OCP 4.14 DO

B0 |
|

]

Lz}

4
(] [

For use by srinivas godavarthy srinivaschow srinivas. godavarthy@bupa.com.sa Copyright © 2024 Red Hat, Inc.

Red Hat

Learning Community

Join a community dedicated to learning open source

The Red Hat® Learning Community is a collaborative platform for users to accelerate open
source skill adoption while working with Red Hat products and experts.

Network with tens Join and interact with

of thousands of Engage in thousands hundreds of certified Unlock badges as you
comunity members of active conversations training instructors participate and
and posts accomplish new goals

This knowledge-sharing platform creates a space
where learners can connect, ask questions, and
collaborate with other open source practitioners.

Access free Red Hat training videos
Discover the latest Red Hat Training and Certification news

Connect with your instructor - and your classmates - before,

after, and during your training course.

Join peers as you explore Red Hat products

Join the conversation Red Hat

D0O280-0CP4.14-en-1-20240215 Copyright ©2024 Red Hat, Inc.

For use by srinivas godavarthy srinivaschow srinivas. godavarthy@bupa.com.sa Copyright © 2024 Red Hat, Inc.

(] [

OCP 4.14 DO280

Red Hat OpenShift Administration Il: Configuring a Production
Cluster

Edition 120240215

Publication date 20240215

Authors: Alejandro Serna-Borja, Alex Corcoles, Andrés Hernandez,
Austin Garrigus, Bernardo Gargallo Jaquotot, Tayler Geiger,
Manna Kong, Michael Jarrett, Maria Ordonez, Harpal Singh,

Randy Thomas
Course Architect: Fernando Lozano
DevOps Engineer: Benjamin Chardi Marco
Editor: Julian Cable

© 2024 Red Hat, Inc.

The contents of this course and all its modules and related materials, including handouts to audience members, are ©
2024 Red Hat, Inc.

No part of this publication may be stored in a retrieval system, transmitted or reproduced in any way, including, but
not limited to, photocopy, photograph, magnetic, electronic or other record, without the prior written permission of
Red Hat, Inc.

This instructional program, including all material provided herein, is supplied without any guarantees from Red Hat,
Inc. Red Hat, Inc. assumes no liability for damages or legal action arising from the use or misuse of contents or details
contained herein.

If you believe Red Hat training materials are being used, copied, or otherwise improperly distributed, please send
email to training@redhat.com [mailto:training@redhat.com] or phone toll-free (USA) +1(866) 626-2994 or +1(919)
754-3700.

Red Hat, Red Hat Enterprise Linux, the Red Hat logo, JBoss, OpenShift, Fedora, Hibernate, Ansible, RHCA, RHCE,
RHCSA, Ceph, and Gluster are trademarks or registered trademarks of Red Hat, Inc. or its subsidiaries in the United
States and other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.
Java® is a registered trademark of Oracle American, Inc. and/or its affiliates.

XFS®is a registered trademark of Hewlett Packard Enterprise Development LP or its subsidiaries in the United
States and/or other countries.

MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other countries.

Node.js® is a trademark of Joyent. Red Hat is not formally related to or endorsed by the official Joyent Node.js open
source or commercial project.

The OpenStack word mark and the Square O Design, together or apart, are trademarks or registered trademarks
of OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation's
permission. Red Hat, Inc. is not affiliated with, endorsed by, or sponsored by the OpenStack Foundation or the
OpenStack community.

All other trademarks are the property of their respective owners.

Contributors: Jordi Sola, Nikki Lucas, Natalie Watkins

mailto:training@redhat.com
mailto:training@redhat.com

Document Conventions ix

AMONITIONS ... [
INCIUSIVE LANQUAGE ..ot e e e e e e e X
Introduction xi
Red Hat OpenShift Administration II: Configuring a Production Clusterccc......... Xi
Orientation to the Classroom ENVIrONMENtoooiiiiiiiii e Xii
Performing Lab EXEICISESiiui et XX
1. Declarative Resource Management 1
RESOUICE MANITESTES ... e 2
Guided Exercise: Resource Manifestsco.oiiiiiiiiiiiii 1
KUSTOMIZE OVETIQYS .. oeie e e e e e e ae s 19
Guided Exercise: KUStOMIZE OVETIAYSuieiieieie e 31
Lab: Declarative Resource Managementcouoiiiiiiiiie e 41
T8 T = Y/ P 51
2. Deploy Packaged Applications 53
OPeNShift TEMPIAES ...uivii e 54
Guided Exercise: OpenShift TemMPIatescoviiiiiiiii e 61
HEIM Carts ..o 66
Guided Exercise: Helm Chartso, 72
Lab: Deploy Packaged AppliCationsviniiiiie e 78
SUMIMIAIY ettt et e e e e e e e e e e e e et e e e et e et e e e et e e e 89
3. Authentication and Authorization 91
Configure Identity ProVIAErscoiviiiiiii e 92
Guided Exercise: Configure Identity Providerscooooviiiiiiiin e 99
Define and Apply Permissions With RBACoiiiiiiiiiiie e 10
Guided Exercise: Define and Apply Permissions with RBACcooiviiiiiiiiieiei, n4
Lab: Authentication and AUthorization ... 120
ST 0 0] 0= 1Y PP 129
4. Network Security 131
Protect External Traffic with TLS ... e 132
Guided Exercise: Protect External Traffic with TLS ..., 136
Configure NetWOrk POlICIESiiiiiii e 148
Guided Exercise: Configure Network POlCIEScoouviiiiiiiiieie e 153
Protect Internal Traffic With TLS ... e 162
Guided Exercise: Protect Internal Traffic with TLS ... 168
Lab: NEtWOIK SECUIILY ..ot 174
T [0 0] 0= YU 186
5. Expose non-HTTP/SNI Applications 187
Load BalanCer SEIVICESc.uiiii e 188
Guided Exercise: Load BalanCer SErviCeSc..vvuriiiii et 191
Multus SecoNdary NETWOIKSiuiiii e 198
Guided Exercise: Multus Secondary NetWorksccoviiiiiniiiiniiieeee e 203
Lab: Expose Nnon-HTTR/SNI APPliCationsovviiiiii e 212
ST [0 0] 0= 1Y 221
6. Enable Developer Self-Service 223
Project and ClUSTEr QUOTASviieiieie e e et 224
Guided Exercise: Project and Cluster QUOLASvvuiiiiiiiiiieiieiee e, 233
Per-Project Resource Constraints: Limit RaNgesoiviiiiiiiiiiiee e 240
Guided Exercise: Per-Project Resource Constraints: Limit Rangesccooovvveiennnnn. 245
The Project Template and the Self-Provisioner Rolecooviiiiiiiiiiiniiiiiee 257
Guided Exercise: The Project Template and the Self-Provisioner Role 264

Lab: Enable Developer SElf-ServiCecoooviiiiiiiii e 273
SUMIMIATY ettt et e e e e e e e e e e e e e e e e et e e et e et e e et e e e ans 282
7. Manage Kubernetes Operators 283
Kubernetes Operators and the Operator Lifecycle Managercoocoeviiiiiiiiiniinn. 284
Quiz: Kubernetes Operators and the Operator Lifecycle Managercoocooeeennn. 288
Install Operators with the Web Consolecoooiiiiiiiiii e, 290
Guided Exercise: Install Operators with the Web Consoleccovviviiiiiiiiiiiieen, 295
Install Operators With the CLIiiiiii e 306
Guided Exercise: Install Operators with the CLI.........cooiiiiiiiiii e 313
Lab: Manage Kubernetes Operatorscc.uviniiiiiie e 322
SUMIMIGTY ottt et e e e e e e e e e e e e e e e e et e e et e e e e e 330
8. Application Security 331
Control Application Permissions with Security Context Constraintsccooeeeinni. 332
Guided Exercise: Control Application Permissions with Security Context Constraints 335
Allow Application Access to Kubernetes APISooiiiiiiiiiiii e 339
Guided Exercise: Allow Application Access to Kubernetes APISccooviviiiiiiiiininns. 344
Cluster and Node Maintenance with Kubernetes Cron Jobsc..cooiiiiiiiinnnn. 350
Guided Exercise: Cluster and Node Maintenance with Kubernetes Cron Jobs 357
Lab: APPlICAtioN SECUNTY ... e 364
SUMIMIATY ettt e e e e e e e e e e e e e e e e e e et e e et e e e e 372
9. OpenShift Updates 373
The Cluster Update PrOCESSiuiiiiiieie e 374
Quiz: The Cluster Update PrOCESSuiuiiiieie et 385
Detect Deprecated Kubernetes AP USageoiviiiiiiiiiiiie e, 387
Quiz: Detect Deprecated Kubernetes API USAgec.uviuiiniiniiiieiieieeeeee e 393
Update Operators with the OLM ... 395
Quiz: Update Operators with the OLM ..o 400
QUIZ: OpenShift Updatesooiiiiiii e 402
SUMIMIATY ettt e 406
10. Comprehensive Review 407
ComMPrehenSIVE REVIEWiuiiii e 408
Lab: Cluster Self-service SETUDiiiiiiii e 410
Lab: Secure ApPlICAtIONSo.ie e 426
Lab: Deploy Packaged Applicationsoiiiiiiii e 441

Document Conventions

This section describes various conventions and practices that are used
throughout all Red Hat Training courses.

Admonitions
Red Hat Training courses use the following admonitions:

References

These describe where to find external documentation that is relevant to
a subject.

Note

Notes are tips, shortcuts, or alternative approaches to the task at hand.
Ignoring a note should have no negative consequences, but you might
miss out on something that makes your life easier.

Important

Important sections provide details of information that is easily missed:
configuration changes that apply only to the current session, or
services that need restarting before an update applies. Ignoring these
admonitions will not cause data loss, but might cause irritation and
frustration.

Warning

Do not ignore warnings. Ignoring these admonitions will most likely
cause data loss.

Inclusive Language

Red Hat Training is currently reviewing its use of language in various areas to help remove any
potentially offensive terms. This is an ongoing process and requires alignment with the products
and services that are covered in Red Hat Training courses. Red Hat appreciates your patience
during this process.

Introduction

-.»‘

E
it
|

Red Hat OpenShift Administration ll: Configuring a

Production Cluster

This course prepares a senior OpenShift Cluster Administrator to perform

daily administration tasks on clusters that host applications that internal

teams and external vendors provide; enable self-service for cluster users with
different roles; and deploy applications that require special permissions, such

as Cl/CD tooling, performance monitoring, and security scanners.

D0O280 focuses on configuring multi-tenancy and security features of

OpenShift. DO280 also teaches how to manage OpenShift add-ons based

on operators. This course is based on Red Hat® OpenShift® Container
Platform 4.14.

Course Objectives

Configure and manage OpenShift clusters to maintain security and
reliability across multiple applications and development teams.

Configure authentication, authorization, and resource quotas.

Protect network traffic with network policies and TLS security (HTTPS).

Expose applications by using protocols other than HTTP and TLS, and
attach applications to multi-homed networks.

Manage OpenShift cluster updates and Kubernetes operator updates.

This course, together with the Red Hat OpenShift I: Containers &
Kubernetes (DO180) course, prepares the student to take the Red Hat
Certified Specialist in OpenShift Administration exam (EX280).

Audience

System Administrators interested in the ongoing management of
OpenShift clusters, applications, users, and add-ons.

Site Reliability Engineers interested in the ongoing maintenance and
troubleshooting of Kubernetes clusters.

System and Software Architects interested in understanding the security

of an OpenShift cluster.

Prerequisites

Red Hat System Administration | (RHI124), or equivalent skills in managing

Linux systems and servers from the Bash shell.

Red Hat OpenShift I: Containers & Kubernetes (DO180 v4.14), or
equivalent skills in deploying and managing Kubernetes applications by
using the OpenShift web console and command-line interfaces.

/

D0O280-0OCP4.14-en-1-20240215

Introduction

Orientation to the Classroom
Environment

In this course, the main computer system that is used for hands-on learning activities is
workstation. The systems called bastion and classroom must always be running for proper
use of the lab environment.

These three systems are in the lab.example.com DNS domain.

A Red Hat OpenShift Container Platform (RHOCP) 4.12 single-node (SNO) bare metal UPI
installation is used in this classroom. Infrastructure systems for the RHOCP cluster are in the
ocp4.example.com DNS domain.

All student computer systems have a standard user account, student, which has the student
password. The root password on all student systems is redhat.

[]

workstation OpensShift cluster
Student network Control plane and compute node
= — —: =]
bastion NFS storage utility Local storage masterO1
Cluster network ‘ ‘
Q — = E— -
internet classroom registry idm

Isolated network

Figure O.1: Classroom environment

Classroom Machines

Machine name IP addresses Role

bastion.lab.example.com 172.25.250.254 Router that links VMs to central servers

classroom.lab.example.com 172.25.252.254 Server that hosts the required classroom
materials

idm.ocp4.example.com 192.168.50.40 Identity management server for cluster
authentication and authorization
support

masterOl.ocp4.example.com 192.168.50.10 An RHOCP single-node (SNO) cluster

w D0O280-0OCP4.14-en-1-20240215

Introduction

Machine name IP addresses Role

registry.ocp4.example.com 192.168.50.50 Registry server to provide a private
registry and GitLab services to the
cluster

utility.lab.example.com 192.168.50.254 Server that provides supporting services

that the RHOCP cluster requires,
including DHCP, NFS, and routing to the
cluster network

workstation.lab.example.com | 172.25.250.9 Graphical workstation that students use

The primary function of bastion is to act as a router between the network that connects the
student machines and the classroom network. If bastion is down, then other student machines
do not function properly, or might even hang during boot.

The utility system acts as a router between the network that connects the RHOCP cluster
machines and the student network. If utility is down, then the RHOCP cluster does not
function properly, or might even hang during boot.

For some exercises, the classroom contains an isolated network. Only the utility system and
the cluster are connected to this network.

Several systems in the classroom provide supporting services. The classroom server hosts
software and lab materials for the hands-on activities. The registry serveris a private Red Hat
Quay container registry that hosts the container images for the hands-on activities. Information
about how to use these servers is provided in the instructions for those activities.

The master01 system serves as the control plane and compute node for the RHOCP cluster.
The cluster uses the registry system as its own private container image registry and GitLab
server. The idm system provides LDAP services to the RHOCP cluster for authentication and

authorization support.

Students use the workstation machine to access a dedicated RHOCP cluster, for which they
have cluster administrator privileges.

RHOCP Access Methods

Access method | Endpoint
Web console https://console-openshift-console.apps.ocp4.example.com

API https://api.ocp4.example.com:6443

The RHOCP cluster has a standard user account, developer, which has the developer
password. The administrative account, admin, has the redhatocp password.

Classroom Registry

The DO280 course uses a private Red Hat Quay container image registry that is accessible only
within the classroom environment. The container image registry hosts the container images that
students use in the hands-on activities. By using a private container image registry, the classroom
environment is self-contained to not require internet access.

Introduction

The registry server provides the https://registry.ocp4.example.com: 8443/ container
image registry to the classroom environment. The registry is configured with a user account,
developer, which has the developer password.

The following table provides the container image repositories that are used in this course and their
public repositories.

Classroom Container Image Repositories and Public Sources

Public Source Repository Classroom Registry Repository
quay.io/jkube/jkube-java- registry.ocp4.example.com:8443/jkube/
binary-s2i:0.0.9 jkube-java-binary-s2i:0.0.9
quay.io/openshift/origin- registry.ocp4.example.com:8443/
cli:4.12 openshift/origin-cli:4.12
quay.io/redhattraining/ registry.ocp4.example.com: 8443/
books:v1l.4 redhattraining/books:v1.4

quay.io/redhattraining/builds- registry.ocp4.example.com: 8443/

for-managers redhattraining/builds-for-managers
quay.io/redhattraining/do280- registry.ocp4.example.com: 8443/
beeper-api:1.0 redhattraining/do280-beeper-api:1.0
guay.io/redhattraining/do280- registry.ocp4.example.com: 8443/
payroll-api:1.0 redhattraining/do280-payroll-api:1.0
quay.io/redhattraining/do280- registry.ocp4.example.com: 8443/
product:1.0 redhattraining/do280-product:1.0
quay.io/redhattraining/do280- registry.ocp4.example.com: 8443/
product-stock:1.0 redhattraining/do280-product-
stock:1.0
quay.io/redhattraining/do280- registry.ocp4.example.com: 8443/
project-cleaner:v1.0 redhattraining/do280-project-

cleaner:v1i.0

quay.io/redhattraining/do280- registry.ocp4.example.com:8443/
project-cleaner:vi.1 redhattraining/do280-project-
cleaner:vi.1

quay.io/redhattraining/do280- registry.ocp4.example.com: 8443/
show-config-app:1.0 redhattraining/do280-show-config-
app:1.0
quay.io/redhattraining/do280- registry.ocp4.example.com: 8443/
stakater-reloader:v0.0.125 redhattraining/do280-stakater-
reloader:v0.0.125
quay.io/redhattraining/ registry.ocp4.example.com:8443/
exoplanets:v1.0 redhattraining/exoplanets:v1.0

Introduction

Public Source Repository

quay.io/redhattraining/famous-
quotes:2.1

quay.io/redhattraining/famous-
guotes:latest

quay.io/redhattraining/gitlab-
ce:8.4.3-ce.0

quay.io/redhattraining/hello-
wor ld-nginx: latest
quay.io/redhattraining/hello-

world-nginx:v1.0

quay.io/redhattraining/
loadtest:v1.0

quay.io/redhattraining/php-
hello-dockerfile

quay.io/redhattraining/php-
ssl:vl.0

quay.io/redhattraining/php-
ssl:vli.1

quay.io/redhattraining/
scaling:v1.0

quay.io/redhattraining/todo-
angular:vi.1

quay.io/redhattraining/todo-
angular:v1i.2

quay.io/redhattraining/todo-
backend:release-46
quay.io/redhattraining/do280-

roster:vl

quay.io/redhattraining/do280-
roster:v2

quay.io/redhattraining/

wordpress:5.7-php7.4-apache

registry.access.redhat.com/
rhscl/httpd-24-rhel7: latest

Classroom Registry Repository

registry.ocp4.example.com: 8443/
redhattraining/famous-quotes:2.1

registry.ocp4.example.com: 8443/
redhattraining/famous-quotes: latest

registry.ocp4.example.com: 8443/
redhattraining/gitlab-ce:8.4.3-ce.0

registry.ocp4.example.com: 8443/
redhattraining/hello-world-
nginx: latest

registry.ocp4.example.com: 8443/
redhattraining/hello-wor1ld-nginx:v1.0

registry.ocp4.example.com: 8443/
redhattraining/loadtest:v1.0

registry.ocp4.example.com: 8443/
redhattraining/php-hello-dockerfile

registry.ocp4.example.com: 8443/
redhattraining/php-ssl:v1.0

registry.ocp4.example.com: 8443/
redhattraining/php-ssl:vi.1

registry.ocp4.example.com: 8443/
redhattraining/scaling:v1.0

registry.ocp4.example.com: 8443/
redhattraining/todo-angular:vi.1

registry.ocp4.example.com: 8443/
redhattraining/todo-angular:v1.2

registry.ocp4.example.com:8443/
redhattraining/todo-
backend:release-46

registry.ocp4.example.com: 8443/
redhattraining/do280-roster:vi

registry.ocp4.example.com: 8443/
redhattraining/do280-roster:v2

registry.ocp4.example.com: 8443/
redhattraining/wordpress:5.7-php7.4-
apache

registry.ocp4.example.com:8443/rhscl/
httpd-24-rhel7: latest

Introduction

Public Source Repository

registry.access.redhat.

com/

rhscl/mysql-57-rhel7: latest

registry.access.redhat.

com/

rhscl/nginx-18-rhel7: latest

registry.access.redhat.

com/

rhscl/nodejs-6-rhel7:latest

registry.access.redhat.

com/

rhscl/php-72-rhel7: latest

registry.access.redhat.

ubi7/nginx-118: latest

registry.access.redhat.

ubi8/httpd-24:latest

registry.access.redhat.

ubi8: latest/

registry.access.redhat.

ubi8/nginx-118: latest

registry.access.redhat.

ubi8/nodejs-10: latest

registry.access.redhat.

ubi8/nodejs-16: latest

registry.access.redhat.

ubi8/php-72:latest

registry.access.redhat.

ubi8/php-73:latest

registry.access.redhat.

ubi8/ubi:8.0

registry.access.redhat.

ubi8/ubi:8.4

registry.access.redhat.

ubi8/ubi: latest

registry.access.redhat.

ubi9/httpd-24:latest

registry.access.redhat.

ubi9/nginx-120: latest

registry.access.redhat.

ubi9/ubi: latest

com/

com/

com/

com/

com/

com/

com/

com/

com/

com/

com/

com/

com/

com/

Classroom Registry Repository

registry.ocp4.example.

mysql-57-rhel7:latest

registry.ocp4.example.

nginx-18-rhel7: latest

registry.ocp4.example.

nodejs-6-rhel7: latest

registry.ocp4.example.

php-72-rhel7:latest

registry.ocp4.example.

nginx-118:latest

registry.ocp4.example.

httpd-24:latest

registry.ocp4.example.

ubi8: latest/

registry.ocp4.example.

nginx-118:latest

registry.ocp4.example.

nodejs-10:latest

registry.ocp4.example.

nodejs-16:latest

registry.ocp4.example.

php-72:latest

registry.ocp4.example.

php-73:latest

registry.ocp4.example.

ubi:8.0

registry.ocp4.example.

ubi:8.4

registry.ocp4.example.

ubi:latest

registry.ocp4.example.

httpd-24:latest

registry.ocp4.example.

nginx-120:latest

registry.ocp4.example.

ubi:latest

com

com

com:

com:

com:

com:

com:

com:

com:

com

com

com:

com:

com:

com:

com:

com:

com:

:8443/rhscl/

:8443/rhscl/

8443/rhscl/

8443/rhscl/

8443/ubi7/

8443/ubi8/

8443/

8443/ubi8/

8443/ubi8/

:8443/ubi8/

:8443/ubi8/

8443/ubi8/

8443/ubi8/

8443/ubi8/

8443/ubi8/

8443/ubi9/

8443/ubi9/

8443/ubi9/

Introduction

Public Source Repository Classroom Registry Repository
registry.redhat.io/redhat- registry.ocp4.example.com: 8443/
openjdk-18/openjdk18- redhat-openjdk-18/openjdk18-
openshift:1.8 openshift:1.8
registry.redhat.io/redhat- registry.ocp4.example.com:8443/
openjdk-18/openjdk18- redhat-openjdk-18/openjdk18-
openshift:latest openshift:latest
registry.redhat.io/rhel8/ registry.ocp4.example.com:8443/rhel8/
mysql-80:1-211.1664898586 mysql-80:1-211.1664898586
registry.redhat.io/rhel8/ registry.ocp4.example.com:8443/rhel8/
mysql-80:latest mysql-80:latest
registry.redhat.io/rhel8/ registry.ocp4.example.com:8443/rhel8/
postgresql-13:1-7 postgresql-13:1-7
registry.redhat.io/rhel8/ registry.ocp4.example.com:8443/rhel8/
postgresql-13:latest postgresql-13:latest
registry.redhat.io/ubi8/ registry.ocp4.example.com:8443/ubi8/
ubi:8.6-943 ubi:8.6-943

Controlling Your Systems

You are assigned remote computers in a Red Hat Online Learning (ROLE) classroom. Self-
paced courses are accessed through a web application that is hosted at rol.redhat.com [http://
rol.redhat.com]. Log in to this site with your Red Hat Customer Portal user credentials.

Controlling the Virtual Machines

The virtual machines in your classroom environment are controlled through web page interface
controls. The state of each classroom virtual machine is displayed on the Lab Environment tab.

Table of Contents Course Lab Environment * (2]

P Lab Controls

Click CREATE to build all of the virtual machines needed for the classroom lab environment. This may take several minutes to complete. Once created
the environment can then be stopped and restarted to pause your experience.

If you DELETE your lab, you will remove all of the virtual machines in your classroom and lose all of your progress.

B -

servera building . m
serverb building . m

Figure 0.2: An example course Lab Environment management page

D0O280-0OCP4.14-en-1-20240215 w

http://rol.redhat.com
http://rol.redhat.com
http://rol.redhat.com

Introduction
Machine States

Virtual machine
state

building

active

stopped

Classroom Actions

Button or action

CREATE

CREATING

DELETE

START
STARTING

STOP

Machine Actions

Button or action

OPEN CONSOLE

ACTION > Start

ACTION >
Shutdown

ACTION > Power
Off

ACTION > Reset

Description

The virtual machine is being created.

The virtual machine is running and available. If it just started, it still
might be starting services.

The virtual machine is shut down. On starting, the virtual machine
boots into the same state that it was in before shutdown. The disk
state is preserved.

Description

Create the ROLE classroom. Creates and starts all the virtual
machines that are needed for this classroom.

The ROLE classroom virtual machines are being created. Creation can
take several minutes to complete.

Delete the ROLE classroom. Destroys all virtual machines in the
classroom. All saved work on those systems' disks is lost.

Start all virtual machines in the classroom.
All virtual machines in the classroom are starting.

Stop all virtual machines in the classroom.

Description

Connect to the system console of the virtual machine in a new
browser tab. You can log in directly to the virtual machine and run
commands, when required. Normally, log in to the workstation
virtual machine only, and from there, use ssh to connect to the other
virtual machines.

Start (power on) the virtual machine.
Gracefully shut down the virtual machine, preserving disk contents.
Forcefully shut down the virtual machine, while still preserving disk

contents. This action is equivalent to removing the power from a
physical machine.

Forcefully shut down the virtual machine and reset associated storage
to its initial state. All saved work on that system'’s disks is lost.

Introduction

At the start of an exercise, if instructed to reset a single virtual machine node, click ACTION >
Reset for only that specific virtual machine.

At the start of an exercise, if instructed to reset all virtual machines, click ACTION > Reset on
every virtual machine in the list.

If you want to return the classroom environment to its original state at the start of the course,
then click DELETE to remove the entire classroom environment. After the lab is deleted, then click
CREATE to provision a new set of classroom systems.

Warning
The DELETE operation cannot be undone. All completed work in the classroom
environment is lost.

The Auto-stop and Auto-destroy Timers

The Red Hat Online Learning enrollment entitles you to a set allotment of computer time. To help
to conserve your allotted time, the ROLE classroom uses timers, which shut down or delete the
classroom environment when the appropriate timer expires.

To adjust the timers, locate the two + buttons at the bottom of the course management page.
Click the auto-stop + button to add another hour to the auto-stop timer. Click the auto-destroy +
button to add another day to the auto-destroy timer. Auto-stop has a maximum of 11 hours,

and auto-destroy has a maximum of 14 days. Be careful to keep the timers set while you are
working, so that your environment is not unexpectedly shut down. Be careful not to set the timers
unnecessarily high, which could waste your subscription time allotment.

Introduction

Performing Lab Exercises

You might see the following lab activity types in this course:

+ A guided exercise is a hands-on practice exercise that follows a presentation section. It walks
you through a procedure to perform, step by step.

+ A quizis typically used when checking knowledge-based learning, or when a hands-on activity is
impractical for some other reason.

+ An end-of-chapter lab is a gradable hands-on activity to help you to check your learning. You
work through a set of high-level steps, based on the guided exercises in that chapter, but the
steps do not walk you through every command. A solution is provided with a step-by-step walk-
through.

+ A comprehensive review lab is used at the end of the course. It is also a gradable hands-on
activity, and might cover content from the entire course. You work through a specification of
what to do in the activity, without receiving the specific steps to do so. Again, a solution is
provided with a step-by-step walk-through that meets the specification.

To prepare your lab environment at the start of each hands-on activity, run the lab start
command with a specified activity name from the activity's instructions. Likewise, at the end of
each hands-on activity, run the Tab finish command with that same activity name to clean up
after the activity. Each hands-on activity has a unique name within a course.

The syntax for running an exercise script is as follows:

[student@workstation ~]$ lab action exercise

The action is a choice of start, grade, or finish. All exercises support start and finish.
Only end-of-chapter labs and comprehensive review labs support grade.

start
The start action verifies the required resources to begin an exercise. It might include
configuring settings, creating resources, confirming prerequisite services, and verifying
necessary outcomes from previous exercises. You can perform an exercise at any time, even
without performing preceding exercises.

grade
For gradable activities, the grade action directs the lab command to evaluate your work, and
shows a list of grading criteria with a PASS or FAIL status for each. To achieve a PASS status
for all criteria, fix the failures and rerun the grade action.

finish
The finish action cleans up resources that were configured during the exercise. You can
perform an exercise as many times as you want.

The lab command supports tab completion. For example, to list all exercises that you can start,
enter lab start and then press the Tab key twice.

Introduction

Lab Directory Considerations

The DO280 course uses a Python-based lab script that configures the directory structure
for each guided exercise and lab activity. The workspace directory for this course is /home/
student/D0280.

The lab script copies the necessary files for each course activity to the workspace directory.
For example, the lab start updates-rollout command does the following tasks:

+ Creates an updates-rollout directory in the workspace: /home/student/D0280/labs/
updates-rollout workspace.

+ Copies the files for the activity to the /home/student/D0280/labs/updates-rollout
directory.

Troubleshooting Lab Scripts

If an error occurs while running the lab command, then you might want to review the following
files:

« /tmp/log/labs: This directory contains log files. The lab script creates a unique log file for
each activity. For example, the log file for the lab start updates-rollout commandis /
tmp/log/labs/updates-rollout.

« /home/student/.grading/config.yaml: This file contains the course-specific
configuration. Do not modify this file.

The lab start commands usually verify whether the Red Hat OpenShift Container Platform
(RHOCP) cluster is ready and reachable. If you run the lab start command right after creating
the classroom environment, then you might get errors when the command verifies the cluster API
or the credentials. These errors occur because the RHOCP cluster might take up to 15 minutes

to become available. A convenient solution is to run the lab finish command to clean up the
scenario, wait a few minutes, and then rerun the lab start command.

i~ | Important

In this course, the lab start scripts normally create a specific RHOCP project
for each exercise. The lab finish scripts remove the exercise-specific RHOCP
project.

If you are retrying an exercise, then you might need to wait before running the lab
start command again. The project removal process might take up to 10 minutes to
be fully effective.

For use by srinivas godavarthy sriniva

-

=

cho

VAL
LA W..

rinivas.godavarthy@bupa.com.sa

Copyright © 2024 Red Hat, Inc.

DO280-0OCP4.14-en-1-20240215

Chapter1

Declarative Resource
Management

Goal

Objectives

[

w

a :
p= Sections

I Lab

r/

Deploy and update applications from resource
manifests that are parameterized for different
target environments.

+ Deploy and update applications from resource
manifests that are stored as YAML files.

+ Deploy and update applications from resource
manifests that are augmented by Kustomize.

Resource Manifests (and Guided Exercise)

+ Kustomize Overlays (and Guided Exercise)

+ Declarative Resource Management

D0O280-0OCP4.14-en-1-20240215

Chapter 1| Declarative Resource Management

Resource Manifests

Objectives

+ Deploy and update applications from resource manifests that are stored as YAML files.

An application in a Kubernetes cluster often consists of multiple resources that work together.
Each resource has a definition and a configuration. Many of the resource configurations share
common attributes that must match to operate correctly. Imperative commands configure each
resource, one at time. However, using imperative commands has some issues:

+ Impaired reproducibility
+ Lacking version control
+ Lacking support for GitOps

Rather than imperative commands, declarative commands are instead the preferred way to
manage resources, by using resource manifests. A resource manifest is a file, in JSON or YAML
format, with resource definition and configuration information. Resource manifests simplify the
management of Kubernetes resources, by encapsulating all the attributes of an application in a file
or a set of related files. Kubernetes uses declarative commands to read the resource manifests and
to apply changes to the cluster to meet the state that the resource manifest defines.

The resource manifests are in YAML or JSON format, and thus can be version-controlled. Version
control of resource manifests enables tracing of configuration changes. As such, adverse changes
can be rolled back to an earlier version to support recoverability.

Resource manifests ensure that applications can be precisely reproduced, typically with a single
command to deploy many resources. The reproducibility from resource manifests supports the
automation of the GitOps practices of continuous integration and continuous delivery (Cl/CD).

Imperative Versus Declarative Workflows

The Kubernetes CLI uses both imperative and declarative commands. Imperative commands
perform an action that is based on a command, and use command names that closely reflect the
action. In contrast, declarative commands use a resource manifest file to declare the intended
state of a resource.

A Kubernetes manifest is a YAML- or JSON-formatted file with declaration statements for
Kubernetes resources such as deployments, pods, or services. Instead of using imperative
commands to create Kubernetes resources, manifest files provide all the details for the resource in
a single file. Working with manifest files enables the use of more reproducible processes. Instead
of reproducing sequences of imperative commands, manifest files contain the entire definition of
resources and can be applied in a single step. Using manifest files is also useful for tracking system
configuration changes in a source code management system.

Given a new or updated resource manifest, Kubernetes provides commands that compare the
intended state that is specified in the resource manifest to the current state of the resource.
These commands then apply transformations to the current state to match the intended state.

