example-internal

* Thebase URLishttp://materials.example.com/yum/repository

» The repository is configured to check RPM GPG signatures

» The repository description is Example Inc. Internal YUM repo

The third task contains the following:

- name: Ensure Example Repo exists
yum_repository:
name: example-internal
description: Example Inc. Internal YUM repo
file: example
baseurl: http://materials.example.com/yum/repository/
gpgcheck: yes

Add a fourth task to the play that uses the rpm_key module to ensure that the repository
public key is present on the remote host. The repository public key URL is http://
materials.example.com/yum/repository/RPM-GPG-KEY-example.

The fourth task appears as follows:

- name: Ensure Repo RPM Key is Installed
rpm_key:
key: http://materials.example.com/yum/repository/RPM-GPG-KEY-example
state: present

Add a fifth task to ensure that the package referenced by the custom_pkg variable is
installed on the remote host.

The fifth task appears as follows:

- name: Install Example motd package
yum:
name: "{{ custom_pkg }}"
state: present

The ansible_facts.packages factis not updated when a new package is installed on a
remote host.

Copy the second task and add it as the sixth task in the play. Execute the playbook and
verify that the ansible_facts.packages fact does not contain information about the
example-motd installed on the remote host.

71. The sixth task contains a copy of the second task:

Chapter 9 | Automating Linux Administration Tasks

- name: Show Package Facts for the custom package
debug:
var: ansible_facts.packages[custom_pkg]
when: custom_pkg in ansible_facts.packages

The entire playbook now looks as follows:

- name: Repository Configuration

hosts: all
vars:

custom_pkg: example-motd
tasks:

- name: Gather Package Facts
package_facts:
manager: auto

- name: Show Package Facts for the custom package
debug:
var: ansible_facts.packages[custom_pkg]
when: custom_pkg in ansible_facts.packages

- name: Ensure Example Repo exists
yum_repository:
name: example-internal
description: Example Inc. Internal YUM repo
file: example
baseurl: http://materials.example.com/yum/repository/
gpgcheck: yes

- name: Ensure Repo RPM Key is Installed
rpm_key:
key: http://materials.example.com/yum/repository/RPM-GPG-KEY-example
state: present

- name: Install Example motd package
yum:
name: "{{ custom_pkg }}"
state: present

- name: Show Package Facts for the custom package
debug:
var: ansible_facts.packages[custom_pkg]
when: custom_pkg in ansible_facts.packages

7.2. Execute the playbook.

[student@workstation system-software]$ ansible-playbook repo_playbook.yml
PLAY [RepOSltOTy Conflguratlon] R S I S

TASK [Gather‘ing FaCtS] khkkhkhkhhhhhhhhhhhhhhhhhhkhhhhhhhkhhkhhhhhkhhkhhhhhkhkhhkkhkhk*

ok: [servera.lab.example.com]

Chapter 9 | Automating Linux Administration Tasks

TASK [Gather Package FaCtS] khkhkkhkkhhkhkhkhhhkhhkhhhhhhhhhhhhhhkhhhhhhhkhh bk hkh kb dhkkkk

ok: [servera.lab.example.com]"

TASK [Show Package Facts for the custom package] ********kkxxsadhxrdddhhxxsddx
skipping: [servera.lab.example.com]

TASK [EnSUre EXample RepO eXlStS] khkkhkkhkhkkhkhkkhkhkhkhkhkhhkhhkdkhkhkhhkdhrdhkhhhhhrdhkhhkhhhkdhdkkhhk
changed: [servera.lab.example.com]

TASK [EnSUre RepO RPM Key lS InStalled] khkkhkkhkhkkhkhkkhhkhkhkhkhkhkhhkdhkdhhhkhdhrdrkdhkhhhhhdxx
changed: [servera.lab.example.com]

TASK [InStall EXample motd package] khkkhkkhkhkkhkhkkhhkhkhkhkhkhkdhkdhkdkhhkhhkdhrdrhrhkdrdhdhhhxkx
changed: [servera.lab.example.com]

TASK [Show Package Facts for the custom package] *******kkkxxsadahardddhrxsddx
skipping: [servera.lab.example.com]

PLAY REGCAP % * % % % o sk ok sk ok ok sk ok ok ok ok ok ok ok ok o ok ok ok ok ok o ok o o ok o ok ok ok o ok o o ok ok ok ok o ok ok ok ok ok ok ok ok ko ko ok ok ko k

servera. lab.example.com : ok=5 changed=3 unreachable=0 failed=0
skipped=2 rescued=0 ignored=0

©® TheGather Package Facts task determines the data contained in the
ansible_facts.packages fact.

© The task is skipped because the example-motd package is installed after the
Gather Package Facts task.

P 8. Insertataskimmediately after the Install Example motd package task using the
package_facts module to update the package facts. Set the module's manager keyword
with a value of auto.

The complete playbook is shown below:

- name: Repository Configuration

hosts: all
vars:

custom_pkg: example-motd
tasks:

- name: Gather Package Facts
package_facts:
manager: auto

- name: Show Package Facts for the custom package
debug:
var: ansible_facts.packages[custom_pkg]
when: custom_pkg in ansible_facts.packages

- name: Ensure Example Repo exists
yum_repository:
name: example-internal
description: Example Inc. Internal YUM repo
file: example
baseurl: http://materials.example.com/yum/repository/

Chapter 9 | Automating Linux Administration Tasks
gpgcheck: yes

- name: Ensure Repo RPM Key is Installed
rpm_key:
key: http://materials.example.com/yum/repository/RPM-GPG-KEY-example
state: present

- name: Install Example motd package
yum:
name: "{{ custom_pkg }}"
state: present

- name: Gather Package Facts
package_facts:
manager: auto

- name: Show Package Facts for the custom package
debug:
var: ansible_facts.packages[custom_pkg]
when: custom_pkg in ansible_facts.packages

P 9. Use an Ansible ad hoc command to remove the example-motd package installed
during the previous execution of the playbook. Execute the playbook with the inserted
package_facts task and use the output to verify that the installation of the example-
motd package.

9.1. Toremove the example-motd package from all hosts, use the ansible all
command with the -m yumand -a 'name=example-motd state=absent'
options.

[student@workstation system-software]$ ansible all -m yum \
> -a 'name=example-motd state=absent'
servera. lab.example.com | CHANGED => {
...output omitted. ..

"changed": true,

"msg": "",

"rc": 0O,

"results": [

"Removed: example-motd-1.0-1.el7.x86_64"

]

...output omitted. ..

9.2. Execute the playbook.

[student@workstation system-software]$ ansible-playbook repo_playbook.yml

PLAY [RepOSltOry Conflguratlon] R R R S S S R R

TASK [Gatherlng Facts] R R R R R S SR S S R R S R R R

ok: [servera.lab.example.com]

TASK [Gather Package Facts] R R R R R R S R R R R

ok: [servera.lab.example.com]

Chapter 9 | Automating Linux Administration Tasks

TASK [Show Package Facts for the custom package] ********kkxxkadakxrdddhrxsddx
skipping: [servera.lab.example.com]

...output omitted. ..

TASK [InStall EXample motd package] R R R R R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE LSS
changed: [servera.lab.example.com]

TASK [Gather PaCkage FaCtS] khkkkkkhhkhhkhhhkhhhhhhhhhh b bk hhhkhd bk kb kb dkhhhkhk bk kkkkk

ok: [servera.lab.example.com]

TASK [ShOW Package FaCtS for example_motd] khkkkhkkhkhkkhkhkhhkdkhkhkhkhkhhkdhhkdhkhkhhkdhrkdhdhhhxdx
ok: [servera.lab.example.com] => {
"ansible_facts.packages[custom_pkg]": ["

{
"arch": "x86_64",
"epoch": null,
"name": "example-motd",
"release": "1.el7",
"source": "rpm",
"version": "1.0"
}
]
}
PLAY RECAP *** % %% k% ok k ko ok ok ook ok ko ok ok ko ok ok ok ko ko ok ko ok ko k% ok ok ko k ko
servera. lab.example.com 1 ok=7 changed=1 unreachable=0 failed=0
skipped=1 rescued=0 ignored=0

© No package fact exists for the example-motd package because the package is
not installed on the remote host.

© The example-motd package is installed as a result of this task, as indicated by
the changed status.

© This task updates the package facts with information about the example-motd
package.

O The example-motd package fact exists and indicates only one example-motd
package is installed. The installed package is at version 1. 0.

Finish
Onworkstation, run the lab system-software finish script to clean up the resources

created in this exercise.

[student@workstation ~]$ lab system-software finish

This concludes the guided exercise.

Chapter 9 | Automating Linux Administration Tasks

Managing Users and Authentication

Objectives

After completing this section, you should be able to manage Linux users and groups, configure
SSH, and modify Sudo configuration on managed hosts.

The User Module

The Ansible user module lets you manage user accounts on a remote host. You can manage a
number of parameters including remove user, set home directory, set the UID for system accounts,
manage passwords and associated groupings. To create a user that can log into the machine, you
need to provide a hashed password for the password parameter. See the reference section for a
link to "How do | generate encrypted passwords for the user module?"

Example of the User Module

- name: Add new user to the development machine and assign the appropriate groups.
user:
name: devops_user (1]
shell: /bin/bash ©
groups: sys_admins, developers (3]
append: yes

© The name parameter is the only requirement in the user module and is usually the service
account or user account.

© The shell parameter optionally sets the user's shell. On other operating systems, the
default shell is decided by the tool being used.

© The groups parameter along with the append parameter tells the machine that we want to
append the groups sys_asmins and developers with this user. If you do not use the append
parameter then the groups will overwrite in place.

When creating a user you can specify it to generate_ssh_key. This will not overwrite an
existing SSH key.

Example of User Module Generating an ssh key

- name: Create a SSH key for useril
user:
name: useril
generate_ssh_key: yes
ssh_key_bits: 2048
ssh_key_file: .ssh/id_my_rsa

Chapter 9 | Automating Linux Administration Tasks

E Note
The user module also offers some return values. Ansible modules can take a return
value and register them into a variable. Find out more with ansible-doc and on the
main doc site.

Some commonly used parameters

Parameter Comments

comment Optionally sets the description of a user account.

group Optionally sets the user's primary group.

groups List of multiple groups. When set to a null value, all groups

except the primary group is removed.
home Optionally sets the user's home directory.

create_home Takes a boolean value of yes or no. A home directory will be
created for the user if the value is set to yes.

system When creating an account state=present, setting this to yes
makes the user a system account. This setting cannot be
changed on existing users.

uid Sets the UID od user.

The Group Module

The group module allows you to manage (add, delete, modify) groups on the managed hosts.
You need to have groupadd, groupdel or groupmod. For windows targets, use the win_group
module.

Example of the group module

- name: Verify that auditors group exists
group:
name: auditors
state: present

Parameters for the group module

Parameter Comments
gid Optional GID to set for the group.
local Forces the use of "local" command alternatives on platforms

that implement it.

name Name of the group to manage.

Chapter 9 | Automating Linux Administration Tasks

Parameter Comments

state Whether the group should be present or not on the remote
host.

system If set to yes, indicates that the group created is a system
group.

The Known Hosts Module

If you have a large number of host keys to manage you will want to use the known_hosts module.
The known_hosts module lets you add or remove host keys from the known_hosts file on
managed host.

Example of known_host Tasks

- name: copy host keys to remote servers
known_hosts:
path: /etc/ssh/ssh_known_hosts
name: hostil
key: "{{ lookup('file', 'pubkeys/host1') }}""

© A lookup plugin allows Ansible to access data from outside sources.

The Authorized Key Module

The authorized_key module allows you to add or remove SSH authorized keys per user
accounts. When adding and subtracting users to a large bank of servers, you need to be able to
manage ssh keys.

Example of authorized_key Tasks

- name: Set authorized key
authorized_key:
user: useril
state: present
key: "{{ lookup('file', '/home/userl/.ssh/id_rsa.pub') }}"

© Akey can also be taken from a url: https://github.com/userl.keys.

W RH294-RHEL8.4-en-1-20210818

https://github.com/user1.keys

Chapter 9 | Automating Linux Administration Tasks

References

Users Module Ansible Documentation
http://docs.ansible.com/ansible/2.9/modules/user_module.html#user-module

How do | generate encrypted passwords for the user module
https://docs.ansible.com/ansible/2.9/reference_appendices/faq.html#how-do-i-
generate-encrypted-passwords-for-the-user-module

Group Module Ansible Documentation
https://docs.ansible.com/ansible/2.9/modules/group_module.html#group-module

SSH Known Hosts Module Ansible Documentation
https://docs.ansible.com/ansible/2.9/modules/known_hosts_module.html#known-
hosts-module

Authorized_key module Ansible Documentation
https://docs.ansible.com/ansible/2.9/modules/
authorized_key_module.html#authorized-key-module

The Lookup Plugin Ansible Documentation
https://docs.ansible.com/ansible/2.9/plugins/lookup.html?highlight=lookup

RH294-RHEL8.4-en-1-20210818 u

http://docs.ansible.com/ansible/2.9/modules/user_module.html#user-module
https://docs.ansible.com/ansible/2.9/reference_appendices/faq.html#how-do-i-generate-encrypted-passwords-for-the-user-module
https://docs.ansible.com/ansible/2.9/reference_appendices/faq.html#how-do-i-generate-encrypted-passwords-for-the-user-module
https://docs.ansible.com/ansible/2.9/modules/group_module.html#group-module
https://docs.ansible.com/ansible/2.9/modules/known_hosts_module.html#known-hosts-module
https://docs.ansible.com/ansible/2.9/modules/known_hosts_module.html#known-hosts-module
https://docs.ansible.com/ansible/2.9/modules/authorized_key_module.html#authorized-key-module
https://docs.ansible.com/ansible/2.9/modules/authorized_key_module.html#authorized-key-module
https://docs.ansible.com/ansible/2.9/plugins/lookup.html?highlight=lookup

Chapter 9 | Automating Linux Administration Tasks

» Guided Exercise

Managing Users and Authentication

In this exercise, you will create multiple users on your managed hosts and populate the
authorized SSH keys for them.

Outcomes
You should be able to:

+ Create a new user group.
+ Manage users with the user module.
+ Populate SSH authorized keys using the authorized_key module.

+ Modify both the sudoers and the sshd_config files using the lineinfile module.

Before You Begin

Onworkstation, run the lab start script to confirm the environment is ready for the lab to
begin. The script creates the working directory, called system-users, and populates it with
an Ansible configuration file, a host inventory, and some lab files.

[student@workstation ~]$ lab system-users start

Instructions

Your organization requires that all hosts have the same local users available. These users should
belong to the webadmin user group, which has the ability to use the sudo command without
specifying a password. Also, the users' SSH public keys should be distributed in the environment
and the root user should not be allowed to log in using SSH directly.

You are tasked with writing a playbook to ensure that the users and user group are present on the
remote host. The playbook must ensure the users can log in using the authorized SSH key, as well
as use sudo without specifying a password, and that the root user can't log in directly using SSH.

P 1. Asthe student user onworkstation, change to the /home/student/system-users
working directory.

[student@workstation ~]$ cd ~/system-users
[student@workstation system-users]$

P 2. Take alook at the existing vars/users_vars.yml variable file.

[student@workstation system-users]$ cat vars/users_vars.yml

users:
- username: userl
groups: webadmin

Chapter 9 | Automating Linux Administration Tasks

) 3.

username: user2
groups: webadmin
username: user3
groups: webadmin
username: user4
groups: webadmin
username: user5
groups: webadmin

It uses the username variable name to set the correct username, and the groups variable
to define additional groups that the user should belong to.

Start writing the users.ym1 playbook. Define a single play in the playbook that targets
the webservers host group. Add a vars_files clause that defines the location of the
vars/users_vars.yml filename, which has been created for you, and contains all the
user names that are required for this exercise. Add the tasks clause to to the playbook.

Use a text editor to create the users.yml playbook. The playbook should contain the
following:

- name: Create multiple local users

hosts: webservers
vars_files:

- vars/users_vars.yml

tasks:

P 4. Add two tasks to the playbook.

Use the group module in the first task to create the webadmin user group on the remote
host. This task creates the webadmin group.

Use the user module in the second task to create the users from the vars/
users_vars.yml file.

Execute the users.yml playbook.

4.1. Add the first task to the playbook. The first task contains the following:

name: Add webadmin group
group:

name: webadmin

state: present

4.2. Add a second task to the playbook that uses the user module to create the users.
Add a loop: "{{ users }}" clause to the task to loop through the variable file
for every username found in the vars/users_vars.yml file. As the name: for the
users, use the item.username as the variable name. This allows the variable file to
contain additional information that might be useful for creating the users, such as the
groups that the users should belong to. The second task contains the following:

name: Create user accounts
user:
name: "{{ item.username }}"
groups: "{{ item.groups }}"
loop: "{{ users }}"

Chapter 9 | Automating Linux Administration Tasks

4.3. Execute the playbook:

[student@workstation system-users]$ ansible-playbook users.yml

PLAY [Create mu‘Ltip‘Le local Users] khkkhkhkhhhhkhhhkhhkhhhhhkhhhhhhhhhhhhhhhkhkhkhkkhk

TASK [Gathering Facts] khkkhkhhkhhhhhhhhhhhhhhhhkhhkhhhhhkhhkhhhkhhkhhkhhhhkhkhhkkhkhk*

ok:

[servera.lab.example.com]

TASK [Add webadmin group] khkkhkhkhhhhkhkhhhhhhhhhhhhhhhhhhhhkhhkhhhhkhkhhhhkhkhkkkk

changed: [servera.lab.example.com]

TASK [Create user accounts] R S
changed: [servera.lab.example.com] => (item={u'username': u'userl', u'groups':
u'webadmin'})

changed: [servera.lab.example.com] => (item={u'username': u'user2', u'groups':
u'webadmin'})

changed: [servera.lab.example.com] => (item={u'username': u'user3',6 u'groups':
u'webadmin'})

changed: [servera.lab.example.com] => (item={u'username': u'user4', u'groups':
u'webadmin'})

changed: [servera.lab.example.com] => (item={u'username': u'user5', u'groups':
u'webadmin'})

PLAY RECAP ****xkkkkkkkkkkkkkhkkhkkhkkhhkhkkrkkhhkrhkrhkrhkrhkrhkrhkrhkrkkxrkx

servera. lab.example.com : ok=3 changed=2 unreachable=0 failed=0

) 5.

) 6.

Add a third task that uses the authorized_key module to ensure the SSH public keys
have been properly distributed on the remote host. In the files directory, each of the
users has a unique SSH public key file. The module loops through the list of users, finds the
appropriate key by using the username variable, and pushes the key to the remote host.

The third task contains the following:

name: Add authorized keys
authorized_key:

user: "{{ item.username }}"

key: "{{ lookup('file', 'files/'+ item.username + '.key.pub') }}"
loop: "{{ users }}"

Add a fourth task to the play that uses the copy module to modify the sudo config file and
allow the webadmin group members to use sudo without a password on the remote host.

The fourth task appears as follows:

name: Modify sudo config to allow webadmin users sudo without a password
copy':

content: "%webadmin ALL=(ALL) NOPASSWD: ALL"

dest: /etc/sudoers.d/webadmin

mode: 0440

Chapter 9 | Automating Linux Administration Tasks

P 7. Add a fifth task to ensure that the root user is not permitted to log in using SSH directly.
Use notify: "Restart sshd" to trigger a handler to restart SSH.

The fifth task appears as follows:

- name: Disable root login via SSH
lineinfile:
dest: /etc/ssh/sshd_config
regexp: "APermitRootlLogin"
line: "PermitRootLogin no"
notify: Restart sshd

) 8. Inthe first line after the location of the variable file, add a new handler definition. Give it a
name of Restart sshd.

8.1. The handler should be defined as follows

...output omitted. ..
- vars/users_vars.yml
handlers:
- name: Restart sshd
service:
name: sshd
state: restarted

The entire playbook now looks as follows:

- name: Create multiple local users
hosts: webservers
vars_files:
- vars/users_vars.yml
handlers:
- name: Restart sshd
service:
name: sshd
state: restarted

tasks:

- name: Add webadmin group
group:
name: webadmin
state: present

- name: Create user accounts
user:
name: "{{ item.username }}"
groups: "{{ item.groups }}"
loop: "{{ users }}"

- name: Add authorized keys
authorized_key:
user: "{{ item.username }}"

Chapter 9 | Automating Linux Administration Tasks

key: "{{ lookup('file', 'files/'+ item.username + '.key.pub') }}"
loop: "{{ users }}"

- name: Modify sudo config to allow webadmin users sudo without a password
copy':
content: "%webadmin ALL=(ALL) NOPASSWD: ALL"
dest: /etc/sudoers.d/webadmin
mode: 0440

- name: Disable root login via SSH
lineinfile:
dest: /etc/ssh/sshd_config
regexp: "APermitRootLogin"
line: "PermitRootLogin no"
notify: "Restart sshd"

8.2. Execute the playbook.

[student@workstation system-users]$ ansible-playbook users.yml

PLAY [Create multlple local users] R R SR Sk R S S S S S S R R

TASK [Gatherlng Facts] R R SR Sk Sk Sk S S Sk S S S R S S R S R

ok: [servera.lab.example.com]

TASK [Add Webadmln group] R R R SR S Sk S S Sk S S R Sk S R R R

ok: [servera.lab.example.com]

TASK [Create user aCCOuntS] R R R Sk Sk R S S S S Sk R R R S R R

ok: [servera.lab.example.com] => (item={u'username': u'userl', u'groups':
u'webadmin'})

ok: [servera.lab.example.com] => (item={u'username': u'user2', u'groups':
u'webadmin'})

ok: [servera.lab.example.com] => (item={u'username': u'user3', u'groups':
u'webadmin'})

ok: [servera.lab.example.com] => (item={u'username': u'user4',6 u'groups':
u'webadmin'})

ok: [servera.lab.example.com] => (item={u'username': u'user5', u'groups':
u'webadmin'})

TASK [Add QULhOrized Keys] ****** %%k kkakakakaka ks ks kakkdk dk kA KA K KKK KK RKHK XK XK

changed: [servera.lab.example.com] => (item={u'username': u'userl', u'groups':
u'webadmin'})

changed: [servera.lab.example.com] => (item={u'username': u'user2', u'groups':
u'webadmin'})

changed: [servera.lab.example.com] => (item={u'username': u'user3', u'groups':
u'webadmin'})

changed: [servera.lab.example.com] => (item={u'username': u'user4',6 u'groups':
u'webadmin'})

changed: [servera.lab.example.com] => (item={u'username': u'user5', u'groups':
u'webadmin'})

TASK [Modify sudo config to allow webadmin users sudo without a password] ***
changed: [servera.lab.example.com]

Chapter 9 | Automating Linux Administration Tasks

TASK [Disable root ‘Login via SSH] khkkkkkhhkhhhhhkhhkhhhhhhhhhhhhhhkhhhhhhhkhdhkkkk

changed: [servera.lab.example.com]

RUNNING HANDLER [Restart Sshd] EEEE R R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESEEESS
changed: [servera.lab.example.com]

PLAY REGCAP % * % % % o & ok sk o ok o ok ok ok ok ok ok ok o o ok o o ok o o ok o o ok o o ok o o ok o o ok o ok ok ok ok ok ok ok ok ok R ok ok ko K ko K ke

servera. lab.example.com 1 ok=7 changed=4 unreachable=0 failed=0

P 9. Astheuseriluser, loginto servera server using SSH. Once logged in, use sudo su -
command to switch identity to the root user.

9.1. Use SSH as the useril user and log in to servera server.

[student@workstation system-users]$ ssh useril@servera
Activate the web console with: systemctl enable --now cockpit.socket

[useri@servera ~]$

9.2. Switch identity to the root user.

[useri@servera ~]$ sudo -i
root@servera ~]#

9.3. Logoutfrom servera.

[root@servera ~]$ exit

logout

[useri@servera ~]$ exit

logout

Connection to servera closed.
[student@workstation system-users]$

P 10. Trytologin to servera asthe root user directly. This step should fail because the SSH
daemon configuration has been modified not to permit direct root user logins

10.1. Fromworkstation use SSH as root to login to servera server.

[student@workstation system-users]$ ssh root@servera
root@servera's password: redhat

Permission denied, please try again.

root@servera's password:

This confirms that the SSH configuration denied direct access to the system for the
root user.

Finish
Onworkstation, runthe lab system-users finish script to clean up the resources created
in this exercise.

Chapter 9 | Automating Linux Administration Tasks

[student@workstation ~]$ lab system-users finish

This concludes the guided exercise.

W RH294-RHEL8.4-en-1-20210818

Chapter 9 | Automating Linux Administration Tasks

Managing the Boot Process and

Scheduled Processes

Objectives

After completing this section, you should be able to manage service startup, schedule processes
with at, cron, and systemd, reboot, and control the default boot target on managed hosts.

Scheduling with the at Module

Quick one-time scheduling is done with the at module. You create the job for a future time to
run and it is held until that time comes to execute. There are six parameters that come with this
module. They are: command, count, script_file, state, unique, and units.

The at Module Example:

- name: remove tempuser.

at:

command: userdel -r tempuser

count:
units:

20
minutes

unique: yes

Parameters

Parameter

command

count

script_file

state

unique

units

Options

Null

Null

Null

absent, present

yes, no

minutes/hours/days/weeks

Comments

A command that is scheduled to
run.

The count of units. (Must run with
units)

An existing script file to be executed
in the future.

The state adds or removes a
command or script.

If ajob is already running, it will not
be executed again.

The time denominations.

Appending Commands with the cron Module

When setting a jobs scheduled task the cron module is used. The cron module will append
commands directly into the crontab of the user you designate.

Chapter 9 | Automating Linux Administration Tasks

The cron module example:

- cron:
name: "Flush Bolt"
user: "root"
minute: 45
hour: 11
job: "php ./app/nut cache:clear"

This play uses a company's cache:clear command immediately flushes Bolt cache, removing
cached files and directories.flushes cache of the CMS server every morning at 11:45.

Ansible will write the play to the crontab using the correct syntax as the user stated.
Checking the crontab will verify that it has been appended to.

Some commonly used parameters for the cron module are:

Parameters
Parameter Options Comments
special_time reboot, yearly, annually, monthly, A set of reoccurring times.
weekly, daily, hourly

state absent, present If set to present, it will create the
command. Absent will remove it.

cron_file Null If you have large banks of servers to
maintain then sometimes it is better
to have a pre-written crontab file.

backup yes, no Backs up the crontab file prior to

being edited.

Managing Services with the systemd and service
Modules

For managing services or reloading daemons, Ansible has the systemd and the service modules.
Service offers a basic set of options start, stop, restart, enable. The systemd module offers more
configuration options. Systemd will allow you to do a daemon-reload where the service module will
not.

The service Module Example:

- name: start nginx
service:
name: nginx
state: started"

W RH294-RHEL8.4-en-1-20210818

Chapter 9 | Automating Linux Administration Tasks

Note
E The init daemon is being replaced by systemd. So in a lot of cases systemd will be
the better option.

The systemd Module Example:

- name: reload web server
systemd:
name: apache2
state: reload
daemon-reload: yes

The Reboot Module

Another well used Ansible Systems Module is reboot. Considered safer than using the shell
module to initiate shutdown. While running a play the reboot module will shut down the managed
host, then wait until it is back up again prior to carrying on with the play.

The reboot module Example:

- name: "Reboot after patching"
reboot:
reboot_timeout: 180

- name: force a quick reboot
reboot:

The Shell and Command Module

Like the service and the systemd modules, the shell and the command can interchange some
tasks. The command module is considered more secure but some environment variables are not
available. Also, stream operators will not work. If you need to stream your commands then shell
module will do.

The shell module example:

- name: Run a templated variable (always use quote filter to avoid injection)
shell: cat {{ myfile|quote }}‘,

© To sanitize any variables, It is suggested that you use {{ var | quote }} instead of just

{{ var }}

The command module example:

- name: This command only
command: /usr/bin/scrape_logs.py argl arg2
args:o
chdir: scripts/
creates: /path/to/script

Chapter 9 | Automating Linux Administration Tasks

© You can pass arguments into the form to provide the options.

S Note
The command module is considered more secure because it is not affected by the
users environment.

Gathering facts on the managed host will allow you to access the environment variables. There is a
sublist called ansible_env which has all the environment variables inside it.

- name:
hosts: webservers
vars:
local_shell: "{{ ansible_env }}""
tasks:
- name: Printing all the environment variables in Ansible
debug:

msg: "{{ local_shell }}"

© You canisolate the variable you want to return by using the lookup plugin. msg:
"{{ lookup('env', 'USER', "HOME', 'SHELL') }}"

D References

at - Schedule the execution of a command or script file via the at
command — Ansible Documentation
https://docs.ansible.com/ansible/2.9/modules/at_module.html

cron - Manage cron.d and crontab entries — Ansible Documentation
https://docs.ansible.com/ansible/2.9/modules/cron_module.html

reboot - Reboot a machine — Ansible Documentation
https://docs.ansible.com/ansible/2.9/modules/reboot_module.html

service - Run services on a machine — Ansible Documentation
https://docs.ansible.com/ansible/2.9/modules/service_module.html

W RH294-RHEL8.4-en-1-20210818

https://docs.ansible.com/ansible/2.9/modules/at_module.html
https://docs.ansible.com/ansible/2.9/modules/cron_module.html
https://docs.ansible.com/ansible/2.9/modules/reboot_module.html
https://docs.ansible.com/ansible/2.9/modules/service_module.html

Chapter 9 | Automating Linux Administration Tasks

» Guided Exercise

Managing the Boot Process and
Scheduled Processes

In this exercise, you will manage the startup process, schedule recurring jobs, and reboot
managed hosts.

Outcomes
You should be able to use a playbook to:

+ Schedule acron job.

+ Remove a single specific cron job from a crontab file.

+ Schedule an at task.

+ Set the default boot target on managed hosts.

+ Reboot managed hosts.

Before You Begin

Run the lab system-process start script fromworkstation to configure the
environment for the exercise. The script creates the system-process working directory,
and downloads the Ansible configuration file and the host inventory file needed for the
exercise.

[student@workstation ~]$ lab system-process start

Instructions

[

As the student user onworkstation, change to the /home/student/system-
process working directory.

[student@workstation ~]$ cd ~/system-process
[student@workstation system-process]$

) 2.

Create a playbook, create_crontab_file.yml, in the current working directory.
Configure the playbook to use the cron module to create the /etc/cron.d/add-date-
time crontab file that schedules a recurring cron job. The job should run as the devops
user every two minutes between 89:00 and 16: 59 on Monday through Friday. The job
should append the current date and time to the file /home/devops/my_datetime_cron_job

2. Create a new playbook, create_crontab_file.yml, and add the lines needed
to start the play. It should target the managed hosts in the webservers group and
enable privilege escalation.

Chapter 9 | Automating Linux Administration Tasks

- name: Recurring cron job
hosts: webservers
become: true

2.2. Define a task that uses the cron module to schedule a recurring cron job.

E Note
The cron module provides a name option to uniquely describe the crontab file
entry and to ensure expected results. The description is added to the crontab file.
For example, the name option is required if you are removing a crontab entry using
state=absent. Additionally, the name option prevents a new crontab entry from
always being created when the default state, state=present, is set.

tasks:
- name: Crontab file exists
cron:
name: Add date and time to a file

2.3. Configure the job to run every two minutes between 89:00 and 16 : 59 on Monday
through Friday.

minute: "*/2"
hour: 9-16
weekday: 1-5

2.4. Use the cron_file parameter to use the /etc/cron.d/add-date-time crontab
file instead of an individual user's crontab in /var/spool/cron/. A relative path wil
place the file in /etc/cron.d directory. If the cron_file parameter is used, you
must also specify the user parameter.

user: devops

job: date >> /home/devops/my_date_time_cron_job
cron_file: add-date-time

state: present

2.5. When completed, the playbook should appear as follows. Review the playbook for
accuracy.

- name: Recurring cron job
hosts: webservers
become: true

tasks:
- name: Crontab file exists
cron:
name: Add date and time to a file
minute: "*/2"

Chapter 9 | Automating Linux Administration Tasks

hour: 9-16

weekday: 1-5

user: devops

job: date >> /home/devops/my_date_time_cron_job
cron_file: add-date-time

state: present

2.6. Verify playbook syntax by running the ansible-playbook --syntax-check
create_crontab_file.yml command. Correct any errors before moving to the
next step.

[student@workstation system-process]$ ansible-playbook --syntax-check \
> create_crontab_file.yml

playbook: create_crontab_file.yml

2.7. Run the playbook.

[student@workstation system-process]$ ansible-playbook create_crontab_file.yml

PLAY [ReCUrrlng cron J'ob] R R R R R R S S R

TASK [Gathering FaCtS] o X

ok: [servera.lab.example.com]

TASK [Crontab file eXiStS] khkhkkkhkkhhkhhkhhhkhhhhhhhhhhhkhhhhhhhhdhhhkh kb d bk khkhk*

changed: [servera.lab.example.com]

PLAY REGCAP % * % % % o % ok sk ok ok ok ok ok ok ok ok ok ok ok o ok ok o ok o o ok ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ko ok ko ok ok ok ok k

servera. lab.example.com 1 ok=2 changed=1 unreachable=0 failed=0

2.8. Runan ad hoc command to verify that the /etc/cron.d/add-date-time cron file
exists and its content is correct.

[student@workstation system-process]$ ansible webservers -u devops -b \
> -a "cat /etc/cron.d/add-date-time"

servera.lab.example.com | CHANGED | rc=0 >>

#Ansible: Add date and time to a file

*/2 9-16 * * 1-5 devops date >> /home/devops/my_date_time_cron_job

P 3. Create aplaybook, remove_cron_job.ym1, in the current working directory. Configure
the playbook to use the cron module to remove the Add date and time to a file
cron job from the /etc/cron.d/add-date-time crontab file

3.1. Create a new playbook, remove_cron_job.yml, and add the following lines:

- name: Remove scheduled cron job
hosts: webservers
become: true

tasks:

Chapter 9 | Automating Linux Administration Tasks

- name: Cron job removed
cron:
name: Add date and time to a file
user: devops
cron_file: add-date-time
state: absent

3.2. Verify playbook syntax by running the ansible-playbook --syntax-check
remove_cron_job.yml command. Correct any errors before moving to the next
step.

[student@workstation system-process]$ ansible-playbook --syntax-check \
> remove_cron_job.yml

playbook: remove_cron_job.yml

3.3. Run the playbook.

[student@workstation system-process]$ ansible-playbook remove_cron_job.yml

PLAY [Remove SChedUled cron J'ob] R R R R R R S R R R

TASK [Gathering FaCtS] khkkkkhkhhkhhkhhhkhhhhhhhhhhhhhhhhhhhdhhhhhkhhhhhkhk bk hkkkk

ok: [servera.lab.example.com]

TASK [Cron Job removed] khkkkkhhkhhhhhhhkhhhhhhhhhhh bk hkhhkhh bk hhhkh b bk khkhkhkk*

changed: [servera.lab.example.com]

PLAY REGCAP % * % % % o % ok sk ok ok ok ok ok ok ok ok ok ok ok o ok ok o ok ok o ok ok o ok ok ok ok ok ok ok ok ok ok ko ok ok ko ok ko ok ok ok ok k

servera. lab.example.com 1 ok=2 changed=1 unreachable=0 failed=0

3.4. Runan ad hoc command to verify that the /etc/cron.d/add-date-time cron file
continues to exist but the cron job has been removed.

[student@workstation system-process]$ ansible webservers -u devops -b \
> -a "cat /etc/cron.d/add-date-time"
servera.lab.example.com | CHANGED | rc=0 >>

) 4. Create aplaybook, schedule_at_task.yml, in the current working directory. Configure
the playbook to use the at module to schedule a task that runs one minute in the future.
The task should run the date command and redirect its output to the /home/devops/
my_at_date_time file. Use the unique: yes option to ensure that if the command
already exists in the at queue, a new task is not added.

41. Create a new playbook, schedule_at_task.yml, and add the following lines:

- name: Schedule at task
hosts: webservers
become: true
become_user: devops

Chapter 9 | Automating Linux Administration Tasks

tasks:
- name: Create date and time file
at:

command: "date > ~/my_at_date_time\n"
count: 1
units: minutes
unique: yes
state: present

4.2. Verify playbook syntax by running the ansible-playbook -syntax-check
schedule_at_task.yml command. Correct any errors before moving to the next
step.

[student@workstation system-process]$ ansible-playbook --syntax-check \
> schedule_at_task.yml

playbook: schedule_at_task.yml

4.3. Run the playbook.

[student@workstation system-process]$ ansible-playbook schedule_at_task.yml

PLAY [Schedule at task] LR R R R R S S R R R R R R R R S R R S R R R R R S

TASK [Gathering Facts] R R R R R R R R R R S R R R R R R R R

ok: [servera.lab.example.com]

TASK [Create date and time -f:i'Le] EIE R R SR R R R S S S S kR R S S S R R R S S S

changed: [servera.lab.example.com]

PLAY RECAP R R R S S R R S R S S S R R S R R S S R R R R S Sk S R S S

servera. lab.example.com : ok=2 changed=1 unreachable=0 failed=0

4.4, After waiting one minute for the at command to complete, run ad hoc commands to
verify that the /home/devops/my_at_date_time file exists and has the correct
contents.

[student@workstation system-process]$ ansible webservers -u devops \
> -a "ls -1 my_at_date_time"

servera.lab.example.com | CHANGED | rc=0 >>

-rw-rw-r--. 1 devops devops 30 abr 17 06:15 my_at_date_time

[student@workstation system-process]$ ansible webservers -u devops \
> -a "cat my_at_date_time"

servera.lab.example.com | CHANGED | rc=0 >>

Thu Jul 22 13:24:34 PDT 2021

) 5. Create aplaybook, set_default_boot_target_graphical.yml,in the current
working directory. Configure the playbook to use the file module to change the symbolic
link on managed hosts to reference the graphical-target boot target.

Chapter 9 | Automating Linux Administration Tasks

Note
S In the following file module, the src parameter value is what the symbolic link
references. The dest parameter value is the symbolic link.

5.1. Create anew playbook, set_default_boot_target_graphical.yml, and add
the following lines:

- name: Change default boot target
hosts: webservers
become: true

tasks:
- name: Default boot target is graphical
file:
src: /usr/lib/systemd/system/graphical.target
dest: /etc/systemd/system/default.target
state: 1link

5.2. Verify the playbook syntax by running the ansible-playbook --syntax-check
set_default_boot_target_graphical.yml command. Correct any errors
before moving to the next step.

[student@workstation system-process]$ ansible-playbook --syntax-check \
> set_default_boot_target_graphical.yml

playbook: set_default_boot_target_graphical.yml

5.3. Before running the playbook, run an ad hoc command to verify that the current
default boot targetismulti-user.target:

[student@workstation system-process]$ ansible webservers -u devops -b \
> -a "systemctl get-default"

servera.lab.example.com | CHANGED | rc=0 >>

multi-user.target

5.4. Run the playbook.

[student@workstation system-process]$ ansible-playbook \
> set_default_boot_target_graphical.yml

PLAY [Change default boot target] khkkkhkhkhhhhkhhhhhhhhhhhhhhhhhhhhhhkhhhhkhkk

TASK [Gathering FaCtS] khkkhkkhhhhhhhdhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhkhhkkhk

ok: [servera.lab.example.com]

TASK [Default boot target lS graphlcal] R R R R R
changed: [servera.lab.example.com]

388

Chapter 9 | Automating Linux Administration Tasks

PLAY RECAP ***®xkkkdkkkkkhkhhkhhkhhkkkkkhkhh ok hh ok ki ok ok kk ok kkdkkhkkkdkkkdk ok kokkkkxkokx

servera. lab.example.com 1 ok=2 changed=1 unreachable=0 failed=0

5.5. Runan ad hoc command to verify that the default boot target is now
graphical.target.

[student@workstation system-process]$ ansible webservers -u devops -b \
> -a "systemctl get-default"

servera.lab.example.com | CHANGED | rc=0 >>

graphical. target

) 6. Create aplaybook, reboot_hosts.yml, in the current working directory that reboots
the managed hosts. It is not required to reboot a server after changing the default target.
However, knowing how to create a playbook that reboots managed hosts may prove useful.