Chapter 1| Declarative Resource Management

Imperative Workflow

An imperative workflow is useful for developing and testing. The following example uses the
kubectl create deployment imperative command, to create a deployment for a MYSQL
database.

[user@host ~]$ kubectl create deployment db-pod --port 3306 \
--image registry.ocp4.example.com:8443/rhel8/mysql-80
deployment.apps/db-pod created

In addition to using verbs that reflect the action of the command, imperative commands use
options to provide the details. The example command uses the - -port and the - -image options
to provide the required details to create the deployment.

The use of imperative commands affects applying changes to live resources. For example, the

pod from the previous deployment would fail to start due to missing environment variables. The
following kubectl set env deployment imperative command resolves the problem by adding
the required environment variables to the deployment:

[user@host ~]$ kubectl set env deployment/db-pod \
MYSQL_USER='user1' \
MYSQL_PASSWORD="mypa55wOrd' \
MYSQL_DATABASE="items'

deployment.apps/db-pod updated

Executing this kubect1l set env deployment command changes the deployment resource
named db-pod, and provides the extra needed variables to start the container. A developer

can continue building out the application, by using imperative commands to add components,
such as services, routes, volume mounts, and persistent volume claims. With the addition of each
component, the developer can run tests to ensure that the component correctly executes the
intended function.

Imperative commands are useful for developing and experimenting. With imperative commands,

a developer can build up an application one component at a time. When a component is added,
the Kubernetes cluster provides error messages that are specific to the component. The process is
analogous to using a debugger to step through code execution one line at a time. Using imperative
commands usually provides clearer error messages, because an error occurs after adding a
specific component.

However, long command lines and a fragmented application deployment are not ideal for
deploying an application in production. With imperative commands, changes are a sequence of
commands that must be maintained to reflect the intended state of the resources. The sequence
of commands must be tracked and kept up to date.

Using Declarative Commands

Instead of tracking a sequence of commands, a manifest file captures the intended state of the
sequence. In contrast to using imperative commands, declarative commands use a manifest file,
or a set of manifest files, to combine all the details for creating those components into YAML
files that can be applied in a single command. Future changes to the manifest files require only
reapplying the manifests. Instead of tracking a sequence of complex commands, version control
systems can track changes to the manifest file.

Although manifest files can also use the JSON syntax, YAML is generally preferred and is more
popular. To continue the debugging analogy, debugging an application that is deployed from

Chapter 1| Declarative Resource Management

manifests is similar to trying to debug a full, completed running application. It can take more effort
to find the source of the error, especially when the error is not a result of manifest errors.

Creating Kubernetes Manifests

Creating manifest files from scratch can take time. You can use the following techniques to
provide a starting point for your manifest files:

+ Use the YAML view of a resource from the web console.

+ Use imperative commands with the - -dry-run=client option to generate manifests that
correspond to the imperative command.

The kubect1l explain command provides the details for any field in the manifest. For example,
use the kubectl explain deployment.spec.template.spec command to view field
descriptions that specify a pod object within a deployment manifest.

To create a starter deployment manifest, use the kubectl create deployment command to
generate a manifest by using the - -dry-run=client option:

[user@host ~]$ kubectl create deployment hello-openshift -o yaml \
--image registry.ocp4.example.com:8443/redhattraining/hello-world-nginx:v1.0 \
--save-config \
--dry-run=client \ (2]
> ~/my-app/example-deployment.yaml

© The --save-config option adds configuration attributes that declarative commands
use. For deployments resources, this option saves the resource configuration in an
kubectl.kubernetes.io/last-applied-configuration annotation.

© The --dry-run=client option prevents the command from creating resources in the
cluster.

The following example shows a minimal deployment manifest file, not production-ready, for the
hello-openshift deployment:

apiVersion: apps/vi

kind: Deployment

metadata:
annotations:

...output omitted. ..
creationTimestamp: null
labels:

app: hello-openshift
name: hello-openshift

spec:
replicas: 1
selector:
matchLabels:

app: hello-openshift
strategy: {}
template:
metadata:
creationTimestamp: null
labels:

Chapter 1| Declarative Resource Management

app: hello-openshift
spec:
containers:
- image: quay.io/redhattraining/hello-world-nginx:v1.0
name: hello-world-nginx
resources: {}
status: {}

When using imperative commands to create manifests, the resulting manifests might contain fields
that are not necessary for creating a resource. For example, the following example changes the
manifest by removing the empty and null fields. Removing unnecessary fields can significantly
reduce the length of the manifests, and in turn reduce the overhead to work with them.

Additionally, you might need to further customize the manifests. For example, in a deployment,
you might customize the number of replicas, or declare the ports that the deployment provides.
The following notes explain the additional changes:

apiVersion: apps/vi
kind: Deployment
metadata:
namespace: resource-manifests (1)
labels:
app: hello-openshift
name: hello-openshift
spec:
replicas: 2 (2]
selector:
matchLabels:
app: hello-openshift
template:
metadata:

labels:
app: hello-openshift

spec:

containers:

- image: quay.io/redhattraining/hello-world-nginx:v1.0
name: hello-world-nginx
ports:

- containerPort: 8ese ©
protocol: TCP

© Add a namespace attribute to prevent deployment to the wrong project.
© Requires two replicas instead of one.
© Specifies the container port for the service to use.

You can create a manifest file for each resource that you manage. Alternatively, add each of the
manifests to a single multi-part YAML file, and use a - - - line to separate the manifests.

apiVersion: apps/vi
kind: Deployment
metadata:

Chapter 1| Declarative Resource Management

namespace: resource-manifests
annotations:
...output omitted. ..
apiVersion: vi
kind: Service
metadata:
namespace: resource-manifests
labels:
app: hello-openshift
name: hello-openshift
spec:
...output omitted...

Using a single file with multiple manifests versus using manifests that are defined in multiple
manifest files is a matter of organizational preference. The single file approach has the advantage
of keeping together related manifests. With the single file approach, it can be more convenient to
change a resource that must be reflected across multiple manifests. In contrast, keeping manifests
in multiple files can be more convenient for sharing resource definitions with others.

After creating manifests, you can test them in a non-production environment, or proceed to
deploy the manifests. Validate the resource manifests before deploying applications in the
production environment.

Declarative Workflows

Declarative commands use a resource manifest instead of adding the details to many options
on the command line. To create a resource, use the kubect1 create -f resource.yaml
command. Instead of a file name, you can pass a directory to the command to process all the

resource files in a directory. Add the - -recursive=true or -R option to recursively process
resource files that are provided in multiple subdirectories.

The following example creates the resources from the manifests in the my -app directory. In this
example, the my -app directory contains the example-deployment.yaml and service/
example-service.yaml files from previously.

[user@host ~]$ tree my-app
my -app
|— example_deployment.yaml
L— service

L— example_service.yaml

[user@host ~]$ kubectl create -R -f ~/my-app
deployment.apps/hello-openshift created
service/hello-openshift created

The command also accepts a URL:

[user@host ~]$ kubectl create -f \
https://example.com/example-apps/deployment.yaml
deployment.apps/hello-openshift created

Chapter 1| Declarative Resource Management

Updating Resources

The kubect1l apply command can also create resources with the same -f option that is
illustrated with the kubect1 create command. However, the kubect1l apply command can
also update a resource.

Updating resources is more complex than creating resources. The kubect1l apply command
implements several techniques to apply the updates without causing issues.

The kubect1l apply command writes the contents of the configuration file to the
kubectl.kubernetes.io/last-applied-configuration annotation. The kubectl
create command can also generate this annotation by using the - -save-config option.

The kubectl apply command uses the last-applied-configuration annotation to
identify fields that are removed from the configuration file and that must be cleared from the live
configuration.

Although the kubectl create -f command can create resources from a manifest, the
command is imperative and thus does not account for the current state of a live resource.
Executing kubectl create -f against a manifest for a live resource gives an error. In contrast,
the kubectl apply -f command is declarative, and considers the difference between the
current resource state in the cluster and the intended resource state that is expressed in the
manifest.

For example, to update the container's image from version v1.0 to latest, first update the
YAML resource manifest to specify the new tag on the image. Then, use the kubect1l apply
command to instruct Kubernetes to create a version of the deployment resource by using the
updated image version that is specified in the manifest.

YAML Validation

Before applying the changes to the resource, use the - -dry-run=server and the - -
validate=true flags to inspect the file for errors.

+ The --dry-run=server option submits a server-side request without persisting the resource.

+ The --validate=true option uses a schema to validate the input and fails the request if it is
invalid.

Any syntax errors in the YAML are included in the output. Most importantly, the - -dry-
run=server option prevents applying any changes to the Kubernetes runtime.

[user@host ~]$ kubectl apply -f ~/my-app/example-deployment.yaml \
--dry-run=server --validate=true
deployment.apps/hello-openshift created (server dry-run) (1]

© The output line that ends in (server dry-run) provides the action that the resource file
would perform if applied.

E Note
The - -dry-run=client option prints only the object that would be sent to the
server. The cluster resource controllers can refuse a manifest even if the syntax is
valid YAML. In contrast, the - -dry-run=server option sends the request to the
server to confirm that the manifest conforms to current server policies, without
creating resources on the server.

Chapter 1| Declarative Resource Management

Comparing Resources

Use the kubectl diff command to review differences between live objects and manifests.
When updating resource manifests, you can track differences in the changed files. However, many
manifest changes, when applied, do not change the state of the cluster resources. A text-based
diff tool would show all such differences, and result in a noisy output.

In contrast, using the kubect1l diff command might be more convenient to preview changes.
The kubect1l diff command emphasizes the significant changes for the Kubernetes cluster.
Review the differences to validate that manifest changes have the intended effect.

[user@host ~]$% kubectl diff -f example-deployment.yaml
...output omitted. ..
diff -u -N /tmp/LIVE-2647853521/apps.vl.Deployment.resource...
--- /tmp/LIVE-2647853521/apps.vl.Deployment.resource-manife. ..
+++ /tmp/MERGED-2640652736/apps.vl.Deployment.resource-mani...
@@ -6,7 +6,7 @@
kubectl.kubernetes.io/last-applied-configuration:
...output omitted. ..
creationTimestamp: "2023-04-27T16:07:47Z2"
- generation: 1 (1]
+ generation: 2
labels:
app: hello-openshift
name: hello-openshift
@@ -32,7 +32,7 @@
app: hello-openshift

spec:
containers:
- - image: registry.ocp4.example.com:8443/.../hello-world-nginx:v1.0 (2]
+ - image: registry.ocp4.example.com:8443/.../hello-world-nginx:latest

imagePullPolicy: IfNotPresent
name: hello-openshift
ports:

© Theline that starts with the - character shows that the current deployment is on generation 1.
The following line, which starts with the + character, shows that the generation changes to 2
when the manifest file is applied.

© Theimage line, which starts with the - character, shows that the current image uses the
v1.0 version. The following line, which starts with the + character, shows a version change to
latest when the manifest file is applied.

Kubernetes resource controllers automatically add annotations and attributes to the live resource
that make the output of other text-based diff tools misleading, by reporting many differences
that have no impact on the resource configuration. Extracting manifests from live resources

and making comparisons with tools such as the diff command reports many differences of no
value. Using the kubect1 diff command confirms that a live resource matches a resource
configuration that a manifest provides. GitOps tools depend on the kubect1 diff command to
determine whether anyone changed resources outside the GitOps workflow. Because the tools
themselves cannot know all details about how any controllers might change a resource, the tools
defer to the cluster to determine whether a change is meaningful.

Chapter 1| Declarative Resource Management

Update Considerations

When using the oc diff command, recognize when applying a manifest change does not
generate new pods. For example, if an updated manifest changes only values in secret or a
configuration map, then applying the updated manifest does not generate new pods that

use those values. Because pods read secret and configuration maps at startup, in this case
applying the updated manifest leaves the pods in a vulnerable state, with stale values that are not
synchronized with the updated secret or with the configuration map.

As a solution, use the oc rollout restart deployment deployment-name command to
force a restart of the pods that are associated with the deployment. The forced restart generates
pods that use the new values from the updated secret or configuration map.

In deployments with a single replica, you can also resolve the problem by deleting the pod.
Kubernetes responds by automatically creating a pod to replace the deleted pod. However, for
multiple replicas, using the oc rollout command to restart the pods is preferred, because the
pods are stopped and replaced in a smart manner that minimizes downtime.

This course covers other resource management mechanisms that can automate or eliminate some
of these challenges.

Applying Changes

The kubectl create command attempts to create the specified resources in the manifest
file. Using the kubect 1 create command generates an error if the targeted resources are
already live in the cluster. In contrast, the kubect1l apply command compares three sources to
determine how to process the request and to apply changes.

1. The manifest file
2. The live configuration of the resource in the cluster

3. The configuration that is stored in the last-applied-configuration annotation

If the specified resource in the manifest file does not exist, then the kubectl apply command
creates the resource. If any fields in the last-applied-configuration annotation of the

live resource are not present in the manifest, then the command removes those fields from the
live configuration. After applying changes to the live resource, the kubect1l apply command
updates the last-applied-configuration annotation of the live resource to account for the
change.

When creating a resource, the - -save-config option of the kubectl create command
produces the required annotations for future kubectl apply commands to operate.

Chapter1 | Declarative Resource Management

References

For more information, refer to the OpenShift CLI Developer Command Reference
section in the OpenShift CLI (oc) chapter in the Red Hat OpenShift Container
Platform 4.14 CL/ Tools documentation at
https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.14/html-single/cli_tools/index#cli-developer-
commands

For more information, refer to the Using Deployment Strategies section in the
Deployments chapter in the Red Hat OpenShift Container Platform 4.14 Building
Applications documentation at
https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.14/html-single/building_applications/
index#deployment-strategies

Kubernetes Documentation - Replicaset
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/

Kubernetes Documentation - Deployment Strategy
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#strategy

Kubernetes Documentation - Deployment
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

w D0O280-0OCP4.14-en-1-20240215

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/cli_tools/index#cli-developer-commands
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/cli_tools/index#cli-developer-commands
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/cli_tools/index#cli-developer-commands
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/building_applications/index#deployment-strategies
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/building_applications/index#deployment-strategies
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/building_applications/index#deployment-strategies
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#strategy
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

Chapter1 | Declarative Resource Management

» Guided Exercise

Resource Manifests

Deploy and update an application from resource manifests from YAML files that are stored in
a Git server.

Outcomes

+ Deploy applications from resource manifests from YAML files that are stored in a GitLab
repository.

+ Inspect new manifests for potential update issues.
+ Update application deployments from new YAML manifests.

+ Force the redeployment of pods when necessary.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your
system for this exercise.

[student@workstation ~]$ lab start declarative-manifests

Instructions

P 1. Loginto the OpenShift cluster and create the declarative-manifests project.

11, Login to the cluster as the deve loper user.
[student@workstation ~]$ oc login -u developer -p developer \
https://api.ocp4.example.com: 6443

Login successful.

...output omitted...

1.2. Create the declarative-manifests project.

[student@workstation ~]$ oc new-project declarative-manifests
Now using project "declarative-manifests" on server ...
...output omitted. ..

P 2. Clone the declarative-manifest project from the Git repository.

2.1. Change your directory to the project labs directory.

[student@workstation ~]$ cd ~/D0280/1labs

D0O280-0OCP4.14-en-1-20240215 ‘

Chapter 1| Declarative Resource Management

2.2. Clone the Git repository from https://git.ocp4.example.com/developer/
declarative-manifests.git. Use developer for both the username and for
the password.

[student@workstation lab]$ git clone \
https://git.ocp4.example.com/developer/declarative-manifests.git

Cloning into 'declarative-manifests'...

remote: Enumerating objects: 24, done.

remote: Counting objects: 100% (24/24), done.

remote: Compressing objects: 100% (21/21), done.

remote: Total 24 (delta 8), reused 0 (delta 0), pack-reused 0

Receiving objects: 100% (24/24), done.

Resolving deltas: 100% (8/8), done.

2.3. Gotothedeclarative-manifest directory.

[student@workstation lab]$ cd declarative-manifests
[student@workstation declarative-manifests]$

P 3. Inspect the contents of the Git repository.

3.1. List the contents of the declarative-manifests directory.

[student@workstation declarative-manifests]$ 1s -1A
total 12
-rw-rw-r--. 1 student student 3443 Jun 21 16:39 database.yaml
-rw-rw-r--. 1 student student 2278 Jun 21 16:39 exoplanets.yaml
drwxrwxr-x. 8 student student 163 Jun 21 16:39 .git

1 student student 0 Jun 21 16:39 .gitkeep

1 student student 11 Jun 21 16:39 README.md

SrW-TrwW-r--.
SrW-rw-r--.

3.2. List the commits, branches, and tags on the Git repository.

[student@workstation declarative-manifests]$ git log --oneline

4045336 (HEAD -> main, tag: third, origin/v1.1.1, origin/main, origin/HEAD)
Exoplanets vi1.1.1 (1]

ad455b2 Database vi.1.1

821420c (tag: second, origin/vi1.1.0) Exoplanets v1.1.0 (2]

d9abeb@ (tag: first, origin/v1.0) Exoplanets v1.0 (3]

al1396e Database v1.0

€868a90 README

18ddf3c Initial commit

© Thevi.1.1 branch points to the third version of the application.
© Thev1.1.0 branch points to the second version of the application.

© The vi1.0 branch points to the first version of the application.

P 4. Deploy the resource manifests of the first application version.

41. Switch to the v1.0 branch, which contains the YAML manifests for the first version of
the application.

Chapter 1| Declarative Resource Management

[student@workstation declarative-manifests]$ git checkout v1.0
branch 'v1.0' set up to track 'origin/v1.0'.
Switched to a new branch 'v1i.0'

4.2. Validate the YAML resource manifest for the application.

[student@workstation declarative-manifests]$ oc apply -f . \
--validate=true --dry-run=server
configmap/database created (server dry run)
secret/database created (server dry run)
deployment.apps/database created (server dry run)
service/database created (server dry run)
configmap/exoplanets created (server dry run)
secret/exoplanets created (server dry run)
deployment.apps/exoplanets created (server dry run)
service/exoplanets created (server dry run)
route.route.openshift.io/exoplanets created (server dry run)

4.3. Deploy the exoplanets application.

[student@workstation declarative-manifests]$ oc apply -f .
configmap/database created

secret/database created

deployment.apps/database created

service/database created

configmap/exoplanets created

secret/exoplanets created

deployment.apps/exoplanets created

service/exoplanets created
route.route.openshift.io/exoplanets created

4.4. List the deployments and pods. The exoplanets pod can go into a temporary crash
loop backoff state if it attempts to access the database before it becomes available.
Wait for the pods to be ready. Press Ctr1+C to exit the watch command.

[student@workstation declarative-manifests]$ watch oc get deployments, pods

Every 2.0s: oc get deployments, pods

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/database 1/1 1 1 32s
deployment.apps/exoplanets 1/1 1 1 32s
NAME READY STATUS RESTARTS AGE
pod/database-6fddbbf94f-2pghj 1/1 Running 0] 32s
pod/exoplanets-64c87f5796-bw8tm 1/1 Running 0] 32s

4.5. List the route for the exoplanets application.

Chapter 1| Declarative Resource Management

[student@workstation declarative-manifests]$ oc get routes -1 app=exoplanets

NAME HOST/PORT
exoplanets exoplanets-declarative-manifests.apps.ocp4.example.com

4.6. Open the route URL in the web browser. The application versionis v1.0.
http://exoplanets-declarative-manifests.apps.ocp4.example.com/

Exoplanets

The planets listed here are a small subset of the known planets found outside of our solar system. Mass and radius
are listed in "Jupiter mass" and "Jupiter radius" units. The orbital period is measured in Earth days. The full dataset is
available from the

Radius Period
0.97 4640

Radius Period
0.92 7340

Radius

1.3

P 5. Deploy the second version of the exoplanets application.

51. Switch to the v1.1.0 branch of the Git repository.

[student@workstation declarative-manifests]$ git checkout vi1.1.0
branch 'v1.1.0' set up to track 'origin/v1.1.0'.
Switched to a new branch 'vi.1.0'

5.2. Inspect the changes from the new manifests.

[student@workstation declarative-manifests]$ oc diff -f .
...output omitted. ..
- secretRef:
name: exoplanets
- image: registry.ocp4.example.com:8443/redhattraining/exoplanets:v1.0

+ image: registry.ocp4.example.com:8443/redhattraining/exoplanets:v1.1.0
imagePullPolicy: Always
livenessProbe:

failureThreshold: 3

The new version changes the image that is deployed to the cluster. Because
the change is in the deployment, the new manifest produces new pods for the

application.

5.3. Apply the changes from the new manifests.

Chapter 1| Declarative Resource Management

[student@workstation declarative-manifests]$ oc apply -f
configmap/database unchanged

secret/database configured

deployment.apps/database configured

service/database configured

configmap/exoplanets unchanged

secret/exoplanets configured

deployment.apps/exoplanets configured

service/exoplanets unchanged
route.route.openshift.io/exoplanets configured

5.4. List the deployments and pods. Wait for the application pod to be ready. Press
Ctr1+C to exit the watch command.

[student@workstation declarative-manifests]$ watch oc get deployments, pods
Every 2.0s: oc get deployments, pods

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/database 1/1 1 1 6m32s
deployment.apps/exoplanets 1/1 1 1 6m33s
NAME READY STATUS RESTARTS AGE
pod/database-6fddbbf94f-2pghj 1/1 Running 0 6m33s
pod/exoplanets-74c85f5796-tw8tf 1/1 Running 0 32s

5.5. List the route for the exoplanets application.

[student@workstation declarative-manifests]$ oc get routes -1 app=exoplanets
NAME HOST/PORT
exoplanets exoplanets-declarative-manifests.apps.ocp4.example.com

5.6. Open the route URL in the web browser. The application versionisv1.1.0.
http://exoplanets-declarative-manifests.apps.ocp4.example.com/

The planets listed here are a small subset of the known planets found outside of our solar system.

« Mass and radius are listed in "Jupiter mass" and "Jupiter radius" units.
« The orbital period is measured in "Earth days".

The full dataset is available from the Open Exoplanet Catalogue.

2M 0746+20 b 2M 2140+16 b 2M 2206-20 b
Mass Radius Period Mass Radius Period Mass Radius Period
30 4640 0.97 20 7340 0.92 30 8686 1.3

51 Erib 55 Cancri e BD+20 594 b

Mass Radius Period Mass Radius Period Mass Radius Period

2 15000 1 0.0251 0.7365474 0.167280.05129 41.6855 0.1989

beta Pic b CoR0T-10 b CoR0T-11 b

P 6. Deploy the third version of the exoplanets application.

Chapter 1| Declarative Resource Management
6.]. Switch to the v1.1.1 branch of the Git repository.

[student@workstation declarative-manifests]$ git checkout vi.1.1
branch 'vi.1.1' set up to track 'origin/vi.1.1'.
Switched to a new branch 'vi.1.1'

6.2. View the differences between the currently deployed version of the application and
the updated resource manifests.

[student@workstation declarative-manifests]$ oc diff -f .
...output omitted. ..
kind: Secret o
metadata:
annotations:
...output omitted. ..
- DB_USER: '*** (before)' (2]
+ DB_USER: '*** (after)'
kind: Secret
metadata:
annotations:

© The secret resource is changed.

© The DB_USER field of the secret resource is changed.
6.3. Inspect the current application pods.

[student@workstation declarative-manifests]$ oc get pods

NAME READY STATUS RESTARTS AGE
database-6fddbbf94f-brl1j6 1/1 Running 0 44m
exoplanets-674cc57b5d-mv8kd 1/1 Running 0 18m

6.4. Deploy the new version of the application.

[student@workstation declarative-manifests]$ oc apply -f .
configmap/database unchanged

secret/database configured

deployment.apps/database configured

service/database configured

configmap/exoplanets unchanged

secret/exoplanets configured

deployment.apps/exoplanets unchanged

service/exoplanets unchanged
route.route.openshift.io/exoplanets configured

6.5. Inspect the current application pods again

[student@workstation declarative-manifests]$ oc get pods

NAME READY STATUS RESTARTS AGE
database-6fddbbf94f-brl1j6 1/1 Running 0 10m
exoplanets-674cc57b5d-mv8kd 0/1 CrashLoopBackOff 4 (14s ago) 2m

Chapter 1| Declarative Resource Management

Although the secret is updated, the deployed application pods are not changed.
These non-updated pods are a problem, because the pods load secrets and
configuration maps at startup. Currently, the pods have stale values from the previous
configuration, and therefore could crash.

P 7. Force the exoplanets application to restart, to flush out any stale configuration data.

71. Usethe oc get deployments command to confirm the deployments.

[student@workstation declarative-manifests]$ oc get deployments

NAME READY UP-TO-DATE AVAILABLE AGE
database 1/1 1 1 32m
exoplanets 0/1 1 0 32m

7.2. Usethe oc rollout command to restart the database deployment.

[student@workstation declarative-manifests]$ oc rollout restart \
deployment/database
deployment.apps/database restarted

7.3. Usethe oc rollout command to restart the exoplanets deployment.

[student@workstation declarative-manifests]$ oc rollout restart \
deployment/exoplanets
deployment.apps/exoplanets restarted

7.4. List the pods. The exoplanets pod can go into a temporary crash loop backoff
state if it attempts to access the database before it becomes available. Wait for the
application pod to be ready. Press Ctr 1+C to exit the watch command.

[student@workstation declarative-manifests]$ watch oc get pods
Every 2.0s: oc get deployments, pods

NAME READY STATUS RESTARTS AGEE
database-7c767c4bd7-m72nk 1/1 Running 0 32s
exoplanets-64c87f5796-bw8tm 1/1 Running 0 32s

75. Usethe oc get deployment command with the -0 yaml option to view the
last-applied-configuration annotation.

[student@workstation declarative-manifests]$ oc get deployment \
exoplanets -o yaml
apiVersion: apps/vi
kind: Deployment
metadata:
annotations:
deployment.kubernetes.io/revision: "3"
description: Defines how to deploy the application server
kubectl.kubernetes.io/last-applied-configuration: |
{"apiVersion":"apps/v1", "kind":"Deployment", "metadata":{"annotations": ...
template.alpha.openshift.io/wait-for-ready: "true"
...output omitted...

Chapter 1| Declarative Resource Management

7.6. Open the route URL in the web browser. The application versionisv1l.1.1.
http://exoplanets-declarative-manifests.apps.ocp4.example.com/

Exoplanets - v1.1.1

The planets listed here are a small subset of the known planets found outside of our solar system.

« Mass and radius are listed in "Jupiter mass" and "Jupiter radius" units.
« The orbital period is measured in "Earth days".

The full dataset is available from the

Mass Radius Period Mass Radius Period Mass Radius Period

30 4640 0.97 20 7340 [1X:7 30 8686 13

Mass Radius Period Mass Radius Period Mass Radius Period

2 15000 1 0.0251 0.7365474 0.16728 0.05129 41.6855 0.1989

P 8. Clean up the resources.

8.1. Delete the application resources.

[student@workstation declarative-manifests]$ oc delete -f
configmap "database" deleted

secret "database" deleted

deployment.apps "database" deleted

service '"database" deleted

configmap "exoplanets" deleted

secret "exoplanets" deleted

deployment.apps "exoplanets" deleted

service "exoplanets" deleted

route.route.openshift.io "exoplanets" deleted

8.2. Change to the student HOME directory.

[student@workstation declarative-manifests]$ cd
[student@workstation ~]

Finish
On the workstation machine, use the lab command to complete this exercise. This step is
important to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab finish declarative-manifests

Chapter 1| Declarative Resource Management

Kustomize Overlays

Objectives

+ Deploy and update applications from resource manifests that are augmented by Kustomize.

Kustomize

When using Kubernetes, multiple teams use multiple environments, such as development, staging,
testing, and production, to deploy applications. These environments use applications with minor
configuration changes.

Many organizations deploy a single application to multiple data centers for multiple teams and
regions. Depending on the load, the organization needs a different number of replicas for every
region. The organization might need various configurations that are specific to a data center or
team.

All these use cases require a single set of manifests with multiple customizations at multiple levels.
Kustomize can support such use cases.

Kustomize is a configuration management tool to make declarative changes to application
configurations and components and preserve the original base YAML files. You group in a
directory the Kubernetes resources that constitute your application, and then use Kustomize to
copy and adapt these resource files to your environments and clusters. The kubect1 command
integrates the kustomization tool.

Kustomize File Structure

Kustomize works on directories that contain a kustomization.yaml file at the root. Kustomize
supports compositions and customization of different resources such as deployment, service,
and secret. You can use patches to apply customization to different resources. Kustomize has a
concept of base and overlays.

Base

A base directory contains a kustomization.yaml file. The kustomization.yaml file has a list
resource field to include all resource files. As the name implies, all resources in the base directory
are a common resource set. You can create a base application by composing all common resources
from the base directory.

The following diagram shows the structure of a base directory:

base

— configmap.yaml
— deployment.yaml
— secret.yaml

|— service.yaml

— route.yaml
L— kustomization.yaml

Chapter1 | Declarative Resource Management

The base directory has YAML files to create configuration map, deployment, service, secret, and
route resources. The base directory also has a kustomization.yaml file, such as the following
example:

apiVersion: kustomize.config.k8s.io/vilbetal
kind: Kustomization
resources:

configmap.yaml
deployment.yaml
secret.yaml
service.yaml
route.yaml

The kustomization.yaml file lists all resource files.

Overlays

Kustomize overlays declarative YAML artifacts, or patches, that override the general settings
without modifying the original files. The overlay directory contains a kustomization.yaml file.
The kustomization.yaml file can refer to one or more directories as bases. Multiple overlays
can use a common base kustomization directory.

The following diagram shows the structure of all Kustomize directories:

base overlay

—» development
kustomization.yaml
(refers to base)

kustomization.yaml + Resources

testing

kustomization.yaml
(refers to base + patches)

production

kustomization.yaml
(refers to base + patch.yaml)

Figure 1.4: Kustomize file structure

The following example shows the directory structure of the frontend-app directory containing
the base and over lay directories:

[user@host frontend-app]$ tree
base

— configmap.yaml

[TTTT

deployment.yaml
secret.yaml
service.yaml
route.yaml
kustomization.yaml

over lay

Chapter 1| Declarative Resource Management

L— development

L— kustomization.yaml
L— testing

L— kustomization.yaml
L— production

— kustomization.yaml

L— patch.yaml

The following example shows a kustomization.yaml file in the overlays/development
directory:

apiVersion: kustomize.config.k8s.io/vilbetal
kind: Kustomization

namespace: dev-env

resources:

- ../../base

The frontend-app/overlay/development/kustomization.yaml file uses the base
kustomization file at . . /. . /base to create all the application resources in the dev-env
namespace.

Kustomize provides fields to set values for all resources in the kustomization file:

Field Description

namespace Set a specific namespace for all resources.
namePrefix Add a prefix to the name of all resources.
nameSuffix Add a suffix to the name of all resources.
commonLabels Add labels to all resources and selectors.
commonAnnotations Add annotations to all resources and selectors.

You can customize for multiple environments by using overlays and patching. The patches
mechanism has two elements: patch and target.

Previously, Kustomize used the PatchesJson6902 and PatchesStrategicMerge keys to add
resource patches. These keys are deprecated in Kustomize version 5 and are replaced with a single
key. However, the content of the patches key continues to use the same patch formats.

You can use JSON Patch and strategic merge patches. See the references section for further
information about both patch formats.

The following is an example of a kustomization.yaml file in the overlays/testing
directory:

apiVersion: kustomize.config.k8s.io/vilbetal
kind: Kustomization
namespace: test-env
patches: (1]
- patch: |-
- op: replace (2]
path: /metadata/name

Chapter 1| Declarative Resource Management

value: frontend-test
target: ©
kind: Deployment
name: frontend
- patch: |- (4]
- op: replace
path: /spec/replicas
value: 15
target:
kind: Deployment
name: frontend
resources: ©
- ../../base
commonLabels: o
env: test

© The patches field contains a list of patches.

© The patch field defines operation, path, and value keys. In this example, the name changes
to frontend-test.

© The target field specifies the kind and name of the resource to apply the patch. In this
example, you are changing the frontend deployment name to frontend-test.

O This patch updates the number of replicas of the frontend deployment.

© The frontend-app/overlay/testing/kustomization.yaml file uses the base
kustomization file at . . /. ./base to create an application.

O The commonLabels field adds the env: test label to all resources.

The patches mechanism also provides an option to include patches from a separate YAML file by
using the path key.

The following example shows a kustomization.yaml file that uses a patch.yaml file:

apiVersion: kustomize.config.k8s.io/vilbetal
kind: Kustomization
namespace: prod-env

patches:
- path: patch.yaml (2]
target: (3]

kind: Deployment
name: frontend
options:
allowNameChange: true o
resources: ©

- ../../base
commonLabels: 0o
env: prod

© The patches field lists the patches that are applied by using a production kustomization file.

© The path field specifies the name of the patching YAML file.

Chapter 1| Declarative Resource Management

©

o

©

o

The target field specifies the kind and name of the resource to apply the patch. In this
example, you are targeting the frontend deployment.

The allowNameChange field enables kustomization to update the name by using a patch
YAML file.

The frontend-app/overlay/production/kustomization.yaml file uses the base
kustomization file at . . /. . /base to create an application.