6.1. Create anew playbook, reboot_hosts.yml, and add the following lines:

- name: Reboot hosts
hosts: webservers
become: true

tasks:

- name: Hosts are rebooted
reboot:

6.2. Verify the playbook syntax by running the ansible-playbook --syntax-check
reboot_hosts.yml command. Correct any errors before moving to the next step.

[student@workstation system-process]$ ansible-playbook --syntax-check \
> reboot_hosts.yml

playbook: reboot_hosts.yml

6.3. Before running the playbook, run an ad hoc command to determine the timestamp of
the last system reboot.

[student@workstation system-process]$ ansible webservers -u devops -b \
> -a "who -b"
servera.lab.example.com | CHANGED | rc=0 >>

system boot 2021-07-22 14:34

6.4. Run the playbook.

[student@workstation system-process]$ ansible-playbook reboot_hosts.yml

PLAY [Reboot hOStS] E X X

TASK [Gathering FaCtS] khkkkkhhkhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkh kb khkkkk

ok: [servera.lab.example.com]

Chapter 9 | Automating Linux Administration Tasks

TASK [HOStS are rebooted] khkkkkkhhkhhhhhkhhhhkhhhhhhh bk hhhkh b bk hhhhhkhhhkhhkhkhkkk

changed: [servera.lab.example.com]

PLAY REGCAP % * % %k &k ko ko kok ko ok k ok ok ko ok sk ok ko ko ko ok ko ok ok ok sk ko ko ok ko ok ko ok ke ko x

servera. lab.example.com 1 ok=2 changed=1 unreachable=0 failed=0

6.5. Runan ad hoc command to determine the timestamp of the last system reboot. The
timestamp displayed after the playbook runs should be later.

[student@workstation system-process]$ ansible webservers -u devops -b \
> -a "who -b"
servera.lab.example.com | CHANGED | rc=0 >>

system boot 2021-07-22 14:52

6.6. Run asecond ad hoc command to determine that the graphical. target boot
target survived the reboot.

[student@workstation system-process]$ ansible webservers -u devops -b \
> -a "systemctl get-default"

servera.lab.example.com | CHANGED | rc=0 >>

graphical.target

P 7. To maintain consistency throughout the remaining exercises, change the default
boot target back to its former setting, multi-user.target. Create a playbook,
set_default_boot_target_multi-user.yml,in the current working directory.
Configure the playbook to use the file module to change the symbolic link on managed
hosts to reference the multi-user.target boot target.

71. Create a new playbook, set_default_boot_target_multi-user.yml, and add
the following lines:

- name: Change default runlevel target
hosts: webservers
become: true

tasks:
- name: Default runlevel is multi-user target
file:
src: /usr/lib/systemd/system/multi-user.target
dest: /etc/systemd/system/default.target
state: link

7.2. Verify playbook syntax by running the ansible-playbook --syntax-check
set_default_boot_target_multi-user.ymlcommand. Correct any errors
before moving to the next step.

[student@workstation system-process]$ ansible-playbook --syntax-check \
> set_default_boot_target_multi-user.yml

playbook: set_default_boot_target_multi-user.yml

Chapter 9 | Automating Linux Administration Tasks
7.3. Run the playbook.

[student@workstation system-process]$ ansible-playbook \
> set_default_boot_target _multi-user.yml

PLAY [Change default runlevel target] khkhkhhkhhkhkhkhhhhhhhhkhhhhhhhkhhhkhhhkhkkk

TASK [Gathering FaCtS] khkhkhhkhhkhhhhhhhhhhhhhhhkhhkhhhhkhhkhhhhhk bk hhhhkhkhkkkk

ok: [servera.lab.example.com]

TASK [Default runlevel is multi-user target] *******xdxrsddarsddihxrsdirrx
changed: [servera.lab.example.com]

PLAY REGCAP % * % % % o sk ok sk ok ok sk ok ok ok ok ok ok ok ok ok ok ok o ok ok o ok ok o ok ok o ok ok s ok ok s ok ok ok ok ok ok ko ok ko ko ko ko k

servera. lab.example.com 1 ok=2 changed=1 unreachable=0 failed=0

74. Run an ad hoc command to verify that the default boot target is now multi-
user .target.

[student@workstation system-process]$ ansible webservers -u devops -b \
> -a "systemctl get-default"

servera. lab.example.com | CHANGED | rc=0 >>

multi-user.target

Finish
Onworkstation, runthe lab system-process finish script to clean up this exercise

[student@workstation ~]$ lab system-process finish

This concludes the guided exercise.

Chapter 9 | Automating Linux Administration Tasks

Managing Storage

Objectives

After completing this section, you should be able to partition storage devices, configure LVM,
format partitions or logical volumes, mount file systems, and add swap files or spaces.

Configuring Storage with Ansible Modules

Red Hat Ansible Automation Platform provides a collection of modules to configure storage
devices on managed hosts. Those modules support partitioning devices, creating logical volumes,
and creating and mounting filesystems.

The parted Module

The parted module supports the partition of block devices. This module includes the
functionality of the parted command, and allows to create partitions with a specific size, flag, and
alignment. The following table lists some of the parameters for the parted module.

Parameter name Description

align Configures partition alignment.

device Block device.

flags Flags for the partition.

number The partition number.

part_end Partition size from the beginning of the disk specified in parted

supported units.
state Creates or removes the partition.

unit Size units for the partition information.
The following example creates a new partition of 10 GB.

- name: New 10GB partition

parted:
device: /dev/vdb @
number: 1 9

state: present (3]
part_end: 10GB (4]

© Uses vdb as the block device to partition.

o

Creates the partition number one.

© Ensures the partition is available.

W RH294-RHEL8.4-en-1-20210818

Chapter 9 | Automating Linux Administration Tasks

O Sets the partition size to 10 GB.

The lvg and lvol Modules

The lvg and 1vol modules support the creation of logical volumes, including the configuration of
physical volumes, and volume groups. The 1vg takes as parameters the block devices to configure
as the back end physical volumes for the volume group. The following table lists some of the
parameters for the 1vg module.

Parameter name Description
pesize The size of the physical extent. Must be a power of 2, or multiple of
128 KiB.
pvs List of comma-separated devices to be configured as physical volumes

for the volume group.
vg The name of the volume group.

state Creates or removes the volume.

The following task creates a volume group with a specific physical extent size using a block device
as a back end.

- name: Creates a volume group
1lvg:
vg: vgl (1)
pvs: /dev/vdal (2]
pesize: 32 (3]

© The volume group name is vg1l.
© Uses /dev/vdal as the back end physical volume for the volume group.
© Sets the physical extent size to 32.

In the following example, if the vg1 volume group is already available with /dev/vdb1 as a
physical volume, the volume is enlarged adding a new physical volume with /dev/vdc1.

- name: Resize a volume group
1lvg:
vg: vgl
pvs: /dev/vdb1l, /dev/vdcl

The lvol module creates logical volumes, and supports the resizing and shrinking of those
volumes, and the filesystems on top of them. This module also supports the creation of snapshots
for the logical volumes. The following table lists some of the parameters for the Lvol module.

Parameter name Description

Iv The name of the logical volume.

resizefs Resizes the filesystem with the logical volume.
shrink Enable logical volume shrink.

Chapter 9 | Automating Linux Administration Tasks

Parameter name Description

size The size of the logical volume.

snapshot The name of the snapshot for the logical volume.
state Create or remove the logical volume.

vg The parent volume group for the logical volume.

The following task creates a logical volume of 2 GB.

- name: Create a logical volume of 2GB

lvol:
vg: vgl (1]
lv: 1vi (2]
size: 2g

© The parent volume group name is vg1.
© The logical volume name is 1v1.

© The size of the logical volume is 2 GB.

The filesystem Module

The filesystem module supports both creating and resizing a filesystem. This module supports
filesystem resizing for ext2, ext3, ext4, ext4dev, f2fs, lvm, xfs, and vfat. The following
table lists some of the parameters for the filesystem module.

Parameter name Description

dev Block device name.

fstype Filesystem type.

resizefs Grows the filesystem size to the size of the block device.

The following example creates a filesystem on a partition.

- name: Create an XFS filesystem
filesystem:
fstype: xfs (1]
dev: /dev/vdb1 ©
© Uses the XFS filesystem.

© Uses the /dev/vdb1 device.

The mount Module

The mount module supports the configuration of mount points on /etc/fstab. The following
table lists some of the parameters for the mount module.

Chapter 9 | Automating Linux Administration Tasks

Parameter name Description

fstype Filesystem type.

opts Mount options.

path Mount point path.

src Device to be mounted.

state Specify the mount status. If set to mounted, the system mounts the

device, and configures /etc/fstab with that mount information. To
unmount the device and remove it from /etc/fstab use absent.

The following example mounts a device with an specific ID.

- name: Mount device with ID
mount:
path: /data (1]
src: UUID=a8063676-44dd-409a-b584-68be2cof5570 @
fstype: xfs (3]
state: present o

Uses /data as the mount point path.
Mounts the device with the a8063676-44dd-409a-b584-68be2c9f5570 ID.

Uses the XFS filesystem.

0O 0 0 ©

Mounts the device and configures /etc/fstab accordingly.

The following example mounts the NFS share available at 172.25.250.100: /share on the /
nfsshare directory at the managed host.

- name: Mount NFS share
mount:
path: /nfsshare
src: 172.25.250.100:/share

fstype: nfs
opts: defaults
dump: '0Q'

passno: '0O'
state: mounted

Configuring swap with Modules

Red Hat Ansible Automation Platform does not currently include modules to manage swap
memory. To add swap memory to a system with Ansible with logical volumes you need to create a
new volume group and logical volume with the 1vg and 1vol modules. When ready, you need to
format as swap the new logical volume using the command module with the mkswap command.
Finally, you need to activate the new swap device using the command module with the swapon
command. Ansible includes the ansible_swaptotal_mb variable which includes the total swap
memory. You can use this variable to trigger swap configuration and enablement when swap

Chapter 9 | Automating Linux Administration Tasks

memory is low. The following tasks, create a volume group and a logical volume for swap memory,
format that logical volume as swap, and activates it.

- name: Create new swap VG
lvg:
vg: vgswap
pvs: /dev/vdal
state: present

- name: Create new swap LV
lvol:
vg: vgswap
lv: lvswap
size: 10g

- name: Format swap LV
command: mkswap /dev/vgswap/lvswap
when: ansible_swaptotal_mb < 128

- name: Activate swap LV
command: swapon /dev/vgswap/lvswap
when: ansible_swaptotal_mb < 128

Ansible Facts for Storage Configuration

Ansible uses facts to retrieve information to the control node about the configuration of the
managed hosts. You can use the setup Ansible module to retrieve all the Ansible facts for a
managed host.

[user@controlnode ~]$ ansible webservers -m setup

host.lab.example.com | SUCCESS => {
"ansible_facts": {

...output omitted...

}

The filter option for the setup module supports fine-grained filtering based on shell-style
wildcards.

The ansible_devices element includes all the storage devices available on the managed host.
The element for each storage device includes additional information like partitions or total size.
The following example displays the ansible_devices element for a managed host with three
storage devices: sr0, vda, and vdb.

[user@controlnode ~]$ ansible webservers -m setup -a 'filter=ansible_devices'
host.lab.example.com | SUCCESS => {
"ansible_facts": {
"ansible_devices": {
"sro": {
"holders": [],
"host": "IDE interface: Intel Corporation 82371SB PIIX3 IDE
[Natoma/Triton II]",
"links": {
"ids": [

Chapter 9 | Automating Linux Administration Tasks

device",

"ata-QEMU_DVD-ROM_QMOOOO3"

1,

"labels": [],

"masters": [],

"uuids": []
H
"model": "QEMU DVD-ROM",
"partitions": {3},
"removable": "1",
"rotational": "1",
"sas_address": null,
"sas_device_handle": null,
"scheduler_mode": "mqg-deadline",
"sectors": "2097151",
"sectorsize": "512",
"size": "1024.00 MB",
"support_discard": "o",
"vendor": "QEMU",
"virtual": 1

3
"vda": {
"holders": [],
"host": "SCSI storage controller: Red Hat, Inc. Virtio
"links": {
"ids": [],
"labels": [],

"masters": [],
"uuids": []
}
"model": null,
"partitions": {

"vdal": {

"holders": [],

"links": {
"ids": [],
"labels": [],
"masters": [],
"uuids": [

"a8063676-44dd-409a-b584-68be2c9f5570"

]

3

"sectors": "20969439",

"sectorsize": 512,

"size": "10.00 GB",

"start": "2048",

"uuid": "a8063676-44dd-409a-b584-68be2c9f5570"

H

"removable": "0",

"rotational": "1",
"sas_address": null,
"sas_device_handle": null,
"scheduler_mode": "mqg-deadline",
"sectors": "20971520",

block

Chapter 9 | Automating Linux Administration Tasks

"sectorsize": "512",
"size": "10.00 GB",
"support_discard": "o",
"vendor": "Oxlaf4",
"virtual": 1
}
"vdb": {
"holders": [],
"host": "SCSI storage controller: Red Hat, Inc.
device",
"links": {
"ids": [],
"labels": [],
"masters": [],
"uuids": []
}
"model": null,
"partitions": {3},
"removable": "0",
"rotational": "1",
"sas_address": null,
"sas_device_handle": null,
"scheduler_mode": "mqg-deadline",
"sectors": "10485760",
"sectorsize": "512",
"size": "5.00 GB",
"support_discard": "o",
"vendor": "Oxlaf4",
"virtual": 1

+

"changed": false

Virtio block

The ansible_device_links elementincludes all the links available for each storage device.
The following example displays the ansible_device_links element for a managed host with

two storage devices, sr@ and vdal, which have an associated ID.

[user@controlnode ~]$ ansible webservers -m setup -a 'filter=ansible_device_links'

host.lab.example.com | SUCCESS => {
"ansible_facts": {
"ansible_device_links": {

"ids": {
"sro": [
"ata-QEMU_DVD-ROM_QMOOOO3"
1
H
"labels": {3},
"masters": {},
"uuids": {
"vdal": [
"a8063676-44dd-409a-b584-68be2c9f5570"
]

Chapter 9 | Automating Linux Administration Tasks

H

"changed": false

The ansible_mounts element includes information about the current mounted devices on the
managed host, like the mounted device, the mount point, and the options. The following output
displays the ansible_mounts element for a managed host with one active mount, /dev/vdal

on the / directory.

[user@controlnode ~]$ ansible webservers -m setup -a 'filter=ansible_mounts'

host.lab.example.com | SUCCESS => {
"ansible_facts": {
"ansible_mounts": [
{

"block_available": 2225732,
"block_size": 4096,
"block_total": 2618619,
"block_used": 392887,
"device": "/dev/vdal",
"fstype": "xfs",
"inode_available": 5196602,
"inode_total": 5242304,
"inode_used": 45702,
"mount": "/",

"options": "rw,seclabel, relatime,attr2,inode64, noquota",

"size_available": 9116598272,
"size_total": 10725863424,

"uuid": "a8063676-44dd-409a-b584-68be2c9f5570"

H

"changed": false

D References
parted - Configure block device partitions — Ansible Documentation
https://docs.ansible.com/ansible/2.9/modules/parted_module.html

Ivg - Configure LVM volume groups — Ansible Documentation
https://docs.ansible.com/ansible/2.9/modules/Ivg_module.html

Ivol - Configure LVM logical volumes — Ansible Documentation
https://docs.ansible.com/ansible/2.9/modules/Ivol_module.html

filesystem - Makes a filesystem — Ansible Documentation
https://docs.ansible.com/ansible/2.9/modules/filesystem_module.html

mount - Control active and configured mount points — Ansible Documentation

https://docs.ansible.com/ansible/2.9/modules/mount_module.html

RH294-RHEL8.4-en-1-20210818

https://docs.ansible.com/ansible/2.9/modules/parted_module.html
https://docs.ansible.com/ansible/2.9/modules/lvg_module.html
https://docs.ansible.com/ansible/2.9/modules/lvol_module.html
https://docs.ansible.com/ansible/2.9/modules/filesystem_module.html
https://docs.ansible.com/ansible/2.9/modules/mount_module.html

Chapter 9 | Automating Linux Administration Tasks

» Guided Exercise

Managing Storage

In this exercise you will partition a new disk, create logical volumes and format them with XFS
file systems, and mount them immediately and automatically at boot time on your managed
hosts.

Outcomes
You should be able to:

+ Use the parted module to configure block device partitions.
+ Use the 1vg module to manage LVM volume groups.

+ Use the 1Lvol module to manage LVM logical volumes.

+ Use the filesystem module to create file systems.

+ Use the mount module to control and configure mount points in /etc/fstab.

Before You Begin

Run the lab system-storage start script fromworkstation to configure the
environment for the exercise. The script creates the system-storage project directory,
and downloads the Ansible configuration file and the host inventory file needed for the
exercise.

[student@workstation ~]$ lab system-storage start

Instructions

You are responsible for managing a set of web servers. A recommended practice for web server
configuration is to store web server data on a separate partition or logical volume.

You will write a playbook to:
+ Manage partitions of the /dev/vdb device
+ Manage a volume group named apache-vg for web server data

+ Create two logical volumes named content - Lv and logs- lv, both backed by the apache-vg
volume group

+ Create an XFS file system on both logical volumes
+ Mount the content - lv logical volume at /var/www
+ Mount the logs- lv logical volume at /var/log/httpd

If the storage requirements for the web server change, update the appropriate playbook variables
and re-execute the playbook. The playbook should be idempotent.

Chapter 9 | Automating Linux Administration Tasks

P 1. Asthe student user onworkstation, change to the /home/student/system-
storage working directory.

[student@workstation ~]$ cd ~/system-storage
[student@workstation system-storage]$

P 2. Review the skeleton playbook file storage.yml and the associated variables file
storage_vars.ymlin the project directory. Execute the playbook.

21. Review the storage.yml playbook.

- name: Ensure Apache Storage Configuration
hosts: webservers
vars_files:
- storage_vars.yml

tasks:
- name: Correct partitions exist on /dev/vdb
debug:
msg: TODO

loop: "{{ partitions }}"

- name: Ensure Volume Groups Exist
debug:
msg: TODO
loop: "{{ volume_groups }}"

- name: Create each Logical Volume (LV) if needed
debug:
msg: TODO
loop: "{{ logical_volumes }}"
when: true

- name: Ensure XFS Filesystem exists on each LV
debug:
msg: TODO
loop: "{{ logical_volumes }}"

- name: Ensure the correct capacity for each LV
debug:
msg: TODO
loop: "{{ logical_volumes }}"

- name: Each Logical Volume is mounted
debug:
msg: TODO
loop: "{{ logical_volumes }}"

The name of each task acts as an outline of the intended procedure to implement. In
later steps, you will update and change these six tasks.