The commonLabels field adds an env: prod label to all resources.

The patch.yaml file has the following content:

2]

apiVersion: apps/vi
kind: Deployment
metadata:

name: frontend-prod (1]

spec:

replicas: 5 (2]

The metadata.name field in the patch file updates the frontend deployment name to
frontend-prod if the allowNameChange field is set to true in the kustomization YAML
file.

The spec/replicas field in the patch file updates the number of replicas of the
frontend-prod deployment.

View and Deploy Resources by Using Kustomize

Run the kubect1 kustomize kustomization-directory command to render the manifests
without applying them to the cluster.

[user@host frontend-app]$ kubectl kustomize overlay/production
..output omitted. ..

kind: Deployment

metadata:

labels:
app: frontend
env: prod

name: frontend-prod

..output omitted. ..
spec:

replicas: 5
selector:
matchLabels:
app: frontend
env: prod

..output omitted. ..

The kubectl apply command applies configurations to the resources in the cluster. If resources
are not available, then the kubect1l apply command creates resources. The kubectl apply
command applies a kustomization with the -k flag.

Chapter 1| Declarative Resource Management

[user@host frontend-app]$ kubectl apply -k overlay/production
deployment.apps/frontend-prod created
...output omitted...

Delete Resources by Using Kustomize

Runthe oc delete -k kustomization-directory command to delete the resources that
were deployed by using Kustomize.

[user@host frontend-app]$ oc delete -k overlay/production
configmap "database" deleted

secret "database" deleted

service '"database" deleted

deployment.apps "database" deleted

Kustomize Generators

Configuration maps hold non-confidential data by using a key-value pair. Secrets are similar

to configuration maps, but secrets hold confidential information such as usernames and
passwords. Kustomize has configMapGenerator and secretGenerator fields that generate
configuration map and secret resources.

The configuration map and secret generators can include content from external files in the
generated resources. By keeping the content of the generated resources outside the resource
definitions, you can use files that other tools generated, or that are stored in different systems.
Generators help to manage the content of configuration maps and secrets, by taking care of
encoding and including content from other sources.

Configuration Map Generator

Kustomize provides a configMapGenerator field to create a configuration map. The
configuration map that a configMapGenerator field creates behaves differently. In this method,
Kustomize appends a hash to the name, and any change in the configuration map triggers a rolling
update.

The following example adds a configuration map by using the configMapGenerator field in the
staging kustomization file. The hel1lo application deployment has two environment variables to
refer to the hello-app-configmap configuration map.

The kustomization.yaml file has the following content:

apiVersion: kustomize.config.k8s.io/vilbetal
kind: Kustomization
namespace: hello-stage
resources:
- ../../base
configMapGenerator:
- name: hello-app-configmap
literals:
- msg="Welcome!"
- enable="true"

The deployment.yaml file has the following content:

Chapter 1| Declarative Resource Management

apivVersion: apps/vi
kind: Deployment

metadata:
name: hello
labels:
app: hello
name: hello
spec:
...output omitted...
spec:
containers:

- name: hello
image: quay.io/hello-app:v1.0
env:
- name: MY_MESSAGE
valueFrom:
configMapKeyRef:
name: hello-app-configmap
key: msg
- name: MSG_ENABLE
valueFrom:
configMapKeyRef:
name: hello-app-configmap
key: enable

You can view and deploy all resources and customizations that the kustomization YAML file
defines, in the development directory.

[user@host hello-app]$ kubectl kustomize overlays/staging
apiVersion: vi
data:
enable: "true"
msg: Welcome!
kind: ConfigMap
metadata:
name: hello-app-configmap-9tcmf95d77
namespace: hello-stage
apiVersion: apps/vi
kind: Deployment
metadata:
labels:
app: hello
name: hello
name: hello
namespace: hello-stage
spec:
...output omitted...
spec:
containers:
- envi:
- name: MY_MESSAGE
valueFrom:

Chapter 1| Declarative Resource Management

configMapKeyRef:
key: msg
name: hello-app-configmap-9tcmf95d77
- name: MSG_ENABLE
valueFrom:
configMapKeyRef:
key: enable
name: hello-app-configmap-9tcmf95d77
...output omitted...

[user@host hello-app]$ kubectl apply -k overlays/staging
configmap/hello-app-configmap-9tcmf95d77 created

deployment.apps/hello created

[user@host hello-app]$ oc get all

NAME READY STATUS RESTARTS AGE
pod/hello-75dc9cfc87-jh62k 1/1 Running 0 97s
NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/hello 1/1 1 1 97s
NAME DESIRED CURRENT READY AGE
replicaset.apps/hello-75dc9cfc87 1 1 1 97s

The kubectl apply -k command createsahello-app-configmap-9tcmfo5d77
configuration map and a hello deployment. Update the kustomization.yaml file with the
configuration map values.

apiVersion: kustomize.config.k8s.io/vilbetal
kind: Kustomization
namespace: hello-stage
resources:
- ../../base
configMapGenerator:
- name: hello-app-configmap
literals:
- msg="Welcome Back!"
- enable="true"

Then, apply the overlay with the kubect1l apply command.

[user@host hello-app]$ kubectl apply -k overlays/staging
configmap/hello-app-configmap-696dm8h728 created
deployment.apps/hello configured

[user@host hello-app]$ oc get all

NAME READY STATUS RESTARTS AGE
pod/hello-55bc55ff9-hrszh 1/1 Running 0 3s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/hello 1/1 1 1 5m5s

Chapter 1| Declarative Resource Management

NAME DESIRED CURRENT READY AGE
replicaset.apps/hello-55bc55ff9 1 1 1 3s
replicaset.apps/hello-75dc9cfc87 0 0 0 5m5s

The kubectl apply -k command applies kustomization. Kustomize appends a new hash to the
configuration map name, which creates a hello-app-configmap-696dm8h728 configuration
map. The new configuration map triggers the generation of a new hello-55bc55ff9-hrszh
pod.

You can generate a configuration map by using the files key from the .properties file or
from the . env file by using the envs key with the file name as the value. You can also create a
configuration map from a literal key-value pair by using the literals key.

The following example shows a kustomization.yaml file with the configMapGenerator field.

...output omitted...
configMapGenerator:
- name: configmap-1
files:
- application.properties
- name: configmap-2
envs:
- configmap-2.env
- name: configmap-3
literals:
- name="configmap-3"
- description="1literal key-value pair"

© Theconfigmap-1keyis using the application.properties file.
© Theconfigmap-2 key is using the configmap-2.env file.
© The configmap-3key is using a literal key-value pair.

The following example shows the application.properties file thatis referenced in the
configmap-1 key.

Day=Monday
Enable=True

The following example shows the configmap-2.env file that is referenced in the configmap-2
key.

Greet=Welcome
Enable=True

Run the kubect1l kustomize command to view details of resources and customizations that the
kustomization YAML file defines:

[user@host base]$ kubectl kustomize .
apiVersion: vi
data:

application.properties: |

Chapter 1| Declarative Resource Management

Day=Monday
Enable=True
kind: ConfigMap
metadata:
name: configmap-1-592mh569b5 (1]
apiVersion: vi
data:
Enable: "True"
Greet: Welcome
kind: ConfigMap
metadata:
name: configmap-2-92m84tg9okt (2]
apiVersion: vi
data:
description: literal key-value pair
name: configmap-3
kind: ConfigMap
metadata:
name: configmap-3-k797d5bffd (3]

...output omitted...

© The configMapGenerator field appends a hash to all ConfigMap resources.
The configmap-1-5g2mh569b5 configuration map is generated from the
application.properties file, and the data field has a single key with the
application.properties value.

© The configmap-2-92m84tg9kt configuration map is generated from the
configmap-2.env file, and the data field has separate keys for each listed variable in the
configmap-2.env file.

© The configmap-3-k7g7d5bffd configuration map is generated from a literal key-value
pair.

Secret Generator

A secret resource has sensitive data such as a username and a password. You can generate the
secret by using the secretGenerator field. The secretGenerator field works similarly to the
configMapGenerator field. However, the secretGenerator field also performs the base64
encoding that secret resources require

The following example shows a kustomization.yaml file with the secretGenerator field:

...output omitted...
secretGenerator:
- name: secret-1 "
files:
- password.txt
- name: secret-2 ¢9
envs:
- secret-mysql.env
- name: secret-3 G’

Chapter 1| Declarative Resource Management

literals:
- MYSQL_DB=mysql
- MYSQL_PASS=root

© The secret-1keyis using the password. txt file.
© The secret-2keyis using the secret-mysql.env file.

© The secret-3keyis using literal key-value pairs.

Generator Options

Kustomize provides a generatorOptions field to alter the default behavior of Kustomize
generators. The configMapGenerator and secretGenerator fields append a hash suffix to
the name of the generated resources.

Workload resources such as deployments do not detect any content changes to configuration
maps and secrets. Any changes to a configuration map or secret do not apply automatically.

Because the generators append a hash, when you update the configuration map or secret, the
resource name changes. This change triggers a rollout.

In some cases, the hash is not needed. Some operators observe the contents of the configuration
maps and secrets that they use, and apply changes immediately. For example, the OpenShift
OAuth operator applies changes to htpasswd secrets automatically. You can disable this feature
with the generatorOptions field.

You can also add labels and annotations to the generated resources by using the
generatorOptions field.

The following example shows the use of the generatorOptions field.

...output omitted...
configMapGenerator:
- name: my-configmap
literals:
- name="configmap-3"
- description="1literal key-value pair"

generatorOptions:
disableNameSuffixHash: true
labels:
type: generated-disabled-suffix
annotations:

note: generated-disabled-suffix

You can use the kubect1l kustomize command to render the changes to verify their effect.

[user@host base]$ kubectl kustomize .
apiversion: vi
data:
description: literal key-value pair
name: configmap-3
kind: ConfigMap
metadata:
annotations:

Chapter1 | Declarative Resource Management

note: generated-disabled-suffix
labels:

type: generated-disabled-suffix
name: my-configmap

The my-configmap configuration map is without a hash suffix, and has a label and annotations
that are defined in the kustomization file.

D References
Declarative Management of Kubernetes Objects Using Kustomize
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/kustomization/

Your Guide to Continuous Delivery with OpenShift GitOps and Kustomize
https://cloud.redhat.com/blog/your-guide-to-continuous-delivery-with-openshift-
gitops-and-kustomize

Customization of Kubernetes YAML Configurations
https://github.com/kubernetes-sigs/kustomize/blob/master/api/types/
kustomization.go

JavaScript Object Notation (JSON) Patch
https://www.rfc-editor.org/rfc/rfc6902

Notes on the Strategic Merge Patch
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/update-api-object-
kubectl-patch/#notes-on-the-strategic-merge-patch

W D0O280-0OCP4.14-en-1-20240215

https://kubernetes.io/docs/tasks/manage-kubernetes-objects/kustomization/
https://cloud.redhat.com/blog/your-guide-to-continuous-delivery-with-openshift-gitops-and-kustomize
https://cloud.redhat.com/blog/your-guide-to-continuous-delivery-with-openshift-gitops-and-kustomize
https://github.com/kubernetes-sigs/kustomize/blob/master/api/types/kustomization.go
https://github.com/kubernetes-sigs/kustomize/blob/master/api/types/kustomization.go
https://www.rfc-editor.org/rfc/rfc6902
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/update-api-object-kubectl-patch/#notes-on-the-strategic-merge-patch
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/update-api-object-kubectl-patch/#notes-on-the-strategic-merge-patch

Chapter1 | Declarative Resource Management

» Guided Exercise

Kustomize Overlays

Deploy and update an application by applying different Kustomize overlays that are stored in
a Git server.

Outcomes

+ Deploy an application by using Kustomize from provided files.
+ Apply an application update that changes a deployment.

+ Deploy an overlay of the application that increases the number of replicas.

Before You Begin

As the student user on the workstation machine, use the lab command to prepare your
system for this exercise.

This command ensures that the cluster APl is reachable.

[student@workstation ~]$ lab start declarative-kustomize

Instructions

P 1. Clonethe v1.1.0 version of the application. Because this repository uses Git branches to
represent application versions, you must use the v1.1.0 branch.

Clone the repository from the following URL:
https://git.ocp4.example.com/developer/declarative-kustomize.git

11. Change to the ~/D0280/ labs/declarative-kustomize directory.

[student@workstation ~]$ cd D0280/labs/declarative-kustomize
[student@workstation declarative-kustomize]$

1.2. Clone the initial version of the application.

[student@workstation declarative-kustomize]$ git clone \
https://git.ocp4.example.com/developer/declarative-kustomize.git --branch vi1.1.0

Cloning into 'declarative-kustomize'...

...output omitted...

1.3. Change to the repository directory.

[student@workstation declarative-kustomize]$ cd declarative-kustomize

P 2. Examine the first version of the application.

Chapter 1| Declarative Resource Management
2.1. Use the tree command to review the structure of the repository.

[student@workstation declarative-kustomize]$ tree

|— base
| |— database 1]

| | — configmap.yaml

| | — deployment.yaml

| | — kustomization.yaml
| | L— service.yaml

| — exoplanets 2]

| | — deployment.yaml

| | — kustomization.yaml
| | — route.yaml

| | L— service.yaml

| L— kustomization.yaml

L— README.md

3 directories, 10 files

©® The database base defines resources to deploy a database.

© The exoplanets base defines resources to deploy an application that uses the
database.

© Therepository has a kustomization.yaml file at the root, which uses two
other bases.

2.2. Examine the base/kustomization.yaml file.

[student@workstation declarative-kustomize]$ cat base/kustomization.yaml
kind: Kustomization
resources:
- database
- exoplanets
secretGenerator: (2]
- name: db-secrets
literals:
- DB_ADMIN_PASSWORD=postgres
- DB_NAME=database
- DB_PASSWORD=password
- DB_USER=user
configMapGenerator: (3]
- name: db-config
literals:
- DB_HOST=database
- DB_PORT=5432

© Thebase/kustomization.yaml file uses the other two bases.

©© The base also uses generators to provide configuration for the two deployments
in the application.

Chapter 1| Declarative Resource Management

P 3. Deploy the base directory of the repository to a new declarative-kustomize project.
Verify that the v1.1. 0 version of the application is available at http://exoplanets-

declarative-kustomize.apps.ocp4.example.com.

3.1. Login to the OpenShift cluster as the developer user with the deve loper

password.

[student@workstation declarative-kustomize]$ oc login -u developer -p developer \

https://api.ocp4.example.com: 6443
Login successful.

...output omitted. ..

3.2. Createthe declarative-kustomize project.

[student@workstation declarative-kustomize]$ oc new-project declarative-kustomize

...output omitted. ..

3.3. Usetheoc apply -k command to deploy the application with Kustomize.

[student@workstation declarative-kustomize]$ oc apply -k base
configmap/database created

configmap/db-config-2d7thbcgkc created
secret/db-secrets-55chgc8c6m created

service/database created

service/exoplanets created

deployment.apps/database created

deployment.apps/exoplanets created
route.route.openshift.io/exoplanets created

3.4. Use the watch command to wait until the workloads are running.

[student@workstation declarative-kustomize]$ watch oc get all

NAME READY STATUS RESTARTS AGE
pod/database-55d6¢c77787-47649 1/1 Running 0 57s
pod/exoplanets-d6f57869d-jhkhc 1/1 Running 2 (54s ago) 57s
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
service/database ClusterIP 172.30.236.123 <none> 5432/TCP
service/exoplanets ClusterIP 172.30.248.130 <none> 8080/TCP
NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/database 1/1 1 1 57s
deployment.apps/exoplanets 1/1 1 1 57s
NAME DESIRED CURRENT READY AGE
replicaset.apps/database-55d6c77787 1 1 1 57s
replicaset.apps/exoplanets-d6f57869d 1 1 1 57s
NAME

HOST/PORT

route.route.openshift.io/exoplanets
exoplanets-declarative-kustomize.apps.ocp4.example.com

AGE
57s
57s

Chapter 1| Declarative Resource Management

Press Ctr 1+C to exit the watch command.

3.5. Openaweb browser and navigate to http://exoplanets-declarative-
kustomize.apps.ocp4.example.com.

The planets listed here are a small subset of the known planets found outside of our solar system.

« Mass and radius are listed in "Jupiter mass" and "Jupiter radius" units.
« The orbital period is measured in "Earth days".

The full dataset is available from the Open Exoplanet Catalogue.

2M 2206-2

2M 0746+2
30 4640 0.97 20 7340 0.92 30 8686 1.3

51 Erib 55 Cancri 3D+20
Mass Radius Period
2 15000 1 0.0251 0.7365474 0.16728 || 0.05129 41.6855 0.1989
beta Pic b CoR« b)RoT-11 b

Mass Radius Period Mass Radius Period Mass Radius Period

The browser displays the v1.1. 0 version of the application.
P 4. Change to the v1.1.1 version of the application and examine the changes.

4]. Changetothevl.1.1 branch.

[student@workstation declarative-kustomize]$ git checkout vi.1.1
branch 'vi.1.1' set up to track 'origin/vi.1.1'.
Switched to a new branch 'vi.1.1'

4.2. Usethe git show command to display the last commit.

[student@workstation declarative-kustomize]$ git show
.output omitted. ..

diff --git a/base/exoplanets/deployment.yaml b/base/exoplanets/deployment.yaml
index 8bc4cf9..8389b69 100644
--- a/base/exoplanets/deployment.yaml
+++ b/base/exoplanets/deployment.yaml
@@ -23,7 +23,7 @@ spec:

name: exoplanets

- secretRef:

name: exoplanets

- image: registry.ocp4.example.com:8443/redhattraining/exoplanets:v1.1.0

+ image: registry.ocp4.example.com:8443/redhattraining/exoplanets:vi.1.1
imagePullPolicy: Always
livenessProbe:
httpGet:

The v1.1.1 version updates the application to the v1.1.1 image.

P 5. Deploy the updated application and verify that the URL now displays the v1.1.1 version.

51. Usetheoc apply -k command to execute the changes.

Chapter 1| Declarative Resource Management

[student@workstation declarative-kustomize]$ oc apply -k base
...output omitted...

5.2. Use the watch command to wait until the application redeploys.

[student@workstation declarative-kustomize]$ watch oc get all

NAME READY STATUS
pod/database-55d6c77787-47649 1/1 Running
pod/exoplanets-d6f57869d-jhkhc 1/1 Running
NAME TYPE CLUSTER-IP

service/database ClusterIP 172.30.236.123

service/exoplanets ClusterIP 172.30.248.130

NAME
deployment.
deployment.

NAME
replicaset.

replicaset.

NAME

HOST/PORT

READY UP-TO-DATE
apps/database 1/1 1
apps/exoplanets 1/1 1

DESIRED
apps/database-55d6c77787 1
apps/exoplanets-d6f57869d 1

route.route.openshift.io/exoplanets
exoplanets-declarative-kustomize.apps.ocp4.example.com

Press Ctr1+C to exit the watch command.

RESTARTS

0

AGE
57s

2 (54s ago) 57s

EXTERNAL-IP PORT(S)
<none>

<none>

AVAILABLE

1
1

CURRENT

1
1

5432/TCP
8080/TCP

AGE
57s
57s

READY AGE
1 57s
1 57s

AGE
57s
57s

5.3. Open aweb browser and navigate to http://exoplanets-declarative-
kustomize.apps.ocp4.example.com.

Exoplanets - v1.1.1

The planets listed here are a small subset of the known planets found outside of our solar system

« Mass and radius are listed in "Jupiter mass" and "Jupiter radius" units.
« The orbital period is measured in "Earth days"

The full dataset is available from the

Radius Period LEGITEY Period

4640 0.97 7340 0.92

Radius Period Mass Radius Period Mass

15000 1 0.0251 0.7365474 0.16728 0.05129

Radius Period Radius Period

Radius

8686

Radius

41.6855

Radius

Period

13

Period

0.1989

Period

The browser displays the v1.1.1 version of the application.

) 6. Change tothe vl.1.2 version of the application and examine the changes.

6.1. Change tothev1l.1.2 branch.

Chapter 1| Declarative Resource Management

[student@workstation declarative-kustomize]$ git checkout vi.1.2
branch 'v1.1.2' set up to track 'origin/v1.1.2'.
Switched to a new branch 'vi.1.2'

6.2. Usethe git show command to display the last commit.

[student@workstation declarative-kustomize]$ git show
...output omitted. ..
diff --git a/base/kustomization.yaml b/base/kustomization.yaml
index fdfi129a..8del6e8 100644
--- a/base/kustomization.yaml
+++ b/base/kustomization.yaml
@@ -7,7 +7,7 @@ secretGenerator:
literals:
- DB_ADMIN_PASSWORD=postgres
- DB_NAME=database
- - DB_PASSWORD=password
+ - DB_PASSWORD=newpassword
- DB_USER=user
configMapGenerator:
- name: db-config

The v1.1.2 version updates the base kustomization. This update changes the
password that the database uses. This change is possible because the sample
application re-creates the database on startup.

6.3. List the secrets in the namespace.

[student@workstation declarative-kustomize]$ oc get secret

NAME TYPE DATA AGE

builder-dockercfg-qwn4v kubernetes.io/dockercfg 1 4m31s
builder-token-z754n kubernetes.io/service-account-token 4 4m31s
db-secrets-55chgc8c6m Opaque 4 4m28s
default-dockercfg-w4v89 kubernetes.io/dockercfg 1 4m31s
default-token-zw89c kubernetes.io/service-account-token 4 4m31s
deployer-dockercfg-18sct kubernetes.io/dockercfg 1 4m31s
deployer-token-knvhb kubernetes.io/service-account-token 4 4m31s

When creating a secret, Kustomize appends a hash to the secret name.

6.4. Extract the contents of the secret. The name of the secret can change in your
environment. Use the output from a previous step to learn the name of the secret.

[student@workstation declarative-kustomize]$ oc extract \
secret/db-secrets-55chgc8c6m --to=-

DB_PASSWORD

password

DB_USER

user

DB_ADMIN_PASSWORD

postgres

DB_NAME

database

Chapter 1| Declarative Resource Management
P 7. Deploy the updated application.

71. Usetheoc apply -k command to execute the changes.

[student@workstation declarative-kustomize]$ oc apply -k base
configmap/database unchanged

configmap/db-config-2d7thbcgkc unchanged
secret/db-secrets-6h668tk789 created

service/database unchanged

service/exoplanets unchanged

deployment .apps/database configured

deployment .apps/exoplanets configured
route.route.openshift.io/exoplanets configured

Because the password is different, Kustomize creates another secret. Kustomize also
updates the two deployments that use the secret to use the new secret.

7.2. Use the watch command to wait until the application redeploys.

[student@workstation declarative-kustomize]$ watch oc get all

NAME READY STATUS RESTARTS AGE
pod/database-55d6¢c77787-47649 1/1 Running 0] 57s
pod/exoplanets-d6f57869d-jhkhc 1/1 Running 2 (54s ago) 57s
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/database ClusterIP 172.30.236.123 <none> 5432/TCP 57s
service/exoplanets ClusterIP 172.30.248.130 <none> 8080/TCP 57s
NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/database 1/1 1 1 57s
deployment.apps/exoplanets 1/1 1 1 57s
NAME DESIRED CURRENT READY AGE
replicaset.apps/database-55d6¢c77787 1 1 1 57s
replicaset.apps/exoplanets-d6f57869d 1 1 1 57s
NAME

HOST/PORT

route.route.openshift.io/exoplanets
exoplanets-declarative-kustomize.apps.ocp4.example.com

Press Ctr 1+C to exit the watch command.

7.3. Open a web browser and navigate to http://exoplanets-declarative-
kustomize.apps.ocp4.example.com.

Chapter 1| Declarative Resource Management

Exoplanets - v1.1.1

The planets listed here are a small subset of the known planets found outside of our solar system

« Mass and radius are listed in "Jupiter mass" and "Jupiter radius" units.
« The orbital period is measured in "Earth days"

The full dataset is available from the

Radius Period Radius Period Radius Period

4640 0.97 7340 0.92 8686 13

Radius Period Mass Radius Period Mass Radius Period

15000 1 0.0251 0.7365474 0.16728 0.05129 41.6855 0.1989

Radius Period Radius Period Radius Period

The browser continues showing the v1.1. 1 version of the application.

7.4. Examine the deployment.

[student@workstation declarative-kustomize]$ oc get deployment exoplanets \

-0 jsonpath='{.spec.template.spec.containers[0].envFrom}{"\n"}"'
[{"configMapRef":{"name":"db-config-2d7thbcgkc"}}, {"secretRef":{"name":"db-
secrets-6h668tk789"}1}]

The deployment uses the new secret.

7.5. Examine the secret. Use the name of the secret from a previous step.

[student@workstation declarative-kustomize]$ oc extract \
secret/db-secrets-6h668tk789 --to=-

DB_ADMIN_PASSWORD

postgres

DB_NAME

database

DB_PASSWORD

newpassword

DB_USER

user

The deployment uses the changed password.
) 8. Change tothe vl.1.3 version of the application and examine the changes.

8.1. Change tothev1l.1.3 branch.

[student@workstation declarative-kustomize]$ git checkout v1.1.3
branch 'v1.1.3' set up to track 'origin/v1.1.3'.
Switched to a new branch 'v1.1.3'

8.2. Usethegit showcommand to display the last commit.

Chapter 1| Declarative Resource Management

[student@workstation declarative-kustomize]$ git show

...output omitted...

diff --git a/overlays/production/kustomization.yaml b/overlays/production/
kustomization.yaml

new file mode 100644

index 0000000..73bb7fe

--- /dev/null

+++ b/overlays/production/kustomization.yaml

@@ -0,0 +1,8 @@

+kind: Kustomization

+resources:

+- ../../base/

+patches:

+- path: patch-replicas.yaml
+ target:

+ kind: Deployment

+ name: exoplanets

diff --git a/overlays/production/patch-replicas.yaml b/overlays/production/patch-
replicas.yaml

new file mode 100644

index 0000000..a025aald

--- /dev/null

+++ b/overlays/production/patch-replicas.yaml
@@ -0,0 +1,6 @@

+apiVersion: apps/vi

+kind: Deployment

+metadata:

+ name: exoplanets

+spec:

+ replicas: 2

The v1.1.3 version adds a production overlay that increases the number of
replicas.

P 9. Deploy the updated application and verify the number of replicas.

9.1. Usetheoc apply -k command to execute the changes.

[student@workstation declarative-kustomize]$ oc apply -k overlays/production
...output omitted...

9.2. Use the watch command to wait until the application redeploys.

[student@workstation declarative-kustomize]$ watch oc get all

NAME READY STATUS RESTARTS AGE
pod/database-7dfb559cf7-rvxhx 1/1 Running 0 11m
pod/exoplanets-957bb5b48-5x12d 1/1 Running 2 (11m ago) 11m
pod/exoplanets-957bb5b48-mgbrx 1/1 Running 0 19s
NAME TYPE CLUSTER-IP EXTERNAL -IP PORT(S) AGE
service/database ClusterIP 172.30.87.214 <none> 5432/TCP 19m
service/exoplanets ClusterIP 172.30.25.65 <none> 8080/TCP 19m

Chapter 1| Declarative Resource Management

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/database 1/1 1 1 19m
deployment.apps/exoplanets 2/2 2 2 19m

NAME DESIRED CURRENT READY AGE
replicaset.apps/database-7dfb559cf7 1 1 1 11m
replicaset.apps/database-d4cd8dcc 0] 0] 0] 19m
replicaset.apps/exoplanets-6c7b4bb44c 0] 0] 0] 19m
replicaset.apps/exoplanets-7cch754c8b 0] 0] 0] 18m
replicaset.apps/exoplanets-957bb5b48 2 2 2 11m
NAME

HOST/PORT

route.route.openshift.io/exoplanets
exoplanets-declarative-kustomize.apps.ocp4.example.com

Press Ctr1+C to exit the watch command. After you run the command, the
application has two replicas.

P 10. Delete the application.

10.1. Use theoc delete -k command to delete the resources that Kustomize manages.

[student@workstation declarative-kustomize]$ oc delete -k base

Warning: 'bases' is deprecated. Please use 'resources' instead. Run 'kustomize
edit fix' to update your Kustomization automatically.
configmap "database" deleted

configmap "db-config-2d7thbcgkc" deleted

secret "db-secrets-h9hdmt2g79" deleted

service '"database" deleted

service "exoplanets" deleted

deployment.apps "database" deleted

deployment.apps "exoplanets" deleted

route.route.openshift.io "exoplanets" deleted

10.2. Change to the home directory.

[student@workstation declarative-kustomize]$ cd
[student@workstation ~]$

Finish
On the workstation machine, use the lab command to complete this exercise. This step is
important to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab finish declarative-kustomize

Chapter 1| Declarative Resource Management

» Lab

Declarative Resource Management

Deploy and update applications from resource manifests that are parameterized for different
target environments.

Outcomes

+ Deploy an application by using Kustomize from provided files.
+ Apply an application update that changes a deployment.

+ Deploy an overlay of the application that increases the number of replicas.

Before You Begin

As the student user on the workstation machine, use the lab command to prepare your
system for this exercise.

This command ensures that the cluster APl is reachable.

[student@workstation ~]$ lab start declarative-review

Instructions

1. Clone thev1.1.0 version of the application from the https://
git.ocp4.example.com/developer/declarative-review.git URL. Because this
repository uses Git branches to represent application versions, you must use the v1.1.0
branch.

2. Examine the first version of the application.

3. Login to the OpenShift cluster as the deve loper user with the deve loper password.
Deploy the base directory of the repository to a new declarative-review project.
Verify that the v1.1.0 version of the application is available at http://exoplanets-
declarative-review.apps.ocp4.example.com.

4. Change tothe v1l.1.1 version of the application and examine the changes.

5. Deploy the updated application and verify that the URL now displays the v1.1.1 version.

6. Examine the overlay in the overlays/production path.

7. Deploy the production overlay to a new declarative-review-production project.
Verify that the v1.1.1 version of the application is available at http://exoplanets-
declarative-review-production.apps.ocp4.example.com with two replicas.

Evaluation

As the student user on the workstation machine, use the lab command to grade your work.
Correct any reported failures and rerun the command until successful.

[student@workstation ~]$ lab grade declarative-review

Chapter1 | Declarative Resource Management

Finish
As the student user on the workstation machine, use the Tab command to complete this

exercise. This step is important to ensure that resources from previous exercises do not impact
upcoming exercises.

[student@workstation ~]$ lab finish declarative-review

w D0O280-0OCP4.14-en-1-20240215

Chapter 1| Declarative Resource Management

» Solution

Declarative Resource Management

Deploy and update applications from resource manifests that are parameterized for different
target environments.

Outcomes

+ Deploy an application by using Kustomize from provided files.
+ Apply an application update that changes a deployment.

+ Deploy an overlay of the application that increases the number of replicas.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your
system for this exercise.

This command ensures that the cluster APl is reachable.

[student@workstation ~]$ lab start declarative-review

Instructions

1.

2.

Clone the v1.1.0 version of the application from the https://
git.ocp4.example.com/developer/declarative-review.git URL. Because this
repository uses Git branches to represent application versions, you must use the v1.1.0
branch.

1. Change to the ~/D0280/labs/declarative-review directory.

[student@workstation ~]$ cd D0280/labs/declarative-review
[student@workstation declarative-review]$

1.2. Clone the initial version of the application.

[student@workstation declarative-review]$ git clone \
https://git.ocp4.example.com/developer/declarative-review.git --branch vi1.1.0

Cloning into 'declarative-review'...

...output omitted...

1.3. Change to the repository directory.

[student@workstation declarative-review]$ cd declarative-review

Examine the first version of the application.

2. Use the tree command to review the structure of the repository.

Chapter 1| Declarative Resource Management

[student@workstation declarative-review]$ tree

— base

|— database o

| — configmap.yaml
— deployment.yaml
— kustomization.yaml
— secret.yaml
L— service.yaml

— configmap.yaml

|— deployment.yaml

— kustomization.yaml

— route.yaml

|— secret.yaml

|
|
|
|
— exoplanets
|
|
|
|
|
|

L— service.yaml

L— kustomization.yaml

L— production
— kustomization.yaml
L— patch-replicas.yaml
README . md

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|— overlays o
|

|

|
L

5 directories, 15 files

o
2]

3]

o

The database base defines resources to deploy a database.

The exoplanets base defines resources to deploy an application that uses the
database

The repository has a kustomization.yaml file at the root, which uses two other
bases.

The repository also has a production overlay.

2.2. Examine the base/kustomization.yaml file.

[student@workstation declarative-review]$ cat base/kustomization.yaml
kind: Kustomization

resources:
- database

- exoplanets

The base/kustomization.yaml file uses the other two bases.

3. Login to the OpenShift cluster as the deve loper user with the deve loper password.
Deploy the base directory of the repository to a new declarative-review project.
Verify that the v1.1.0 version of the application is available at http://exoplanets-
declarative-review.apps.ocp4.example.com

3.1. Login to the OpenShift cluster as the developer user with the developer password.

Chapter 1| Declarative Resource Management

[student@workstation declarative-review]$ oc login -u developer -p developer \

https://api.ocp4.example.com: 6443
Login successful.

...output omitted...

3.2. Create the declarative-review project.

[student@workstation declarative-review]$ oc new-project declarative-review

...output omitted. ..