2.2. Review the storage_vars.yml variables file.

Chapter 9 | Automating Linux Administration Tasks

partitions:
- number: 1
start: 1MiB
end: 257MiB

volume_groups:
- name: apache-vg
devices: /dev/vdbl

logical_volumes:
- name: content-1lv
size: 64M
vgroup: apache-vg
mount_path: /var/waww

- name: logs-1lv
size: 128M
vgroup: apache-vg
mount_path: /var/log/httpd

This file describes the intended structure of partitions, volume groups, and logical
volumes on each web server. The first partition begins at an offset of 1 MiB from the
beginning of the /dev/vdb device, and ends at an offset of 257 MiB, for a total size
of 256 MiB.

Each web server has one volume group, named apache-vg, containing the first
partition of the /dev/vdb device.

Each web server has two logical volumes. The first logical volume is named
content- lv, with a size of 64 MiB, attached to the apache-vg volume group, and
mounted at /var/www. The second logical volume is named logs - lv, with a size
of 128 MiB, attached to the apache-vg volume group, and mounted at /var/log/
httpd.

Note

E The apache-vg volume group has a capacity of 256 MiB, because it is backed
by the /dev/vdb1 partition. It provides enough capacity for both of the logical
volumes.

2.3. Execute the storage.yml playbook.

[student@workstation system-storage]$ ansible-playbook storage.yml

PLAY [Ensure Apache Storage Configuration] R R R R R R R S R R R S R S kR S S

TASK [Gathering Facts] R R R R R R S S R S R S R R S R R R R R R R R R S S S S

ok: [servera.lab.example.com]
TASK [Correct partitions exist on /dev/vdb] ****xxxakkakakkakkkdkdhddddddrrrrrrx

ok: [servera.lab.example.com] => (item={u'start': u'i1MiB', u'end': u'257MiB',
u'number': 1}) => {

Chapter 9 | Automating Linux Administration Tasks

umsgu: "TOoDO"

...output omitted. ..

TASK [Each LOgical VOLUME 1S MOUNTEA] ***** %%k ks kskshkhkakdkak bk a ks kkkkhkxk k%
ok: [servera.lab.example.com] => (item={u'vgroup': u'apache-vg', u'size': u'64M',
u'mount_path': u'/var/www', u'name': u'content-1lv'}) => {
"msg": "TODO"
}
ok: [servera.lab.example.com] => (item={u'vgroup': u'apache-vg', u'size': u'128M',
u'mount_path': u'/var/log/httpd', u'name': u'logs-1lv'}) => {
"msg": "TODO"

PLAY REGCAP % * % % % s % ok sk ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ko ok ok ko ok ko ok ko Rk ok ko k

servera. lab.example.com 1 ok=7 changed=0 unreachable=0 failed=0

P 3. Change the first task to use the parted module to configure a partition for each loop item.
Each item describes an intended partition of the /dev/vdb device on each web server:

number
The partition number. Use this as the value of the number keyword for the parted
module.

start
The start of the partition, as an offset from the beginning of the block device. Use this
as the value of the part_start keyword for the parted module.

end
The end of the partition, as an offset from the beginning of the block device. Use this
as the value of the part_end keyword for the parted module.

The content of the first task should be:

- name: Correct partitions exist on /dev/vdb
parted:
device: /dev/vdb
state: present
number: "{{ item.number }}"
part_start: "{{ item.start }}"
part_end: "{{ item.end }}"
loop: "{{ partitions }}"

Chapter 9 | Automating Linux Administration Tasks

) 4.

) 5.

Change the second task of the play to use the 1vg module to configure a volume group for
each loop item. Each item of the volume_groups variable describes a volume group that
should exist on each web server:

name
The name of the volume group. Use this as the value of the vg keyword for the 1vg
module.

devices
A comma-separated list of devices or partitions that form the volume group. Use this
as the value of the pvs keyword for the 1vg module.

The content of the second task should be:

- name: Ensure Volume Groups Exist
lvg:
vg: "{{ item.name }}"
pvs: "{{ item.devices }}"
loop: "{{ volume_groups }}"

Change the third task of the play to use the 1vol module to create a logical volume for
each item. Use the item's keywords to create the new logical volume:

name
The name of the logical volume. Use this as the value of the 1v keyword for the lvol
module.

vgroup
The name of the volume group that provides storage for the logical volume.

size
The size of the logical volume. The value of this keyword is any acceptable value for the
- L option of the lvcreate command.

Only execute the task if a logical volume does not already exist. Update the when
statement to check that a logical volume does not exist with a name that matches the value
of the item's name keyword.

5.1. Change the third task to use the lvol module. Set the volume group name, logical
volume name, and logical volume size using each item's keywords. The content of the
third task is now:

- name: Create each Logical Volume (LV) if needed
lvol:
vg: "{{ item.vgroup }}"
lv: "{{ item.name }}"
size: "{{ item.size }}"
loop: "{{ logical_volumes }}"
when: true

5.2. The Ansible fact ansible_1lvm contains information about Logical Volume
Management objects on each hosts. Use an ad hoc command to see the current set
of logical volumes on the remote host:

Chapter 9 | Automating Linux Administration Tasks

[student@workstation system-storage]$ ansible all -m setup -a \
> "filter=ansible_1lvm"
servera.lab.example.com | SUCCESS => {
"ansible_facts": {
"ansible_lvm": {

"lvs": {3},
"pvs": {3,
"vgs": {3
H
"discovered_interpreter_python": "/usr/libexec/platform-python"

}

"changed": false

The value of the lvs keyword indicates that there are no logical volumes on the
remote host.

5.3. Execute the playbook to create the logical volumes on the remote host.

[student@workstation system-storage]$ ansible-playbook storage.yml

PLAY [Ensure Apache Storage Conflguratlon] EE R R Sk Sk Sk Sk S S Sk S S S S S S S S S S S S

TASK [Gatherlng Facts] R R R SR Sk S Sk S S Sk S S S S R S S kR R S S S S S S

ok: [servera.lab.example.com]

TASK [Correct partitions exist on /dev/vdb] ****xdxdaaihhhhhhhhdhddhrrrrrrx
changed: [servera.lab.example.com] => (item={...output omitted...})

TASK [Ensure Volume Groups EXlSt] R R R R R Sk S S S S S kR S R S

changed: [servera.lab.example.com] => (item={...output omitted...})

TASK [Create each Logical Volume (LV) if needed] *******kkdxxksdkdhxrskdkhhrrsddx
changed: [servera.lab.example.com] => (item={...output omitted...})
changed: [servera.lab.example.com] => (item={...output omitted...})

TASK [Ensure XFS Filesystem exists on each LV] ****xxkkokskotthkdoksdohtohdodkokkodoxokodkokkx
ok: [servera.lab.example.com] => (item={...output omitted...}) => {

llmsgll 2 IITODOII
}

...output omitted...

PLAY RECAP R SR R Sk Sk Sk S S Sk S S S S S R R Sk

servera. lab.example.com 1 ok=7 changed=3 unreachable=0 failed=0

5.4. Execute another ad hoc command to see the structure of the ansible_1lvm variable
when logical volumes exists on the remote host.

[student@workstation system-storage]$ ansible all -m setup -a \
> "filter=ansible_1lvm"
servera. lab.example.com | SUCCESS => {
"ansible_facts": {
"ansible_1lvm": {

"lvs": {"

Chapter 9 | Automating Linux Administration Tasks

H

"content-1v": {
"size g": "0.06",

"vg": "apache-vg"

}

"logs-1v": {

"size g": "@.12",
"vg": "apache-vg"
}
}
"pvs": {t’

"/dev/vdb1": {
"free_g": "0.06",
"size g": "@.25",
"vg": "apache-vg"

}

}
"vgs": {G’

"apache-vg": {
"free_g": "0.06",
"num_1lvs": "2",
"num_pvs": "1",
"size_g": "@.25"

}

}

"changed": false

o

The value of the lvs keyword is a key-value pair data structure. The keys of
this structure are the names of any logical volumes on the host. This indicates
that both the content - 1v and logs- lv logical volumes exist. For each logical
volume, the corresponding volume group is provided by the vg keyword.

The pvs keyword contains information about physical volumes on the host. The
information indicates that the /dev/vdb1 partition belongs to the apache-vg
volume group.

The vgs keyword contains information about volume groups on the host.

5.5. Update the when statement to check that a logical volume does not exist with a name
that matches the value of the item's name keyword. The content of the third task is

now:
- name: Create each Logical Volume (LV) if needed
lvol:
vg: "{{ item.vgroup }}"
lv: "{{ item.name }}"
size: "{{ item.size }}"
loop: "{{ logical_volumes }}"
when: item.name not in ansible_lvm["1lvs"]

P 6. Change the fourth task to use the filesystem module. Configure the task to ensure
that each logical volume is formatted as an XFS file system. Recall that a logical volume is

Chapter 9 | Automating Linux Administration Tasks

b7

associated with the logical device /dev/<volume group name>/<logical volume
name>.

The content of the fourth task should be:

- name: Ensure XFS Filesystem exists on each LV
filesystem:
dev: "/dev/{{ item.vgroup }}/{{ item.name }}"
fstype: xfs
loop: "{{ logical_volumes }}"

Configure the fifth task to ensure each logical volume has the correct storage capacity. If
the logical volume increases in capacity, be sure to force the expansion of the volume's file
system.

Warning
If a logical volume needs to decrease in capacity, this task will fail because an XFS

file system does not support shrinking capacity.

) 8.

b o.

The content of the fifth task should be

- name: Ensure the correct capacity for each LV
lvol:
vg: "{{ item.vgroup }}"
lv: "{{ item.name }}"
size: "{{ item.size }}"
resizefs: yes
force: yes
loop: "{{ logical_volumes }}"

Use the mount module in the sixth task to ensure that each logical volume is mounted at
the corresponding mount path and persists after a reboot.

The content of the sixth task should be:

- name: Each Logical Volume is mounted

mount:
path: "{{ item.mount_path }}"
src: "/dev/{{ item.vgroup }}/{{ item.name }}"
fstype: xfs
opts: noatime
state: mounted

loop: "{{ logical_volumes }}"

Review the completed storage.yml playbook. Execute the playbook and verify that each
logical volume is mounted.

9.1. Review the playbook:

name: Ensure Apache Storage Configuration
hosts: webservers

Chapter 9 | Automating Linux Administration Tasks

vars_files:
- storage_vars.yml
tasks:
- name: Correct partitions exist on /dev/vdb
parted:
device: /dev/vdb
state: present
number: "{{ item.number }}"
part_start: "{{ item.start }}"
part_end: "{{ item.end }}"
loop: "{{ partitions }}"

- name: Ensure Volume Groups Exist
lvg:
vg: "{{ item.name }}"
pvs: "{{ item.devices }}"
loop: "{{ volume_groups }}"

- name: Create each Logical Volume (LV) if needed
lvol:
vg: "{{ item.vgroup }}"
lv: "{{ item.name }}"
size: "{{ item.size }}"
loop: "{{ logical_volumes }}"
when: item.name not in ansible_lvm["1lvs"]

- name: Ensure XFS Filesystem exists on each LV
filesystem:
dev: "/dev/{{ item.vgroup }}/{{ item.name }}"
fstype: xfs
loop: "{{ logical_volumes }}"

- name: Ensure the correct capacity for each LV
lvol:
vg: "{{ item.vgroup }}"
lv: "{{ item.name }}"
size: "{{ item.size }}"
resizefs: yes
force: yes
loop: "{{ logical_volumes }}"

- name: Each Logical Volume is mounted

mount:
path: "{{ item.mount_path }}"
src: "/dev/{{ item.vgroup }}/{{ item.name }}"
fstype: xfs
opts: noatime
state: mounted

loop: "{{ logical_volumes }}"

9.2. Execute the playbook.

408

Chapter 9 | Automating Linux Administration Tasks

[student@workstation system-storage]$ ansible-playbook storage.yml

PLAY [EnSure Apache Storage Conflguratlon] R R Sk Sk Sk Sk S S Sk S S S S S S S S S S S

TASK [Gatherlng Facts] R R R Sk Sk S Sk S S Sk S S S Rk o kR Sk

ok: [servera.lab.example.com]

TASK [Correct partitions exist on /dev/vdb] ****xxxaakikikihdhhdddddhrdrrrx
ok: [servera.lab.example.com] => (item={...output omitted...})

TASK [Ensure Volume Groups EXlSt] R R R R Sk S S Sk
ok: [servera.lab.example.com] => (item={...output omitted...})
...output omitted...

TASK [Create each Logical Volume (LV) if needed] ********kdxxksddhrkddkhhrxsddx
skipping: [servera.lab.example.com] => (item={...output omitted...})
skipping: [servera.lab.example.com] => (item={...output omitted...})

TASK [Ensure XFS Filesystem exists on each LV] ****xdsaaiiiiiikhhhhddhxrirrx
changed: [servera.lab.example.com] => (item={...output omitted...})
changed: [servera.lab.example.com] => (item={...output omitted...})

TASK [Ensure the correct capacity for each LV] *w**x#xkxsasisnsuiaskimxwkwixs
ok: [servera.lab.example.com] => (item={...output omitted...})
ok: [servera.lab.example.com] => (item={...output omitted...})

TASK [EaCh LOglC&l VOlume lS mounted] R R R R R R R S S S R S
changed: [servera.lab.example.com] => (item={...output omitted...})
changed: [servera.lab.example.com] => (item={...output omitted...})

PLAY RECAP LR R R R R R R R

servera. lab.example.com : ok=6 changed=2 unreachable=0 failed=0
skipped=1 rescued=0 ignored=0

A task is skipped during execution because the playbook was previously executed
with the same variable values. The logical volumes did not need to be created.

9.3. Use an Ansible ad hoc command to run the 1sblk command on the remote host. The
output indicates the mount points for the logical volumes.

[student@workstation system-storage]$ ansible all -a lsblk
servera.lab.example.com | CHANGED | rc=0 >>

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

sro 11:0 1 1024M 0O rom

vda 252:0 0 106G 0 disk

Lvda1l 252:1 ®© 106G 0 part /

vdb 252:16 0 16 0 disk

L-vdb1 252:17 0 256M 0O part
|-apache--vg-content--1lv 253:0 0] 64M 0O lvm /var/www
L-apache- -vg-logs--1lv 253:1 O 128M 0O lvm /var/log/httpd

Chapter 9 | Automating Linux Administration Tasks

P 10. Increase the capacity of the content - 1v logical volume to 128 MiB, and the logs- lv
logical volume to 256 MiB. This requires increasing the capacity of the apache-vg volume
group.

Create a new partition with a capacity of 256 MiB and add it to the apache-vg volume
group.

10.1. Edit the partitions variable definition in the storage_vars.yml file to add a
second partition to the /dev/vdb device. The content of the partitions variable
should be:

partitions:

- number: 1
start: 1MiB
end: 257MiB

- number: 2
start: 257MiB
end: 513MiB

10.2. Edit the volume_groups variable definition in the storage_vars.ym1 file. Add
the second partition to list of devices backing the volume group. The content of the
volume_groups variable should be:

volume_groups:
- name: apache-vg
devices: /dev/vdbl, /dev/vdb2

10.3. Double the capacity of each logical volume defined in the storage_vars.yml file.
The content of the Logical_volumes variable should be:

logical_volumes:
- name: content-1lv
size: 128M
vgroup: apache-vg
mount_path: /var/www

- name: logs-1lv
size: 256M
vgroup: apache-vg
mount_path: /var/log/httpd

10.4. Execute the playbook. Verify the new capacity of each logical volume.

[student@workstation system-storage]$ ansible-playbook storage.yml

PLAY [Ensure Apache Storage Conflguratlon] R R R R R R S R S

TASK [Gatherlng Facts] R R R R R R S R R S S R R R

ok: [servera.lab.example.com]

TASK [Correct partitions exist on /dev/vdb] ****xxxaiiiiiihdddaddxxxxxrx

ok: [servera.lab.example.com] => (item={...output omitted...})

changed: [servera.lab.example.com] => (item={u'start': u'257MiB', u'end':
u'513MiB', u'number': 2})

Chapter 9 | Automating Linux Administration Tasks

TASK [Ensure Volume GrOUpS EXlSt] EEEEE R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESEEES]

changed: [servera.lab.example.com] => (item={u'name': u'apache-vg',
u'/dev/vdb1, /dev/vdb2'})

...output omitted. ..

u'devices':

TASK [Create each Logical Volume (LV) if needed] ********kdxxkadharsdddhhxrsddx

skipping: [servera.lab.example.com] => (item={u'vgroup': u'apache-vg', u'size':
u'128M', u'mount_path': u'/var/www', u'name': u'content-1lv'})

skipping: [servera.lab.example.com] => (item={u'vgroup': u'apache-vg', u'size':
u'256M', u'mount_path': u'/var/log/httpd', u'name': u'logs-1lv'})

TASK [Ensure XFS Filesystem exists on each LV] *****xxxsddhaxsaddohardddhrrsdsx

ok: [servera.lab.example.com] => (item={...output omitted...})

ok: [servera.lab.example.com] => (item={...output omitted...})

TASK [Ensure the correct capacity for each LV] *****xxxsddohaxsaddohardddhxrsdsx

changed: [servera.lab.example.com] => (item={u'vgroup': u'apache-vg', u'size':
u'128M', u'mount_path': u'/var/www', u'name': u'content-1lv'})

changed: [servera.lab.example.com] => (item={u'vgroup': u'apache-vg', u'size':
u'256M', u'mount_path': u'/var/log/httpd', u'name': u'logs-1lv'})

TASK [EaCh LOglcal Vo'Lume lS mounted] khkkhkkhkhkkhhkdhkhkhkhhhkdhdhhhhdrdrhhhkrrdrrrhhxdx
ok: [servera.lab.example.com] => (item={...output omitted...})
ok: [servera.lab.example.com] => (item={...output omitted...})

PLAY RECAP khkkhkkhkhkkhhkhhkhhkhkhhkdhhdhhhhdhhdhhhhdhhdhkhbhhdhhdrdbdrhdhhdrdrhbhhdrdrdrhrdrdhdhhk
ok=6
ignored=0

servera. lab.example.com unreachable=0 failed=0

skipped=1 rescued=0

changed=3

The output indicates changes to the partitions and volume group on the remote host,
and that both logical volumes were resized.

10.5. Use an Ansible ad hoc command to run the 1sb1k command on the remote host.

[student@workstation system-storage]$ ansible all -a lsblk

servera.lab.example.com | CHANGED | rc=0 >>

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

sro 11:0 1 1024M 0O rom

vda 252:0 0 106G 0 disk

L-vda1 252:1 ® 106G 0 part /

vdb 252:16 0 16 0 disk

—vdb1 252:17 0 256M 0 part

| |-apache--vg-content--1lv 253:0 0 128M O lvm /var/www

| —apache--vg-logs--1lv 253:1 © 256M 0 lvm /var/log/httpd

L-vdb2 252:18 O 256M 0 part
-apache- -vg-content--1lv 253:0 0 128M 0 lvm /var/www
L-apache- -vg-logs--1lv 253:1 0 256M O lvm /var/log/httpd

The output indicates that each logical volume is the correct size and mounted at the
correct directory. Two entries exists for each logical volume because files stored on
the logical volume may be physically located on either partition (/dev/vdb1 or /
dev/vdb2).

Chapter 9 | Automating Linux Administration Tasks
Finish
Run the lab system-storage finish command to cleanup the managed host.

[student@workstation ~]$ lab system-storage finish

This concludes the guided exercise.

w RH294-RHEL8.4-en-1-20210818

Chapter 9 | Automating Linux Administration Tasks

Managing Network Configuration

Objectives

After completing this section, you should be able to configure network settings and name
resolution on managed hosts, and collect network-related Ansible facts.

Configuring Networking with the Network System Role

Red Hat Enterprise Linux 8 includes a collection of system Ansible roles to configure RHEL-based
systems. The rhel-system-roles package installs those system roles which, for example, support
the configuration of time synchronization or networking. You can list the currently installed system
roles with the ansible-galaxy list command.