3.3. Usetheoc apply -k command to deploy the application with Kustomize.

[student@workstation declarative-review]$ oc apply -k base
configmap/database created

configmap/exoplanets created

secret/database created

secret/exoplanets created

service/database created

service/exoplanets created

deployment.apps/database created
deployment.apps/exoplanets created
route.route.openshift.io/exoplanets created

3.4. Use the watch command to wait until the workloads are running.

[student@workstation declarative-review]$ watch oc get all

NAME READY STATUS RESTARTS AGE
pod/database-55d6¢c77787-47649 1/1 Running 0] 57s
pod/exoplanets-d6f57869d-jhkhc 1/1 Running 2 (54s ago) 57s
NAME TYPE CLUSTER-IP EXTERNAL -IP PORT(S)
service/database ClusterIP 172.30.236.123 <none> 5432/TCP
service/exoplanets ClusterIP 172.30.248.130 <none> 8080/TCP
NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/database 1/1 1 1 57s
deployment.apps/exoplanets 1/1 1 1 57s

NAME DESIRED CURRENT READY AGE
replicaset.apps/database-55d6c77787 1 1 1 57s
replicaset.apps/exoplanets-d6f57869d 1 1 1 57s
NAME HOST/PORT

route.../exoplanets exoplanets-declarative-review.apps.ocp4.example.com

Press Ctr 1+C to exit the watch command.

AGE
57s
57s

3.5. Open aweb browser and navigate to http://exoplanets-declarative-

review.apps.ocp4.example.com.

Chapter 1| Declarative Resource Management

The planets listed here are a small subset of the known planets found outside of our solar system.

« Mass and radius are listed in "Jupiter mass" and "Jupiter radius" units.
« The orbital period is measured in "Earth days".

The full dataset is available from the Open Exoplanet Catalogue.

2M 0746+20 b 2M 2140+16 b 2M 2206-20 b
Mass Radius Period Mass Radius Period Mass Radius Period
30 4640 0.97 20 7340 0.92 30 8686 1.3

51 Erib 55 Cancri e BD+20 594 b

Mass Radius Period Mass REGINE Period Mass Radius Period
2 15000 1 0.0251 0.7365474 0.167280.05129 41.6855 0.1989
beta Pic b CoRoT-10 b CoRoT-11 b

The browser displays version v1.1.0 of the application.

4. Change tothevl.1.1 version of the application and examine the changes.

41. Changetothevl.1.1 branch.

[student@workstation declarative-review]$ git checkout vi.1.1
branch 'vi.1.1' set up to track 'origin/vi.1.1'.
Switched to a new branch 'vi.1.1'

4.2. Usethegit show command to display the last commit.

[student@workstation declarative-review]$ git show
...output omitted. ..
diff --git a/base/exoplanets/deployment.yaml b/base/exoplanets/deployment.yaml
index 8bc4cf9..8389b69 100644
--- a/base/exoplanets/deployment.yaml
+++ b/base/exoplanets/deployment.yaml
@@ -23,7 +23,7 @@ spec:

name: exoplanets

- secretRef:

name: exoplanets

- image: registry.ocp4.example.com:8443/redhattraining/exoplanets:v1.1.0

+ image: registry.ocp4.example.com:8443/redhattraining/exoplanets:v1.1.1
imagePullPolicy: Always
livenessProbe:
httpGet:

The v1.1.1 version updates the application to the v1.1.1 image.

5. Deploy the updated application and verify that the URL now displays the v1.1.1 version.

51 Usetheoc apply -k command to execute the changes.

[student@workstation declarative-review]$ oc apply -k base
...output omitted. ..

Chapter 1| Declarative Resource Management

5.2. Use the watch command to wait until the application redeploys.

[student@workstation declarative-review]$ watch oc get all

6.

NAME READY STATUS RESTARTS AGE
pod/database-55d6c77787-47649 1/1 Running 0 57s
pod/exoplanets-d6f57869d-jhkhc 1/1 Running 2 (54s ago) 57s
NAME TYPE CLUSTER-IP EXTERNAL -IP
service/database ClusterIP 172.30.236.123 <none> 5432/TCP
service/exoplanets ClusterIP 172.30.248.130 <none> 8080/TCP
NAME READY UP-TO-DATE AVAILABLE
deployment.apps/database 1/1 1 1
deployment.apps/exoplanets 1/1 1 1

NAME DESIRED CURRENT READY
replicaset.apps/database-55d6c77787 1 1 1
replicaset.apps/exoplanets-d6f57869d 1 1 1

NAME HOST/PORT

route.../exoplanets

Press Ctr1+C to exit the watch command.

exoplanets-declarative-review.apps.ocp4.example.com

AGE
57s
57s

5.3. Open aweb browser and navigate to http://exoplanets-declarative-

review.apps.ocp4.example.com.

(5 C

& Customer Portal 4 Red Hat 4 Red Hat Products Doc

QO @I exoplane(s—de(laratlve—rewew.apps.o(pti.example.com|I

4@ Red Hat Enterprise Lin... 4 Red Hat Developer Por

Exoplanets - v1.1.1

The planets listed here are a small subset of the known planets found outside of our solar system.

« Mass and radius are listed in "Jupiter mass" and "Jupiter radius" units.
« The orbital period is measured in "Earth days".

The full dataset is available from the

Mass Radius Period Mass Radius Period Mass Radius Period

30 4640 0.97 20 7340 1X:7] 30 8686 13

Mass Radius Period Mass Radius Period Mass Radius Period

2 15000 1 0.0251 0.7365474 0.16728 0.05129 41.6855 0.1989

The browser displays version v1.1.1 of the application.

Examine the overlay in the overlays/production path.

6.. Examine the overlays/production/kustomization.yaml file.

[student@workstation declarative-review]$ cat \
overlays/production/kustomization.yaml

kind: Kustomization

resources:

»

Chapter 1| Declarative Resource Management

- ../../base/
patches:
- path: patch-replicas.yaml
target:
kind: Deployment
name: exoplanets

This overlay applies a patch over the base.

6.2. Examine the overlays/production/patch-replicas.yaml file.

[student@workstation declarative-review]$ cat \
overlays/production/patch-replicas.yaml
apivVersion: apps/vi
kind: Deployment
metadata:
name: exoplanets
spec:
replicas: 2

This patch increases the number of replicas of the deployment, so that the production
deployment can handle more users.

7. Deploy the production overlay to a new declarative-review-production project.
Verify that the v1.1.1 version of the application is available at http://exoplanets-
declarative-review-production.apps.ocp4.example.com with two replicas.

71. Create thedeclarative-review-production project.

[student@workstation declarative-review]$ oc new-project
declarative-review-production

Now using project "declarative-review-production" on server "https://
api.ocp4.example.com:6443".

...output omitted. ..

7.2. Usetheoc apply -k command to deploy the overlay.

[student@workstation declarative-review]$ oc apply -k overlays/production
configmap/database created

configmap/exoplanets created

secret/database created

secret/exoplanets created

service/database created

service/exoplanets created

deployment.apps/database created

deployment.apps/exoplanets created

route.route.openshift.io/exoplanets created

7.3. Use the watch command to wait until the workloads are running.

[student@workstation declarative-review]$ watch oc get all

NAME READY STATUS RESTARTS AGE
pod/database-55d6¢c77787-b5x4n 1/1 Running 0] 5mils
pod/exoplanets-55666f556f-ndwkz 1/1 Running 2 (5m8s ago) 5mils

Chapter 1| Declarative Resource Management

pod/exoplanets-55666f556f-q7s7] 1/1 Running 2 (5m7s ago) 5mils

NAME TYPE CLUSTER-IP EXTERNAL -IP PORT(S) AGE
service/database ClusterIP 172.30.24.165 <none> 5432/TCP 5mlls
service/exoplanets ClusterIP 172.30.90.176 <none> 8080/TCP 5mils
NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/database 1/1 1 1 5mils
deployment.apps/exoplanets 2/2 2 2 5mils

NAME DESIRED CURRENT READY AGE
replicaset.apps/database-55d6¢c77787 1 1 1 5mils
replicaset.apps/exoplanets-55666f556f 2 2 2 5mils

NAME HOST/PORT

route.../exoplanets exoplanets-declarative-review-production.apps.ocp4.example.com
The exoplanets deployment has two replicas.

7.4. Open aweb browser and navigate to http://exoplanets-declarative-review-
production.apps.ocp4.example.com.

(= c () (4 example.(oml w 9 =

4@ Customer Portal & Red Hat 4 Red Hat Products Doc... 4 Red Hat Enterprise Lin... 4 Red Hat Developer Por. »

Exoplanets - v1.1.1

The planets listed here are a small subset of the known planets found outside of our solar system.

« Mass and radius are listed in "Jupiter mass" and "Jupiter radius" units.
« The orbital period is measured in "Earth days".

The full dataset is available from the

Mass Radius Period Mass Radius Period Mass Radius Period

30 4640 0.97 20 7340 0.92 30 8686 13

Mass Radius Period Mass Radius Period Mass Radius Period

2 15000 1 0.0251 0.7365474 0.16728 0.05129 41.6855 0.1989

The browser displays version v1.1.1 of the application.

7.5. Change to the home directory.

[student@workstation declarative-review]$ cd
[student@workstation ~]$

Evaluation

As the student user on the workstation machine, use the lab command to grade your work.
Correct any reported failures and rerun the command until successful.

[student@workstation ~]$ lab grade declarative-review

Chapter1 | Declarative Resource Management

Finish
As the student user on the workstation machine, use the Tab command to complete this

exercise. This step is important to ensure that resources from previous exercises do not impact
upcoming exercises.

[student@workstation ~]$ lab finish declarative-review

W D0O280-0OCP4.14-en-1-20240215

Chapter 1| Declarative Resource Management

Summary

+ Imperative commands perform actions, such as creating a deployment, by specifying all
necessary parameters as command-line arguments.

+ In the declarative workflow, you create manifests that describe resources in the YAML or JSON
formats, and use commands such as kubect 1 apply to deploy the resources to a cluster.

+ Kubernetes provides tools, such as the kubect1l diff command, to review your changes
before applying them.

+ You can use Kustomize to create multiple deployments from a single base code with different
customizations.

+ The kubect 1 command integrates Kustomize into the app ly subcommand and others.
+ Kustomize organizes content around bases and overlays.

+ Bases and overlays can create and modify existing resources from other bases and overlays.

For use by srinivas godavarthy sriniva

—

[=

5 L

“how srinivas. godavarthy@bupa.com.sa

Copyright © 2024 Red Hat, Inc.

DO280-0OCP4.14-en-1-20240215

Chapter 2

Deploy Packaged Applications

Goal Deploy and update applications from resource U
manifests that are packaged for sharing and
distribution.
.
Objectives * Deploy an application and its dependencies “
from resource manifests that are stored in an
OpenShift template. n-
m Deploy and update applications from resource
manifests that are packaged as Helm charts. i

— . . .
- Sections + OpenShift Templates (and Guided Exercise)

+ Helm Charts (and Guided Exercise)
Lab + Deploy Packaged Applications

r/

D0O280-0OCP4.14-en-1-20240215

Chapter 2 | Deploy Packaged Applications

OpenShift Templates

Objectives

+ Deploy and update applications from resource manifests that are packaged as OpenShift
templates.

OpenShift Templates

A template is a Kubernetes custom resource that describes a set of Kubernetes resource
configurations. Templates can have parameters. You can create a set of related Kubernetes
resources from a template by processing the template, and providing values for the parameters.
Templates have varied use cases, and can create any Kubernetes resource. You can create a list of
resources from a template by using the CLlI or, if a template is uploaded to your project or to the
global template library, by using the web console.

The template resource is a Kubernetes extension that Red Hat for OpenShift provides. The Cluster
Samples Operator populates templates (and image streams) in the openshift namespace. You
can opt out of adding templates during installation, and you can restrict the list of templates that
the operator populates.

You can also create templates from scratch, or copy and customize a template to suit the needs of
your project.

Discovering Templates

The templates that the Cluster Samples Operator provides are in the openshift namespace.
Use the following oc get command to view a list of these templates:

[user@host ~]% oc get templates -n openshift

NAME DESCRIPTION PARAMETERS OBJECTS
cache-service Red Hat Data Grid... 8 (1 blank) 4
cakephp-mysql-example An example CakePHP... 21 (4 blank) 8
cakephp-mysql-persistent An example CakePHP... 22 (4 blank) 9

...output omitted. ..

To evaluate any template, use the oc describe template template-name -n openshift
command to view more details about the template, including the description, the labels that the
template uses, the template parameters, and the resources that the template generates.

The following example shows the details of the cache-service template:

[user@host ~]$ oc describe template cache-service -n openshift

Name: cache-service

Namespace: openshift

Created: 2 months ago

Labels: samples.operator.openshift.io/managed=true

template=cache-service

Description: Red Hat Data Grid is an in-memory, distributed key/value store. o
Annotations: iconClass=icon-datagrid

Chapter 2 | Deploy Packaged Applications
...output omitted. ..
Parameters: ©

Name: APPLICATION_NAME
Display Name: Application Name

Description: Specifies a name for the application.

Required: true
Value: cache-service (3]

.output omitted. ..

Name: APPLICATION_PASSWORD
Display Name: Client Password

Description: Sets a password to authenticate client applications.

Required: false
Generated: expression o
From: [a-zA-Z0-9]{16}

Object Labels: template=cache-service o
Message: <none>

Objects: o
Secret ${APPLICATION_NAME}
Service ${APPLICATION_NAME}-ping
Service ${APPLICATION_NAME}
StatefulSet.apps ${APPLICATION_NAME}

® 06 0 0 ©

Use the description to determine the purpose of the template.
The parameters provide deployment flexibility.

The value field provides a default value that you can override.
The Generated and From fields also generate default values.

The object labels are applied to all resources that the template creates.

© The objects section lists the resources that the template creates.

In addition to using the oc describe command to view information about a template, the
oc process command provides a - -parameters option to view only the parameters that a
template uses. For example, use the following command to view the parameters that the cache-

service template uses:

[user@host ~]%$ oc process --parameters cache-service -n openshift

NAME - GENERATOR
APPLICATION_NAME

IMAGE

NUMBER_OF_INSTANCES

REPLICATION_FACTOR

EVICTION_POLICY

TOTAL_CONTAINER_MEM

APPLICATION_USER .
APPLICATION_PASSWORD 200 expression

VALUE

cache-service
registry.redhat.io/jboss-datagrid-7/...
1

1

evict

512

[a-zA-Z0-9]{16}

Chapter 2 | Deploy Packaged Applications
Use the - f option to view the parameters of a template that are defined in a file:

[user@host ~]$% oc process --parameters -f my-cache-service.yaml

Use the oc get template template-name -o yaml -n namespace command to view the
manifest for the template. The following example retrieves the template manifest for the cache-
service template:

[user@host ~]$ oc get template cache-service -o yaml -n openshift
apiVersion: template.openshift.io/v1
kind: Template

labels:
template: cache-service

metadata:

...output omitted...

- apivVersion: vi
kind: Secret
metadata:

...output omitted. ..

- apiversion: vi
kind: Service
metadata:

...output omitted...

- apiversion: vi
kind: Service
metadata:

...output omitted. ..

- apiVersion: apps/vi
kind: StatefulsSet
metadata:

...output omitted...

parameters:

- description: Specifies a name for the application.
displayName: Application Name
name: APPLICATION_NAME
required: true
value: cache-service

- description: Sets an image to bootstrap the service.
name: IMAGE
...output omitted. ..

In the template manifest, examine how the template creates resources. The manifest is also a
good resource for learning how to create your own templates.

Using Templates

The oc new-app command has a - -template option that can deploy the template resources
directly from the openshift project. The following example deploys the resources that are
defined in the cache-service template from the openshift project:

[user@host ~]$ oc new-app --template=cache-service -p APPLICATION_USER=my-user

Chapter 2 | Deploy Packaged Applications

Using the oc new-app command to deploy the template resources is convenient for
development and testing. However, for production usage, consume templates in a manner that
helps resource and configuration tracking. For example, the oc new-app command can only
create new resources, not update existing resources.

You can use the oc process command to apply parameters to a template, to produce manifests
to deploy the templates with a set of parameters. The oc process command can process both
templates that are stored in files locally, and templates that are stored in the cluster. However, to
process templates in a namespace, you must have write permissions on the template namespace.
For example, to run oc process on the templates in the openshift namespace, you must have
write permissions on this namespace.

E Note
Unprivileged users can read the templates in the openshift namespace by
default. Those users can extract the template from the openshift namespace and
create a copy in a project where they have wider permissions. By copying a template
to a project, they can use the oc process command on the template.

Deploying Applications from Templates

The oc process command uses parameter values to transform a template into a set of related
Kubernetes resource manifests. For example, the following command creates a set of resource
manifests for the my-cache-service template. When you use the -0 yaml option, the
resulting manifests are in the YAML format. The example writes the manifests to amy-cache-
service-manifest.yaml file:

[user@host ~]$ oc process my-cache-service \
-p APPLICATION_USER=userl -o yaml > my-cache-service-manifest.yaml

The previous example uses the -p option to provide a parameter value to the only required
parameter without a default value.

Use the - f option with the oc process command to process a template that is defined in a file:

[user@host ~]$ oc process -f my-cache-service.yaml \
-p APPLICATION_USER=userl -o yaml > my-cache-service-manifest.yaml

Use the -p option with key=va lue pairs with the oc process command to use parameter
values that override the default values. The following example passes three parameter values to
the my-cache-service template, and overrides the default values of the specified parameters:

[user@host ~]$ oc process my-cache-service -o yaml \
-p TOTAL_CONTAINER_MEM=1024 \
-p APPLICATION_USER='cache-user' \
-p APPLICATION_PASSWORD='my-secret-password' \
> my-cache-service-manifest.yaml

Instead of specifying parameters on the command line, place the parameters in a file. This option
cleans up the command line when many parameter values are required. Save the parameters

file in a version control system to keep records of the parameters that are used in production
deployments.

Chapter 2 | Deploy Packaged Applications

For example, instead of using the command-line options in the previous examples, place the key-
value pairsin amy-cache-service-params.env file. Add the key-value pairs to the file, with
each pair on a separate line:

TOTAL_CONTAINER_MEM=1024
APPLICATION_USER='cache-user'
APPLICATION_PASSWORD='my-secret-password'

The corresponding oc process command uses the - -param-file option to pass the
parameters as follows:

[user@host ~]$ oc process my-cache-service -o yaml \
--param-file=my-cache-service-params.env > my-cache-service-manifest.yaml

Generating a manifest file is not required to use templates. Instead, pipe the output of the oc
process command directly to the input for the oc apply -f - command. Theoc apply
command creates live resources on the Kubernetes cluster.

[user@host ~]$ oc process my-cache-service \
--param-file=my-cache-service-params.env | oc apply -f -

Because templates are flexible, you can use the same template to create different resources by
changing the input parameters.

Updating Apps from Templates

Because you use the oc apply command, after deploying a set of manifests from a template,
you can process the template again and use oc apply for updates. This procedure can make
simple changes to deployed templates, such as changing a parameter. However, many workload
updates are not possible with this mechanism. To manage more complex applications, consider
using other mechanisms such as Helm charts, which are described elsewhere in this course.

To compare the results of applying a different parameters file to a template against the live
resources, pipe the manifest to the oc diff -f - command. For example, given a second
parameter file named my-cache-service-params-2.eny, use the following command:

[user@host ~]$ oc process my-cache-service -o yaml \
--param-file=my-cache-service-params-2.env | oc diff -f -
...output omitted...
- generation: 1
+ generation: 2
labels:
application: cache-service
template: cache-service
@@ -86,10 +86,10 @@
timeoutSeconds: 10

resources:
limits:
- memory: 1Gi
+ memory: 2Gi
requests:
cpu: 500m

- memory: 1Gi

Chapter 2 | Deploy Packaged Applications

+ memory: 2Gi
terminationMessagePath: /dev/termination-log
terminationMessagePolicy: File
volumeMounts:

In this case, the configuration change increases the memory usage of the application. The output
shows that the second generation uses 2G1i of memory instead of 1Gi.
After verifying that the changes are what you intend, you can pipe the output of the oc process

totheoc apply -f - command.

Managing Templates

For production usage, make a customized copy of the template, to change the default values of
the template to suitable values for the target project. To copy a template into your project, use the
oc get template command with the -0 yam1 option to copy the template YAML to a file.

The following example copies the cache-service template from the openshift projectto a
YAML file named my-cache-service.yaml:

[user@host ~]$ oc get template cache-service -o yaml \
-n openshift > my-cache-service.yaml
After creating a YAML file for a template, consider making the following changes to the template:
+ Give the template a new name that is specific to the target use of the template resources.
+ Apply appropriate changes to the parameter default values at the end of the file.
+ Remove the namespace field of the template resource.

You can process templates in other namespaces, if you can create the processed template
resource in those namespaces. Processing the template in a different project without changing
the template namespace to match the target namespace gives an error. Optionally, you can also
delete the namespace field from the metadata field of the template resource.

After you have a YAML file for a template, use the oc create -f command to upload the
template to the current project. In this case, the oc create command is not creating the
resources that the template defines. Instead, the command is creating a template resource in
the project. Using a template that is uploaded to a project clarifies which template provides the
resource definitions of a project. After uploading, the template is available to anyone with access
to the project.

The following example uploads a customized template that is defined in the my-cache-
service.yaml file to the current project:

[user@host ~]$ oc create -f my-cache-service.yaml

Use the -n namespace option to upload the template to a different project. The following
example uploads the template that is defined in the my-cache-service.yaml file to the
shared-templates project:

[user@host ~]$ oc create -f my-cache-service.yaml -n shared-templates

Use the oc get templates command to view a list of available templates in the project:

Chapter 2 | Deploy Packaged Applications

[user@host ~]% oc get templates -n shared-templates
NAME DESCRIPTION PARAMETERS OBJECTS
my-cache-service Red Hat Data Grid... 8 (1 blank) 4

D References

For more information, refer to the Understanding Templates section in the Using
Templates chapter in the Red Hat OpenShift Container Platform 4.14 Images
documentation at
https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.14/html-single/images/index#templates-
overview_using-templates

For more information, refer to the OpenShift CLI Developer Command Reference
section in the OpenShift CLI (oc) chapter in the Red Hat OpenShift Container
Platform 4.14 CL/ Tools documentation at
https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.14/html-single/cli_tools/index#cli-developer-
commands

Kubernetes Documentation - kubectl Commands
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands

W D0O280-0OCP4.14-en-1-20240215

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/images/index#templates-overview_using-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/images/index#templates-overview_using-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/images/index#templates-overview_using-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/cli_tools/index#cli-developer-commands
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/cli_tools/index#cli-developer-commands
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/cli_tools/index#cli-developer-commands
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands

Chapter 2 | Deploy Packaged Applications

» Guided Exercise

OpenShift Templates

Deploy and update an application from a template that is stored in another project.

Outcomes

+ Deploy and update an application from a template.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your
system for this exercise.

This command ensures that all resources are available for this exercise.

[student@workstation ~]$ lab start packaged-templates

Instructions

P 1. Loginto the OpenShift cluster as the developer user with the developer password.

11. Login to the OpenShift cluster.

[student@workstation ~]$ oc login -u developer -p developer \
https://api.ocp4.example.com: 6443

Login successful.

...output omitted...

) 2. Examine the available templates in the cluster, in the openshift project. Identify an
appropriate template to deploy a MySQL database.

2. Use the get command to retrieve a list of templates in the cluster, in the openshift
project.

[student@workstation ~]$ oc get templates -n openshift

NAME DESCRIPTION PARAMETERS OBJECTS
...output omitted...

mysql-ephemeral MySQL database. .. 8 (3 generated) 3
mysql-persistent MySQL database. .. 9 (3 generated) 4

...output omitted...

2.2. Usetheoc process --parameters command to view the parameters of the
mysqgl-persistent template.

[student@workstation ~]$ oc process --parameters mysql-persistent \
-n openshift

NAME DESCRIPTION GENERATOR VALUE

MEMORY_LIMIT aoo 512Mi

Chapter 2 | Deploy Packaged Applications

NAMESPACE C openshift
DATABASE_SERVICE_NAME aoo mysql
MYSQL_USER C expression user[A-z20-9]{3}
MYSQL_PASSWORD C expression [a-zA-Z0-9]{16}
MYSQL_ROOT_PASSWORD C expression [a-zA-Z0-9]{16}
MYSQL_DATABASE aoo samp ledb
VOLUME_CAPACITY aoo 161
MYSQL_VERSION aoo 8.0-el8

All the required parameters have either default values or generated values.

P 3. Usethemysqgl-persistent template to deploy a database by processing the template.

3.1. Create the packaged-templates project.

[student@workstation ~]$ oc new-project packaged-templates
Now using project "packaged-templates" on server
...output omitted. ..

3.2. Use the oc new-app command to deploy the application.

[student@workstation ~]$ oc new-app --template=mysql-persistent \
-p MYSQL_USER=userl1 \
-p MYSQL_PASSWORD=mypasswd
--> Deploying template "packaged-templates/mysql-persistent”" to project packaged-
templates
...output omitted...
--> Success
Application is not exposed. You can expose services to the outside world by
executing one or more of the commands below:
'oc expose service/mysql’
Run 'oc status' to view your app.

3.3. Use the watch command to verify that the pods are running. Wait for the mysql-1-
deploy pod to show a Completed status. Press Ctr 1+C to exit the watch
command.

[student@workstation ~]$ watch oc get pods

NAME READY STATUS RESTARTS AGE
mysql-1-5t8h8 1/1 Running 0 83s
mysql-1-deploy 0/1 Completed 0 84s

3.4. Connect to the database to verify that it is working.

[student@workstation ~]$ oc run query-db -it --rm \
--image registry.ocp4.example.com:8443/rhel8/mysql-80 \
--restart Never --command -- \
/bin/bash -c \
"mysql -uuserl -pmypasswd --protocol tcp \
-h mysql -P3306 sampledb -e 'SHOW DATABASES;'"
mysql: [Warning] Using a password on the command line interface can be insecure.

| Database |

Chapter 2 | Deploy Packaged Applications

| information_schema |
| performance_schema |
| sampledb |

pod "query-db" deleted

The query-db pod uses the mysql command from the mysql-80 image to send
the SHOW DATABASES; query. The --rm option deletes the pod after execution
terminates.

P 4. Deploy the application from the custom template, in the ~/D0280/ labs/packaged-
templates/custom-template/roster-template.yaml file, to the project. The
application initializes and uses the database that the mysql-persistent template
deployed.

4.1. Upload the custom template to the project.

[student@workstation ~]$ oc create -f \
~/D0280/labs/packaged-templates/custom-template/roster-template.yaml
template.template.openshift.io/roster-template created

4.2. Useoc get templates to view the available templates in the packaged-
templates project.

[student@workstation ~]$ oc get templates
NAME DESCRIPTION PARAMETERS OBJECTS
roster-template Example application for D0280... 8 (2 blank) 4

4.3. Usethe oc process --parameters command to view the parameter of the
roster-template template.

[student@workstation ~]$ oc process --parameters roster-template

NAME DESCRIPTION GENERATOR VALUE

IMAGE Ty registry.../do280-roster:vil
APPNAME oo do280-roster

NAMESPACE Ty packaged-templates
DATABASE_SERVICE_NAME ... mysql

MYSQL_USER

MYSQL_PASSWORD 000

MYSQL_DATABASE 000 sampledb

INIT_DB 000 False

4.4. Use the oc process command to generate the manifests for the roster -
template application resources, and use the oc apply command to create the
resources in the Kubernetes cluster.

You must use the same database credentials that you used in an earlier step to
configure the database, so that the application can access the database.

Chapter 2 | Deploy Packaged Applications

[student@workstation ~]$ oc process roster-template \
-p MYSQL_USER=userl -p MYSQL_PASSWORD=mypasswd -p INIT_DB=true | oc apply -f -
...output omitted...
secret/mysql configured
deployment.apps/do280-roster created
service/do280-roster created
route.route.openshift.io/do280-roster created

4.5. Usetheoc get pods command to confirm that the application is running.

[student@workstation ~]$ oc get pods

NAME READY STATUS RESTARTS AGE
do280-roster-c7f596dd8-pgvly 1/1 Running 0] 60s
mysql-1-b197v 1/1 Running 0] 33m
mysql-1-deploy 0/1 Completed 0] 33m

4.6. Usetheoc get routes command to view the routes.

[student@workstation ~]$ oc get routes
NAME HOST/PORT
do280-roster do280-roster -packaged-templates.apps.ocp4.example.com

4.7. Open the application URL in the web browser. The header confirms the use of
version 1of the application.

http://do280-roster-packaged-templates.apps.ocp4.example.com

4.8. Enter your information in the form and save it to the database.

P 5. Deploy an updated version of the d0280/roster application from the custom template in
the roster-template template. Use version 2 of the application and do not overwrite the
data in the database.

5.1. Create a text file named roster-parameters.env with the following content:

MYSQL_USER=user1l
MYSQL_PASSWORD=mypasswd
IMAGE=registry.ocp4.example.com:8443/redhattraining/do280-roster:v2

The option of using a parameter file helps version control software to track changes.

5.2. Use the oc process command and the oc diff command to view the changesin
the new manifests when compared to the live application.

[student@workstation ~]$ oc process roster-template \
--param-file=roster-parameters.env | oc diff -f -

diff -u -N ...output omitted...
--- /tmp/LIVE-1948327112/apps.vl.Deployment.packaged-templates...
+++ /tmp/MERGED-2797490080/apps.vl.Deployment.packaged-templates...
...output omitted. ..

key: database-service

name: mysql

- name: INIT_DB

Chapter 2 | Deploy Packaged Applications

- value: "true"
- image: registry.ocp4.example.com:8443/redhattraining/do280-roster:vi
value: "False"
image: registry.ocp4.example.com:8443/redhattraining/do280-roster:v2 (2]
imagePullPolicy: IfNotPresent
name: do280-roster-image
ports:

©® The INIT_DB environment variable determines whether the application
initializes the database. The default False value is used when the parameter
is omitted. In the first deployment, the INIT_DB variable was set to the
True value, so the database was initialized. In this second deployment, the
deployment does not have to initialize the database again.

© The IMAGE parameter changes the image that the template uses.

5.3. Use the oc process command to generate the manifests for the roster -
template application objects, and use the oc apply command to create the
application objects. With the changes from a previous step, you use the IMAGE
variable to use a different image for the update and omit the INIT_DB variable.

[student@workstation ~]$ oc process roster-template \
--param-file=roster-parameters.env | oc apply -f -

secret/mysql configured

deployment.apps/do280-roster configured

service/do280-roster unchanged

route.route.openshift.io/do280-roster unchanged

5.4. Use watch to verify that the pods are running. Wait for the mysql-1-deploy pod to
show a Completed status. Press Ctr 1+C to exit the watch command.

[student@workstation ~]$ watch oc get pods

NAME READY STATUS RESTARTS AGE

do280-roster-c7f596dd8-ktlvl 1/1 Running 0] 60s
mysql-1-b197v 1/1 Running 0] 53m
mysql-1-deploy 0/1 Completed 0] 53m

5.5. Open the application URL in the web browser. The route is unchanged, so you can
refresh the previous browser page if the page is still open. The header confirms the
use of version 2 of the application. The data that is pulled from the database is
unchanged.

http://do280-roster-packaged-templates.apps.ocp4.example.com

Finish
On the workstation machine, use the Tab command to complete this exercise. This step is
important to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab finish packaged-templates

Chapter 2 | Deploy Packaged Applications

Helm Charts

Objectives

+ Deploy and update applications from resource manifests that are packaged as Helm charts.

Helm

Helm is an open source application that helps to manage the lifecycle of Kubernetes applications.

Helm introduces the concept of charts. A chart is a package that describes a set of Kubernetes
resources that you can deploy. Helm charts define values that you can customize when deploying
an application. Helm includes functions to distribute charts and updates.

Many organizations distribute Helm charts to deploy applications. Often, Helm is the supported
mechanism to deploy a specific application.

However, Helm does not cover all needs to manage certain kinds of applications. Operators have a
more complete model that can handle the lifecycle of more complex applications. For more details
about operators, refer to Kubernetes Operators and the Operator Lifecycle Manager .

Helm Charts

A Helm chart defines Kubernetes resources that you can deploy. A chart is a collection of files
with a defined structure. These files include chart metadata (such as the chart name or version),
resource definitions, and supporting material.

Chart authors can use the template feature of the Go language for the resource definitions. For
example, instead of specifying the image for a deployment, charts can use user-provided values
for the image. By using values to choose an image, cluster administrators can replace a default
public image with an image from a private repository.

The following diagram shows the structure of a minimal Helm chart:

sample/

— Chart.yaml]
|— templates 2]

| |— example.yaml
L— values.yaml

© Thechart.yaml file contains chart metadata, such as the name and version of the chart.

© The templates directory contains files that define application resources such as
deployments.

© Thevalues.yanl file contains default values for the chart.

Helm charts can contain hooks that Helm executes at different points during installations and
upgrades. Hooks can automate tasks for installations and upgrades. With hooks, Helm charts
can manage more complex applications than purely manifest-based processes. Review the chart
documentation to learn about the chart hooks and their implications.