[user@controlnode ~]$ ansible-galaxy list

- linux-system-roles.kdump, (unknown version)

- linux-system-roles.network, (unknown version)
- linux-system-roles.postfix, (unknown version)
- linux-system-roles.selinux, (unknown version)
- linux-system-roles.timesync, (unknown version)
- rhel-system-roles.kdump, (unknown version)

- rhel-system-roles.network, (unknown version)
- rhel-system-roles.postfix, (unknown version)
- rhel-system-roles.selinux, (unknown version)
- rhel-system-roles.timesync, (unknown version)

Roles are located in the /usr/share/ansible/roles directory. A role beginning with linux-
system-roles is a symlink to the matching rhel-system-roles role.

The network system role supports the configuration of networking on managed hosts. This role
supports the configuration of ethernet interfaces, bridge interfaces, bonded interfaces, VLAN
interfaces, MacVLAN interfaces, and Infiniband interfaces. The network role is configured with two
variables, network_provider and network_connections.

network_provider: nm
network_connections:
- name: ens4
type: ethernet
ip:
address:
- 172.25.250.30/24

The network_provider variable configures the back end provider, either nm (NetworkManager)
orinitscripts. On Red Hat Enterprise Linux 8, the network role uses the nm
(NetworkManager) as a default networking provider. The initscripts provider is used for
RHEL 6 systems, and requires the network service to be available. The network_connections
variable configures the different connections, specified as a list of dictionaries, using the interface
name as the connection name.

Chapter 9 | Automating Linux Administration Tasks

The following table lists the options for the network_connections variable.

Option name Description
name Identifies the connection profile.
state The runtime state of a connection profile.

Either up, if the connection profile is active, or
down if it is not.

persistent_state Identifies if a connection profile is persistent.
Either present if the connection profile is
persistent, or absent if it is not.

type Identifies the connection type. Valid values
are ethernet, bridge, bond, team, vlan,
macvlan, and infiniband.

autoconnect Determines if the connection automatically
starts.
mac Restricts the connection to be used on

devices with a specific MAC address.

interface_name Restricts the connection profile to be used by
a specific interface.

zone Configures the FirewallD zone for the
interface.
ip Determines the IP configuration for the

connection. Supports options like for example
address, to specify a static IP address, or
dns to configure a DNS server.

The following example uses some of the previous options:

network_connections:

- name: eth@ o
persistent_state: present (2]
type: ethernet
autoconnect: yes ¢,
mac: ©0:00:5e:00:53:5d ©
ip:

address:
- 172.25.250.40/24 ©
zone: external

Uses eth0 as the connection name.
Makes the connection persistent. This is the default value.

Sets the connection type to ethernet.

0O 0 0 ©

Automatically starts the connection at boot. This is the default value.

Chapter 9 | Automating Linux Administration Tasks

© Restricts the connection usage to a device with that MAC address.
O Configures the 172.25.250.40/24 IP address for the connection.
© Configures the external zone as the FirewallD zone of the connection.

To use the network system role, you need to specify the role name under the roles clause in your
playbook as follows:

- name: NIC Configuration
hosts: webservers
vars:
network_connections:
- name: ens4
type: ethernet
ip:
address:
- 172.25.250.30/24
roles:
- rhel-system-roles.network

You can specify variables for the network role with the vars clause, as in the previous example,
or create a YAML file with those variables under the group_vars or host_vars directories,
depending on your use case.

Configuring Networking with Modules

As an alternative to the network system role, Ansible includes modules which support the
networking configuration on a system. The nmc 11 module supports the management of both
network connections and devices. This module supports the configuration of both teaming and
bonding for network interfaces, as well as IPv4 and IPv6 addressing.

The following table lists some of the parameters for the nmc 11 module.

Parameter name Description

conn_name Configures the connection name.

autoconnect Enables automatic connection activation on
boot.

dns4 Configures DNS servers for IPv4 (up to 3).

gw4 Configures the IPv4 gateway for the
interface.

ifname Interface to be bound to the connection.

ip4 IP address (IPv4) for the interface.

state Enables or disables the network interface.

type Type of device or network connection.

The following example configures a static IP configuration for a network connection and device.

RH294-RHEL8.4-en-1-20210818 w

Chapter 9 | Automating Linux Administration Tasks

- name: NIC configuration
nmcli:

conn_name: ens4-conn (1]
ifname: ens4
type: ethernet (3]
ip4: 172.25.250.30/24 ©
gwd: 172.25.250.1 ©
state: present 0o

Configures ens4-conn as the connection name.

Binds the ens4-conn connection to the ens4 network interface.
Configures the network interface as ethernet.

Configures the 172.25.250.30/24 IP address on the interface.

Sets the gateway to 172.25.250.1.

© 06 6 0 0 ©

Makes sure the connection is available.

The hostname module sets the hostname for a managed host without modifying the /etc/
hosts file. This module uses the name parameter to specify the new hostname, as on the task
shown below:

- name: Change hostname
hostname:
name: managedhostil

The firewalld module supports the management of FirewallD on managed hosts. This modules
supports the configuration of FirewallD rules for services and ports. It also supports the zone
management, including the association or network interfaces and rules to a specific zone.

The following task shows how to create a FirewallD rule for the ht tp service on the default zone
(public). The task configures the rule as permanent, and makes sure it is active.

- name: Enabling http rule
firewalld:
service: http
permanent: yes
state: enabled

This task configures the eth0 in the external FirewallD zone.

- name: Moving eth® to external
firewalld:
zone: external
interface: eth0
permanent: yes
state: enabled

The following table lists some of the parameters for the firewalld module.

Chapter 9 | Automating Linux Administration Tasks

Parameter name Description
interface The interface name to manage with FirewallD.
port Port or port range. Uses the port/protocol or

port-port/protocol format.

rich_rule Rich rule for FirewallD

service Service name to manage with FirewallD.
source Source network to manage with FirewallD.
zone The FirewallD zone.

state Enables or disables a FirewallD configuration.
type Type of device or network connection.

Ansible Facts for Network Configuration

Ansible uses facts to retrieve information to the control node about the configuration of the
managed hosts. You can use the setup Ansible module to retrieve all the Ansible facts for a
managed host.

[user@controlnode ~]$ ansible webservers -m setup

host.lab.example.com | SUCCESS => {
"ansible_facts": {

...output omitted. ..

}

All network interfaces for a managed host are available under the ansible_interfaces
element. You can use the gather_subset=network parameter for the setup module to restrict
the facts to those included in the network subset. The filter option for the setup module
supports fine-grained filtering based on shell-style wildcards.

[user@controlnode ~]%$ ansible webservers -m setup \
> -a 'gather_subset=network filter=ansible_interfaces'
host.lab.example.com | SUCCESS => {
"ansible_facts": {
"ansible_interfaces": [

"ens4",

"lo",

"ens3"

}

"changed": false

The previous command shows that three network interfaces are available on the managed host,
host. lab.example.com: lo, ens3, and ens4.

Chapter 9 | Automating Linux Administration Tasks

You can retrieve additional information about the configuration for a network interface with the
ansible_NIC_name filter for the setup module. For example, to retrieve the configuration for
the ens4 network interface, use the ansible_ens4 filter.

[user@controlnode ~]$ ansible webservers -m setup \
> -a 'gather_subset=network filter=ansible_ens4'
host.lab.example.com | SUCCESS => {
"ansible_facts": {
"ansible_ens4": {
"active": true,

"device": "ens4",
"features": {

}

"hw_timestamp_filters": [],
"ipv4a": {

"address": "172.25.250.30",
"broadcast": "172.25.250.255",
"netmask": "255.255.255.0",
"network": "172.25.250.0"

H
"ipve": [
{
"address": "fe80::5b42:8c94:1fc7:40ae",
"prefix": "64",
"scope": "link"
}
1,
"macaddress": "52:54:00:01:fa:0a",
"module": "virtio_net",
"mtu": 1500,
"pciid": "virtio1",
"promisc": false,
"speed": -1,

"timestamping": [
"tx_software",
"rx_software",
"software"

1,
"type": "ether"

}

"changed": false

The previous command displays additional configuration details like the IP address configuration
both for IPv4 and IPv6, the associated device, and the type.

The following table lists some of the available facts for the network subset.

Fact name Description

ansible_dns Includes the DNS server(s) IP address, and
the search domain(s).

Chapter 9 | Automating Linux Administration Tasks

Fact name

Description

ansible_domain

Includes the subdomain for the managed
host.

ansible_all_ipv4_addresses

Includes all the IPv4 addresses configured on
the managed host.

ansible_all_ipv6_addresses

Includes all the IPv6 addresses configured on
the managed host.

ansible_fgdn

Includes the FQDN for the managed host.

ansible_hostname

Includes the unqualified hostname, the string
in the FQDN before the first period.

ansible_nodename

Includes the hostname for the managed host
as reported by the system.

Note
E Ansible also provides the inventory_hostname variable which includes the
hostname as configured in Ansible's inventory file.

D References
Knowledgebase: Red Hat Enterprise Linux (RHEL) System Roles
https://access.redhat.com/articles/3050101

Linux System Roles

https://linux-system-roles.github.io/

nmcli Module Documentation

https://docs.ansible.com/ansible/2.9/modules/nmcli_module.html

hostname Module Documentation

https://docs.ansible.com/ansible/2.9/modules/hostname_module.html

firewalld Module Documentation

https://docs.ansible.com/ansible/2.9/modules/firewalld_module.html

RH294-RHEL8.4-en-1-20210818

https://access.redhat.com/articles/3050101
https://linux-system-roles.github.io/
https://docs.ansible.com/ansible/2.9/modules/nmcli_module.html
https://docs.ansible.com/ansible/2.9/modules/hostname_module.html
https://docs.ansible.com/ansible/2.9/modules/firewalld_module.html

Chapter 9 | Automating Linux Administration Tasks

» Guided Exercise

Managing Network Configuration

In this exercise, you will adjust the network configuration of a managed host and collect
information about it on a file created by a template.

Outcomes

You should be able to configure network settings and name resolution on managed hosts,
and collect network-related Ansible facts.

Before You Begin

Run the lab system-network start script fromworkstation to configure the
environment for the exercise. The script creates the system-network working directory,
and downloads the Ansible configuration file and the host inventory file needed for the
exercise.

[student@workstation ~]$ lab system-network start

Instructions

P 1. Review the inventory file at the /home/student/system-network directory.

11. Asthe student user onworkstation, change to the /home/student/system-
network working directory.

[student@workstation ~]$ cd ~/system-network
[student@workstation system-network]$

1.2. Verify that servera. lab.example.comis part of the webservers host group.
This server has a spare network interface.

[student@workstation system-network]$ cat inventory
[webservers]
servera. lab.example.com

P 2. Usethe ansible-galaxy command to verify that system roles are available. If no roles
are available, you need to install the rhel-system-roles package.

[student@workstation system-network]$ ansible-galaxy list
/usr/share/ansible/roles

- linux-system-roles.kdump, (unknown version)

- linux-system-roles.network, (unknown version)

- linux-system-roles.postfix, (unknown version)

- linux-system-roles.selinux, (unknown version)

- linux-system-roles.timesync, (unknown version)

- rhel-system-roles.kdump, (unknown version)

Chapter 9 | Automating Linux Administration Tasks

- rhel-system-roles.network, (unknown version)
- rhel-system-roles.postfix, (unknown version)
- rhel-system-roles.selinux, (unknown version)
- rhel-system-roles.timesync, (unknown version)
/etc/ansible/roles
[WARNING]: - the configured path /home/student/.ansible/roles does not exist.

P 3. Create a playbook which uses the linux-system-roles.network role to configure the spare
network interface ethl on servera. lab.example.com with the 172.25.250.30 IP
address.

3.1. Create a playbook, playbook.yml, with one play that targets the webservers host
group. Include the rhel-system-roles.network role in the roles section of the

play.

- name: NIC Configuration
hosts: webservers

roles:
- rhel-system-roles.network

3.2. Review the Role Variables section of the README . md file for the rhel-system-
roles.network role. Determine the role variables to configure the ethl network
interface with the 172.25.250. 30 IP address.

[student@workstation system-network]$ cat \

> /usr/share/doc/rhel-system-roles/network/README.md
...output omitted. ..

Setting the IP configuration:

...output omitted...

3.3. Create the group_vars/webservers subdirectory.

[student@workstation system-network]$ mkdir -pv group_vars/webservers
mkdir: created directory 'group_vars'
mkdir: created directory 'group_vars/webservers'

3.4. Create anew file network.yml to define role variables. Because these variable
values apply to the hosts on the webservers host group, you need to create that file
in the group_vars/webservers directory. Add variable definitions to support the
configuration of the eth1 network interface. The file now contains:

network_connections:

- name: ethl
type: ethernet
ip:

address:

- 172.25.250.30/24

3.5. Run the playbook to configure the secondary network interface on servera.

Chapter 9 | Automating Linux Administration Tasks

[student@workstation system-network]$ ansible-playbook playbook.yml

PLAY [NIC Conflguratlon] R R R Sk Sk Sk Sk S S Sk S S S R S S S S R S

TASK [Gatherlng Facts] R R R SR Sk S S Sk S R S S kR S S R S R S S S

ok: [servera.lab.example.com]

TASK [rhel-system-roles.network : Check which services are running] ******xx¥x*=*x
ok: [servera.lab.example.com]

TASK [rhel-system-roles.network : Check which packages are installed] **********
ok: [servera.lab.example.com]

TASK [rhel-system-roles.network : Print network provider] *****xxdaaiiiiiiirx
ok: [servera.lab.example.com] => {
"msg": "Using network provider: nm"

TASK [rhel-system-roles.network : Install packages] *****xxxaiiiiiiiiiiriirx
skipping: [servera.lab.example.com]

TASK [rhel-system-roles.network : Enable network service] ******xxxksddkxxssddrrx
ok: [servera.lab.example.com]

TASK [rhel-system-roles.network : Configure networking connection profiles] ****
...output omitted. ..

changed: [servera.lab.example.com]

TASK [rhel-system-roles.network : Re-test connectivity] *******kdkaksddhxxsddirx
ok: [servera.lab.example.com]

PLAY RECAP LR R R R S R R R R R R R R R R

servera. lab.example.com 1 ok=7 changed=1 unreachable=0 failed=0
skipped=1 rescued=0 ignored=0

P 4. Use the Ansible setup module on an Ansible adhoc command to verify that the eth1
network interface configuration on serverais correct.

41. Use the setup Ansible module to list all the Ansible facts available
for servera. Filter results for the eth1 network interface with the -a
'filter=filter_string' option. Verify that the ethl network interface uses the
172.25.250. 30 IP address. It may take up to a minute to configure the IP address.

[student@workstation system-network]$ ansible webservers -m setup \
> -a 'filter=ansible_eth1'
servera. lab.example.com | SUCCESS => {
"ansible_facts": {
"ansible_eth1": {
...output omitted...
"ipv4": {
"address": "172.25.250.30",
"broadcast": "172.25.250.255",

Chapter 9 | Automating Linux Administration Tasks

"netmask": "255.255.255.0",
"network": "172.25.250.0"

H

...output omitted. ..

Finish
Onworkstation, runthe lab system-network finish script to clean up the resources

created in this exercise.

[student@workstation ~]$ lab system-network finish

This concludes the guided exercise.

RH294-RHEL8.4-en-1-20210818 w

Chapter 9 | Automating Linux Administration Tasks

» Lab

Automating Linux Administration Tasks

Performance Checklist

In this lab, you will configure and perform administrative tasks on managed hosts using a
playbook.

Outcomes

You should be able to create playbooks for configuring on a managed host a software
repository, users and groups, logical volumes, cron jobs, and additional network interfaces.

Before You Begin

Onworkstation, run the lab start script to confirm that the environment is ready for
the lab to begin. The script creates the working directory, called system-review, and
populates it with an Ansible configuration file, a host inventory, and lab files.

[student@workstation ~]$ lab system-review start

Instructions

1.

Create and execute on the webservers host group a playbook which configures the Yum
internal repository located at http://materials.example.com/yum/repository,
and installs the example-motd package available in that repository. All RPM packages are
signed with an organizational GPG key pair. The GPG public key is available at http://
materials.example.com/yum/repository/RPM-GPG-KEY-example.

Create and execute on the webservers host group a playbook which creates the webadmin
user group, and add two users to that group, ops1 and ops2.

Create and execute on the webservers host group a playbook that uses the /dev/vdb
device to create a volume group named apache-vg. This playbook also creates two logical
volumes, named content - lv and logs- lv, both backed by the apache-vg volume group.
Finally, it creates an XFS file system on each logical volume, and mounts the content -

1v logical volume at /var/www, and the logs- lv logical volume at /var/log/httpd.

The lab script populates two files in ~/system-review, storage.yml which provides an
initial skeleton for the playbook, and storage_vars.ym1l which provides values to all the
variables required by the different modules.

Create and execute on the webservers host group a playbook which uses the cron module
to create the /etc/cron.d/disk_usage crontab file that schedules a recurring cron job.
The job should run as the devops user every two minutes between 89:00 and 16 :59 on
Monday through Friday. The job should append the current disk usage to the file /home/
devops/disk_usage.

Create and execute on the webservers host group a playbook which uses the Linux-
system-roles.network role to configure with the 172.25.250.40/24 IP address the
spare network interface, ethi.

Chapter 9 | Automating Linux Administration Tasks

Evaluation

Run lab system-review grade onworkstation to grade your work.
[student@workstation ~]$ lab system-review grade

Finish

Fromworkstation, runthe lab system-review finish scriptto clean up the resources

created in this lab.

[student@workstation ~]$ lab system-review finish

This concludes the lab.

RH294-RHEL8.4-en-1-20210818 w

Chapter 9 | Automating Linux Administration Tasks

» Solution

Automating Linux Administration Tasks

Performance Checklist

In this lab, you will configure and perform administrative tasks on managed hosts using a
playbook.

Outcomes

You should be able to create playbooks for configuring on a managed host a software
repository, users and groups, logical volumes, cron jobs, and additional network interfaces.

Before You Begin

Onworkstation, run the lab start script to confirm that the environment is ready for
the lab to begin. The script creates the working directory, called system-review, and
populates it with an Ansible configuration file, a host inventory, and lab files.

[student@workstation ~]$ lab system-review start

Instructions

1.

Create and execute on the webservers host group a playbook which configures the Yum
internal repository located at http://materials.example.com/yum/repository,
and installs the example-motd package available in that repository. All RPM packages are
signed with an organizational GPG key pair. The GPG public key is available at http://
materials.example.com/yum/repository/RPM-GPG-KEY-example.

11, Asthe student user onworkstation, change to the /home/student/system-
review working directory.

[student@workstation ~]$ cd ~/system-review
[student@workstation system-review]$

1.2. Create the repo_playbook.yml playbook which runs on the managed hosts at
the webservers host group. Add a task that uses the yum_repository module to
ensure the configuration of the internal yum repository on the remote host. Ensure
that:

+ The repository's configuration is stored in the file /etc/yum.repos.d/
example.repo

+ Therepository ID is example-internal
+ Thebase URLishttp://materials.example.com/yum/repository
+ The repository is configured to check RPM GPG signatures

+ The repository descriptionis Example Inc. Internal YUM repo

Chapter 9 | Automating Linux Administration Tasks

The playbook contains the following:

- name: Repository Configuration
hosts: webservers
tasks:
- name: Ensure Example Repo exists
yum_repository:

name: example-internal
description: Example Inc. Internal YUM repo
file: example
baseurl: http://materials.example.com/yum/repository/
gpgcheck: yes

1.3. Add a second task to the play that uses the rpm_key module to ensure that the
repository public key is present on the remote host. The repository public key URL is
http://materials.example.com/yum/repository/RPM-GPG-KEY-example.