Chapter 2 | Deploy Packaged Applications

Using Helm Charts

Helm is a command-line application. The he lm command interacts with the following entities:

Charts
Charts are the packaged applications that the he lm command deploys.

Releases
A release is the result of deploying a chart. You can deploy a chart many times to the same
cluster. Each deployment is a different release.

Versions
A Helm chart can have many versions. Chart authors can release updates to charts, to adapt
to later application versions, introduce new features, or fix issues.

You can use and refer to charts in various ways. For example, if your local file system contains a
chart, then you can refer to that chart by using the path to the chart directory. You can also use a
path or a URL that contains a chart that is packaged in a tar archive with gzip compression.

Inspecting Helm Charts

Use the helm show command to display information about a chart. The show chart
subcommand displays general information, such as the maintainers, or the source URL.

[user@host ~]$ helm show chart chart-reference
apiVersion: vi
description: A Helm chart for Kubernetes
name: examplechart
version: 0.1.0
maintainers:
- email: dev@example.com
name: Developer
sources:
- https://git.example.com/examplechart

The show values subcommand displays the default values for the chart. The output is in YAML
format and comes from the values.yaml file in the chart.

[user@host ~]$ helm show values chart-reference
image:

repository: "sample"

tag: "1.8.10"

pullPolicy: IfNotPresent
...output omitted...

Chart resources use the values from the values.yaml file by default. You can override these
default values. You can use the output of the show values command to discover customizable
values.

Installing Helm Charts

After inspecting the chart, you can deploy the resources in the chart by using the helm install
command. In Helm, install refers to deploying the resources in a chart to create a release.

Chapter 2 | Deploy Packaged Applications

Always refer to the documentation of the chart before installation to learn about prerequisites,
extra installation steps, and other information.

To install a chart, you must decide on the following parameters:

+ The deployment target namespace
+ The values to override
+ Therelease name

Helm charts can contain Kubernetes resources of any kind. These resources can be namespaced
or non-namespaced. Like normal resource definitions, namespaced resources in charts can define
or omit a namespace declaration.

Most Helm charts that deploy applications do not create a namespace, and namespaced resources
in the chart omit a namespace declaration. Typically, when deploying a chart that follows this
structure, you create a namespace for the deployment, and Helm creates namespaced resources
in this namespace.

After deciding the target namespace, you can design the values to use. Inspect the
documentation and the output of the helm show values command to decide which values to
override.

You can define values by writing a YAML file that contains them. This file can follow the structure
from the output of the helm show values command, which contains the default values. Specify
only the values to override.

Consider the following output from the helm show values command for an example chart:

image:
repository: "sample"
tag: "1.8.10"
pullPolicy: IfNotPresent

Create a values.yaml file without the image key if you do not want to override any image
parameters. Omit the pullPolicy key to override the tag key but not the pull policy. For
example, the following YAML file would override only the image tag:

image:
tag: "1.8.10-patched"

Besides the YAML file, you can override specific values by using command-line arguments.

The final element to prepare a chart deployment is choosing a release name. You can deploy
a chart many times to a cluster. Each chart deployment must have a unique release name for
identification purposes. Many Helm charts use the release name to construct the name of the
created resources.

With the namespace, values, and release name, you can start the deployment process. The helm
install command creates a release in a namespace, with a set of values.

Rendering Manifests from a Chart

You can use the - -dry-run option to preview the effects of installing a chart.

Chapter 2 | Deploy Packaged Applications

[user@host ~]$ helm install release-name chart-reference --dry-run \
--values values.yaml
NAME: release-name (1)
LAST DEPLOYED: Tue May 30 13:14:57 2023
NAMESPACE: current-namespace
STATUS: pending-install
REVISION: 1
TEST SUITE: None
HOOKS:
MANIFEST:
Source: chart/templates/serviceaccount.yaml (2]
apiVersion: vi
kind: ServiceAccount
metadata:
name: my-release-sa
labels:
...output omitted...

NOTES: ©
The application can be accessed via port 1234.
...output omitted...

© General information about the new release

@ Alist of the resources that the helm install command would create

© Additional information

S Note
You define values to use for the installation with the - -values values.yaml
option. In this file, you override the default values from the chart that are defined in
the va'lues.yaml file that the chart contains.

Often, chart resource names include the release name. In the example output of the helm
install command, the service account is a combination of the release name and the -sa text.

Chart authors can provide installation notes that use the chart values. In the same example, the
port number in the notes reflects a value from the values.yaml file.

If the preview looks correct, then you can run the same command without the - -dry-run option
to deploy the resources and create the release.

Releases

When the helm install command runs successfully, besides creating the resources, Helm
creates a release. Helm stores information about the release as a secret of the helm. sh/
release. vl type.

Inspecting Releases

Use the helm 1ist command to inspect releases on a cluster.

Chapter 2 | Deploy Packaged Applications

[user@host ~]$ helm list
NAME NAMESPACE REVISION ... STATUS CHART APP VERSION
my-release example 1 ... deployed example-4.12.1 1.8.10

Similarly to kubect 1 commands, many he lm commands have the - -all-namespaces and

- -namespace options. The helm list command without options lists releases in the current
namespace. If you use the - -all-namespaces option, then it lists releases in all namespaces. If
you use the - -namespace option, then it lists releases in a single namespace.

Warning
Do not manipulate the release secret. If you remove the secret, then Helm cannot
operate with the release.

Upgrading Releases

The helm upgrade command can apply changes to existing releases, such as updating values or
the chart version.

1| Important
= By default, this command automatically updates releases to use the latest version of
the chart.

The helm upgrade command uses similar arguments and options to the helm install
command. However, the helm upgrade command interacts with existing resources in the cluster
instead of creating resources from a blank state. Therefore, the helm upgrade command can
have more complex effects, such as conflicting changes. Always review the chart documentation
when using a later version of a chart, and when changing values. You can use the --dry-run
option to preview the manifests that the helm upgrade command uses, and compare them to
the running resources.

Rolling Back Helm Upgrades

Helm keeps a log of release upgrades, to review changes and roll back to previous releases.

You can review this log by using the helm history command:

[user@host ~]$ helm history release_name

REVISION UPDATED STATUS CHART APP VERSION DESCRIPTION
1 Wed May 31... superseded chart-0.0.6 latest Install complete
2 Wed May 31... deployed chart-0.0.7 latest Upgrade complete

You can use the helm rollback command to revert to an earlier revision:

[user@host ~]% helm rollback release _name revision
Rollback was a success! Happy Helming!

Rolling back can have greater implications than upgrading, because upgrades might not be
reversible. If you keep a test environment with the same upgrades as a production environment,
then you can test rollbacks before performing them in the production environment to find
potential issues.

Chapter 2 | Deploy Packaged Applications

Helm Repositories

Charts can be distributed as files, archives, or container images, or by using chart repositories.

The helm repo command provides the following subcommands to work with chart repositories.

Subcommand Description

add NAME REPOSITORY_URL Add a Helm chart repository.
list List Helm chart repositories.
update Update Helm chart repositories.
remove REPOSITORY1_NAME REPOSITORYZ_NAME .. Remove Helm chart repositories.

The following command adds a repository:

[user@host ~]$ helm repo add \
openshift-helm-charts https://charts.openshift.io/
"openshift-helm-charts" has been added to your repositories

This command and other repository commands change only local configuration, and do not
affect any cluster resources. The helm repo add command updates the ~/.config/helm/
repositories.yaml configuration file, which keeps the list of configured repositories.

When repositories are configured, other commands can use the list of repositories to perform
actions. For example, the helm search repo command lists all available charts in the configured
repositories:

[user@host ~]$ helm search repo

NAME CHART VERSION APP VERSION DESCRIPTION
repo/chart 0.0.7 latest A sample chart
...output omitted. ..

By default, the helm search repo command shows only the latest version of a chart. Use
the - -versions option to list all available versions. By default, the install and upgrade
commands use the latest version of the chart in the repository. You can use the - -version
option to install specific versions.

D References
Using Helm
https://helm.sh/docs/intro/using_helm/

Helm Charts
https://helm.sh/docs/topics/charts/

Helm Chart Repository Guide
https://helm.sh/docs/topics/chart_repository/

D0O280-0OCP4.14-en-1-20240215 ‘

https://helm.sh/docs/intro/using_helm/
https://helm.sh/docs/topics/charts/
https://helm.sh/docs/topics/chart_repository/

Chapter 2 | Deploy Packaged Applications

» Guided Exercise

Helm Charts

Deploy and update an application from a chart that is stored in a catalog.

Outcomes

+ Deploy an application and its dependencies from a Helm chart.

+ Customize the deployment, including scaling and using a custom image.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your
system for this exercise.

This command ensures that the cluster APl is reachable.

[student@workstation ~]$ lab start packaged-charts

Instructions

P 1. Add the classroom Helm repository at the following URL and examine its contents.

http://helm.ocp4.example.com/charts

11. Usethe helm repo list command to list the repositories that are configured for
the student user.

[student@workstation ~]$ helm repo list
Error: no repositories to show

If the d0280-repo repository is present, then continue to the next step. Otherwise,
add the repository.

[student@workstation ~]$ helm repo add do280-repo \
http://helm.ocp4.example.com/charts
"do280-repo" has been added to your repositories

1.2. Use the helm search command to list all the chart versions in the repository.

[student@workstation ~]$ helm search repo --versions

NAME CHART VERSION APP VERSION
do280-repo/etherpad 0.0.7 latest
do280-repo/etherpad 0.0.6 latest

...output omitted...

The etherpad chart has the 0.0.7 and 0.0.6 versions. This chart is a copy of a chart
from the https://github.com/redhat-cop/helm-charts repository.

w D0O280-0OCP4.14-en-1-20240215

https://github.com/redhat-cop/helm-charts

Chapter 2 | Deploy Packaged Applications

P 2. |Install the 0.0.6 version of the etherpad chart to a new packaged-charts-
development project, with the example -app release name.

Use the registry.ocp4.example.com:8443/etherpad/etherpad:1.8.18 image
in the offline classroom registry. Expose the application at the https://development -
etherpad.apps.ocp4.example.com URL.

2.1. Examine the values of the chart.

[student@workstation ~]$ helm show values do280-repo/etherpad --version 0.0.6
Default values for etherpad.
replicaCount: 1

defaultTitle: "Labs Etherpad"
defaultText: "Assign yourself a user and share your ideas!"

image:

repository: etherpad

name:

tag:

pullPolicy: IfNotPresent
...output omitted...
route:

enabled: true

host: null

targetPort: http
...output omitted. ..
resources: {}
...output omitted...

You can configure the image, the replica count, and other values. By default, the chart
creates a route. You can customize the route with the route. host key.

With the default configuration, the chart uses the docker .io/etherpad/
etherpad: latest image. The classroom environment is designed for offline use.
Use the registry.ocp4.example.com:8443/etherpad/etherpad:1.8.18
image from the local registry instead.

2.2. Create avalues.yaml file with the following content:

image:
repository: registry.ocp4.example.com:8443/etherpad
name: etherpad
tag: 1.8.18
route:
host: development-etherpad.apps.ocp4.example.com

2.3. Login to the cluster as the deve loper user with the developer password.

[student@workstation ~]$ oc login -u developer -p developer \
https://api.ocp4.example.com: 6443
...output omitted. ..

2.4. Create a packaged-charts-development project.

Chapter 2 | Deploy Packaged Applications

[student@workstation ~]$ oc new-project packaged-charts-development
Now using project "packaged-charts-development" on server ...
...output omitted...

2.5. Install the etherpad chart to the packaged-charts-development project. Use
the values.yaml file that you created in a previous step. Use example-app as the
release name.

[student@workstation ~]$ helm install example-app do280-repo/etherpad \
-f values.yaml --version 0.0.6

NAME: example-app

LAST DEPLOYED: Mon Jun 5 06:31:26 2023

NAMESPACE: packaged-charts-development

STATUS: deployed

REVISION: 1

TEST SUITE: None

2.6. Get the route to verify that you customized the route correctly.

[student@workstation ~]$ oc get route
NAME HOST/PORT
example-app-etherpad development-etherpad.apps.ocp4.example.com

2.7. Open aweb browser and navigate to https://development -
etherpad.apps.ocp4.example.com. The application welcome page appears.

P 3. Upgrade a Helm chart by installing the 0.0.7 version of the chart.

3.1. Usethe helm 1list command to verify the installed version.

[student@workstation ~]$ helm list
NAME NAMESPACE REVISION ... STATUS CHART
example-app packaged-charts-development 1 ... deployed etherpad-0.0.6

3.2. Use the helm search command to verify that the repository contains a later
version.

[student@workstation ~]$ helm search repo --versions

NAME CHART VERSION APP VERSION
do280-repo/etherpad 0.0.7 latest
do280-repo/etherpad 0.0.6 latest

...output omitted. ..

3.3. Use the helm upgrade command to upgrade to the latest version of the chart.

Chapter 2 | Deploy Packaged Applications

[student@workstation ~]$ helm upgrade example-app do280-repo/etherpad \
-f values.yaml --version 0.0.7

Release "example-app" has been upgraded. Happy Helming!

NAME: example-app

LAST DEPLOYED: Mon Jun 5 06:41:00 2023

NAMESPACE: packaged-charts-development

STATUS: deployed

REVISION: 2

TEST SUITE: None

3.4. Usethe helm 1list command to verify the installed version.

[student@workstation ~]$ helm list
NAME NAMESPACE REVISION ... STATUS CHART
example-app packaged-charts-development 2 ... deployed etherpad-0.0.7

3.5. Reload the application welcome page in the web browser.

The updates in the new version of the chart do not affect the deployment in this
exercise. When you reload the application, the browser displays the same application
welcome page.

P 4. Create asecond deployment of the chart to a new packaged-charts-production
project, with the example-app release name.

Expose the application at the https://etherpad.apps.ocp4.example.comURL, by
customizing the route.host key.

4. Create a packaged-charts-production project.

[student@workstation ~]$ oc new-project packaged-charts-production
Now using project "packaged-charts-production" on server ...
...output omitted. ..

4.2. Editthe values.yaml file to configure the host route to
etherpad.apps.ocp4.example.com.

image:
repository: registry.ocp4.example.com:8443/etherpad
name: etherpad
tag: 1.8.18
route:
host: etherpad.apps.ocp4.example.com

4.3. Install the 0.0.7 version of the etherpad chart to the packaged-review-
production project.

Use the values.yaml file that you edited in a previous step. Use production as
the release name.

[student@workstation ~]$ helm install example-app do280-repo/etherpad \
-f values.yaml --version 0.0.7
...output omitted...

Chapter 2 | Deploy Packaged Applications

4.4. Verify the deployment by opening a web browser and navigating to the application
URL. https://etherpad.apps.ocp4.example.com

This URL corresponds to the host that you specified in the values.yaml file. The
application welcome page appears in the production URL.

P 5. Reconfigure the production deployment to sustain heavier use. Change the number of
replicas to 3.

5.1. Verify that the application has a single pod.

[student@workstation ~]$ oc get pods
NAME READY STATUS RESTARTS AGE
example-app-etherpad-6b85b94975-qgfpgm 1/1 Running 0 12s

5.2. Editthe values.yaml file. Add a replicaCount key with the 3 value.

image:
repository: registry.ocp4.example.com:8443/etherpad
name: etherpad
tag: 1.8.18
route:
host: etherpad.apps.ocp4.example.com
replicaCount: 3

5.3. Use the helm upgrade command to update the parameters.

[student@workstation ~]$ helm upgrade example-app do280-repo/etherpad \
-f values.yaml
...output omitted...

5.4. \Verify that the application has three pods.

[student@workstation ~]$ oc get pods

NAME READY STATUS RESTARTS AGE
example-app-etherpad-6b85b94975-h9qgz 1/1 Running 0] 13s
example-app-etherpad-6b85b94975-1br8h 1/1 Running 0 13s
example-app-etherpad-6b85b94975-qfpqm 1/1 Running 0 94s

5.5. Reload the application welcome page in the web browser.

The deployment continues working after adding replicas.
P 6. Remove the values.yaml file.
[student@workstation ~]$ rm values.yaml
Finish
On the workstation machine, use the Tab command to complete this exercise. This step is

important to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab finish packaged-charts

Chapter 2 | Deploy Packaged Applications

04

-—'|‘-.|-] ||]
o AR

— -

SAIULIS

[=lls

— E'

et

Ariesep

\OLDSEAIULIS

A A
L

SAILILIS A

Ll
[y

‘edng

[
Nt

LU

es

4 s -

|| |_- 5 || 17

AMAd WAV
! i

16

) :l:l

DUl IeH PaY 202

DO280-0OCP4.14-en-1-20240215

Chapter 2 | Deploy Packaged Applications

» Lab

Deploy Packaged Applications

Deploy and update applications from resource manifests that are packaged for sharing and
distribution.

Outcomes
+ Deploy an application and its dependencies from resource manifests that are packaged as
a Helm chart.

+ Update the application to a later version by using the Helm chart.
+ Use a container image in a private container registry instead of a public registry.

+ Customize the deployment to add resource requests and limits.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your
system for this exercise.

This command ensures that the cluster APl is reachable.

[student@workstation ~]$ lab start packaged-review

Instructions
1. Loginto the cluster as the developer user with the developer password. Create the
packaged-reviewand packaged-review-prod projects.

2. Add the classroom Helm repository at the http://helm.ocp4.example.com/charts
URL and examine its contents.

3. Install the 0.0.6 version of the etherpad chart on the packaged-review namespace,
with the test release name. Use the registry.ocp4.example.com:8443/etherpad/
etherpad:1.8.17 image in the offline classroom registry.

Create avalues-test.yaml file with the image repository, name, and tag.

Field Value

image.repository registry.ocp4.example.com:8443/etherpad
image.name etherpad

image.tag 1.8.17

4. Upgrade the etherpad application in the packaged-review namespace to the 0.0.7
version of the chart. Set the image tag for the deployment in the values-test.yaml file.

Chapter 2 | Deploy Packaged Applications

Field Value
image.tag 1.8.18
5. Usingversion 0.0.6, create a second deployment of the chart in the packaged-review-

prod namespace, with the prod release name. Copy the values-test.yaml file to the
values-prod.yaml file, and set the route host.

Field Value

route.host etherpad.apps.ocp4.example.com

Access the application in the route URL to verify that it is working correctly.

https://etherpad.apps.ocp4.example.com

6. Addlimits to the etherpad instance in the packaged-review-prod namespace. The
chart values example contains comments that show the required format for this change. Set
limits and requests for the deployment in the values-prod.yaml file. Use version 0.0.7
of the chart.

Field Value
resources. limits.memory 256Mi

resources.requests.memory | 128Mi

Evaluation

As the student user on the workstation machine, use the lab command to grade your work.
Correct any reported failures and rerun the command until successful.

[student@workstation ~]$ lab grade packaged-review
Finish
As the student user on the workstation machine, use the lab command to complete this

exercise. This step is important to ensure that resources from previous exercises do not impact
upcoming exercises.

[student@workstation ~]$ lab finish packaged-review

Chapter 2 | Deploy Packaged Applications

» Solution

Deploy Packaged Applications

Deploy and update applications from resource manifests that are packaged for sharing and
distribution.

Outcomes

+ Deploy an application and its dependencies from resource manifests that are packaged as
a Helm chart.

+ Update the application to a later version by using the Helm chart.
+ Use a container image in a private container registry instead of a public registry.
+ Customize the deployment to add resource requests and limits.

Before You Begin

As the student user on the workstation machine, use the lab command to prepare your
system for this exercise.

This command ensures that the cluster APl is reachable.

[student@workstation ~]$ lab start packaged-review

Instructions

1.

2.

Log in to the cluster as the deve loper user with the developer password. Create the
packaged-reviewand packaged-review-prod projects.

11. Login to the cluster as the deve loper user with the developer password.

[student@workstation ~]$ oc login -u developer -p developer \
https://api.ocp4.example.com: 6443

1.2. Create the packaged-review project.

[student@workstation ~]$ oc new-project packaged-review
Now using project "packaged-review" on server ...
...output omitted. ..

1.3. Create the packaged-review-prod project.

[student@workstation ~]$ oc new-project packaged-review-prod
Now using project "packaged-review-prod" on server ...
...output omitted...

Add the classroom Helm repository at the http://helm.ocp4.example.com/charts
URL and examine its contents.

Chapter 2 | Deploy Packaged Applications

21. Usethehelm repo list command to list the repositories that are configured for the
student user.

[student@workstation ~]$ helm repo list
NAME URL
do280-repo http://helm.ocp4d.example.com/charts

If the d0280-repo repository is present, then continue to the next step. Otherwise,
add the repository.

[student@workstation ~]$ helm repo add \
do280-repo http://helm.ocp4.example.com/charts
"do280-repo" has been added to your repositories

2.2. Use the helm search command to list all the chart versions in the repository.

The etherpad chart has versions 0.0.6 and 0.0.7. This chart is a copy of a chart from
the https://github.com/redhat-cop/helm-charts repository.

[student@workstation ~]$ helm search repo --versions

NAME CHART VERSION APP VERSION DESCRIPTION
do280-repo/etherpad 0.0.7 latest
do280-repo/etherpad 0.0.6 latest

...output omitted...

3. Install the 0.0.6 version of the etherpad chart on the packaged-review namespace,
with the test release name. Use the registry.ocp4.example.com:8443/etherpad/
etherpad:1.8.17 image in the offline classroom registry.

Create avalues-test.yaml file with the image repository, name, and tag.

Field Value

image.repository registry.ocp4.example.com:8443/etherpad
image.name etherpad

image.tag 1.8.17

3.1, Switch to the packaged-review project.

[student@workstation ~]$ oc project packaged-review
Now using project "packaged-review" on server ...

3.2. Examine the values of the chart.

You can configure the image, the deployment resources, and other values. By default,
the chart creates a route.

[student@workstation ~]$ helm show values do280-repo/etherpad --version 0.0.6
Default values for etherpad.
replicaCount: 1

defaultTitle: "Labs Etherpad"

Chapter 2 | Deploy Packaged Applications

defaultText: "Assign yourself a user and share your ideas!"

image:
repository: etherpad 1)
name :
tag: o

pullPolicy: IfNotPresent
...output omitted...

route:
enabled: true
host: null o
targetPort: http

...output omitted...

resources: {} o
...output omitted. ..

© The registry with the container image.
Container image name.
Container image tag.

Hostname for the OpenShift route resource.

©® 0 0 ©

The resource requests and limits for this workload. This value is set by default to
{}, which indicates that it is an empty map.

3.3. With the default configuration, the chart uses the docker.io/etherpad/
etherpad: latest container image.

This image is not suitable for the classroom environment. Use the
registry.ocp4.example.com:8443/etherpad/etherpad:1.8.17 container
image instead.

Create avalues-test.yaml file with the following content:

image:
repository: registry.ocp4.example.com:8443/etherpad
name: etherpad
tag: 1.8.17

3.4. Install the etherpad chartin the packaged-review namespace.

+ Use the values-test.yaml file that you created in the previous step.
+ Use test as the release name.

Chapter 2 | Deploy Packaged Applications

[student@workstation ~]$ helm install test do280-repo/etherpad \
-f values-test.yaml --version 0.0.6

NAME: test

LAST DEPLOYED: Fri Jun 30 01:03:42 2023

NAMESPACE: packaged-review

STATUS: deployed

REVISION: 1

TEST SUITE: None

3.5. Usethe helm 1list command to verify the installed version of the etherpad chart.

[student@workstation ~]$ helm list
NAME NAMESPACE REVISION ... STATUS CHART APP VERSION
test packaged-review 1 ... deployed etherpad-0.0.6 latest

3.6. Verify that the pod is running and that the deployment is ready.

[student@workstation ~]$ oc get deployments, pods

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/test-etherpad 1/1 1 1 27s
NAME READY STATUS RESTARTS AGE
pod/test-etherpad-c6657b556-4jh8z 1/1 Running 0] 27s

3.7. Verify that the pod executes the specified container image.

[student@workstation ~]$ oc describe pods -n packaged-review | \
egrep '~Name:|Image:'
Name: test-etherpad-c6657b556-4jh8z
Image: registry.ocp4.example.com:8443/etherpad/etherpad:1.8.17

3.8. Get the route to obtain the application URL.

[student@workstation ~]$ oc get routes
NAME HOST/PORT a
test-etherpad test-etherpad-packaged-review.apps.ocp4.example.com ...

3.9. Open aweb browser and navigate to the following URL to view the application page.
https://test-etherpad-packaged-review.apps.ocp4.example.com
4. Upgrade the etherpad application in the packaged-review namespace to the 0.0.7
version of the chart. Set the image tag for the deployment in the values-test.yaml file.
Field Value

image.tag 1.8.18

4]. Editthe values-test.yaml file and update the image tag value:

Chapter 2 | Deploy Packaged Applications

image:
repository: registry.ocp4.example.com:8443/etherpad
name: etherpad
tag: 1.8.18

4.2. Use the helm search command to verify that the repository contains a more recent
version of the etherpad chart.

[student@workstation ~]$ helm search repo --versions etherpad

NAME CHART VERSION APP VERSION DESCRIPTION
do280-repo/etherpad 0.0.7 latest
do280-repo/etherpad 0.0.6 latest

4.3. Use the helm upgrade command to upgrade to the latest version of the chart.

[student@workstation ~]$ helm upgrade test do280-repo/etherpad \
-f values-test.yaml --version 0.0.7

Release "test" has been upgraded. Happy Helming!

NAME: test

LAST DEPLOYED: Fri Jun 30 01:05:07 2023

NAMESPACE: packaged-review

STATUS: deployed

REVISION: 2

TEST SUITE: None

4.4. Use the helm 1list command to verify the installed version of the etherpad chart.

[student@workstation ~]$ helm list
NAME NAMESPACE REVISION ... STATUS CHART APP VERSION
test packaged-review 2 ... deployed etherpad-0.0.7 Tlatest

4.5. Verify that the pod is running and that the deployment is ready.

[student@workstation ~]$ oc get deployments, pods

NAME READY UP-TO-DATE AVAILABLE AGE

deployment.apps/test-etherpad 1/1 1 1 3m31s
NAME READY STATUS RESTARTS AGE
pod/test-etherpad-59d775b78f-ftmsz 1/1 Running 0 64s

4.6. Verify that the pod executes the updated container image.
[student@workstation ~]$ oc describe pods -n packaged-review | \
egrep '/~Name:|Image:'

Name: test-etherpad-59d775b78f-ftmsz
Image: registry.ocp4.example.com:8443/etherpad/etherpad:1.8.18

4.7 Reload the test-etherpad application welcome page in the web browser.

Chapter 2 | Deploy Packaged Applications

5. Usingversion 0.0.6, create a second deployment of the chart in the packaged-review-
prod namespace, with the prod release name. Copy the values-test.yaml file to the
values-prod.yaml file, and set the route host.

Field Value

route.host etherpad.apps.ocp4.example.com

Access the application in the route URL to verify that it is working correctly.

https://etherpad.apps.ocp4.example.com

5.1. Switch to the packaged-review-prod project.

[student@workstation ~]$ oc project packaged-review-prod
Now using project "packaged-review-prod" on server ...

5.2. Copythe values-test.yaml file to values-prod.yaml.

[student@workstation ~]$ cp values-test.yaml values-prod.yaml

5.3. Setthe route hostin the values-prod.yaml file.

image:
repository: registry.ocp4.example.com:8443/etherpad
name: etherpad
tag: 1.8.18
route:
host: etherpad.apps.ocp4.example.com

5.4. Install the 0.0.6 version of the etherpad chart on the packaged-review-prod
namespace.

Use the values-prod.yaml file that you edited in the previous step. Use prod as the
release name.

[student@workstation ~]$ helm install prod do280-repo/etherpad \
-f values-prod.yaml --version 0.0.6

NAME: prod

LAST DEPLOYED: Fri Jun 30 01:07:29 2023

NAMESPACE: packaged-review-prod

STATUS: deployed

REVISION: 1

TEST SUITE: None

5.5. Use the helm 1ist command to verify the installed version of the etherpad chart.

[student@workstation ~]$ helm list
NAME NAMESPACE REVISION ... STATUS CHART APP VERSION
prod packaged-review-prod 1 ... deployed etherpad-0.0.6 latest

5.6. Verify that the pod is running and that the deployment is ready.

Chapter 2 | Deploy Packaged Applications

[student@workstation ~]$ oc get deployments, pods

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/prod-etherpad 1/1 1 1 65s
NAME READY STATUS RESTARTS AGE
pod/prod-etherpad-5947dfb987-9dclr 1/1 Running 0 65s

5.7. Verify that the pod executes the specified container image.

[student@workstation ~]$ oc describe pods -n packaged-review-prod | \
egrep '~Name:|Image:'
Name: pod/prod-etherpad-5947dfb987-9dclr
Image: registry.ocp4.example.com:8443/etherpad/etherpad:1.8.18

5.8. Verify the deployment by opening a web browser and navigating to the application
URL. This URL corresponds to the host that you specified in the values-prod.yaml
file. The application welcome page appears in the production URL.

https://etherpad.apps.ocp4.example.com

6. Addlimits to the etherpad instance in the packaged-review-prod namespace. The
chart values example contains comments that show the required format for this change. Set
limits and requests for the deployment in the values-prod.yaml file. Use version 0.0.7
of the chart.

Field Value
resources. limits.memory 256Mi

resources.requests.memory | 128Mi

6.1. Editthe values-prod.yaml file. Configure the deployment to request 128 MiB of
RAM, and limit RAM usage to 128 MiB.

image:
repository: registry.ocp4.example.com:8443/etherpad
name: etherpad
tag: 1.8.18
route:
host: etherpad.apps.ocp4.example.com
resources:
limits:
memory: 256Mi
requests:
memory: 128Mi

6.2. Use the helm upgrade command to upgrade to the latest version of the chart.

Chapter 2 | Deploy Packaged Applications

[student@workstation ~]$ helm upgrade prod do280-repo/etherpad \
-f values-prod.yaml --version 0.0.7

Release "prod" has been upgraded. Happy Helming!

NAME: prod

LAST DEPLOYED: Fri Jun 30 01:09:04 2023

NAMESPACE: packaged-review-prod

STATUS: deployed

REVISION: 2

TEST SUITE: None

6.3. Verify that the pod is running and that the deployment is ready.

[student@workstation ~]$ oc get deployments, pods

NAME READY UP-TO-DATE AVAILABLE AGE

deployment.apps/prod-etherpad 1/1 1 1 3ml4s
NAME READY STATUS RESTARTS AGE
pod/prod-etherpad-6b7d9dffbc-f7cng 1/1 Running 0 36s

6.4. Examine the application pod from the production instance of the application to verify
the configuration change.

[student@workstation ~]$ oc describe pods -n packaged-review-prod | \
egrep -Al '~Name:|Limits|Requests'

Name: prod-etherpad-6b7d9dffbc-f7cng
Namespace: packaged-review-prod
Limits:
memory: 256Mi
Requests:

memory: 128Mi

6.5. Examine the pod of the test instance of the application in the packaged-review
namespace. This deployment uses the values from the values-test.yaml file
that did not specify resource limits or requests. The pod in the packaged-review
namespace does not have a custom resource allocation.

[student@workstation ~]$ oc describe pods -n packaged-review | \
egrep -Al '~Name:|Limits|Requests'

Name: test-etherpad-59d775b78f-ftmsz

Namespace: packaged-review

6.6. Use the helm 1list command to verify the installed version of the etherpad chart.

[student@workstation ~]$ helm list
NAME NAMESPACE REVISION ... STATUS CHART APP VERSION
prod packaged-review-prod 2 ... deployed etherpad-0.0.7 Tlatest

6.7. Reload the application welcome page in the web browser. The deployment continues
working after you add the limits

Chapter 2 | Deploy Packaged Applications
6.8. Remove the values-test.yaml and values-prod.yaml files.
[student@workstation ~]$ rm values-test.yaml values-prod.yaml

Evaluation

As the student user on the workstation machine, use the lab command to grade your work.
Correct any reported failures and rerun the command until successful.

[student@workstation ~]$ lab grade packaged-review
Finish
As the student user on the workstation machine, use the lab command to complete this

exercise. This step is important to ensure that resources from previous exercises do not impact
upcoming exercises.

[student@workstation ~]$ lab finish packaged-review

Chapter 2 | Deploy Packaged Applications

Summary

+ Use templates to deploy workloads with parameterization.
+ Use the oc create -f command to upload atemplate to a project.

+ Use the oc process command and the oc apply -f - command to deploy template
resources to the Kubernetes cluster.

+ Provide parameters to customize the template with the -p or - -param-file arguments to the
oc command.

+ View Helm charts with the helm show chart chart-reference and helm show values
chart-reference commands.

+ Usethe helm install release-name chart-reference command to create a release
for a chart.

+ Inspect releases by using the helm list command.
+ Use the helm history release-name command to view the history of a release.

+ Use the helm repo add repo-name repo-url command to add a Helm repository to the
~/.config/helm/repositories.yaml configuration file.

+ Use the helm search repo command to search repositories in the ~/.config/helm/
repositories.yaml configuration file.

For use by srinivas godavarthy sriniva

—

[=

5 L

“how srinivas. godavarthy@bupa.com.sa

Copyright © 2024 Red Hat, Inc.