The second task appears as follows:

- name: Ensure Repo RPM Key is Installed
rpm_key:
key: http://materials.example.com/yum/repository/RPM-GPG-KEY-example
state: present

1.4. Add a third task to install the example-motd package available in the Yum internal
repository.

The third task appears as follows:

- name: Install Example motd package
yum:
name: example-motd
state: present

1.5. Execute the playbook:

[student@workstation system-review]$ ansible-playbook repo_playbook.yml

PLAY [Repository Configuration] khkkhkhkhkhhhkhkhhhhhhhhhhhhhhhhhhhhhkhhhhhhhkhkhhhhkhkk

TASK [Gathering FaCtS] khhkhkhkhkhhhhhhhhhhhkhhhhhhhhhhhhhhkhhhhhkhhkhhhhhhhkhhhhkhkhkkkhk

ok: [serverb.lab.example.com]

TASK [Ensure Examp‘Le Repo eXiStS] khhkhkhkhkhhhhkhhhhhhhhhhhhhhhhhhhhkhhhhhhkhhhhkhk*

changed: [serverb.lab.example.com]

TASK [Ensure RepO RPM Key lS InStalled] R S S
changed: [serverb.lab.example.com]

TASK [Install Example motd package] R S
changed: [serverb.lab.example.com]

Chapter 9 | Automating Linux Administration Tasks

PLAY REGCAP % * % % % o & ok s ok ok ok ok ok ok ok ok ok ok ok o ok o o ok o o ok o o ok o o ok ok o ok o o ok o o ok ok ok ok ok ok ok ok ok ok ok R ok ok kK ok kK ko

serverb. lab.example.com 1 ok=4 changed=3 unreachable=0 failed=0

2. Create and execute on the webservers host group a playbook which creates the webadmin
user group, and add two users to that group, opsi1 and ops2.

2.1

Create a vars/users_vars.yml variable file, which defines two users, ops1 and
ops2, which belong to the webadmin user group. You may need to create the vars
subdirectory.

[student@workstation system-review]$ mkdir vars

[student@workstation system-review]$ vi vars/users_vars.yml

users:

- username: opsl

groups: webadmin

- username: ops2

groups: webadmin

2.2.

Create the users.yml playbook. Define a single play in the playbook that targets the
webservers host group. Add a vars_files clause that defines the location of the
vars/users_vars.yml filename. Add a task which uses the group module to create
the webadmin user group on the remote host.

- name: Create multiple local users

host

s: webservers

vars_files:

vars/users_vars.yml

tasks:

2.3.

2.4.

name: Add webadmin group
group:

name: webadmin

state: present

Add a second task to the playbook that uses the user module to create the users.
Add a loop: "{{ users }}" clause to the task to loop through the variable file for
every username found in the vars/users_vars.yml file. As the name: for the users,
use the item.username the variable name. This way the variable file may contain
additional information that might be useful for creating the users, such as the groups
that the users should belong to. The second task contains the following:

name: Create user accounts
user:
name: "{{ item.username }}"
groups: webadmin
loop: "{{ users }}"

Execute the playbook:

Chapter 9 | Automating Linux Administration Tasks

[student@workstation system-review]$ ansible-playbook users.yml

PLAY [Create multlple 'Local users] R R R Sk S S S S S S S S Sk S R R S S S

TASK [Gatherlng Facts] R R SR Sk S S Sk S R S S R S S R S S R S

ok: [serverb.lab.example.com]

TASK [Add Webadmln group] R R Sk S Sk Sk Sk S S S S S S kR R S R S

changed: [serverb.lab.example.com]

TASK [Create user accounts] R R R Sk S S Sk S Sk S Sk S R S Sk

changed: [serverb.lab.example.com] => (item={'username': 'opsl', 'groups':
'webadmin'})
changed: [serverb.lab.example.com] => (item={'username': 'ops2', 'groups':

'webadmin'})

PLAY RECAP R R R Sk S S Sk R S S R S S R R S kR

serverb.lab.example.com : ok=3 changed=2 unreachable=0 failed=0

3. Create and execute on the webservers host group a playbook that uses the /dev/vdb
device to create a volume group named apache-vg. This playbook also creates two logical
volumes, named content-1v and logs- lv, both backed by the apache-vg volume group.
Finally, it creates an XFS file system on each logical volume, and mounts the content -
1v logical volume at /var/www, and the logs- lv logical volume at /var/log/httpd
The lab script populates two filesin ~/system-review, storage.yml which provides an
initial skeleton for the playbook, and storage_vars.yml which provides values to all the
variables required by the different modules.

3.1. Review the storage_vars.yml variables file.

[student@workstation system-review]$ cat storage_vars.yml

partitions:
- number: 1
start: 1MiB
end: 257MiB

volume_groups:
- name: apache-vg
devices: /dev/vdbl

logical_volumes:
- name: content-1lv
size: 64M
vgroup: apache-vg
mount_path: /var/www

- name: logs-1lv
size: 128M
vgroup: apache-vg
mount_path: /var/log/httpd

Chapter 9 | Automating Linux Administration Tasks

{4

3.2

3.3

This file describes the intended structure of partitions, volume groups, and logical
volumes on each web server. The first partition begins at an offset of 1 MiB from the
beginning of the /dev/vdb device, and ends at an offset of 257 MiB, for a total size of
256 MiB.

Each web server has one volume group, named apache-vg, containing the first
partition of the /dev/vdb device.

Each web server has two logical volumes. The first logical volume is named content -
lv, with a size of 64 MiB, attached to the apache-vg volume group, and mounted at
/var /www. The second logical volume is named content - Lv, with a size of 128 MiB,
attached to the apache-vg volume group, and mounted at /var/log/httpd.

Note

The apache-vg volume group has a capacity of 256 MiB, because it is backed
by the /dev/vdb1 partition. It provides enough capacity for both of the logical
volumes.

Change the first task in the storage.yml playbook to use the parted module to
configure a partition for each loop item. Each item describes an intended partition of
the /dev/vdb device on each web server:

number
The partition number. Use this as the value of the number keyword for the parted
module.

start
The start of the partition, as an offset from the beginning of the block device. Use
this as the value of the part_start keyword for the parted module.

end
The end of the partition, as an offset from the beginning of the block device. Use
this as the value of the part_end keyword for the parted module.

The content of the first task should be:

name: Correct partitions exist on /dev/vdb
parted:

device: /dev/vdb

state: present

number: "{{ item.number }}"

part_start: "{{ item.start }}"

part_end: "{{ item.end }}"
loop: "{{ partitions }}"

Change the second task of the play to use the lvg module to configure a volume
group for each loop item. Each item of the volume_groups variable describes a
volume group that should exist on each web server:

name
The name of the volume group. Use this as the value of the vg keyword for the 1vg
module.

Chapter 9 | Automating Linux Administration Tasks

3.4.

3.5.

36

devices
A comma-separated list of devices or partitions that form the volume group. Use
this as the value of the pvs keyword for the 1vg module.

The content of the second task should be:

name: Ensure Volume Groups Exist
lvg:

vg: "{{ item.name }}"

pvs: "{{ item.devices }}"
loop: "{{ volume_groups }}"

Change the third task to use the lvol module. Set the volume group name, logical
volume name, and logical volume size using each item's keywords. The content of the
third task is now:

name: Create each Logical Volume (LV) if needed
lvol:

vg: "{{ item.vgroup }}"

lv: "{{ item.name }}"

size: "{{ item.size }}"
loop: "{{ logical_volumes }}"

Change the fourth task to use the filesystem module. Configure the task to ensure
that each logical volume is formatted as an XFS file system. Recall that a logical volume
is associated with the logical device /dev/<volume group name>/<logical
volume name>.

The content of the fourth task should be

name: Ensure XFS Filesystem exists on each LV
filesystem:
dev: "/dev/{{ item.vgroup }}/{{ item.name }}"
fstype: xfs
loop: "{{ logical_volumes }}"

. Configure the fifth task to ensure each logical volume has the correct storage capacity.
If the logical volume increases in capacity, be sure to force the expansion of the
volume's file system.

AN\

Warning

If a logical volume needs to decrease in capacity, this task will fail because an XFS
file system does not support shrinking capacity.

The content of the fifth task should be:

Chapter 9 | Automating Linux Administration Tasks

- name: Ensure the correct capacity for each LV
lvol:
vg: "{{ item.vgroup }}"
lv: "{{ item.name }}"
size: "{{ item.size }}"
resizefs: yes
force: yes
loop: "{{ logical_volumes }}"

3.7. Use the mount module in the sixth task to ensure that each logical volume is mounted
at the corresponding mount path and persists after a reboot.

The content of the sixth task should be:

- name: Each Logical Volume is mounted
mount:
path: "{{ item.mount_path }}"
src: "/dev/{{ item.vgroup }}/{{ item.name }}"
fstype: xfs
state: mounted
loop: "{{ logical_volumes }}"

3.8. Execute the playbook to create the logical volumes on the remote host.

[student@workstation system-review]$ ansible-playbook storage.yml
PLAY [EnSUl"e Apache Storage Conflguratlon] R R R R R R R R R S S S S R S S R

TASK [Gathering Facts] LR R SR S R R R S S S R S S S R R R R R R R S R S R R R S S R

ok: [serverb.lab.example.com]

TASK [Correct pal’tltlons exlSt on /dev/vdb] EEE SRR SRS EEEE SRS RS EEEEEEEEEEEEESESEESES
changed: [serverb.lab.example.com] => (item={'number': 1, 'start': 'iMiB', 'end':
'257MiB'})

TASK [Ensure VOlUI’I’Ie Gl’OUpS EXlSt] IR E R R RS E SRS SR SRS RS SRR RS EEEE R RS EEEEEEEESEESESESERSS
changed: [serverb.lab.example.com] => (item={'name': 'apache-vg', 'devices': '/
dev/vdb1'})

...output omitted...

TASK [Create each Logical Volume (LV) if needed] *****xxddddaaiikdhhddhkiidrrii

changed: [serverb.lab.example.com] => (item={'name': 'content-1lv',6 'size': '64M',
'vgroup': 'apache-vg', 'mount_path': '/var/www'})
changed: [serverb.lab.example.com] => (item={'name': 'logs-1lv', 'size': '128M',

'vgroup': 'apache-vg', 'mount_path': '/var/log/httpd'})

TASK [Ensure XFS Filesystem exists on each LV] *****xxxskdkdkddaksddkdhnrddkdhrrtdhrrx

changed: [serverb.lab.example.com] => (item={'name': 'content-1lv',6 'size': '64M',
'vgroup': 'apache-vg', 'mount_path': '/var/www'})
changed: [serverb.lab.example.com] => (item={'name': 'logs-1lv',6 'size': '128M',

'vgroup': 'apache-vg', 'mount_path': '/var/log/httpd'})

TASK [Ensure the correct capacity for each LV] *****xxxkdkdkdrrksddkdhrrddkdhrrtdhrrx

Chapter 9 | Automating Linux Administration Tasks

ok: [serverb.lab.example.com] => (item={'name': 'content-1lv',6 'size': '64M',
'vgroup': 'apache-vg', 'mount_path': '/var/www'})
ok: [serverb.lab.example.com] => (item={'name': 'logs-1lv', 'size': '128M',

'vgroup': 'apache-vg', 'mount_path': '/var/log/httpd'})

TASK [EaCh Logical Volume is mounted] khkkkkkhkhkhhkhhhkhhhhhhhhhhhkhhhhhkh bk bk hkhkhkhkkk

changed: [serverb.lab.example.com] => (item={'name': 'content-1lv',6 'size': '64M',
'vgroup': 'apache-vg', 'mount_path': '/var/www'})
changed: [serverb.lab.example.com] => (item={'name': 'logs-1lv', 'size': '128M',

'vgroup': 'apache-vg', 'mount_path': '/var/log/httpd'})

PLAY REGCAP % * % % % % sk sk ok ok o ok ok ok ok ok o ok ok ok ok ok o ok o o ok o o ok o o ok o o ok o o ok o ok o ok ok ok ok ok R ok K ok K kK kK ko

serverb.lab.example.com 1 ok=7 changed=5 unreachable=0 failed=0

4. Create and execute on the webservers host group a playbook which uses the cron module
to create the /etc/cron.d/disk_usage crontab file that schedules a recurring cron job.
The job should run as the devops user every two minutes between 09:00 and 16 :59 on
Monday through Friday. The job should append the current disk usage to the file /home/
devops/disk_usage.

4]. Create a new playbook, create_crontab_file.yml, and add the lines needed
to start the play. It should target the managed hosts in the webservers group and
enable privilege escalation.

- name: Recurring cron job
hosts: webservers
become: true

4.2. Define a task that uses the cron module to schedule a recurring cron job.

S Note
The cron module provides a name option to uniquely describe the crontab file
entry and to ensure expected results. The description is added to the crontab file.
For example, the name option is required if you are removing a crontab entry using
state=absent. Additionally, when the default state, state=present is set, the
name option prevents a new crontab entry from always being created, regardless of
existing ones.

tasks:
- name: Crontab file exists
cron:
name: Add date and time to a file

4.3. Configure the job to run every two minutes between 09:00 and 16 : 59 on Monday
through Friday.

minute: "*/2"
hour: 9-16
weekday: 1-5

Chapter 9 | Automating Linux Administration Tasks

4.4, Use the cron_file parameter to use the /etc/cron.d/disk_usage crontab file
instead of an individual user's crontab in /var/spool/cron/. Arelative path will place
the filein /etc/cron.d directory. If the cron_file parameter is used, you must also
specify the user parameter.

user: devops

job: df >> /home/devops/disk_usage
cron_file: disk_usage

state: present

4.5. When completed, the playbook should appear as follows. Review the playbook for
accuracy.

- name: Recurring cron job
hosts: webservers
become: true

tasks:
- name: Crontab file exists
cron:
name: Add date and time to a file
minute: "*/2"
hour: 9-16
weekday: 1-5
user: devops
job: df >> /home/devops/disk_usage
cron_file: disk_usage
state: present

4.6. Run the playbook.

[student@workstation system-review]$ ansible-playbook create_crontab_file.yml

PLAY [ReCUrrlng cron job] R R R S Sk Sk Sk S S S S R S R S

TASK [Gatherlng Facts] R R SR Sk Sk S Sk S R S S R R kR

ok: [serverb.lab.example.com]

TASK [Crontab flle eXlStS] R R R S S Sk S Sk S Sk S S S R S S S S S R S R

changed: [serverb.lab.example.com]

PLAY RECAP R R Sk Sk S S S R S R R S S R R S S kR

serverb.lab.example.com 1 ok=2 changed=1 unreachable=0 failed=0

5. Create and execute on the webservers host group a playbook which uses the 1inux-
system-roles.network role to configure with the 172.25.250.40/24 IP address the
spare network interface, ethi.

51 Useansible-galaxy to verify that system roles are available. If not, you need to
install the rhel-system-roles package.

Chapter 9 | Automating Linux Administration Tasks

[student@workstation system-review]$ ansible-galaxy list
/usr/share/ansible/roles
- linux-system-roles.kdump, (unknown version)
- linux-system-roles.network, (unknown version)
- linux-system-roles.postfix, (unknown version)
- linux-system-roles.selinux, (unknown version)
- linux-system-roles.timesync, (unknown version)
- rhel-system-roles.kdump, (unknown version)
- rhel-system-roles.network, (unknown version)
- rhel-system-roles.postfix, (unknown version)
- rhel-system-roles.selinux, (unknown version)
- rhel-system-roles.timesync, (unknown version)
/etc/ansible/roles
[WARNING]: - the configured path /home/student/.ansible/roles does not exist.

5.2. Create a playbook, network_playbook.yml, with one play that targets the
webservers host group. Include the rhel-system-roles.network role in the
roles section of the play.

- name: NIC Configuration
hosts: webservers

roles:
- rhel-system-roles.network

5.3. Create the group_vars/webservers subdirectory.

[student@workstation system-review]$ mkdir -pv group_vars/webservers
mkdir: created directory 'group_vars'
mkdir: created directory 'group_vars/webservers'

5.4. Create a new file network.yml to define role variables. Because these variable values
apply to the hosts on the webservers host group, you need to create that file in
the group_vars/webservers directory. Add variable definitions to support the
configuration of the eth1 network interface. The file now contains:

[student@workstation system-review]$ vi group_vars/webservers/network.yml

network_connections:
- name: ethl
type: ethernet

ip:
address:
- 172.25.250.40/24

5.5. Run the playbook to configure the secondary network interface.

[student@workstation system-review]$ ansible-playbook network_playbook.yml

PLAY [NIC Configuration] khkhkhkhkhhhkhhhhhhkhhhhhhhhhhhhhhkhhkhhhhhkhhkhhhhhkhkhhkhkhkk

Chapter 9 | Automating Linux Administration Tasks

TASK [Gathering FaCtS] o X

ok: [serverb.lab.example.com]

TASK [rhel-system-roles.network : Check which services are running] *********xxx
ok: [serverb.lab.example.com]

TASK [rhel-system-roles.network : Check which packages are installed] ********x*
ok: [serverb.lab.example.com]

TASK [rhel-system-roles.network : Print network provider] ******xxxxsddokxxsddirx
ok: [serverb.lab.example.com] => {
"msg": "Using network provider: nm"

TASK [rhel-system-roles.network : Install packages] ******xxx*sdikaksddhxrsddirx
skipping: [serverb.lab.example.com]

TASK [rhel-system-roles.network : Enable network service] ******xxxxsddkxxsddirx
ok: [serverb.lab.example.com]

TASK [rhel-system-roles.network : Configure networking connection profiles] ****
[WARNING]: [002] <info> #0, state:None persistent_state:present, 'ethi': add
connection

ethl, 38d63afd-e610-4929-balb-1d38413219fb

changed: [serverb.lab.example.com]

TASK [rhel-system-roles.network : Re-test connectivity] ***x***kdaassdkxxsddirx
ok: [serverb.lab.example.com]

PLAY REGCAP % * % % % o sk ok sk ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok o o ok ok o ok ok ok ok ok ok ok o ok ok ok o ok ok ok ok ok ok ok ok ok ok ok K ok ok ok ok ok kK ko

serverb.lab.example.com 1 ok=7 changed=1 unreachable=0 failed=0

5.6. Verify that the ethl1 network interface uses the 172.25.250.40 IP address. It may
take up to a minute to configure the IP address.

[student@workstation system-review]$ ansible webservers -m setup \
> -a 'filter=ansible_eth1'
serverb.lab.example.com | SUCCESS => {
"ansible_facts": {
"ansible_eth1": {
...output omitted. ..
"ipv4": {
"address": "172.25.250.40",
"broadcast": "172.25.250.255",
"netmask": "255.255.255.0",
"network": "172.25.250.0"
}

...output omitted...

Evaluation

Run lab system-review grade onworkstation to grade your work.

Chapter 9 | Automating Linux Administration Tasks

[student@workstation ~]$ lab system-review grade

Finish
Fromworkstation, runthe lab system-review finish script to clean up the resources

created in this lab.

[student@workstation ~]$ lab system-review finish

This concludes the lab.

RH294-RHEL8.4-en-1-20210818 w

Chapter 9 | Automating Linux Administration Tasks

Summary

In this chapter, you learned:

The yum_repository module configures a Yum repository on a managed host. For
repositories that use public keys, you can verify that the key is available with the rpm_key
module.

The user and group modules create users and groups respectively on a managed host. You
can configure authorized keys for a user with the authorized_key module.

Cron jobs can be configured on managed hosts with the cron module.

Ansible supports the configuration of logical volumes with the lvg, and lvol modules. The
partedand filesystem modules support respectively the partition of devices and creation of
filesystems.

Red Hat Enterprise Linux 8 includes the network system role which supports the configuration
of network interfaces on managed hosts.

Chapter 10

Comprehensive Review: Linux
Automation with Ansible

Goal Demonstrate skills learned in this course by ¢
installing, optimizing, and configuring Ansible for
the management of managed hosts.
.
Sections + Comprehensive Review iy
Labs + Lab: Deploying Ansible "=
.. Lab: Creating Playbooks i
—. Lab: Creating Roles

w

i

RH294-RHEL8.4-en-1-20210818

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

Comprehensive Review

Objectives

After completing this section, you should be able to demonstrate proficiency with knowledge and
skills learned in Red Hat Enterprise Linux Automation with Ansible.