DO280-0OCP4.14-en-1-20240215

Chapter 3

Authentication and
Authorization

Goal Configure authentication with the HTPasswd ¢
identity provider and assign roles to users and
groups.
.
Objectives + Configure the HTPasswd identity provider for “
OpenShift authentication.
+ Define role-based access controls and apply P-
permissions to users. i
‘“ \
p= Sections - Configure Identity Providers (and Guided
E Exercise)
. + Define and Apply Permissions with RBAC (and
Guided Exercise)
Lab + Authentication and Authorization

r/

D0O280-0OCP4.14-en-1-20240215

Chapter 3 | Authentication and Authorization

Configure Identity Providers

Objectives
+ Configure the HTPasswd identity provider for OpenShift authentication.

OpenShift Users and Groups

Several OpenShift resources relate to authentication and authorization. The following list shows
the primary resource types and their definitions:

User
In the OpenShift Container Platform architecture, users are entities that interact with the API
server. The user resource represents an actor within the system. Assign permissions by adding
roles to the user directly or to the groups that the user is a member of.

Identity
The identity resource keeps a record of successful authentication attempts from a specific
user and identity provider. Any data about the source of the authentication is stored on the
identity.

Service Account
In OpenShift, applications can communicate with the APl independently when user credentials
cannot be acquired. To preserve the integrity of the credentials for a regular user, credentials
are not shared and service accounts are used instead. With service accounts, you can control
API access without the need to borrow a regular user's credentials.

Group
Groups represent a specific set of users. Users are assigned to groups. Authorization policies
use groups to assign permissions to multiple users at the same time. For example, to grant 20
users access to objects within a project, it is better to use a group instead of granting access
to each user individually. OpenShift Container Platform also provides system groups or virtual
groups that are provisioned automatically by the cluster.

Role
A role defines the APl operations that a user has permissions to perform on specified resource
types. You grant permissions to users, groups, and service accounts by assigning roles to
them.

User and identity resources are usually not created in advance. OpenShift usually creates these
resources automatically after a successful interactive login with OAuth.

Authenticating APl Requests

The authentication and authorization security layers enable user interaction with the cluster.
When a user makes a request to the API, the APl associates the user with the request. The
authentication layer authenticates the user. On successful authentication, the authorization layer
either accepts or rejects the API request. The authorization layer uses role-based access control
(RBAC) policies to determine user privileges.

The OpenShift API has two methods for authenticating requests:

+ OAuth access tokens

Chapter 3 | Authentication and Authorization

+ X.509 client certificates

If the request does not present an access token or certificate, then the authentication layer
assigns it the system:anonymous virtual user and the system:unauthenticated virtual

group.

The Authentication Operator

The OpenShift Container Platform provides the Authentication operator, which runs an

OAuth server. The OAuth server provides OAuth access tokens to users when they attempt to
authenticate to the API. An identity provider must be configured and available to the OAuth
server. The OAuth server uses an identity provider to validate the identity of the requester. The
server reconciles the user with the identity and creates the OAuth access token for the user.
OpenShift automatically creates identity and user resources after a successful login.

Identity Providers

The OpenShift OAuth server can be configured to use many identity providers. The following lists
includes the more common identity providers:

HTPasswd
Validates usernames and passwords against a secret that stores credentials that are
generated by using the htpasswd command.

Keystone
Enables shared authentication with an OpenStack Keystone v3 server.

LDAP
Configures the LDAP identity provider to validate usernames and passwords against an
LDAPvV3 server, by using simple bind authentication.

GitHub or GitHub Enterprise
Configures a GitHub identity provider to validate usernames and passwords against GitHub or
the GitHub Enterprise OAuth authentication server.

OpeniD Connect
Integrates with an OpenID Connect identity provider by using an Authorization Code Flow.

The OAuth custom resource must be updated with your chosen identity provider. You can define
multiple identity providers, of the same or different kinds, on the same OAuth custom resource.

Authenticating as a Cluster Administrator

Before you can configure an identity provider and manage users, you must access your
OpenShift cluster as a cluster administrator. A newly installed OpenShift cluster provides two
ways to authenticate API requests with cluster administrator privileges. One way is to use the
kubeconfig file, which embeds an X.509 client certificate that never expires. Another way is to
authenticate as the kubeadmin virtual user. Successful authentication grants an OAuth access
token.

To create additional users and grant them different access levels, you must configure an identity
provider and assign roles to your users.

Authenticating with the X.509 Certificate

During installation, the OpenShift installer creates a unique kubeconfig file in the auth
directory. The kubeconfig file contains specific details and parameters for the CLI to connect a
client to the correct API server, including an X.509 certificate.

Chapter 3 | Authentication and Authorization
The installation logs provide the location of the kubeconfig file:

INFO Run 'export KUBECONFIG=root/auth/kubeconfig' to manage the cluster with 'oc'.

Note
S In the classroom environment, the utility machine stores the kubeconfig file at
/home/lab/ocp4/auth/kubeconfig.

To use the kubeconfig file to authenticate oc commands, you must copy the file to your
workstation and set the absolute or relative path to the KUBECONFIG environment variable. Then,
you can run any oc command that requires cluster administrator privileges without logging in to
OpenShift.

[user@host ~]$ export KUBECONFIG=/home/user/auth/kubeconfig
[user@host ~]$ oc get nodes

As an alternative, you can use the - -kubeconfig option of the oc command.

[user@host ~]% oc --kubeconfig /home/user/auth/kubeconfig get nodes

Authenticating with the kubeadmin Virtual User

After installation completes, OpenShift creates the kubeadmin virtual user. The kubeadmin
secret in the kube - system namespace contains the hashed password for the kubeadmin user.
The kubeadmin user has cluster administrator privileges.

The OpenShift installer dynamically generates a unique kubeadmin password for the cluster. The
installation logs provide the kubeadmin credentials to log in to the cluster. The cluster installation
logs also provide the login, password, and the URL for console access.

...output omitted...

INFO The cluster is ready when 'oc login -u kubeadmin -p shdU_trbi_6ucX_edbu_aqop'

...output omitted...

INFO Access the OpenShift web-console here:
https://console-openshift-console.apps.ocp4.example.com

INFO Login to the console with user: kubeadmin, password: shdU_trbi_6ucX_edbu_aqop

Note
S In the classroom environment, the uti1ity machine stores the password for the
kubeadmin userin the /home/lab/ocp4/auth/kubeadmin-password file.

Deleting the Virtual User

After you define an identity provider, create a user, and assign that user the cluster-admin role,
you can remove the kubeadmin user credentials to improve cluster security.

[user@host ~]$ oc delete secret kubeadmin -n kube-system

Chapter 3 | Authentication and Authorization

Warning

A If you delete the kubeadmin secret before you configure another user with
cluster admin privileges, then you can administer your cluster only by using the
kubeconfig file. If you do not have a copy of this file in a safe location, then you
cannot recover administrative access to your cluster. The only alternative is to
destroy and reinstall your cluster.

user is essential to the course lab architecture. If you deleted this user, you would

Warning
Do not delete the kubeadmin user at any time during this course. The kubeadmin
have to delete the lab environment and re-create it.

Configuring the HTPasswd Identity Provider

The HTPasswd identity provider validates users against a secret that contains usernames and
passwords that are generated with the htpasswd command from the Apache HTTP Server
project. Only a cluster administrator can change the data inside the HTPasswd secret. Regular
users cannot change their own passwords.

Managing users with the HTPasswd identity provider might suffice for a proof-of-concept
environment with a small set of users. However, most production environments require a more
powerful identity provider that integrates with the organization's identity management system.

Configuring the OAuth Custom Resource

To use the HTPasswd identity provider, the OAuth custom resource must be edited to add an
entry to the .spec.identityProviders array:

apiVersion: config.openshift.io/v1
kind: OAuth
metadata:
name: cluster
spec:
identityProviders:
- name: my_htpasswd_provider o
mappingMethod: claim
type: HTPasswd
htpasswd:
fileData:
name: htpasswd-secret (3]

© This provider name is prefixed to provider user names to form an identity name.

© Controls how mappings are established between provider identities and user objects. With
the default claim value, you cannot log in with different identity providers.

© An existing secret that contains data that is generated by using the htpasswd command.

D0O280-0OCP4.14-en-1-20240215 u

Chapter 3 | Authentication and Authorization

Updating the OAuth Custom Resource

To update the OAuth custom resource, use the oc get command to export the existing OAuth
cluster resource to a file in YAML format.

[user@host ~]$ oc get oauth cluster -o yaml > oauth.yaml

Then, open the resulting file in a text editor and make the needed changes to the embedded
identity provider settings.

After completing modifications and saving the file, you must apply the new custom resource by
using the oc replace command.

[user@host ~]% oc replace -f oauth.yaml

Managing Users with the HTPasswd Identity Provider

Managing user credentials with the HTPasswd Identity Provider requires creating a temporary
htpasswd file, changing the file, and applying these changes to the secret.

Creating an HTPasswd File

The httpd-tools package provides the htpasswd utility, which must be installed and available
on your system.

Create the htpasswd file.

[user@host ~]$ htpasswd -c -B -b /tmp/htpasswd student redhat123

i~ | Important
Use the -c option only when creating a file. The -c option replaces all file content if
the file already exists.

Add or update credentials.

[user@host ~]$ htpasswd -b /tmp/htpasswd student redhat1234

Delete credentials.
[user@host ~]$ htpasswd -D /tmp/htpasswd student

Creating the HTPasswd Secret

To use the HTPasswd provider, you must create a secret that contains the htpasswd file data. The
following example uses a secret named htpasswd-secret.

[user@host ~]% oc create secret generic htpasswd-secret \
--from-file htpasswd=/tmp/htpasswd -n openshift-config

Chapter 3 | Authentication and Authorization

i~ | Important

A secret that the HTPasswd identity provider uses requires adding the htpasswd=
prefix before specifying the path to the file.

Extracting Secret Data

When adding or removing users, use the oc extract command to retrieve the secret. Extracting
the secret ensures that you work on the current set of users.

By default, the oc extract command saves each key within a configuration map or secret as a
separate file. Alternatively, you can then redirect all data to a file or display it as standard output.
To extract data from the htpasswd-secret secret to the /tmp/ directory, use the following
command. The - -confirmoption replaces the file if it exists.

[user@host ~]$ oc extract secret/htpasswd-secret -n openshift-config \
--to /tmp/ --confirm
/tmp/htpasswd

Updating the HTPasswd Secret

The secret must be updated after adding, changing, or deleting users. Use the oc set data
secret command to update a secret. Unless the file name is ht passwd, you must specify
htpasswd= to update the htpasswd key within the secret.

The following command updates the htpasswd-secret secret in the openshift-config
namespace by using the content of the /tmp/htpasswd file.

[user@host ~]$ oc set data secret/htpasswd-secret \
--from-file htpasswd=/tmp/htpasswd -n openshift-config

After updating the secret, the OAuth operator redeploys pods in the openshift -
authentication namespace. Monitor the redeployment of the new OAuth pods by running the
following command:

[user@host ~]$ watch oc get pods -n openshift-authentication

Test additions, changes, or deletions to the secret after the new pods finish deploying.

Deleting Users and Identities

When a scenario occurs that requires you to delete a user, it is not sufficient to delete the user
from the identity provider. The user and identity resources must also be deleted.

You must remove the password from the htpasswd secret, remove the user from the local
htpasswd file, and then update the secret.

To delete the user from htpasswd, run the following command:

[user@host ~]$ htpasswd -D /tmp/htpasswd manager

Update the secret to remove all remnants of the user's password.

Chapter 3 | Authentication and Authorization

[user@host ~]$ oc set data secret/htpasswd-secret \
--from-file htpasswd=/tmp/htpasswd -n openshift-config

Remove the user resource with the following command:

[user@host ~]% oc delete user manager
user.user.openshift.io "manager" deleted

Identity resources include the name of the identity provider. To delete the identity resource for the
manager user, find the resource and then delete it.

[user@host ~]$ oc get identities | grep manager
my_htpasswd_provider:manager my_htpasswd_provider manager manager

[user@host ~]$ oc delete identity my_htpasswd_provider:manager
identity.user.openshift.io "my_htpasswd_provider:manager" deleted

Assigning Administrative Privileges

The cluster-wide cluster-admin role grants cluster administration privileges to users and
groups. With this role, the user can perform any action on any resources within the cluster. The
following example assigns the cluster -admin role to the student user.

[user@host ~]$ oc adm policy add-cluster-role-to-user cluster-admin student

D References

For more information about identity providers, refer to the Understanding Identity
Provider Configuration chapter in the Red Hat OpenShift Container Platform 4.14
Authentication and Authorization documentation at
https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.14/html-single/authentication_and_authorization/
index#understanding-identity-provider

w D0O280-0OCP4.14-en-1-20240215

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/authentication_and_authorization/index#understanding-identity-provider
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/authentication_and_authorization/index#understanding-identity-provider
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/authentication_and_authorization/index#understanding-identity-provider

Chapter 3 | Authentication and Authorization

» Guided Exercise

Configure Identity Providers

Configure the HTPasswd identity provider and create users for cluster administrators.

Outcomes

+ Create users and passwords for HTPasswd authentication.
+ Configure the Identity Provider for HTPasswd authentication.

+ Assign cluster administration rights to users.

Before You Begin

[student@workstation ~]$ lab start auth-providers

The command ensures that the cluster APl is reachable, the httpd-utils package is
installed, and that the authentication settings are configured to the installation defaults.

Instructions

P 1. Addan entry for two users, new_admin and new_developer. Assign the new_admin user
the redhat password, and assign the new_developer user the developer password.

11. Create an HTPasswd authentication file named htpasswd in the ~/D0286/
labs/auth-providers/ directory. Add the new_admin user with the redhat
password. The file name is arbitrary; this exercise uses the ~/D0280/ labs/auth-
providers/htpasswd file.

Use the htpasswd command to populate the HTPasswd authentication file with
the usernames and encrypted passwords. The -B option uses bcrypt encryption.
By default, the htpasswd command uses the MD5 hashing algorithm if you do not
specify another algorithm.

[student@workstation ~]$ htpasswd -c -B -b ~/D0280/labs/auth-providers/htpasswd \
new_admin redhat
Adding password for user new_admin

1.2. Add the new_developer user with the developer password to the ~/D0280/
labs/auth-providers/htpasswd file. The password for the new_developer
user is hashed with the MD5 algorithm, because no algorithm was specified and MD5
is the default hashing algorithm.

[student@workstation ~]$ htpasswd -b ~/D0280/labs/auth-providers/htpasswd \
new_developer developer
Adding password for user new_developer

Chapter 3 | Authentication and Authorization

1.3. Review the contents of the ~/D0280/1labs/auth-providers/htpasswd file and
verify that it includes two entries with hashed passwords: one for the new_admin
user and another for the new_developer user.

[student@workstation ~]$ cat ~/D0280/labs/auth-providers/htpasswd
new_admin:$2y$05$qQaFbpx4hbf4uzZe . SMLSAUTN8UN4DNIMJI4JE5ZzXDAS7Wr TR1pu2QS
new_developer:$apri1$SOTxtLX1$QSRFBIufYP39pKNsIg/nD1

P 2. Login to OpenShift and create a secret that contains the HTPasswd users file.

21. Login to the cluster as the admin user.

[student@workstation ~]$ oc login -u admin -p redhatocp \
https://api.ocp4.example.com: 6443
Login successful.

...output omitted. ..

2.2. Create asecret from the ~/D0280/ labs/auth-providers/htpasswd file.
To use the HTPasswd identity provider, you must define a secret with a key
named htpasswd that contains the HTPasswd user file ~/D0280/1labs/auth-
providers/htpasswd.

[student@workstation ~]$ oc create secret generic localusers \
--from-file htpasswd=~/D0280/1labs/auth-providers/htpasswd \
-n openshift-config

secret/localusers created

2.3. Assign the new_admin user the cluster-admin role.

[student@workstation ~]$ oc adm policy add-cluster-role-to-user \
cluster-admin new_admin

Warning: User 'new_admin' not found

clusterrole.rbac.authorization.k8s.io/cluster-admin added: "new_admin"

Note
S The output indicates that the new_admin user is not found. You can safely ignore
this warning.

P 3. Update the HTPasswd identity provider for the cluster so that your users can authenticate.
Configure the custom resource file and update the cluster.

3.1. Export the existing OAuth resource to a file named oauth.yaml in the ~/D0280/
labs/auth-providers directory.

[student@workstation ~]$ oc get oauth cluster \
-0 yaml > ~/D0280/labs/auth-providers/oauth.yaml

Chapter 3 | Authentication and Authorization

Note
E For convenience, an oauth.yaml file that contains the completed custom resource
file is downloaded to ~/D0280/solutions/auth-providers.

3.2. Editthe ~/D0280/1labs/auth-providers/oauth.yaml file with your preferred
text editor. You can choose the names of the identityProviders and fileData
structures. For this exercise, use the myusers and localusers values, respectively.

The completed custom resource should match the following structure. Ensure
that the htpasswd, mappingMethod, name, and type strings are at the same
indentation level.

apiVersion: config.openshift.io/v1
kind: OAuth
...output omitted. ..
spec:
identityProviders:
- ldap:
...output omitted...
type: LDAP
- htpasswd:
fileData:
name: localusers
mappingMethod: claim
name: myusers
type: HTPasswd

3.3. Apply the custom resource that was defined in the previous step.

[student@workstation ~]$ oc replace -f ~/D0280/1labs/auth-providers/oauth.yaml
oauth.config.openshift.io/cluster replaced

Note
S Authentication changes require redeploying pods in the openshift-
authentication namespace.

Use the watch command to examine the status of workloads in the openshift-
authentication namespace.

[student@workstation ~]$ watch oc get all -n openshift-authentication
NAME READY STATUS RESTARTS AGE
pod/oauth-openshift-6d68ffb9dc-6f8dr 1/1 Running 3 2m
...output omitted. ..

A few minutes after you ran the oc replace command, the redeployment starts.
Wait until new pods are running. Press Ctr 1+C to exit the watch command.

Provided that the previously created secret was created correctly, you can log in by
using the HTPasswd identity provider.

Chapter 3 | Authentication and Authorization

P 4. Loginasthe new_admin and as the new_developer user to verify the HTPasswd user
configuration.

41. Loginto the cluster as the new_admin user to verify that the HTPasswd

authentication is configured correctly. The authentication operator takes some time
to load the configuration changes from the previous step.

S Note
If the authentication fails, then wait a few moments and try again.

[student@workstation ~]$ oc login -u new_admin -p redhat
Login successful.

...output omitted. ..

4.2. Usethe oc get nodes command to verify that the new_admin user has the
cluster-admin role.

[student@workstation ~]$ oc get nodes
NAME STATUS ROLES AGE VERSION
masteroQl Ready control-plane, master,worker 13d v1.27.6+f67aeb3

4.3. Loginto the cluster as the new_developer user to verify that the HTPasswd
authentication is configured correctly.

[student@workstation ~]$ oc login -u new_developer -p developer
Login successful.

...output omitted...

4.4. Usethe oc get nodes command to verify that the new_developer and
new_admin users do not have the same level of access.

[student@workstation ~]$ oc get nodes
Error from server (Forbidden): nodes is forbidden: User "new_developer" cannot
list resource "nodes" in API group "" at the cluster scope

4.5. Loginasthe new_admin user.

[student@workstation ~]$ oc login -u new_admin -p redhat
Login successful.

...output omitted. ..

4.6. Listthe current users.

Chapter 3 | Authentication and Authorization

[student@workstation ~]$ oc get users

NAME UID ... IDENTITIES

admin 6126c5a9-4d18-4cdf-95f7-b16c3d3e7f24

new_admin 489c7402-d318-4805-b91d-44d786a92fcl ... myusers:new_admin
new_developer 8dbae772-1dd4-4242-b2b4-955b005d9022 ... myusers:new_developer

i ; Note
You might see additional users from previously completed exercises.

4.7. Display the list of current identities.

[student@workstation ~]$ oc get identity
NAME IDP NAME IDP USER NAME USER NAME
USER UID
admin
6126c5a9-4d18-4cdf-95f7-b16c3d3e7f24
myusers:new_admin myusers new_admin new_admin
489c7402-d318-4805-b91d-44d786a92fcl
myusers:new_developer myusers new_developer new_developer
8dbae772-1dd4-4242-b2b4-955b005d9022

S Note
You might see additional identities from previously completed exercises.

P 5. Asthe new_admin user, create a HTPasswd user named manager with a password of
redhat.

5.1. Extract the file data from the secret to the ~/D0280/ labs/auth-providers/
htpasswd file.

[student@workstation ~]$ oc extract secret/localusers -n openshift-config \
--to ~/D0280/1labs/auth-providers/ --confirm
/home/student/D0280/labs/auth-providers/htpasswd

5.2. Add an entry to your ~/D0280/ labs/auth-providers/htpasswd file for the
additional manager user with the redhat password.

[student@workstation ~]$ htpasswd -b ~/D0280/1labs/auth-providers/htpasswd \
manager redhat
Adding password for user manager

5.3. Review the contents of your ~/D0280/ labs/auth-providers/htpasswd file
and verify that it includes three entries with hashed passwords: one each for the
new_admin, new_developer, and manager users.

Chapter 3 | Authentication and Authorization

[student@workstation ~]$ cat ~/D0280/labs/auth-providers/htpasswd
new_admin:$2y$05$qQaFbpx4hbf4uze . SMLSAUuTNSUN4DNIMJ4jE5ZXDA57Wr TR1pu2QS
new_developer :$apri1$SOTXtLX1$QSRFBIufYP39pKNsIg/nD1

manager :$apri$HzZ/9tC6b$j20cHHg2G02SSulwyGOge .

5.4. You must update the secret after adding additional users. Use the oc set data
secret command to update the secret. If the command fails, then wait a few
moments for the oauth operator to finish reloading, and rerun the command.

[student@workstation ~]$ oc set data secret/localusers \
--from-file htpasswd=~/D0280/labs/auth-providers/htpasswd \
-n openshift-config

secret/localusers data updated

5.5. Use the watch command to examine the status of workloads in the openshift-
authentication namespace.

[student@workstation ~]$ watch oc get all -n openshift-authentication
NAME READY STATUS RESTARTS AGE
pod/oauth-openshift-6d68ffb9dc-6f8dr 1/1 Running 3 2m
...output omitted...

A few minutes after you ran the oc set data command, the redeployment starts.
Wait until new pods are running. Press Ctr 1+C to exit the watch command.

5.6. Loginto the cluster as the manager user.

i ; Note
If the authentication fails, then wait a few moments and try again.

[student@workstation ~]$ oc login -u manager -p redhat
Login successful.

...output omitted...

P 6. Createanauth-providers project, and then verify that the new_developer user
cannot access the project.

6.1. Asthemanager user, create an auth-providers project.

[student@workstation ~]$ oc new-project auth-providers
Now using project "auth-providers" on server https://api.ocp4.example.com:6443".
...output omitted...

6.2. Loginasthe new_developer user.

Chapter 3 | Authentication and Authorization

[student@workstation ~]$ oc login -u new_developer -p developer
Login successful.

...output omitted...

6.3. Attempt to delete the auth-providers project.

[student@workstation ~]$ oc delete project auth-providers

Error from server (Forbidden): projects.project.openshift.io "auth-providers" is
forbidden: User "new_developer" cannot delete resource "projects" in API group
"project.openshift.io" in the namespace "auth-providers"

P 7. Change the password for the manager user.

7). Login as the new_admin user.

[student@workstation ~]$ oc login -u new_admin -p redhat
Login successful.

...output omitted...

7.2. Extract the file data from the secret to the ~/D0280/1labs/auth-providers/
htpasswd file.

[student@workstation ~]$ oc extract secret/localusers -n openshift-config \
--to ~/D0280/1labs/auth-providers/ --confirm
/home/student/D02860/labs/auth-providers/htpasswd

7.3. Generate a random user password and assign it to the MANAGER_PASSWD variable.

[student@workstation ~]$ MANAGER_PASSWD="$(openssl rand -hex 15)"

7.4. Update the manager user to use the stored password in the MANAGER_PASSWD
variable.

[student@workstation ~]$ htpasswd -b ~/D0280/1labs/auth-providers/htpasswd \
manager ${MANAGER_PASSWD}
Updating password for user manager

7.5. Update the secret.

[student@workstation ~]$ oc set data secret/localusers \
--from-file htpasswd=~/D0280/1labs/auth-providers/htpasswd \
-n openshift-config

secret/localusers data updated

7.6. Use the watch command to examine the status of workloads in the openshift-
authentication namespace.

Chapter 3 | Authentication and Authorization

[student@workstation ~]$ watch oc get all -n openshift-authentication
NAME READY STATUS RESTARTS AGE
pod/oauth-openshift-6d68ffb9dc-6f8dr 1/1 Running 3 2m
...output omitted...

A few minutes after you ran the oc set data command, the redeployment starts.
Wait until new pods are running. Press Ctr 1+C to exit the watch command.

7.7. Login asthe manager user to verify the updated password.

[student@workstation ~]$ oc login -u manager -p ${MANAGER_PASSWD}
Login successful.

...output omitted...

S Note
If the authentication fails, then wait a few moments and try again.

P 8. Remove the manager user.

8.1. Loginasthe new_admin user.

[student@workstation ~]$ oc login -u new_admin -p redhat
Login successful.

...output omitted. ..

8.2. Extract the file data from the secret to the ~/D0280/labs/auth-providers/
htpasswd file.

[student@workstation ~]$ oc extract secret/localusers -n openshift-config \
--to ~/D0280/1labs/auth-providers/ --confirm
/home/student/D0280/labs/auth-providers/htpasswd

8.3. Delete the manager user from the ~/D0280/ labs/auth-providers/htpasswd
file.

[student@workstation ~]$ htpasswd -D ~/D0280/labs/auth-providers/htpasswd manager
Deleting password for user manager

8.4. Update the secret.

[student@workstation ~]$ oc set data secret/localusers \
--from-file htpasswd=~/D0280/1labs/auth-providers/htpasswd \
-n openshift-config

secret/localusers data updated

8.5. Use the watch command to examine the status of workloads in the openshift-
authentication namespace.

Chapter 3 | Authentication and Authorization

[student@workstation ~]$ watch oc get all -n openshift-authentication
NAME READY STATUS RESTARTS AGE
pod/oauth-openshift-6d68ffb9dc-6f8dr 1/1 Running 3 2m
...output omitted...

A few minutes after you ran the oc set data command, the redeployment starts.
Wait until new pods are running. Press Ctr 1+C to exit the watch command.

8.6. Login as the manager user. If the login succeeds, then try again until the login fails.

[student@workstation ~]$ oc login -u manager -p ${MANAGER_PASSWD}
Login failed (401 Unauthorized)
Verify you have provided correct credentials.

8.7. Loginasthe new_admin user.

[student@workstation ~]$ oc login -u new_admin -p redhat
Login successful.

...output omitted...
8.8. Delete the identity resource for the manager user.

[student@workstation ~]$ oc delete identity "myusers:manager"
identity.user.openshift.io "myusers:manager" deleted

8.9. Delete the user resource for the manager user.

[student@workstation ~]$ oc delete user manager
user.user.openshift.io manager deleted

8.10. List the current users to verify that you deleted the manager user.

[student@workstation ~]$ oc get users

NAME UID ... IDENTITIES

admin 6126c5a9-4d18-4cdf-95f7-b16c3d3e7f24

new_admin 489c7402-d318-4805-b91d-44d786a92fcl ... myusers:new_admin
new_developer 8dbae772-1dd4-4242-b2b4-955b005d9022 ... myusers:new_developer

8.11. Display the list of current identities to verify that you deleted the manager identity.

[student@workstation ~]$ oc get identity
NAME IDP NAME IDP USER NAME USER NAME
USER UID
admin
6126c5a9-4d18-4cdf-95f7-b16c3d3e7f24
myusers:new_admin myusers new_admin new_admin
489c7402-d318-4805-b91d-44d786a92fc1l
myusers:new_developer myusers new_developer new_developer
8dbae772-1dd4-4242-b2b4-955b005d9022

Chapter 3 | Authentication and Authorization

8.12. Extract the secret and verify that only the new_admin and new_developer users
are displayed. Using - -to - sends the secret to STDOUT rather than saving it to a
file.

[student@workstation ~]$ oc extract secret/localusers -n openshift-config --to -
htpasswd
new_admin:$2y$05%$qQaFbpx4hbf4uzZe . SMLSAUTN8UN4DNIMJI4jES5ZzXDAS7Wr TR1pu2QS
new_developer:$apri1$SOTxtLX1$QSRFBIufYP39pKNsIg/nD1

P 9. Remove the identity provider and clean up all users.

9.1. Loginasthe admin user.

[student@workstation ~]$ oc login -u admin -p redhatocp
Login successful.

...output omitted. ..

9.2. Delete the auth-providers project.

[student@workstation ~]$ oc delete project auth-providers
project.project.openshift.io "auth-providers" deleted

9.3. Edit the resource in place to remove the identity provider from OAuth:

[student@workstation ~]$ oc edit oauth

Delete all the lines under the ldap identity provider definition. Your file should match
the following example:

apiVersion: config.openshift.io/v1
kind: OAuth
metadata:
name: cluster
spec:
identityProviders:
- ldap:
...output omitted...
type: LDAP
Delete all lines below
- htpasswd:
fileData:
name: localusers
mappingMethod: claim
name: myusers
type: HTPasswd

Save your changes, and then verify that the oc edit command applied those
changes:

oauth.config.openshift.io/cluster edited

Chapter 3 | Authentication and Authorization

9.4. Use the watch command to examine the status of workloads in the openshift-
authentication namespace.

[student@workstation ~]$ watch oc get all -n openshift-authentication
NAME READY STATUS RESTARTS AGE
pod/oauth-openshift-6d68ffb9dc-6f8dr 1/1 Running 3 2m
...output omitted. ..

A few minutes after you ran the oc edit command, the redeployment starts. Wait
until new pods are running. Press Ctr 1+C to exit the watch command.

9.5. Delete the localusers secret from the openshift-config namespace.

[student@workstation ~]$ oc delete secret localusers -n openshift-config
secret "localusers" deleted

9.6. Delete all identity resources.

[student@workstation ~]$ oc delete identity --all

identity.user.openshift.io "Red Hat Identity Management:dwlk...jb20" deleted
identity.user.openshift.io "myusers:new_admin" deleted
identity.user.openshift.io "myusers:new_developer" deleted

i ; Note
You might see additional identities from previously completed exercises.

9.7. Delete all user resources.

[student@workstation ~]$ oc delete user --all
user.user.openshift.io "admin" deleted
user.user.openshift.io "developer" deleted
user.user.openshift.io "new_admin" deleted
user.user.openshift.io "new_developer" deleted

S Note
You might see additional users from previously completed exercises.

Finish
On the workstation machine, use the lab command to complete this exercise. This step is
important to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab finish auth-providers

Chapter 3 | Authentication and Authorization

Define and Apply Permissions with RBAC

Objectives

+ Define role-based access controls and apply permissions to users.

Role-based Access Control (RBAC)

Role-based access control (RBAC) is a technique for managing access to resources in a computer
system. In Red Hat OpenShift, RBAC determines whether a user can perform certain actions
within the cluster or project. You can choose between two role types, depending on the user's
level of responsibility: cluster and local.

i ; Note
Authorization is a separate step from authentication.

Authorization Process

The authorization process is managed by rules, roles, and bindings.

RBAC Object Description

Rule Allowed actions for objects or groups of objects.

Role Sets of rules. Users and groups can be associated with multiple roles.
Binding Assignment of users or groups to a role.

RBAC Scope

Red Hat OpenShift Container Platform (RHOCP) defines two groups of roles and bindings
depending on the user's scope and responsibility: cluster roles and local roles.

Role Level Description
Cluster role Users or groups with this role level can manage the OpenShift cluster.
Local role Users or groups with this role level can manage only elements at a

project level.

i ; Note
Cluster role bindings take precedence over local role bindings.

Chapter 3 | Authentication and Authorization

Managing RBAC with the CLI

Cluster administrators can use the oc adm policy command to add and remove cluster roles
and namespace roles.

To add a cluster role to a user, use the add-cluster-role-to-user subcommand:

[user@host ~]% oc adm policy add-cluster-role-to-user cluster-role username

For example, to change a regular user to a cluster administrator, use the following command:

[user@host ~]$ oc adm policy add-cluster-role-to-user cluster-admin username

To remove a cluster role from a user, use the remove-cluster-role-from-user
subcommand:

[user@host ~]$ oc adm policy remove-cluster-role-from-user cluster-role username

For example, to change a cluster administrator to a regular user, use the following command:

[user@host ~]$ oc adm policy remove-cluster-role-from-user cluster-admin username

Rules are defined by an action and a resource. For example, the create user rule is part of the
cluster-admin role.

You can use the oc adm policy who-can command to determine whether a user can execute
an action on a resource. For example:

[user@host ~]$ oc adm policy who-can delete user

Default Roles

OpenShift ships with a set of default cluster roles that can be assigned locally or to the entire
cluster. You can modify these roles for fine-grained access control to OpenShift resources. Other
required steps are outside the scope of this course.

Default roles Description

admin Users with this role can manage all project resources, including
granting access to other users to access the project.

basic-user Users with this role have read access to the project.

cluster-admin Users with this role have superuser access to the cluster resources.
These users can perform any action on the cluster, and have full
control of all projects.

cluster-status Users with this role can get cluster status information.

Chapter 3 | Authentication and Authorization

Default roles Description

edit Users with this role can create, change, and delete common
application resources on the project, such as services and
deployments. These users cannot act on management resources
such as limit ranges and quotas, and cannot manage access
permissions to the project.

self-provisioner Users with this role can create projects. It is a cluster role, not a
project role.

view Users with this role can view project resources, but cannot modify
project resources.

The admin role gives a user access to project resources such as quotas and limit ranges, and also
the ability to create applications. The edit role gives a user sufficient access to act as a developer
inside the project, but working under the constraints that a project administrator configured.

Project administrators can use the oc policy command to add and remove namespace roles.

Add a specified role to a user with the add-role-to-user subcommand. For example:

[user@host ~]$ oc policy add-role-to-user role-name username -n project

For example, run the following command to add the dev user to the basic-user cluster role in
the wordpress project.

[user@host ~]% oc policy add-role-to-user basic-user dev -n wordpress

Even though basic-user is a cluster role, the add-role-to-user subcommand limits the
scope of the role to the wordpress namespace for the dev user.

User Types

Interaction with OpenShift Container Platform is associated with a user. An OpenShift Container
Platform user object represents a user who can be granted permissions in the system by adding
roles to that user or to a user's group via role bindings.

Regular users
Most interactive OpenShift Container Platform users are reqular users, and are represented
with the User object. This type of user represents a person with access to the platform.

System users
Many system users are created automatically when the infrastructure is defined, mainly for the
infrastructure to securely interact with the API. System users include a cluster administrator
(with access to everything), a per-node user, users for routers and registries, and various
others. An anonymous system user is used by default for unauthenticated requests.

System user names start with a system: prefix, such as system:admin,
system:openshift-registry,and system:node:nodel.example.com.

Service accounts

Service accounts are system users that are associated with projects. Workloads can use
service accounts to invoke Kubernetes APls.

Chapter 3 | Authentication and Authorization

Some service account users are created automatically during project creation. Project
administrators can create more service accounts to grant extra privileges to workloads. By
default, service accounts have no roles. Grant roles to service accounts to enable workloads to
use specific APIs.

Service accounts are represented with the ServiceAccount object.

System account user names start with a system: serviceaccount:namespace:
prefix, such as system:serviceaccount:default:deployer and
system:serviceaccount:accounting:builder.

Every user must authenticate before they can access OpenShift Container Platform. APl requests
with no authentication or invalid authentication are authenticated as requests by the anonymous
system user. After successful authentication, the policy determines what the user is authorized to
do.

Group Management

A group resource represents a set of users. Cluster administrators can use the oc adm groups
command to add groups or to add users to groups. For example, run the following command to
add the lead-developers group to the cluster:

[user@host ~]$ oc adm groups new lead-developers

Likewise, the following command adds the user1 user to the lead-developers group:

[user@host ~]$ oc adm groups add-user lead-developers useril

References

For more information about RBAC, refer to the Using RBAC to Define and

Apply Permissions chapter in the Red Hat OpenShift Container Platform 4.14
Authentication and Authorization documentation at
https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.14/html-single/authentication_and_authorization/
index#using-rbac

For more information about groups, refer to the Understanding Authentication
chapter in the Red Hat OpenShift Container Platform 4.14 Authentication and
Authorization documentation at

https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.14/html-single/authentication_and_authorization/
index#understanding-authentication

Kubernetes Namespaces
https://kubernetes.io/docs/concepts/overview/working-with-objects/
namespaces/

D0O280-0OCP4.14-en-1-20240215 “

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/authentication_and_authorization/index#using-rbac
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/authentication_and_authorization/index#using-rbac
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/authentication_and_authorization/index#using-rbac
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/authentication_and_authorization/index#understanding-authentication
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/authentication_and_authorization/index#understanding-authentication
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/authentication_and_authorization/index#understanding-authentication
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/

Chapter 3 | Authentication and Authorization

» Guided Exercise

Define and Apply Permissions with RBAC

Define role-based access controls and apply permissions to users.

Outcomes

+ Remove project creation privileges from users who are not OpenShift cluster
administrators.

+ Create OpenShift groups and add members to these groups.
+ Create a project and assign project administration privileges to the project.

+ As a project administrator, assign read and write privileges to different groups of users.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your
system for this exercise.

This command ensures that the cluster APl is reachable and creates some HTPasswd users
for the exercise.

[student@workstation ~]$ lab start auth-rbac

Instructions
P 1. Loginto the OpenShift cluster and determine which cluster role bindings assign the se1f-

provisioner cluster role.

11. Login to the cluster as the admin user.

[student@workstation ~]$ oc login -u admin -p redhatocp \
https://api.ocp4.example.com: 6443
Login successful.

...output omitted. ..

1.2. List all cluster role bindings that reference the self-provisioner cluster role.

[student@workstation ~]$ oc get clusterrolebinding -o wide | \
grep -E 'ROLE|self-provisioner'
NAME ROLE ... GROUPS
self-provisioners ClusterRole/self-provisioner ... system:authenticated:oauth

P 2. Remove the privilege to create projects from all users who are not cluster administrators by
deleting the self-provisioner cluster role from the system:authenticated:oauth
virtual group.

Chapter 3 | Authentication and Authorization

2.1. Confirm that the self-provisioners cluster role binding that you found
in the previous step assigns the self-provisioner cluster role to the
system:authenticated:oauth group.

[student@workstation ~]$ oc describe clusterrolebindings self-provisioners
Name: self-provisioners

Labels: <none>
Annotations: rbac.authorization.kubernetes.io/autoupdate: true

Role:
Kind: ClusterRole
Name: self-provisioner

Subjects:
Kind Name Namespace

Group system:authenticated:oauth

2.2. Remove the self-provisioner cluster role from the
system:authenticated:oauth virtual group, which deletes the self -

provisioners role binding.

[student@workstation ~]$ oc adm policy remove-cluster-role-from-group \
self-provisioner system:authenticated:oauth

Warning: Your changes may get lost whenever a master is restarted, unless you
prevent reconciliation of this rolebinding using the following command:

oc annotate clusterrolebinding.rbac self-provisioners
'rbac.authorization.kubernetes.io/autoupdate=false' --overwrite

clusterrole.rbac.authorization.k8s.io/self-provisioner removed:
"system:authenticated:oauth"

i ; Note
You can safely ignore the warning about your changes being lost.

2.3. Verify that the role is removed from the group. The cluster role binding se 1f -
provisioners should not exist.

[student@workstation ~]$ oc describe clusterrolebindings self-provisioners
Error from server (NotFound): clusterrolebindings.rbac.authorization.k8s.io "self-

provisioners" not found

2.4. Determine whether any other cluster role bindings reference the self-
provisioner clusterrole.

[student@workstation ~]$ oc get clusterrolebinding -o wide | \
grep -E 'ROLE|self-provisioner’'
NAME ROLE AGE USERS GROUPS SERVICEACCOUNTS

2.5. Loginasthe leader user with the redhat password.

Chapter 3 | Authentication and Authorization

[student@workstation ~]$ oc login -u leader -p redhat
Login successful.

...output omitted...

2.6. Try to create a project. The operation should fail.

[student@workstation ~]$ oc new-project test
Error from server (Forbidden): You may not request a new project via this API.

) 3. Create a project and add project administration privileges to the leader user.

3.1 Loginasthe admin user.

[student@workstation ~]$ oc login -u admin -p redhatocp
Login successful.

...output omitted. ..

3.2. Create the auth-rbac project.

[student@workstation ~]$ oc new-project auth-rbac
Now using project "auth-rbac" on server "https://api.ocp4.example.com:6443".

...output omitted...

3.3. Grant project administration privileges to the leader user on the auth-rbac
project.

[student@workstation ~]$ oc policy add-role-to-user admin leader
clusterrole.rbac.authorization.k8s.io/admin added: "leader"

P 4. Create the dev-group and ga-group groups and add their respective members.
41. Create a group named dev-group.

[student@workstation ~]$ oc adm groups new dev-group
group.user.openshift.io/dev-group created

4.2. Add the developer user to the group that you created in the previous step.

[student@workstation ~]$ oc adm groups add-users dev-group developer
group.user.openshift.io/dev-group added: "developer"

4.3. Create a second group named ga-group.

[student@workstation ~]$ oc adm groups new qa-group
group.user.openshift.io/qa-group created

Chapter 3 | Authentication and Authorization
4.4. Addthe qa-engineer user to the group that you created in the previous step.

[student@workstation ~]$ oc adm groups add-users qa-group qa-engineer
group.user.openshift.io/qa-group added: "qga-engineer"

4.5. Review all existing OpenShift groups to verify that they have the correct members.

[student@workstation ~]$ oc get groups

NAME USERS
Default SMB Group

admins admin
dev-group developer
developer

editors

ocpadmins admin
ocpdevs developer
ga-group ga-engineer

Note
E The lab environment already contains groups from the lab LDAP directory.

P 5. Asthe leader user, assign write privileges for dev-group and read privileges for qa-
group to the auth-rbac project.

51. Login asthe leader user.

[student@workstation ~]$ oc login -u leader -p redhat
Login successful.

...output omitted...

Using project "auth-rbac".

5.2. Add write privileges to the dev-group group on the auth-rbac project.

[student@workstation ~]$ oc policy add-role-to-group edit dev-group
clusterrole.rbac.authorization.k8s.io/edit added: "dev-group"

5.3. Addread privileges to the qa-group group on the auth-rbac project.

[student@workstation ~]$ oc policy add-role-to-group view qa-group
clusterrole.rbac.authorization.k8s.io/view added: "ga-group"

5.4. Review all role bindings on the auth-rbac project to verify that they assign roles to
the correct groups and users. The following output omits default role bindings that
OpenShift assigns to service accounts.

Chapter 3 | Authentication and Authorization

[student@workstation ~]$ oc get rolebindings -o wide | grep -v 'Asystem:'

NAME ROLE AGE USERS GROUPS SERVICEACCOUNTS
admin ClusterRole/admin 60s admin

admin-0 ClusterRole/admin 45s leader

edit ClusterRole/edit 30s dev-group

view ClusterRole/view 15s ga-group

P 6. Asthe developer user, deploy an Apache HTTP Server to prove that the developer user
has write privileges in the project. Also try to grant write privileges to the qa-engineer
user to prove that the developer user has no project administration privileges.

6.1. Loginasthe developer user.

[student@workstation ~]$ oc login -u developer -p developer
Login successful.

...output omitted. ..

Using project "auth-rbac".

6.2. Deploy an Apache HTTP Server by using the standard image stream from OpenShift.

[student@workstation ~]$ oc new-app --name httpd httpd:2.4
...output omitted...
--> Creating resources ...
deployment.apps "httpd" created
service "httpd" created
--> Success
...output omitted...

Note
E It is safe to ignore pod security warnings for exercises in this course. OpenShift uses
the Security Context Constraints controller to provide safe defaults for pod security.

6.3. Try to grant write privileges to the qa-engineer user. The operation should fail.

[student@workstation ~]$ oc policy add-role-to-user edit qa-engineer

Error from server (Forbidden): rolebindings.rbac.authorization.k8s.io is
forbidden: User "developer" cannot list resource "rolebindings" in API group
"rbac.authorization.k8s.io" in the namespace "auth-rbac"

P 7. Verify that the qa-engineer user can view objects in the auth-rbac project, but not
modify anything.

71. Loginasthe ga-engineer user.

Chapter 3 | Authentication and Authorization

[student@workstation ~]$ oc login -u qa-engineer -p redhat
Login successful.

...output omitted...

Using project "auth-rbac".

7.2. Attempt to scale the httpd application. The operation should fail.

[student@workstation ~]$ oc scale deployment httpd --replicas 3

Error from server (Forbidden): deployments.apps "httpd" is forbidden: User "qa-

engineer" cannot patch resource "deployments/scale" in API group "apps" in the
namespace "auth-rbac"

) 8. Restore project creation privileges to all users.

8.1. Loginasthe admin user.

[student@workstation ~]$ oc login -u admin -p redhatocp
Login successful.

...output omitted. ..

8.2. Restore project creation privileges for all users by re-creating the se1f-
provisioners cluster role binding that the OpenShift installer created.

[student@workstation ~]$ oc adm policy add-cluster-role-to-group \
--rolebinding-name self-provisioners \
self-provisioner system:authenticated:oauth

wWarning: Group 'system:authenticated:oauth' not found

clusterrole.rbac.authorization.k8s.io/self-provisioner added:
"system:authenticated:oauth"

5 Note
You can safely ignore the warning that the group was not found.

Finish
On the workstation machine, use the lab command to complete this exercise. This step is
important to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab finish auth-rbac

Chapter 3 | Authentication and Authorization

» Lab

Authentication and Authorization

Configure the HTPasswd identity provider, create groups, and assign roles to users and
groups.

Outcomes

+ Create users and passwords for HTPasswd authentication.

+ Configure the identity provider for HTPasswd authentication.
+ Assign cluster administration rights to users.

+ Remove the ability to create projects at the cluster level.

+ Create groups and add users to groups.

+ Manage user privileges in projects by granting privileges to groups.

Before You Begin

As the student user on the workstation machine, use the lab command to prepare your
system for this exercise.

[student@workstation ~]$ lab start auth-review

The command ensures that the cluster APl is reachable, and that the cluster uses the initial
lab authentication settings.

Instructions

1. Update the existing ~/D0280/1labs/auth-review/tmp_users HTPasswd authentication
file to remove the analyst user. Ensure that the tester and leader usersin the
file use the LAbR3v ! ew password. Add two entries to the file for the new_admin and
new_developer users. Use the LAbR3v ! ew password for each new user.

2. Loginto your OpenShift cluster as the admin user with the redhatocp password.
Configure your cluster to use the HTPasswd identity provider by using the defined user
names and passwords in the ~/D0280/ labs/auth-review/tmp_users file. For grading,
use the auth-review name for the secret.

3. Make the new_admin user a cluster administrator. Log in as both the new_admin and
new_developer users to verify HTPasswd user configuration and cluster privileges.

4. Asthe new_admin user, prevent users from creating projects in the cluster.

5. Create amanagers group, and add the leader user to the group. Grant project creation
privileges to the managers group. As the leader user, create the auth-review project.

6. Create adevelopers group and grant edit privileges on the auth-review project. Add the
new_developer user to the group.

7. Create a ga group and grant view privileges on the auth-review project. Add the tester
user to the group.

Chapter 3 | Authentication and Authorization

Evaluation

As the student user on the workstation machine, use the lab command to grade your work.
Correct any reported failures and rerun the command until successful.

[student@workstation ~]$ lab grade auth-review
Finish
As the student user on the workstation machine, use the lab command to complete this

exercise. This step is important to ensure that resources from previous exercises do not impact
upcoming exercises.

[student@workstation ~]$ lab finish auth-review

D0O280-0OCP4.14-en-1-20240215 “

Chapter 3 | Authentication and Authorization

» Solution

Authentication and Authorization

Configure the HTPasswd identity provider, create groups, and assign roles to users and
groups.

Outcomes

+ Create users and passwords for HTPasswd authentication.

- Configure the identity provider for HTPasswd authentication.
+ Assign cluster administration rights to users.

+ Remove the ability to create projects at the cluster level.

+ Create groups and add users to groups.

+ Manage user privileges in projects by granting privileges to groups.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your
system for this exercise.

[student@workstation ~]$ lab start auth-review

The command ensures that the cluster APl is reachable, and that the cluster uses the initial
lab authentication settings.

Instructions

1. Update the existing ~/D0280/1labs/auth-review/tmp_users HTPasswd authentication
file to remove the analyst user. Ensure that the tester and leader usersin the
file use the L@bR3v ! ew password. Add two entries to the file for the new_admin and
new_developer users. Use the LAbR3v ! ew password for each new user.

11. Remove the analyst user from the ~/D0280/labs/auth-review/tmp_users
HTPasswd authentication file.

[student@workstation ~]$ htpasswd -D ~/D0280/labs/auth-review/tmp_users analyst
Deleting password for user analyst

1.2. Update the entries for the tester and leader users to use the L@bR3v ! ew
password. Add entries for the new_admin and new_developer users with the
L@bR3Vv ! ew password.

Chapter 3 | Authentication and Authorization

[student@workstation ~]$ for NAME in tester leader new_admin new_developer ; \
do \
htpasswd -b ~/D0280/1labs/auth-review/tmp_users ${NAME} 'L@bR3v'ew' ; \
done

Updating password for user tester

Updating password for user leader

Adding password for user new_admin

Adding password for user new_developer

1.3. Review the contents of the ~/D0280/ labs/auth-review/tmp_users file. This file
does not contain a line for the analyst user. The file includes two new entries with
hashed passwords for the new_admin and new_developer users.

[student@workstation ~]$ cat ~/D0280/labs/auth-review/tmp_users
tester:$apri$EyWSDib4$uLoUMpwohNWUru5L50gkB/

leader :$apri1$/08SyNdp$gjr.P7FMIbK2IebFUOQQN/
new_admin:$apr1$M5WHRPR2$GbGDkTK8QTrw2s/f2/1Kt1

new_developer :$apri$dXdc8twWd$N8HAOSUe3ThqAhI049gOHO

2. Login to your OpenShift cluster as the admin user with the redhatocp password.
Configure your cluster to use the HTPasswd identity provider by using the defined user
names and passwords in the ~/D0280/ labs/auth-review/tmp_users file. For grading,
use the auth-review name for the secret.

21. Login to the cluster as the admin user.

[student@workstation ~]$ oc login -u admin -p redhatocp \
https://api.ocp4.example.com: 6443
Login successful.

...output omitted...

2.2. Create anauth-review secret by using the ~/D0280/labs/auth-review/
tmp_users file.

[student@workstation ~]$ oc create secret generic auth-review \
--from-file htpasswd=/home/student/D0280/labs/auth-review/tmp_users \
-n openshift-config

secret/auth-review created

2.3. Export the existing OAuth resource to ~/D0280/ labs/auth-review/oauth.yaml.

[student@workstation ~]$ oc get oauth cluster \
-0 yaml > ~/D0280/labs/auth-review/oauth.yaml

2.4. Editthe ~/D0280/1labs/auth-review/oauth.yaml file to add an identity provider
by including the lines from the following example that are displayed in bold. Ensure that
the htpasswd, mappingMethod, name, and type strings are at the same indentation
level.

Chapter 3 | Authentication and Authorization

apiVersion: config.openshift.io/v1
kind: OAuth
...output omitted...
spec:
identityProviders:
- ldap:
...output omitted...
type: LDAP
- htpasswd:
fileData:
name: auth-review
mappingMethod: claim
name: htpasswd
type: HTPasswd

Note

E For convenience, the ~/D0280/solutions/auth-review/oauth.yaml
file contains a minimal version of the OAuth configuration with the specified
customizations.

2.5. Apply the customized resource that you defined in the previous step.

[student@workstation ~]$ oc replace -f ~/D0280/labs/auth-review/oauth.yaml
oauth.config.openshift.io/cluster replaced

2.6. Asuccessful update to the oauth/cluster resource re-creates the oauth-
openshift podsinthe openshift-authentication namespace.

[student@workstation ~]$ watch oc get pods -n openshift-authentication

Wait until the new oauth-openshift pods are ready and running, and the previous
pods have terminated.

Every 2.0s: oc get pods -n openshift-authentication

NAME READY STATUS RESTARTS AGE
oauth-openshift-68d6f666Td-z746p 1/1 Running 0 42s

Press Ctr 1+C to exit the watch command.

Chapter 3 | Authentication and Authorization

Note
E Pods in the openshift-authentication namespace redeploy when the oc
replace command succeeds.

In this exercise, changes to authentication might require a few minutes to apply.

You can examine the status of pods and deployments in the openshift-
authentication namespace to monitor the authentication status. You can also
examine the authentication cluster operator for further status information.

Provided that the previously created secret was created correctly, you can log in by

using the HTPasswd identity provider.

3. Make the new_admin user a cluster administrator. Log in as both the new_admin and
new_developer users to verify HTPasswd user configuration and cluster privileges.

3.1. Assign the new_admin user the cluster-admin role.

[student@workstation ~]$ oc adm policy add-cluster-role-to-user \
cluster-admin new_admin

Warning: User 'new_admin' not found

clusterrole.rbac.authorization.k8s.io/cluster-admin added: "new_admin"

S Note
You can safely ignore the warning that the new_admin user is not found.

3.2. Login to the cluster as the new_admin user to verify that HTPasswd authentication is
configured correctly.

[student@workstation ~]$ oc login -u new_admin -p 'L@bR3v!ew'
Login successful.

...output omitted. ..

3.3. Usetheoc get nodes command to verify that the new_admin user has the
cluster-admin role. The names of the nodes from your cluster might be different.

[student@workstation ~]$ oc get nodes
NAME STATUS ROLES AGE VERSION
masterol Ready control-plane, master,worker 14d v1.27.6+f67aeb3

3.4. Loginto the cluster as the new_developer user to verify that the HTPasswd
authentication is configured correctly.

[student@workstation ~]$ oc login -u new_developer -p 'L@bR3v!ew'
Login successful.

...output omitted...

Chapter 3 | Authentication and Authorization

3.5. Usetheoc get nodes command to verify that the new_developer user does not
have cluster administration privileges.

[student@workstation ~]$ oc get nodes
Error from server (Forbidden): nodes is forbidden: User '"new_developer" cannot
list resource '"nodes" in API group "" at the cluster scope

4. Asthe new_admin user, prevent users from creating projects in the cluster.

4.1. Loginto the cluster as the new_admin user.

[student@workstation ~]$ oc login -u new_admin -p 'L@bR3v!ew'
Login successful.

...output omitted...

4.2. Remove the self-provisioner cluster role from the
system:authenticated:oauth virtual group.

[student@workstation ~]$ oc adm policy remove-cluster-role-from-group \
self-provisioner system:authenticated:oauth

Warning: Your changes may get lost whenever a master is restarted,
unless you prevent reconciliation of this rolebinding using the
following command: oc annotate clusterrolebinding.rbac self-provisioners
'rbac.authorization.kubernetes.io/autoupdate=false' --overwrite

clusterrole.rbac.authorization.k8s.io/self-provisioner removed:
"system:authenticated:oauth"

S Note
You can safely ignore the warning about your changes being lost.

5. Create amanagers group, and add the leader user to the group. Grant project creation
privileges to the managers group. As the leader user, create the auth-review project.

51. Create amanagers group.

[student@workstation ~]$ oc adm groups new managers
group.user.openshift.io/managers created

5.2. Addthe leader user to the managers group.

[student@workstation ~]$ oc adm groups add-users managers leader
group.user.openshift.io/managers added: "leader"

5.3. Assign the self-provisioner cluster role to the managers group.

[student@workstation ~]$ oc adm policy add-cluster-role-to-group \
self-provisioner managers
clusterrole.rbac.authorization.k8s.io/self-provisioner added: "managers"

Chapter 3 | Authentication and Authorization
5.4. Asthe leader user, create the auth-review project.

[student@workstation ~]$ oc login -u leader -p 'L@bR3v!ew'
Login successful.

...output omitted...

The user who creates a project is automatically assigned the admin role on the project.

[student@workstation ~]$ oc new-project auth-review
Now using project "auth-review" on server "https://api.ocp4.example.com:6443".

...output omitted. ..

6. Create adevelopers group and grant edit privileges on the auth-review project. Add the
new_developer user to the group.

6.1. Login to the cluster as the new_admin user.

[student@workstation ~]$ oc login -u new_admin -p 'L@bR3v!ew'
Login successful.

...output omitted...
6.2. Create a developers group.

[student@workstation ~]$ oc adm groups new developers
group.user.openshift.io/developers created

6.3. Add the new_developer user to the developers group.

[student@workstation ~]$ oc adm groups add-users developers new_developer
group.user.openshift.io/developers added: "new_developer"

6.4. Grant edit privileges to the developers group on the auth-review project.

[student@workstation ~]$ oc policy add-role-to-group edit developers
clusterrole.rbac.authorization.k8s.io/edit added: "developers"

7. Create a qa group and grant view privileges on the auth-review project. Add the tester
user to the group.

71. Create a ga group.

[student@workstation ~]$ oc adm groups new qa
group.user.openshift.io/qa created

7.2. Add the tester user to the ga group.

[student@workstation ~]$ oc adm groups add-users qa tester
group.user.openshift.io/ga added: "tester"

Chapter 3 | Authentication and Authorization
7.3. Grant view privileges to the ga group on the auth-review project.

[student@workstation ~]$ oc policy add-role-to-group view qa
clusterrole.rbac.authorization.k8s.io/view added: "ga"

Evaluation

As the student user on the workstation machine, use the lab command to grade your work.
Correct any reported failures and rerun the command until successful.

[student@workstation ~]$ lab grade auth-review
Finish
As the student user on the workstation machine, use the lab command to complete this
exercise. This step is important to ensure that resources from previous exercises do not impact

upcoming exercises.

[student@workstation ~]$ lab finish auth-review

Chapter 3 | Authentication and Authorization

Summary

+ A newly installed OpenShift cluster provides two authentication methods that grant
administrative access: the kubeconfig file and the kubeadmin virtual user.

+ The HTPasswd identity provider authenticates users against credentials that are stored in a
secret. The secret name and other settings for the identity provider are stored inside the OAuth
custom resource.

+ To manage user credentials by using the HTPasswd identity provider, you must extract data
from the secret, change that data using the htpasswd command, and then apply the data back
to the secret.

+ Creating OpenShift users requires valid credentials, which an identity provider manages, plus
user and identity resources.

+ Deleting OpenShift users requires deleting their credentials from the identity provider, and also
deleting their user and identity resources.

+ OpenShift uses role-based access control (RBAC) to manage user actions. A role is a collection
of rules that govern interaction with OpenShift resources. Default roles exist for cluster
administrators, developers, and auditors.

+ To control user interaction, assign a user to one or more roles. A role binding contains all of the
role's associations to users and groups.

+ To grant a user cluster administrator privileges, assign the cluster -admin role to that user.

For use by srinivas godavarthy sriniva

-

=

cho

VAL
LA W..

rinivas.godavarthy@bupa.com.sa

Copyright © 2024 Red Hat, Inc.

DO280-0OCP4.14-en-1-20240215

Chapter 4

Network Security

Goal Protect network traffic between applications inside ¢
and outside the cluster.
Objectives + Allow and protect network connections to .
applications inside an OpenShift cluster. 4
+ Restrict network traffic between projects and ,
pods. n.
- + Configure and use automatic service
‘ certificates.
o
" Sections *+ Protect External Traffic with TLS (and Guided
. Exercise)
+ Configure Network Policies (and Guided
Exercise)
Protect Internal Traffic with TLS (and Guided
Exercise)
Lab + Network Security

r/

D0O280-0OCP4.14-en-1-20240215

Chapter 4 | Network Security

Protect External Traffic with TLS

Objectives

+ Allow and protect network connections to applications inside an OpenShift cluster.

Accessing Applications from External Networks

OpenShift Container Platform offers many ways to expose your applications to external networks.
You can expose HTTP and HTTPS traffic, TCP applications, and also non-TCP traffic. Some of
these methods are service types, such as NodePort or load balancer, whereas others use their
own API resource, such as Ingress and Route.

With OpenShift routes, you can expose your applications to external networks, to reach the
applications with a unique, publicly accessible hostname. Routes rely on a router plug-in to redirect
the traffic from the public IP to pods.

The following diagram shows how a route exposes an application that runs as pods in your cluster:

Route <
httpy//myapp.example.com [

Internet

Kubernetes services SDN - 172.30.0.0/16

Service
172.30.XX

Round robin load balancing

API APP API Client
10128 XX 10129X.X 10129.X.X 10130.X.X 10130.X.X
APP DB APP APP APP
10128X.X 10129.XX 10129.X.X 10130.X.X 10130.X.X
Project 1 Project 2 Project1 Project3 Project 1 Project1
Node 1 Node 2 Node X
Kubernetes Pod SDN
10.128.0.0/14
4—>» Network packet flow e——e Virtual or physical network

Figure 4.1: Using routes to expose applications

W D0O280-0OCP4.14-en-1-20240215

Chapter 4 | Network Security

E Note
For performance reasons, routers send requests directly to pods based on service
configuration.

The dotted line in the diagram indicates this implementation. The router accesses
the pods through the services network.

Securing Routes

Routes can be either secured or unsecured. Secure routes support several types of transport layer
security (TLS) termination to serve certificates to the client. Unsecured routes are the simplest to
configure, because they require no key or certificates. By contrast, secured routes encrypt traffic
to and from the pods.

A secured route specifies the TLS termination of the route. The following termination types are
available:

OpenShift Secure Routes

Edge
With edge termination, TLS termination occurs at the router, before the traffic is routed to
the pods. The router serves the TLS certificates, so you must configure them into the route;
otherwise, OpenShift assigns its own certificate to the router for TLS termination. Because
TLS is terminated at the router, connections from the router to the endpoints over the internal
network are not encrypted.

Passthrough
With passthrough termination, encrypted traffic is sent straight to the destination pod without
TLS termination from the router. In this mode, the application is responsible for serving
certificates for the traffic. Passthrough is currently the only method that supports mutual
authentication between the application and a client that accesses it.

Re-encryption
Re-encryption is a variation on edge termination, whereby the router terminates TLS with a
certificate, and then re-encrypts its connection to the endpoint, which might have a different
certificate. Therefore, the full path of the connection is encrypted, even over the internal
network. The router uses health checks to determine the authenticity of the host.

Securing Applications with Edge Routes

Before creating a secure route, you need a TLS certificate. The following command shows how to
create a secure edge route with a TLS certificate:

[user@host ~]$ oc create route edge \
--service api-frontend --hostname api.apps.acme.com \
--key api.key --cert api.crt

© The - -key option requires the certificate private key.
© The - -cert option requires the signed certificate.

When using a route in edge mode, the traffic between the client and the router is encrypted, but
traffic between the router and the application is not encrypted:

Chapter 4 | Network Security

\/ tls.crt tls.key X > A
_______________*; _____________
— Encryption Application
Client
Edge route Container

Figure 4.2: Securing applications with edge routes

Note
5 Network policies can help you to protect the internal traffic between your
applications or between projects.

Securing Applications with Passthrough Routes

The previous example demonstrates how to create an edge route, which means an OpenShift
route that presents a certificate at the edge. Passthrough routes offer a secure alternative,
because the application exposes its TLS certificate. As such, the traffic is encrypted between the
client and the application.

To create a passthrough route, you need a certificate and a way for your application to access it.
The best way to provide the certificate is by using OpenShift TLS secrets. Secrets are exposed via
a mount point into the container.

The following diagram shows how you can mount a secret resource in your container. The
application is then able to access your certificate.

\/ ‘/ > tiscrt — tlskey
e I\ A e

Pass-through route

Client

Encryption

Application

Mounts:
Jusr/local/etc/ssl/certs from tls-certs (ro)

Container

volumeMounts:
- name: tls-certs
readOnly: true
mountPath: /usr/local/etc/ssl/certs

volumes:
- name: tls-certs
secret:
secretName: todo-certs

Figure 4.3: Securing applications with passthrough routes

W D0O280-0OCP4.14-en-1-20240215

Chapter 4 | Network Security

Securing Applications with Re-encrypt Routes

Re-encrypt routes provide end-to-end encryption. First, re-encrypt routes terminate the
encryption between an external client and the router. This encryption uses a certificate with a
fully qualified domain name (FQDN) that is trusted by the client, such as the my-app.example.com
hostname.

Then, the router re-encrypts the connection when accessing an internal cluster service. This
internal communication requires a certificate for the target service with an OpenShift FQDN, such
as the my-app.namespace.svc.cluster.local hostname.

The certificates for internal TLS connections require a public key infrastructure (PKI) to sign
the certificate. With an OpenShift service certificate, you can mount a secret that contains a
certificate and key pair into an application. This feature uses the OpenShift PKI to generate the
certificate and key into a service-specific secret.

References

For more information about how to manage routes, refer to the Configuring
Routes chapter in the Red Hat OpenShift Container Platform 4.14 Networking
documentation at

https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.14/html-single/networking/index#configuring-
routes

For more information about how to configure ingress cluster traffic, refer to the
Configuring Ingress Cluster Traffic chapter in the Red Hat OpenShift Container
Platform 4.14 Networking documentation at
https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.14/html-single/networking/index#configuring-
ingress-cluster-traffic

Self-Serviced End-to-end Encryption Approaches for Applications Deployed
in OpenShift
https://cloud.redhat.com/blog/self-serviced-end-to-end-encryption-approaches-
for-applications-deployed-in-openshift

D0O280-0OCP4.14-en-1-20240215 w

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/networking/index#configuring-routes
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/networking/index#configuring-routes
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/networking/index#configuring-routes
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/networking/index#configuring-ingress-cluster-traffic
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/networking/index#configuring-ingress-cluster-traffic
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/networking/index#configuring-ingress-cluster-traffic
https://cloud.redhat.com/blog/self-serviced-end-to-end-encryption-approaches-for-applications-deployed-in-openshift
https://cloud.redhat.com/blog/self-serviced-end-to-end-encryption-approaches-for-applications-deployed-in-openshift

Chapter 4 | Network Security

» Guided Exercise

Protect External Traffic with TLS

Expose an application that is secured by TLS certificates.