Reviewing Red Hat System Administration lll: Linux
Automation with Ansible

Before beginning the comprehensive review for this course, you should be comfortable with the
topics covered in each chapter.

Refer to earlier sections in the textbook for extra study.

Chapter 1, Introducing Ansible

Describe the fundamental concepts of Ansible and how it is used, and install Red Hat Ansible
Automation Platform.

+ Describe the motivation for automating Linux administration tasks with Ansible, fundamental
Ansible concepts, and Ansible's basic architecture.

+ Install Ansible on a control node and describe the distinction between community Ansible and

Red Hat Ansible Automation Platform.

Chapter 2, Implementing an Ansible Playbook

Create an inventory of managed hosts, write a simple Ansible Playbook, and run the playbook to
automate tasks on those hosts.

+ Describe Ansible inventory concepts and manage a static inventory file.

+ Describe where Ansible configuration files are located, how Ansible selects them, and edit them
to apply changes to default settings.

+ Run a single Ansible automation task using an ad hoc command and explain some use cases for
ad hoc commands.

+ Write a basic Ansible Playbook and run it using the ansible-playbook command.
+ Write a playbook that uses multiple plays and per-play privilege escalation, and effectively use

ansible-doc to learn how to use new modules to implement tasks for a play.

Chapter 3, Managing Variables and Facts

Write playbooks that use variables to simplify management of the playbook and facts to reference
information about managed hosts.

+ Create and reference variables that affect particular hosts or host groups, the play, or the global
environment, and describe how variable precedence works.

+ Encrypt sensitive variables using Ansible Vault, and run playbooks that reference Vault-
encrypted variable files.

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

+ Reference data about managed hosts using Ansible facts, and configure custom facts on
managed hosts.

Chapter 4, Implementing Task Control

Manage task control, handlers, and task errors in Ansible Playbooks.
+ Use loops to write efficient tasks and use conditions to control when to run tasks.
+ Implement a task that runs only when another task changes the managed host.

+ Control what happens when a task fails, and what conditions cause a task to fail.

Chapter 5, Deploying Files to Managed Hosts

Deploy, manage, and adjust files on hosts managed by Ansible.

+ Create, install, edit, and remove files on managed hosts, and manage permissions, ownership,
SELinux context, and other characteristics of those files.

+ Deploy files to managed hosts that are customized by using Jinja2 templates.

Chapter 6, Managing Complex Plays and Playbooks

Write playbooks for larger, more complex plays and playbooks.
+ Write sophisticated host patterns to efficiently select hosts for a play or ad hoc command.

+ Manage large playbooks by importing or including other playbooks or tasks from external files,
either unconditionally or based on a conditional test.

Chapter 7, Simplifying Playbooks with Roles

Use Ansible roles to develop playbooks more quickly and to reuse Ansible code.
+ Describe what a role is, how it is structured, and how you can use it in a playbook.

+ Write playbooks that take advantage of Red Hat Enterprise Linux System Roles to perform
standard operations.

- Create arole in a playbook's project directory and run it as part of one of the plays in the
playbook.

+ Select and retrieve roles from Ansible Galaxy or other sources such as a Git repository, and use
them in your playbooks.

+ Obtain a set of related roles, supplementary modules, and other content from content
collections, and use them in a playbook.

Chapter 8, Troubleshooting Ansible

Troubleshoot playbooks and managed hosts.
+ Troubleshoot generic issues with a new playbook and repair them.

+ Troubleshoot failures on managed hosts when running a playbook.

Chapter 9, Automating Linux Administration Tasks

Automate common Linux system administration tasks with Ansible.

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

+ Subscribe systems, configure software channels and repositories, enable module streams, and
manage RPM packages on managed hosts.

+ Manage Linux users and groups, configure SSH, and modify Sudo configuration on managed
hosts.

+ Manage service startup, schedule processes with at, cron, and systemd, reboot, and control the
default boot target on managed hosts.

+ Partition storage devices, configure LVM, format partitions or logical volumes, mount file
systems, and add swap files or spaces.

« Configure network settings and name resolution on managed hosts, and collect network-related
Ansible facts.

W RH294-RHEL8.4-en-1-20210818

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

» Lab

Deploying Ansible

In this review, you will install Ansible on workstation, use it as a control node, and
configure it for connections to the managed hosts servera and serverb. Use ad hoc
commands to perform actions on managed hosts.

Outcomes
You should be able to:

+ Install Ansible.

+ Use ad hoc commands to perform actions on managed hosts.

Before You Begin
Logintoworkstation as student using student as the password.

Onworkstation, runthe lab review-deploy start command. This script ensures
that the managed hosts, servera and serverb, are reachable on the network. The script
creates a lab subdirectory named review-deploy in the student's home directory.

[student@workstation ~]$ lab review-deploy start

Instructions

1. Install Ansible on workstation so that it can serve the control node.

2. Onthe control node, create an inventory file, /home/student/review-deploy/
inventory, containing a group called dev. This group should consist of the managed hosts
servera. lab.example.comand serverb. lab.example.com.

3. Create the Ansible configuration file in /home/student/review-deploy/ansible.cfg.
The configuration file should reference the /home/student/review-deploy/
inventory inventory file.

4., Execute an ad hoc command using privilege escalation to modify the contents of the /etc/
motd file on servera and serverb to contain the string Managed by Ansible\n. Use
devops as the remote user.

5. Execute an ad hoc command to verify that the contents of the /etc/motd file on servera
and serverb are identical.

Evaluation

Onworkstation, runthe lab review-deploy grade command to confirm success on this
exercise. Correct any reported failures and rerun the command until successful.

[student@workstation ~]$ lab review-deploy grade

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

Finish

Onworkstation, runthe lab review-deploy finish command to clean up this exercise

[student@workstation ~]$ lab review-deploy finish

This concludes the lab.

W RH294-RHEL8.4-en-1-20210818

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

» Solution

Deploying Ansible

In this review, you will install Ansible on workstation, use it as a control node, and
configure it for connections to the managed hosts servera and serverb. Use ad hoc
commands to perform actions on managed hosts.

Outcomes
You should be able to:

+ Install Ansible.

+ Use ad hoc commands to perform actions on managed hosts.

Before You Begin
Logintoworkstation as student using student as the password.

Onworkstation, runthe lab review-deploy start command. This script ensures
that the managed hosts, servera and serverb, are reachable on the network. The script
creates a lab subdirectory named review-deploy in the student's home directory.

[student@workstation ~]$ lab review-deploy start

Instructions

1. Install Ansible on workstation so that it can serve the control node.

[student@workstation ~]$ sudo yum install ansible
[sudo] password for student:

Loaded plugins: langpacks, search-disabled-repos
Resolving Dependencies

--> Running transaction check

...output omitted...

Is this ok [y/d/N]: y

...output omitted...

2. Onthe control node, create an inventory file, /home/student/review-deploy/
inventory, containing a group called dev. This group should consist of the managed hosts

servera. lab.example.comand serverb. lab.example.com.

21. Change directory into the Ansible project directory, /home/student/review-
deploy, created by the setup script.

[student@workstation ~]$ cd ~/review-deploy

2.2. Create the inventory file with the following content.

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

[dev]
servera. lab.example.com
serverb.lab.example.com

3. Create the Ansible configuration file in /home/student/review-deploy/ansible.cfqg.
The configuration file should reference the /home/student/review-deploy/
inventory inventory file.

Add the following entries to configure the inventory file . /inventory as the inventory
source. Save the changes and exit the text editor.

[defaults]
inventory=./inventory

4., Execute an ad hoc command using privilege escalation to modify the contents of the /etc/
motd file on servera and serverb to contain the string Managed by Ansible\n. Use
devops as the remote user.

[student@workstation review-deploy]$ ansible dev -m copy \
> -a 'content="Managed by Ansible\n" dest=/etc/motd' -b -u devops
servera. lab.example.com | CHANGED => {
"ansible_facts": {
"discovered_interpreter_python": "/usr/libexec/platform-python"
i
"changed": true,
"checksum": "4458b979ede3c332f8f2128385df4ba305e58c27",
"dest": "/etc/motd",
"gid": o,
"group": "root",
"md5sum": "65a4290ee5559756ad04e558b0e0Oc4e3",
"mode": "0644",

"owner": "root",

"secontext": "unconfined_u:object_r:etc_t:s@",

"size": 19,

"src": "/home/devops/.ansible/tmp/...output omitted...",
"state": "file",

"uid": ©

}
serverb.lab.example.com | CHANGED => {

"ansible_facts": {
"discovered_interpreter_python": "/usr/libexec/platform-python"
i
"changed": true,
"checksum": "4458b979ede3c332f8f2128385df4ba305e58c27",
"dest": "/etc/motd",
"gid": o,
"group": "root",
"md5sum": "65a4290ee5559756ad04e558b0e0Oc4e3",
"mode": "0644",

"owner": "root",

"secontext": "system_u:object_r:etc_t:s0",

"size": 19,

"src": "/home/devops/.ansible/tmp/...output omitted...",

Chapter 10 | Comprehensive Review: Linux Automation with Ansible
"state": "file",

"uid": ©

5. Execute an ad hoc command to verify that the contents of the /etc/motd file on servera
and serverb are identical.

[student@workstation review-deploy]$ ansible dev -m command -a "cat /etc/motd"
servera.lab.example.com | CHANGED | rc=0 >>

Managed by Ansible

serverb.lab.example.com | CHANGED | rc=0 >>
Managed by Ansible

Evaluation

Onworkstation, runthe lab review-deploy grade command to confirm success on this
exercise. Correct any reported failures and rerun the command until successful.

[student@workstation ~]$ lab review-deploy grade

Finish

Onworkstation, runthe lab review-deploy finish command to clean up this exercise.

[student@workstation ~]$ lab review-deploy finish

This concludes the lab.

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

» Lab

Creating Playbooks

In this review, you will create three playbooks in the Ansible project directory, /home/
student/review-playbooks. One playbook will ensure that /ftp is installed on systems
that should be FTP clients, one playbook will ensure that vsftpd is installed and configured
on systems that should be FTP servers, and one playbook (site.yml) will run both of the
other playbooks.

Outcomes
You should be able to:

+ Create and execute playbooks to perform tasks on managed hosts.

+ Utilize Jinja2 templates, variables, and handlers in playbooks.

i | Important

— If you are having trouble with your site.ym1 playbook, make sure that both
ansible-vsftpd.ymland ftpclients.yml use consistent indentation.

Before You Begin
Logintoworkstation as student using student as the password.

Onworkstation, runthe lab review-playbooks start command.

[student@workstation ~]$ lab review-playbooks start

Instructions

1. Asthe student user onworkstation, create the inventory file /home/student/
review-playbooks/inventory, containing serverc. lab.example.comin the
ftpclients group, and serverb. lab.example.comand serverd. lab.example.com
in the ftpservers group.

2. Create the Ansible configuration file, /home/student/review-playbooks/
ansible.cfg, and populate it with the necessary entries to meet these requirements:

+ Configure the Ansible project to use the newly created inventory
+ Connect to managed hosts as the devops user
« Utilize privilege escalation using sudo as the root user

+ Escalate privileges for each task by default

3. Create the playbook, /home/student/review-playbooks/ftpclients.yml,
containing a play that targets hosts in the ftpclients inventory group and ensures that the
Iftp package is installed.

448

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

4. Place the provided vsftpd configuration file, vsftpd.conf. j2,in the templates
subdirectory.
Place the provided defaults-template.yml file in the vars subdirectory.

6. Create avars.yml variable definition file in the vars subdirectory to define the following
three variables and their values:

Variable Value
vsftpd_package vsftpd
vsftpd_service vsftpd
vsftpd_config_file /etc/vsftpd/vsftpd.conf

7. Using the previously created Jinja2 template and variable definition files, create a second
playbook, /home/student/review-playbooks/ansible-vsftpd.yml, to configure
the vsftpd service on the hosts in the ftpservers inventory group.

8. Create a third playbook, /home/student/review-playbooks/site.yml, andinclude
the plays from the two playbooks created previously, ftpclients.yml and ansible-
vsftpd.yml.

9. Execute the /home/student/review-playbooks/site.yml playbook to verify that it
performs the desired tasks on the managed hosts.

Evaluation

As the student useronworkstation, runthe lab review-playbooks grade command to
confirm success of this exercise. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab review-playbooks grade
Finish
Run the lab review-playbooks finish command to clean up the lab tasks on serverb,

serverc, and serverd.

[student@workstation ~]$ lab review-playbooks finish

This concludes the lab.

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

» Solution

Creating Playbooks

In this review, you will create three playbooks in the Ansible project directory, /home/
student/review-playbooks. One playbook will ensure that /ftp is installed on systems
that should be FTP clients, one playbook will ensure that vsftpd is installed and configured
on systems that should be FTP servers, and one playbook (site.yml) will run both of the
other playbooks.

Outcomes
You should be able to:

- Create and execute playbooks to perform tasks on managed hosts.
« Utilize Jinja2 templates, variables, and handlers in playbooks.

i | Important

—— If you are having trouble with your site.ym1 playbook, make sure that both
ansible-vsftpd.ymland ftpclients.yml use consistent indentation.

Before You Begin
Logintoworkstation as student using student as the password.

Onworkstation, runthe lab review-playbooks start command.

[student@workstation ~]$ lab review-playbooks start

Instructions

1. Asthe student user onworkstation, create the inventory file /home/student/
review-playbooks/inventory, containing serverc. lab.example.comin the
ftpclients group, and serverb. lab.example.comand serverd. lab.example.com
in the ftpservers group.

11. Change directory into the Ansible project directory, /home/student/review-
playbooks, created by the setup script.

[student@workstation ~]$ cd ~/review-playbooks

1.2. Populate the inventory file with the following entries, and then save and exit.

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

[ftpservers]
serverb.lab.example.com
serverd. lab.example.com

[ftpclients]
serverc. lab.example.com

2. Create the Ansible configuration file, /home/student/review-playbooks/
ansible.cfg, and populate it with the necessary entries to meet these requirements:

+ Configure the Ansible project to use the newly created inventory
+ Connect to managed hosts as the devops user
+ Utilize privilege escalation using sudo as the root user

+ Escalate privileges for each task by default

[defaults]
remote_user = devops
inventory = ./inventory

[privilege_escalation]
become_user = root
become_method = sudo
become = true

3. Create the playbook, /home/student/review-playbooks/ftpclients.yml,
containing a play that targets hosts in the ftpclients inventory group and ensures that the
Iftp package is installed.

- name: Ensure FTP Client Configuration
hosts: ftpclients

tasks:
- name: latest version of 1ftp is installed
yum:
name: 1ftp

state: latest

4. Place the provided vsftpd configuration file, vsftpd.conf. j2, in the templates
subdirectory.

4]. Create the templates subdirectory.

[student@workstation review-playbooks]$ mkdir -v templates
mkdir: created directory 'templates'

4.2. Move the vsftpd.conf. j2 file to the newly created templates subdirectory.

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

6.

[student@workstation review-playbooks]$ mv -v vsftpd.conf.j2 templates/
renamed 'vsftpd.conf.j2' -> 'templates/vsftpd.conf.j2'

Place the provided defaults-template.yml file in the vars subdirectory.
5.1. Create the vars subdirectory.

[student@workstation review-playbooks]$ mkdir -v vars
mkdir: created directory 'vars'

5.2. Move the defaults-template.yml file to the newly created vars subdirectory.

[student@workstation review-playbooks]$ mv -v defaults-template.yml vars/
renamed 'defaults-template.yml' -> 'vars/defaults-template.yml'

Create a vars.yml variable definition file in the vars subdirectory to define the following
three variables and their values:

Variable Value

vsftpd_package vsftpd

vsftpd_service vsftpd

vsftpd_config_file /etc/vsftpd/vsftpd.conf

vsftpd_package: vsftpd
vsftpd_service: vsftpd
vsftpd_config_file: /etc/vsftpd/vsftpd.conf

Using the previously created Jinja2 template and variable definition files, create a second
playbook, /home/student/review-playbooks/ansible-vsftpd.yml, to configure
the vsftpd service on the hosts in the ftpservers inventory group.

- name: FTP server is installed
hosts:
- ftpservers
vars_files:
- vars/defaults-template.yml
- vars/vars.yml

tasks:
- name: Packages are installed
yum:
name: "{{ vsftpd_package }}"
state: present

- name: Ensure service is started
service:
name: "{{ vsftpd_service }}"

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

8.

state: started
enabled: true

- name: Configuration file is installed
template:
src: templates/vsftpd.conf.j2
dest: "{{ vsftpd_config_file }}"
owner: root
group: root
mode: 0600
setype: etc_t
notify: restart vsftpd

- name: firewalld is installed
yum:
name: firewalld
state: present

- name: firewalld is started and enabled
service:
name: firewalld
state: started
enabled: yes

- name: FTP port is open
firewalld:
service: ftp
permanent: true
state: enabled
immediate: yes

- name: FTP passive data ports are open
firewalld:
port: 21000-21020/tcp
permanent: yes
state: enabled
immediate: yes

handlers:
- name: restart vsftpd
service:

name: "{{ vsftpd_service }}"
state: restarted

Create a third playbook, /home/student/review-playbooks/site.yml, andinclude

the plays from the two playbooks created previously, ftpclients.yml and ansible-
vsftpd.yml.

FTP Servers playbook

import_playbook: ansible-vsftpd.yml

FTP Clients playbook

import_playbook: ftpclients.yml

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

9. Execute the /home/student/review-playbooks/site.yml playbook to verify that it
performs the desired tasks on the managed hosts.

[student@workstation review-playbooks]$ ansible-playbook site.yml

Evaluation

As the student useronworkstation, runthe lab review-playbooks grade command to
confirm success of this exercise. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab review-playbooks grade
Finish
Run the lab review-playbooks finish command to clean up the lab tasks on serverb,

serverc, and serverd.

[student@workstation ~]$ lab review-playbooks finish

This concludes the lab.

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

» Lab

Creating Roles

In this review, you will convert the ansible-vsftpd.yml playbook into a role, and then use
that role in a new playbook that will also run some additional tasks.

Outcomes
You should be able to:

- Create a role to configure the vsftpd service using tasks from an existing playbook.
+ Include arole in a playbook, and execute the playbook.

1| Important

You may find it useful to debug your role by testing it in a playbook that does
not contain the extra tasks or playbook variables listed above, but instead
contains a play that only targets hosts in the group ftpservers and applies
the role.

After confirming that a simplified playbook using only the role works just like
the original ansible-vsftpd.yml playbook, you can build the complete
vsftpd-configure.yml playbook by adding the additional variables and
tasks specified above.

| I I Important

= If you are having trouble with your site.ym1 playbook, make sure that
both vsftpd-configure.ymland ftpclients.yml use consistent
indentation.

Before You Begin
Logintoworkstation as student using student as the password.

Onworkstation, runthe lab review-roles start command. This script ensures

that the remote hosts are reachable on the network. The script also checks that Ansible is
installed on workstation, creates a directory structure for the lab environment, and installs
required lab files.

[student@workstation ~]$ lab review-roles start

Instructions

1.

Change to the review-roles working directory. Configure the Ansible project to use the
static inventory file inventory. Verify the inventory configuration using the ansible-
inventory command.

Convert the ansible-vsftpd.yml playbook to the role ansible-vsftpd.

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

3. Update the contents of the roles/ansible-vsftpd/meta/main.yml file.

Variable Value

author Red Hat Training
description example role for RH294
company Red Hat

license BSD

4. Modify the contents of the roles/ansible-vsftpd/README.md file so that it provides
pertinent information regarding the role. After modification, the file should contain the
following.

ansible-vsftpd

Example ansible-vsftpd role from Red Hat's "Linux Automation" (RH294)
course.

Role Variables

* defaults/main.yml contains variables used to configure the vsftpd.conf template
* vars/main.yml contains the name of the vsftpd service, the name of the RPM
package, and the location of the service's configuration file

Dependencies

None.

Example Playbook

- hosts: servers
roles:
- ansible-vsftpd

License

BSD

Author Information

Red Hat (training@redhat.com)

5. Remove the unused directories from the new role.

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

6. Create the new playbook vsftpd-configure.yml. It should contain the following.

- name: Install and configure vsftpd
hosts: ftpservers
vars:
vsftpd_anon_root: /mnt/share/
vsftpd_local_root: /mnt/share/

roles:
- ansible-vsftpd

tasks:
- name: /dev/vdbl is partitioned
parted:

device: /dev/vdb

number: 1

label: gpt

part_start: 1MiB

part_end: 100%

state: present

- name: XFS file system exists on /dev/vdbl
filesystem:
dev: /dev/vdbl
fstype: xfs
force: yes

- name: anon_root mount point exists
file:
path: '{{ vsftpd_anon_root }}'
state: directory

- name: /dev/vdbl is mounted on anon_root
mount:
path: '{{ vsftpd_anon_root }}'
src: /dev/vdb1l

fstype: xfs
state: mounted
dump: '1'

passno: '2'
notify: restart vsftpd

- name: Make sure permissions on mounted fs are correct
file:

path: '{{ vsftpd_anon_root }}'

owner: root

group: root

mode: '0755'

setype: "{{ vsftpd_setype }}"

state: directory

- name: Copy README to the ftp anon_root

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

copy':
dest: '{{ vsftpd_anon_root }3}/README'
content: "Welcome to the FTP server at {{ ansible_fgdn }}\n"
setype: '{{ vsftpd_setype }}'

7. Change the site.yml playbook to use the newly created vsftpd-configure.yml
playbook instead of the ansible-vsftpd.yml playbook.

8. Verify that the site.yml playbook works as intended by executing it with ansible-
playbook.

Evaluation

Fromworkstation, runthe lab review-roles grade command to confirm success on this
exercise. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab review-roles grade
Finish
Run the lab review-roles finish command to clean up the lab tasks on servera and

serverb.

[student@workstation ~]$ lab review-roles finish

This concludes the lab.

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

» Solution

Creating Roles

In this review, you will convert the ansible-vsftpd.yml playbook into a role, and then use
that role in a new playbook that will also run some additional tasks.

Outcomes
You should be able to:

+ Create a role to configure the vsftpd service using tasks from an existing playbook.
+ Include arole in a playbook, and execute the playbook.

Important

You may find it useful to debug your role by testing it in a playbook that does
not contain the extra tasks or playbook variables listed above, but instead
contains a play that only targets hosts in the group ftpservers and applies
the role.

After confirming that a simplified playbook using only the role works just like
the original ansible-vsftpd.yml playbook, you can build the complete
vsftpd-configure.yml playbook by adding the additional variables and
tasks specified above.

Important
If you are having trouble with your site.ym1l playbook, make sure that
both vsftpd-configure.yml and ftpclients.yml use consistent
indentation.

Before You Begin
Logintoworkstation as student using student as the password.

Onworkstation, runthe lab review-roles start command. This script ensures

that the remote hosts are reachable on the network. The script also checks that Ansible is
installed on workstation, creates a directory structure for the lab environment, and installs
required lab files.

[student@workstation ~]$ lab review-roles start

Instructions

1.

Change to the review-roles working directory. Configure the Ansible project to use the
static inventory file inventory. Verify the inventory configuration using the ansible-
inventory command.

1.1

Change to the review-roles working directory.

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

2.

[student@workstation ~]$ cd ~/review-roles
[student@workstation review-roles]$

1.2. Editthe ansible.cfqg file, add the inventory directive in the [defaults] section,
and setitto ./inventory.

The [defaults] section of the ansible.cfqg file looks like this:

[defaults]
remote_user=devops
inventory=./inventory

1.3. Use the ansible-inventory command to verify the project inventory configuration:

[student@workstation review-roles]$ ansible-inventory --list all

{

"_meta": {

"hostvars": {}

H
"all": {

"children": [

"ftpclients",
"ftpservers",
"ungrouped"

]

H
"ftpclients": {

"hosts": [
"servera.lab.example.com",
"serverc.lab.example.com"

1

H
"ftpservers": {

"hosts": [
"serverb.lab.example.com",
"serverd. lab.example.com"

1

}
}
Convert the ansible-vsftpd.yml playbook to the role ansible-vsftpd.

2. Create the roles subdirectory.

[student@workstation review-roles]$ mkdir -v roles
mkdir: created directory 'roles'

2.2. Using ansible-galaxy, create the directory structure for the new ansible-vsftpd
role in the roles subdirectory.

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

[student@workstation review-roles]$ cd roles
[student@workstation roles]$ ansible-galaxy init ansible-vsftpd
- Role ansible-vsftpd was created successfully
[student@workstation roles]$ cd ..

[student@workstation review-roles]$

2.3. Using tree, verify the directory structure created for the new role.

[student@workstation review-roles]$ tree roles

roles

L— ansible-vsftpd
|— defaults

L— main.yml

files

handlers

L— main.yml

meta

L— main.yml

README . md

tasks

L— main.yml

templates

tests

— inventory

L— test.yml

vars

L— main.yml

[TT 1T T TT

9 directories, 8 files

2.4. Replace theroles/ansible-vsftpd/defaults/main.yml file with the variable
definitions in the defaults-template.yml file.

[student@workstation review-roles]$ mv -v defaults-template.yml \
> roles/ansible-vsftpd/defaults/main.yml
renamed 'defaults-template.yml' -> 'roles/ansible-vsftpd/defaults/main.yml’'

2.5. Replace theroles/ansible-vsftpd/vars/main.yml file with the variable
definitions in the vars.yml file.

[student@workstation review-roles]$ mv -v vars.yml \
> roles/ansible-vsftpd/vars/main.yml
renamed 'vars.yml' -> 'roles/ansible-vsftpd/vars/main.yml'

2.6. Usethe templates/vsftpd.conf. j2 file as a template for the ansible-vsftpd
role.

[student@workstation review-roles]$ mv -v vsftpd.conf.j2 \
> roles/ansible-vsftpd/templates/
renamed 'vsftpd.conf.j2' -> 'roles/ansible-vsftpd/templates/vsftpd.conf.j2'

Chapter 10

2.7

| Comprehensive Review: Linux Automation with Ansible

Copy tasks from the ansible-vsftpd.yml playbook to the roles/ansible-
vsftpd/tasks/main.yml file. The value of the src keyword in the template
module task no longer needs to reference the templates subdirectory. The roles/
ansible-vsftpd/tasks/main.yml file should contain the following when you
finish.

tasks file for ansible-vsftpd

- name:
yum:

Packages are installed

name: '{{ vsftpd_package }}'
state: present

- nhame:

Ensure service is started

service:
name: '{{ vsftpd_service }}'
state: started
enabled: true

- hame:

Configuration file is installed

template:
src: vsftpd.conf.j2
dest: '{{ vsftpd_config file }}'
owner: root

group: root

mode: '0600'

setype: etc_t
notify: restart vsftpd

- name:
yum:

firewalld is installed

name: firewalld
state: present

- nhame:

firewalld is started and enabled

service:
name: firewalld
state: started
enabled: yes

- nhame:

FTP port is open

firewalld:
service: ftp

permanent: true
state: enabled
immediate: yes

- hame:

Passive FTP data ports allowed through the firewall

firewalld:
port: 21000-21020/tcp
permanent: yes
state: enabled
immediate: yes

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

2.8. Copy the handlers from the ansible-vsftpd.yml playbook to the roles/
ansible-vsftpd/handlers/main.yml file. The roles/ansible-vsftpd/
handlers/main.yml file should contain the following when you finish.

handlers file for ansible-vsftpd
- name: restart vsftpd
service:
name: "{{ vsftpd_service }}"
state: restarted

3. Update the contents of the roles/ansible-vsftpd/meta/main.yml file.

Variable Value

author Red Hat Training
description example role for RH294
company Red Hat

license BSD

3.1. Change the value of the author entry to Red Hat Training.

author: Red Hat Training

3.2. Change the value of the description entry to example role for RH294.

description: example role for RH294

3.3. Change the value of the company entry to Red Hat.

company: Red Hat

3.4. Change the value of the license: entry to BSD.

license: BSD

4. Modify the contents of the roles/ansible-vsftpd/README.md file so that it provides

pertinent information regarding the role. After modification, the file should contain the
following.

ansible-vsftpd

Example ansible-vsftpd role from Red Hat's "Linux Automation" (RH294)
course.

Role Variables

* defaults/main.yml contains variables used to configure the vsftpd.conf template

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

* vars/main.yml contains the name of the vsftpd service, the name of the RPM
package, and the location of the service's configuration file

Dependencies

None.

Example Playbook

- hosts: servers
roles:
- ansible-vsftpd

License

BSD

Author Information

Red Hat (training@redhat.com)
5. Remove the unused directories from the new role.

[student@workstation review-roles]$ rm -rvf roles/ansible-vsftpd/tests
removed 'roles/ansible-vsftpd/tests/inventory'

removed 'roles/ansible-vsftpd/tests/test.yml'

removed directory: 'roles/ansible-vsftpd/tests'

6. Create the new playbook vsftpd-configure.yml. It should contain the following.

- name: Install and configure vsftpd
hosts: ftpservers
vars:
vsftpd_anon_root: /mnt/share/
vsftpd_local_root: /mnt/share/

roles:
- ansible-vsftpd

tasks:
- name: /dev/vdbl is partitioned
parted:

device: /dev/vdb

number: 1

label: gpt

part_start: 1MiB

part_end: 100%

state: present

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

- name: XFS file system exists on /dev/vdbl
filesystem:
dev: /dev/vdbl
fstype: xfs
force: yes

- name: anon_root mount point exists
file:
path: '{{ vsftpd_anon_root }}'
state: directory

- name: /dev/vdbl is mounted on anon_root
mount :
path: '{{ vsftpd_anon_root }}'
src: /dev/vdb1l

fstype: xfs
state: mounted
dump: '1'

passno: '2'
notify: restart vsftpd

- name: Make sure permissions on mounted fs are correct
file:

path: '{{ vsftpd_anon_root }}'

owner: root

group: root

mode: '0755'

setype: "{{ vsftpd_setype }}"

state: directory

- name: Copy README to the ftp anon_root
copy':
dest: '{{ vsftpd_anon_root }3}/README'
content: "Welcome to the FTP server at {{ ansible_fgdn }}\n"
setype: '{{ vsftpd_setype }}'

7. Change the site.yml playbook to use the newly created vsftpd-configure.yml

playbook instead of the ansible-vsftpd.yml playbook.

FTP Servers playbook
- import_playbook: vsftpd-configure.yml

FTP Clients playbook
- import_playbook: ftpclients.yml

8. Verify that the site.yml playbook works as intended by executing it with ansible-

playbook.

[student@workstation review-roles]$ ansible-playbook site.yml

Chapter 10 | Comprehensive Review: Linux Automation with Ansible

Evaluation

Fromworkstation, runthe lab review-roles grade command to confirm success on this
exercise. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab review-roles grade
Finish
Run the lab review-roles finish command to clean up the lab tasks on servera and

serverb.

[student@workstation ~]$ lab review-roles finish

This concludes the lab.

W RH294-RHEL8.4-en-1-20210818

Appendix A

Supplementary Topics

Goal Investigate supplementary topics not included in
the official course.

Sections + Examining Ansible Configuration Options

'/

RH294-RHEL8.4-en-1-20210818

Appendix A | Supplementary Topics

Examining Ansible Configuration Options

Objectives

After completing this section, you should be able to use ansible-config to discover and
investigate configuration options and to determine which options have been modified from the
default settings.

Viewing Configuration Options

If you want to find out what options are available in the configuration file, use the ansible-
config list command. It will display an exhaustive list of the available configuration options
and their default settings. This list may vary depending on the version of Ansible that you have
installed and whether you have any additional Ansible plugins on your control node.

Each option displayed by ansible-config list will have a number of key-value pairs
associated with it. These key-value pairs provide information on how that option works. For
example, the option ACTION_WARNINGS displays the following key-value pairs:

Key Value Purpose
description [By default Ansible will issue a Describes what this configuration
warning when received from a option is for.

task action (module or action
plugin). These warnings can be
silenced by adjusting this setting

to False.]
type boolean What the type is for the option:
boolean means true-false value.
default true The default value for this option.
version_added 2.5 The version of Ansible that
added this option, for backward
compatibility.
ini { key: action_warnings, Which section of the INI-like
section: defaults } inventory file contains this
option, and the name of the
option in the configuration file
(action_warnings, in the
defaults section).
env ANSIBLE_ACTION_WARNINGS If this environment variable is set,

it will override any setting of the
option made in the configuration
file.

468

Appendix A | Supplementary Topics

Determining Modified Configuration Options

When working with configuration files, you might want to find out which options have been set to
values which are different from the built-in defaults.

You can do this by running the ansible-config dump -v --only-changed command. The
- v option displays the location of the ansible. cfg file used when processing the command.
The ansible-config command follows the same order of precedence mentioned previously for
the ansible command. Output will vary depending on the location of the ansible.cfg file and
which directory the ansible-config command is ran from.

In the following example, there is a single ansible configuration file located at /etc/ansible/
ansible.cfg. The ansible-config command is first ran from student's home directory, then
from a working directory with the same results:

[user@controlnode ~]$ ansible-config dump -v --only-changed

Using /etc/ansible/ansible.cfg as config file
DEFAULT_ROLES_PATH(/etc/ansible/ansible.cfg) = [u'/etc/ansible/roles', u'/usr/
share/ansible/roles"']

[user@controlnode ~]$ cd /home/student/workingdirectory

[user@controlnode workingdirectory]$ ansible-config dump -v --only-changed
Using /etc/ansible/ansible.cfg as config file
DEFAULT_ROLES_PATH(/etc/ansible/ansible.cfg) = [u'/etc/ansible/roles', u'/usr/
share/ansible/roles']

However, if you have a custom ansible.cfg file in your working directory, the same command
will display information based on where it is ran from and the relative ansible.cfqg file.

[user@controlnode ~]$ ansible-config dump -v --only-changed

Using /etc/ansible/ansible.cfg as config file
DEFAULT_ROLES_PATH(/etc/ansible/ansible.cfg) = [u'/etc/ansible/roles', u'/usr/
share/ansible/roles']

[user@controlnode ~]$ cd /home/student/workingdirectory
[user@controlnode workingdirectory]$ cat ansible.cfg
[defaults]

inventory = ./inventory

remote_user = devops

[user@controlnode workingdirectory]$ ansible-config dump -v --only-changed

Using /home/student/workingdirectory/ansible.cfg as config file
DEFAULT_HOST_LIST(/home/student/workingdirectory/ansible.cfg) = [u'/home/student/
workingdirectory/inventory']
DEFAULT_REMOTE_USER(/home/student/workingdirectory/ansible.cfg) = devops

References
ansible-config(1) man page

Configuration file: Ansible Documentation
https://docs.ansible.com/ansible/2.9/installation_guide/intro_configuration.html

https://docs.ansible.com/ansible/2.9/installation_guide/intro_configuration.html

For use by La Pyayt lapyayt2015 lapyayt@infratechmm.com Copyright © 2022 Red Hat, Inc.

RH294-RHEL8.4-en-1-20210818

Appendix B

Ansible Lightbulb Licensing

RH294-RHEL8.4-en-1-20210818

Appendix B | Ansible Lightbulb Licensing

Ansible Lightbulb License

Portions of this course were adapted from the Ansible Lightbulb project. The original material
from that project is available from https://github.com/ansible/lightbulb under the following MIT
License:

Copyright 2017 Red Hat, Inc.

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software

and associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF ORIN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

https://github.com/ansible/lightbulb

	Red Hat Enterprise Linux Automation with Ansible
	Table of Contents
	Document Conventions
	

	Introduction
	Red Hat Enterprise Linux Automation with Ansible
	Orientation to the Classroom Environment

	Chapter 1. Introducing Ansible
	Automating Linux Administration with Ansible
	Quiz: Automating Linux Administration with Ansible
	Installing Ansible
	Guided Exercise: Installing Ansible
	Summary

	Chapter 2. Implementing an Ansible Playbook
	Building an Ansible Inventory
	Guided Exercise: Building an Ansible Inventory
	Managing Ansible Configuration Files
	Guided Exercise: Managing Ansible Configuration Files
	Running Ad Hoc Commands
	Guided Exercise: Running Ad Hoc Commands
	Writing and Running Playbooks
	Guided Exercise: Writing and Running Playbooks
	Implementing Multiple Plays
	Guided Exercise: Implementing Multiple Plays
	Lab: Implementing Playbooks
	Summary

	Chapter 3. Managing Variables and Facts
	Managing Variables
	Guided Exercise: Managing Variables
	Managing Secrets
	Guided Exercise: Managing Secrets
	Managing Facts
	Guided Exercise: Managing Facts
	Lab: Managing Variables and Facts
	Summary

	Chapter 4. Implementing Task Control
	Writing Loops and Conditional Tasks
	Guided Exercise: Writing Loops and Conditional Tasks
	Implementing Handlers
	Guided Exercise: Implementing Handlers
	Handling Task Failure
	Guided Exercise: Handling Task Failure
	Lab: Implementing Task Control
	Summary

	Chapter 5. Deploying Files to Managed Hosts
	Modifying and Copying Files to Hosts
	Guided Exercise: Modifying and Copying Files to Hosts
	Deploying Custom Files with Jinja2 Templates
	Guided Exercise: Deploying Custom Files with Jinja2 Templates
	Lab: Deploying Files to Managed Hosts
	Summary

	Chapter 6. Managing Complex Plays and Playbooks
	Selecting Hosts with Host Patterns
	Guided Exercise: Selecting Hosts with Host Patterns
	Including and Importing Files
	Guided Exercise: Including and Importing Files
	Lab: Managing Complex Plays and Playbooks
	Summary

	Chapter 7. Simplifying Playbooks with Roles
	Describing Role Structure
	Quiz: Describing Role Structure
	Reusing Content with System Roles
	Guided Exercise: Reusing Content with System Roles
	Creating Roles
	Guided Exercise: Creating Roles
	Deploying Roles with Ansible Galaxy
	Guided Exercise: Deploying Roles with Ansible Galaxy
	Getting Roles and Modules from Content Collections
	Guided Exercise: Getting Roles and Modules from Content Collections
	Lab: Simplifying Playbooks with Roles
	Summary

	Chapter 8. Troubleshooting Ansible
	Troubleshooting Playbooks
	Guided Exercise: Troubleshooting Playbooks
	Troubleshooting Ansible Managed Hosts
	Guided Exercise: Troubleshooting Ansible Managed Hosts
	Lab: Troubleshooting Ansible
	Summary

	Chapter 9. Automating Linux Administration Tasks
	Managing Software and Subscriptions
	Guided Exercise: Managing Software and Subscriptions
	Managing Users and Authentication
	Guided Exercise: Managing Users and Authentication
	Managing the Boot Process and Scheduled Processes
	Guided Exercise: Managing the Boot Process and Scheduled Processes
	Managing Storage
	Guided Exercise: Managing Storage
	Managing Network Configuration
	Guided Exercise: Managing Network Configuration
	Lab: Automating Linux Administration Tasks
	Summary

	Chapter 10. Comprehensive Review: Linux Automation with Ansible
	Comprehensive Review
	Lab: Deploying Ansible
	Lab: Creating Playbooks
	Lab: Creating Roles

	Appendix A. Supplementary Topics
	Examining Ansible Configuration Options

	Appendix B. Ansible Lightbulb Licensing
	Ansible Lightbulb License