Outcomes

+ Deploy an application and create an unencrypted route for it.

+ Create an OpenShift edge route with encryption.

+ Update an OpenShift deployment to support a new version of the application.
- Create an OpenShift TLS secret and mount it to your application.

+ Verify that the communication to the application is encrypted.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your
system for this exercise.

The command ensures that the cluster APl is reachable, and creates the network-ingress
OpenShift project. The command also gives the deve loper user edit access on the project.

[student@workstation ~]$ lab start network-ingress

Instructions

As an application developer, you are ready to deploy your application in OpenShift. In this activity,
you deploy two versions of the application: one that is exposed over unencrypted traffic (HTTP),
and one that is exposed over secure traffic (HTTPS).

The container image, which is accessible at https://registry.ocp4.example.com: 8443/
redhattraining/todo-angular, has two tags: v1. 1, which is the insecure version of the
application, and v1. 2, which is the secure version. Your organization uses its own certificate
authority (CA) that can sign certificates for the following domains:

« *.apps.ocp4.example.com
+ *.ocp4d.example.com

The CA certificate is accessible at ~/D0280/ labs/network-ingress/certs/training-
CA.pem. The passphrase. txt file contains a unique password that protects the CA key. The
certs directory also contains the CA key.

P 1. Login to the OpenShift cluster and create the network-ingress project.

11. Login to the cluster as the developer user.

Chapter 4 | Network Security

[student@workstation ~]$ oc login -u developer -p developer \
https://api.ocp4.example.com: 6443
Login successful.

...output omitted...

1.2. Create the network-ingress project.

[student@workstation ~]$ oc new-project network-ingress
Now using project "network-ingress" on server "https://api.ocp4.example.com:6443".

...output omitted. ..

P 2. The OpenShift deployment file for the application is accessible at ~/D0280/
labs/network-ingress/todo-app-vi.yaml. The deployment points to
registry.ocp4.example.com:8443/redhattraining/todo-angular:vi.1,
which is the initial and unencrypted version of the application. The file defines the todo-
http service that points to the application pod.

Create the application and expose the service.

2. Usethe oc create command to deploy the application in the network-ingress
OpenShift project.

[student@workstation ~]$ oc create -f \

~/D0280/labs/network-ingress/todo-app-vi.yaml
deployment.apps/todo-http created
service/todo-http created

2.2. Wait a few minutes, so that the application can start, and then review the resources in
the project.

[student@workstation ~]$ oc status
...output omitted...
In project network-ingress on server https://api.ocp4.example.com:6443

svc/todo-http - 172.30.247.75:80 -> 8080
deployment/todo-http deploys registry.ocp4.example.com:8443/redhattraining/todo-
angular:vi.1
deployment #1 running for 16 seconds - 1 pod
...output omitted. ..

2.3. Runthe oc expose command to create a route for accessing the application. Give
the route a hostname of todo-http.apps.ocp4.example.com.

[student@workstation ~]$ oc expose svc todo-http \
--hostname todo-http.apps.ocp4.example.com
route.route.openshift.io/todo-http exposed

2.4. Retrieve the name of the route and copy it to the clipboard.

Chapter 4 | Network Security

[student@workstation ~]$ oc get routes
NAME HOST/PORT PATH SERVICES PORT
todo-http todo-http.apps.ocp4.example.com todo-http 8080

2.5. Ontheworkstation machine, open Firefox and access the application URL.
Confirm that you can see the application.

+ http://todo-http.apps.ocp4.example.com

2.6. Open anew terminal tab and run the tcpdump command with the following options
to intercept the traffic on port 80:

+ -1 ethO intercepts traffic on the main interface.

+ -Astrips the headers and prints the packets in ASCII format.
+ -ndisables DNS resolution.

« port 80isthe port of the application.

Optionally, use the grep command to filter on JavaScript resources.

Start by retrieving the name of the main interface, whose IP is 172.25.250.9.

[student@workstation ~]$ ip addr | grep 172.25.250.9
inet 172.25.250.9/24 brd 172.25.250.255 scope global noprefixroute etho

[student@workstation ~]$ sudo tcpdump -i eth® -A -n port 80 | grep "angular"

Note
E The full command is available at ~/D0280/1labs/network-ingress/tcpdump-
command . txt.

2.7. On Firefox, refresh the page and notice the activity in the terminal. Press Ctr 1+C to
stop the capture.

...output omitted. ..

<script type="text/javascript" src="assets/js/libs/angular/angular.min.js">
<script type="text/javascript" src="assets/js/libs/angular/angular-route.min.js">
<script type="text/javascript" src="assets/js/libs/angular/angular-
animate.min.js">

...output omitted. ..

P 3. Create asecure edge route. Edge certificates encrypt the traffic between the client and
the router, but leave the traffic between the router and the service unencrypted. OpenShift
generates its own certificate that it signs with its CA.

In later steps, you extract the CA to ensure that the route certificate is signed.

31 Goto~/D0280/labs/network-ingress andrunthe oc create route
command to define the new route.

Give the route a hostname of todo-https.apps.ocp4.example.com.

Chapter 4 | Network Security

[student@workstation ~]$ cd ~/D0280/labs/network-ingress
[student@workstation network-ingress]$ oc create route edge todo-https \
--service todo-http \
--hostname todo-https.apps.ocp4.example.com
route.route.openshift.io/todo-https created

3.2. To test the route and read the certificate, open Firefox and access the application
URL.

+ https://todo-https.apps.ocp4.example.com

Click the padlock, and then click the arrow next to Connection secure.

[= ToDo app x | -+
& (@& Q E https://todo-https.apps.ocp4.example.com/#/ w
<4 Customer Portal 4 Red Hat 4 Site information for todo-https.apps.ocp4.example.com leveloper Portal <& Red Hat Container Cata.. 4 Red Hat Hybrid Cloud ...
ToDo App ~ Browse Create | & Connection secure > i
Connection verified by a certificate issuer that is not :
recognized by Mozilla.
Stl.lff tO d O.. Clear cookies and site data..
Description Category Complete? Due by Actions
Take OpenShift training Domestic false 01-Apr-2022 m
Book exam Domestic false 01-Apr-2022 m
Read James Joyce Domestic true 03-Apr-2022 m
Pick up laundry Domestic false 03-Mar-2022 m
Vacuum house Domestic false 05-Mar-2022 m
Write blog post Professional true 02-Mar-2022 m

Firefox displays a message that the connection is verified by a certificate issuer
that Mozilla does not recognize. This message is displayed because the route
signed certificate comes from an internal CA that is installed on the classroom
OS. This CA, although not recognized by Mozilla, is valid for the lab environment
purposes. If your organization uses a custom public key infrastructure (PKI), then
you might see the same message.

Click More Information to display the page information window.

D0O280-0OCP4.14-en-1-20240215 w

Chapter 4 | Network Security

= ToDo app X | + &

« = C QO B https:/itodo-https.apps.ocp4.example.com/##/ bid =

<4 Customer Portal 4 Red Hat <& ¢ Connection security for todo- leveloper Portal <& Red Hat Container Cata.. 4 Red Hat Hybrid Cloud ...
https.apps.ocp4.example.com

ToDo App Browse Create Search

& You are securely connected to this site.
Verified by: EXAMPLE.COM

Mozilla does not recognize this certificate issuer. It may

Stuff to d (.. havebeen added from your operating system or by an

administrator. Learn More

| More Information k

Description e - ? Due by Actions

Take OpenShift training Domestic false 01-Apr-2022
Book exam Domestic false 01-Apr-2022
Read James Joyce Domestic true 03-Apr-2022
Pick up laundry Domestic false 03-Mar-2022
Vacuum house Domesic false 05-Mar-2022
Write blog post Professional true 02-Mar-2022

Click View Certificate to display the certificate information.

Page Info — https://todo-https.apps.ocpd.example.com/#/ X

o s

General Permissions

Website Identity
Website: todo-https.apps.ocp4.example.com

Owner: This website does not supply ownership information.

Verified by: EXAMPLE.COM View Certificate |

Expires on: May 10, 2026

Privacy & History

Have | visited this website prior to today? No

Is this website storing information on my Yes, . Clear Cookies and Site Data
computer? cookies

Have | saved any passwords for this website? No View Saved Passwords
Technical Details

Connection Encrypted (TLS_AES_128_GCM_SHA256, 128 bit keys, TLS 1.3)
The page you are viewing was encrypted before being transmitted over the Internet.

Encryption makes it difficult for unauthorized people to view information traveling
between computers. It is therefore unlikely that anyone read this page as it traveled
across the network.

Help

Locate the CN entry to see that the OpenShift ingress operator created the
certificate with its own CA.

W D0O280-0OCP4.14-en-1-20240215

Chapter 4 | Network Security

= ToDo app x| Certificate for api.ocp4.exam X | + &
C @ Firefox about:certificate?cert=MIIE3TCCAOWgAwIBAgIBCJANBgkqhkiGOwOBAQsFADBHMRQwEGYDVQQKEWtFWEFNL 1% =]
<4 Customer Portal 4 Red Hat 4 Red Hat Products Docu.. 4 Red Hat Enterprise Linu.. 4 Red Hat Developer Portal 4 Red Hat Container Cata.. <& Red Hat Hybrid Cloud ...

Certificate

api.ocp4.example.com Red Hat Training Certificate Authority

Subject Name

Organization EXAMPLE.COM
Common Name api.ocp4.example.com

Issuer Name

Organization EXAMPLE.COM
Common Name Red Hat Training Certificate Authority

Validity

Not Before Mon, 10 May 2021 11:18:41 GMT

3.3. From the terminal, use the cur 1L command with the -I and -v options to retrieve the
connection headers.

The Server certificate section shows some information about the certificate.
The alternative name matches the name of the route. The output indicates that the
remote certificate is trusted because it matches the CA.

[student@workstation network-ingress]$ curl -I -v \
https://todo-https.apps.ocp4.example.com

...output omitted. ..

* Server certificate:

* subject: O=EXAMPLE.COM; CN=.api.ocp4.example.com

* start date: May 10 11:18:41 2021 GMT

* expire date: May 10 11:18:41 2026 GMT

* subjectAltName: host "todo-https.apps.ocp4.example.com" matched cert's
"* apps.ocp4.example.com"

* issuer: O=EXAMPLE.COM; CN=Red Hat Training Certificate Authority
* SSL certificate verify ok.

...output omitted. ..

3.4. Although the traffic is encrypted at the edge with a certificate, you can still access
the insecure traffic at the service level, because the pod behind the service does not
offer an encrypted route.

Retrieve the IP address of the todo-http service.

[student@workstation network-ingress]$ oc get svc todo-http \
-0 jsonpath="{.spec.clusterIP}{'\n'}"
172.30.102.29

3.5. Create a debug pod in the todo-http deployment. Use the Red Hat Universal Base
Image (UBI), which contains tools to interact with containers.

D0O280-0OCP4.14-en-1-20240215 “

Chapter 4 | Network Security

[student@workstation network-ingress]$ oc debug -t deployment/todo-http \

--image registry.ocp4.example.com:8443/ubi8/ubi:8.4

Starting pod/todo-http-debug

Pod IP: 10.131.0.255

If you don't see a command prompt, try pressing enter.
sh-4.4%$

3.6. From the debug pod, use the cur 1 command to access the service over HTTP.
Replace the IP address with the one that you obtained in a previous step.

The output indicates that the application is available over HTTP.

sh-4.4$% curl -v 172.30.102.29

*

*

*

*

ANV V V V V

Rebuilt URL to: 172.30.102.29/
Trying 172.30.102.29...
TCP_NODELAY set
Connected to 172.30.102.29 (172.30.102.29) port 80 (#0)
GET / HTTP/1.1
Host: 172.30.102.29
User-Agent: curl/7.61.1
Accept: */*

HTTP/1.1 200 OK
.output omitted. ..

3.7. Exit the debug pod.

sh-4.4$% exit
Removing debug pod

3.8. Delete the edge route. In the following steps, you define the passthrough route.

[student@workstation network-ingress]$ oc delete route todo-https
route.route.openshift.io "todo-https" deleted

P 4. Generate TLS certificates for the application.

In the following steps, you generate a CA-signed certificate that you attach as a secret to
the pod. You then configure a secure route in passthrough mode and let the application
expose that certificate.

4]1. Gotothe~/D0280/labs/network-ingress/certs directory and list the files.

[student@workstation network-ingress]$ cd certs
[student@workstation certs]$ 1s -1

total 20

-rw-rw-r--. 1 student student 604 Nov 29 17:35 openssl-commands.txt
-rw-r--r--. 1 student student 33 Nov 29 17:35 passphrase.txt
-rw-r--r--. 1 student student 1743 Nov 29 17:35 training-CA.key
-rw-r--r--. 1 student student 1363 Nov 29 17:35 training-CA.pem
-rw-r--r--. 1 student student 406 Nov 29 17:35 training.ext

Chapter 4 | Network Security

4.2. Generate the private key for your CA-signed certificate.

Note
S The following commands for generating a signed certificate are all available in the
~/D0280/1labs/network-ingress/certs/openssl-commands. txt file.

[student@workstation certs]$ openssl genrsa -out training.key 4096

4.3. Generate the certificate signing request (CSR) for the todo-
https.apps.ocp4.example.comhostname.

[student@workstation certs]$ openssl req -new \
-key training.key -out training.csr \
-subj "/C=US/ST=North Carolina/L=Raleigh/0=Red Hat/\
CN=todo-https.apps.ocp4.example.com"

Warning

A Type the request subject on one line. Alternatively, remove the -subj
option and its content. Without the -subj option, the openss1 command
prompts you for the values; indicate a common name (CN) of todo-
https.apps.ocp4.example.com.

4.4. Finally, generate the signed certificate. Notice the use of the -CA and -CAkey
options for signing the certificate against the CA. Use the -passin option to reuse
the password of the CA. Use the extfile option to define a Subject Alternative
Name (SAN).

[student@workstation certs]$ openssl x509 -req -in training.csr \

-passin file:passphrase.txt \

-CA training-CA.pem -CAkey training-CA.key -CAcreateserial \

-out training.crt -days 1825 -sha256 -extfile training.ext
Certificate request self-signature ok
subject=C = US, ST = North Carolina, L = Raleigh, O = Red Hat, CN = todo-
https.apps.ocp4.example.com

4.5. Ensure that the newly created certificate and key are present in the current directory.

[student@workstation certs]$ ls -1lrt
total 36
-rw-r--r--. 1 student student 599 Jul 31 09:35 openssl-commands.txt

-rw-rw-r--. 1 student student 1017 Aug
-rw-rw-r--. 1 student student 41 Aug
-rw-rw-r--. 1 student student 1399 Aug

13:39 training.csr
13:40 training-CA.srl
13:40 training.crt

-rw-r--r--. 1 student student 33 Aug 3 12:38 passphrase.txt
-rw-r--r--. 1 student student 352 Aug 3 12:38 training.ext
rW------- . 1 student student 1743 Aug 3 12:38 training-CA.key
-rw-r--r--. 1 student student 1334 Aug 3 12:38 training-CA.pem
rW------- . 1 student student 1675 Aug 3 13:38 training.key

3

3

8

Chapter 4 | Network Security

4.6. Returnto the network-ingress directory. This step is important, because the next
step involves creating a route that uses the self-signed certificate.

[student@workstation certs]$ cd ~/D0280/labs/network-ingress

P 5. Deploy a new version of your application.

The new version of the application expects a certificate and a key inside the container at
/usr/local/etc/ssl/certs. The web server in that version is configured with SSL
support. Create a secret to import the certificate from the workstation machine. In a
later step, the application deployment requests that secret and exposes its content to the
container at /usr/local/etc/ssl/certs.

5.1. Create a tls OpenShift secret named todo-certs. Use the --cert and - -key
options to embed the TLS certificates. Use training.crt as the certificate, and
training.key as the key.

[student@workstation network-ingress]$ oc create secret tls todo-certs \
--cert certs/training.crt --key certs/training.key
secret/todo-certs created

5.2. The deployment file at ~/D0280/ labs/network-ingress/todo-app-v2.yaml
points to version 2 of the container image. Examine how the new version of the
application is configured to support SSL certificates.

[student@workstation network-ingress]$ cat todo-app-v2.yaml
apiVersion: apps/vi
kind: Deployment
...output omitted. ..
volumeMounts:
- name: tls-certs
readOnly: true
mountPath: /usr/local/etc/ssl/certs
...output omitted. ..
volumes:
- name: tls-certs
secret:
secretName: todo-certs
apiVersion: vi
kind: Service
...output omitted...

ports:
- name: https
port: 8443

protocol: TCP
targetPort: 8443
...output omitted...

The todo-certs secret with the SSL certificate is mounted in the container in
the /usr/local/etc/ss1/certs directory to enable TLS for the application.
Additionally, the todo-app-v2 deployment changes the service to include port
8443.

Chapter 4 | Network Security
5.3. Runtheoc create command to create a deployment that uses that image.

[student@workstation network-ingress]$ oc create -f todo-app-v2.yaml
deployment.apps/todo-https created
service/todo-https created

5.4. Wait a couple of minutes to ensure that the application pod is running. Use the oc
set volumes command to review the volumes that are mounted inside the pod.

[student@workstation network-ingress]$ oc set volumes deployment/todo-https
todo-https
secret/todo-certs as tls-certs
mounted at /usr/local/etc/ssl/certs

) 6. Create the secure route.

6.1. Runtheoc create route command to define the new route.

Give the route a hostname of todo-https.apps.ocp4.example.com.

[student@workstation network-ingress]$ oc create route passthrough todo-https \
--service todo-https --port 8443 \
--hostname todo-https.apps.ocp4.example.com
route.route.openshift.io/todo-https created

6.2. Use the curl command in verbose mode to test the route and to read the certificate.
Use the - -cacert option to pass the CA certificate to the cur 1 command.

The output indicates a match between the certificate chain and the application
certificate. This match indicates that the OpenShift router forwards only packets that
are encrypted by the application web server certificate.

[student@workstation network-ingress]$ curl -vv -I \
--cacert certs/training-CA.pem \
https://todo-https.apps.ocp4.example.com

...output omitted...

* Server certificate:

* subject: C=US; ST=North Carolina; L=Raleigh; O=Red Hat; CN=todo-

https.apps.ocp4.example.com

* start date: Jun 15 01:53:30 2021 GMT

* expire date: Jun 14 01:53:30 2026 GMT

* subjectAltName: host "todo-https.apps.ocp4.example.com" matched cert's

"* . apps.ocp4.example.com"

* issuer: C=US; ST=North Carolina; L=Raleigh; O=Red Hat; CN=ocp4.example.com

* SSL certificate verify ok.

...output omitted...

P 7. Create adebug pod to further confirm proper encryption at the service level.

71. Retrieve the IP address of the todo-https service.

Chapter 4 | Network Security

[student@workstation network-ingress]$ oc get svc todo-https \
-0 jsonpath="{.spec.clusterIP}{'\n'}"
172.30.121.154

7.2. Create a debug podin the todo-https deployment with the Red Hat UBI container
image.

[student@workstation network-ingress]$ oc debug -t deployment/todo-https \
--image registry.ocp4.example.com:8443/ubi8/ubi:8.4

Starting pod/todo-https-debug ...

Pod IP: 10.128.2.129

If you don't see a command prompt, try pressing enter.

sh-4.4%

7.3. From the debug pod, use the cur1 command to access the service over HTTP.
Replace the IP address with the one that you obtained in a previous step.

The output indicates that the application is not available over HTTP, and the web
server redirects you to the secure version.

sh-4.4$ curl -I http://172.30.121.154
HTTP/1.1 301 Moved Permanently

Server: nginx/1.14.1

Date: Tue, 15 Jun 2021 02:01:19 GMT
Content-Type: text/html

Connection: keep-alive

Location: https://172.30.121.154:8443/

7.4. Finally, access the application over HTTPS. Use the -k option, because the container
does not have access to the CA certificate.

sh-4.4$% curl -s -k https://172.30.121.154:8443 | head -n5
<IDOCTYPE html>
<html lang="en" ng-app="todoItemsApp" ng-controller="appCtl">
<head>

<meta charset="utf-8">

<title>ToDo app</title>

7.5. Exit the debug pod.

sh-4.4$ exit
Removing debug pod ...

P 8. Clean up the exercise directory and project.

8.1. Change to the home directory.

[student@workstation network-ingress]$ cd

8.2. Delete the network-ingress project.

Chapter 4 | Network Security

[student@workstation ~]$ oc delete project network-ingress
project.project.openshift.io "network-ingress" deleted

Finish
On the workstation machine, use the lab command to complete this exercise. This step is
important to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab finish network-ingress

D0O280-0OCP4.14-en-1-20240215 w

Chapter 4 | Network Security

Configure Network Policies

Objectives

+ Restrict network traffic between projects and pods.

Managing Network Policies in OpenShift

With network policies, you can configure isolation policies for individual pods. Network policies
do not require administrative privileges, and give developers more control over the applications
in their projects. You can use network policies to create logical zones in the SDN that map to your
organization network zones. The benefit of this approach is that the location of running pods
becomes irrelevant, because with network policies, you can separate traffic regardless of where it
originates.

In contrast to traditional firewalls, Kubernetes network policies control network traffic between
pods by using labels instead of IP addresses. To manage network communication between pods
in two namespaces, assign a label to the namespace that needs access to another namespace,
and create a network policy that selects these labels. You can also use a network policy to select
labels on individual pods to create ingress or egress rules. In network policies, use selectors
under spec to assign which destination pods are affected by the policy, and selectors under
spec.ingress to assign which source pods are allowed. The following command assigns the
network=network-1 label to the network-1 namespace:

[user@host ~]$% oc label namespace network-1 network=network-1

The following examples describe network policies that allow communication between pods in the
network-1and network-2 namespaces:

+ The following network policy applies to any pods with the deployment="product-
catalog" labelin the network-1 namespace. The network-2 namespace has the
network=network-2 label. The policy allows TCP traffic over port 8080 from pods whose
labelis role="ga" in namespaces with the network=network-2 label.

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
name: network-1-policy
namespace: network-1
spec:
podSelector: (1)
matchLabels:
deployment: product-catalog
ingress:
- from:
- namespaceSelector:
matchLabels:
network: network-2
podSelector:
matchLabels:

Chapter 4 | Network Security

role: ga
ports: o
- port: 8080

protocol: TCP

© The top-level podSelector field is required and defines which pods use the network
policy. If the podSelector is empty, then all pods in the namespace are matched.

© The ingress field defines a list of ingress traffic rules to apply to the matched pods from
the top-level podSelector field.

© The fromfield defines a list of rules to match traffic from all sources. The selectors are not
limited to the project in which the network policy is defined.

O Theports field is a list of destination ports that allow traffic to reach the selected pods.

+ The following network policy allows traffic from any pods in namespaces with the
network=network-1 labelinto any pods and ports in the network-2 namespace. This policy
is less restrictive than the network-1 policy, because it does not restrict traffic from any pods
in the network-1 namespace.

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
name: network-2-policy
namespace: network-2

spec:
podSelector: {}
ingress:
- from:
- namespaceSelector:

matchLabels:
network: network-1

E Note
Network policies are Kubernetes resources. As such, you can manage them with oc
commands.

Network Policies Between Projects

One benefit of using network policies is to manage security between projects (tenants), which you
cannot do with layer 2 technologies such as VLANs. With this approach, you can create tailored
policies between projects to ensure that users can access only what they should (which conforms
to the least privilege approach).

The fields in the network policy that take a list of objects can either be combined in the same
object or can be listed as multiple objects. If combined, the conditions are combined with a logical
AND. If separated in a list, the conditions are combined with a logical OR. With the logic options,
you can create specific policy rules. The following examples highlight the differences that the
syntax can make:

+ This example combines the selectors into one rule, and thereby allows access only from pods
with the app=mobile label in namespaces with the network=dev label. This sample shows a
logical AND statement.

Chapter 4 | Network Security

...output omitted...
ingress:
- from:
- namespaceSelector:
matchLabels:
network: dev
podSelector:
matchLabels:
app: mobile

+ By changing the podSelector field in the previous example to be an item in the from list, any
pods in namespaces with the network=dev label or any pods with the app=mobile label from
any namespace can reach the pods that match the top-level podSelector field. This sample
shows a logical OR statement.

...output omitted...
ingress:
- from:
- namespaceSelector:
matchLabels:
network: dev
- podSelector:
matchLabels:
app: mobile

Deny-all Network Policies

If a pod is matched by selectors in one or more network policies, then the pod accepts only
connections that at least one of those network policies allows. A strict example is a policy to deny-
all ingress traffic to pods in your project, including from other pods inside your project. An empty
pod selector means that this policy applies to all pods in this project. The following policy blocks
all traffic, because no ingress rules are defined. Traffic is blocked unless you also define an explicit
policy that overrides this default behavior.

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
name: default-deny
spec:
podSelector: {}

i~ | Important
If a pod does not match any network policies, then OpenShift does not restrict
traffic to that pod. When creating an environment to allow network traffic only
explicitly, you must include a deny-all policy.

Chapter 4 | Network Security

Allowing Access from OpenShift Cluster Services

When you protect your pods by using network policies, OpenShift cluster services might need
explicit policies to access pods. Several common scenarios require explicit policies, including the
following ones:

+ The router pods that enable access from outside the cluster by using ingress or route resources

+ The monitoring service, if your application exposes metrics endpoints

The following policies allow ingress from OpenShift monitoring and ingress pods:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:

name: allow-from-openshift-ingress
spec:

podSelector: {}

ingress:

- from:

- namespaceSelector:
matchLabels:
policy-group.network.openshift.io/ingress:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:

name: allow-from-openshift-monitoring
spec:

podSelector: {}

ingress:

- from:

- namespaceSelector:
matchLabels:
network.openshift.io/policy-group: monitoring

1| Important
Network policies do not block traffic from pods that use host networking to pods in
the same node.

For example, on a single-node cluster, a deny-all network policy does not prevent
ingress pods that use the host network strategy from accessing application pods.

Inside a node, traffic from pods that use host networking is treated differently from
traffic from other pods. Network policies control only internal traffic from pods that
do not use host networking.

When traffic leaves a node, no such different treatment exists, and network policies
control all traffic from other nodes.

For more information about this topic, refer to Network Policies [https://
kubernetes.io/docs/concepts/services-networking/network-policies/#what-you-
can-t-do-with-network-policies-at-least-not-yet]

https://kubernetes.io/docs/concepts/services-networking/network-policies/#what-you-can-t-do-with-network-policies-at-least-not-yet
https://kubernetes.io/docs/concepts/services-networking/network-policies/#what-you-can-t-do-with-network-policies-at-least-not-yet
https://kubernetes.io/docs/concepts/services-networking/network-policies/#what-you-can-t-do-with-network-policies-at-least-not-yet
https://kubernetes.io/docs/concepts/services-networking/network-policies/#what-you-can-t-do-with-network-policies-at-least-not-yet

Chapter 4 | Network Security

References

For more information about network policy, refer to the Network Policy chapter in
the Red Hat OpenShift Container Platform 4.14 Networking documentation at
https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.14/html-single/networking/index#network-policy

W D0O280-0OCP4.14-en-1-20240215

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/networking/index#network-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/networking/index#network-policy

Chapter 4 | Network Security

» Guided Exercise

Configure Network Policies

Create network policies and review pod isolation that these network policies created.

Outcomes

+ Create network policies to control communication between pods.

+ Verify that ingress traffic is limited to pods.

Before You Begin

As the student user on the workstation machine, use the lab command to prepare your
system for this exercise.

This command ensures that the environment is ready and downloads the necessary resource
files for the exercise.

[student@workstation ~]$ lab start network-policy

Instructions
P 1. Login to the OpenShift cluster and create the network-policy project.

11. Login to the cluster as the developer user with the developer password.

[student@workstation ~]$ oc login -u developer -p developer \
https://api.ocp4.example.com: 6443
Login successful.

...output omitted. ..

1.2. Create the network-policy project.

[student@workstation ~]$ oc new-project network-policy
Now using project "network-policy" on server "https://api.ocp4.example.com:6443".

...output omitted...

) 2. Create two identical deployments named hello and test. Create a route to the hello
deployment.

2. Create the hello deployment that uses the
registry.ocp4.example.com:8443/redhattraining/hello-wor1d-
nginx:v1.0 containerimage.

Chapter 4 | Network Security

[student@workstation ~]$ oc new-app --name hello \
--image registry.ocp4.example.com:8443/redhattraining/hello-world-nginx:v1.0
...output omitted...
--> Creating resources
imagestream.image.openshift.io "hello" created
deployment.apps "hello" created
service "hello" created
--> Success
...output omitted...

2.2. Create the test deployment that uses the registry.ocp4.example.com:8443/
redhattraining/hello-world-nginx:v1l.0 containerimage.

[student@workstation ~]$ oc new-app --name test \
--image registry.ocp4.example.com:8443/redhattraining/hello-world-nginx:v1.0
...output omitted. ..
--> Creating resources
imagestream.image.openshift.io "test" created
deployment.apps "test" created
service "test" created
--> Success
...output omitted. ..

2.3. Use the oc expose command to create a route to the hello service.

[student@workstation ~]$ oc expose service hello
route.route.openshift.io/hello exposed

P 3. \Verify that the test pod can access the hello pod by using the oc rshand curl
commands.

3.1. Open asecond terminal and run the script at ~/D0280/labs/network-policy/

display-project-info.sh. This script provides information about the pods,
service, and route that are used in the rest of this exercise

[student@workstation ~]$ ~/D0280/labs/network-policy/display-project-info.sh

PROJECT: network-policy

POD NAME IP ADDRESS
hello-6c4984d949-g28c4 10.8.0.13
test-c4d74c9d5-5pq9s 10.8.0.14

SERVICE NAME CLUSTER-IP

hello 172.30.137.226

test 172.30.159.119

ROUTE NAME HOSTNAME PORT
hello hello-network-policy.apps.ocp4.example.com 8080-tcp

Chapter 4 | Network Security

3.2. Access the hello pod IP address from the test pod by using the oc rshand curl
commands.

[student@workstation ~]$ oc rsh test-c4d74c9d5-5pq9s \
curl 10.8.0.13:8080 | grep Hello
<hi>Hello, world from nginx!</h1>

3.3. Access the hello service IP address from the test pod by using the oc rsh and
curl commands.

[student@workstation ~]$ oc rsh test-c4d74c9d5-5pq9s \
curl 172.30.137.226:8080 | grep Hello
<hi>Hello, world from nginx!</h1>

3.4. Access the hello route hostname by using the cur 1 command.

[student@workstation ~]$ curl -s hello-network-policy.apps.ocp4.example.com | \
grep Hello
<hi>Hello, world from nginx!</hi1>

) 4. Create a project named different-namespace that contains a deployment named
sample-app.

4.1. Create the different-namespace project.

[student@workstation ~]$ oc new-project different-namespace
Now using project "different-namespace" on server "https://
api.ocp4.example.com:6443".

...output omitted. ..

4.2. Create the sample-app deployment from the
registry.ocp4.example.com:8443/redhattraining/hello-world-
nginx:v1.0 image. The web app listens on port 8080.

[student@workstation ~]$ oc new-app --name sample-app \
--image registry.ocp4.example.com:8443/redhattraining/hello-world-nginx:v1.0
...output omitted. ..
--> Creating resources ...
imagestream.image.openshift.io "sample-app" created
deployment.apps "sample-app" created
service "sample-app" created
--> Success
...output omitted...

P 5. Accessthe hello and test podsinthe network-policy project from the sample-app
podinthe different-namespace project.

5.1. Inthe second terminal, view the full name of the sample-app pod with the
display-project-info.sh script.

Chapter 4 | Network Security

[student@workstation ~]$ ~/D0280/labs/network-policy/display-project-info.sh

PROJECT: network-policy

POD NAME IP ADDRESS
hello-6c4984d949-g28c4 10.8.0.13
test-c4d74c9d5-5pq9s 10.8.0.14

SERVICE NAME CLUSTER-IP

hello 172.30.137.226

test 172.30.159.119

ROUTE NAME HOSTNAME PORT
hello hello-network-policy.apps.ocp4.example.com 8080-tcp

PROJECT: different-namespace

POD NAME
sample-app-d5f945-spx9q

5.2. Inthe first terminal, access the hello pod IP address from the samp le-app pod by
using the oc rsh and cur 1 commands.

[student@workstation ~]$ oc rsh sample-app-d5f945-spx9q \
curl 10.8.0.13:8080 | grep Hello
<hi>Hello, world from nginx!</h1>

5.3. Access the test pod IP address from the sample-app pod by using the oc rsh and
cur 1l commands. Target the IP address that was previously retrieved for the test
pod.

[student@workstation ~]$ oc rsh sample-app-d5f945-spx9q \
curl 10.8.0.14:8080 | grep Hello
<hi>Hello, world from nginx!</h1>

P 6. Inthenetwork-policy project, create a deny-all network policy by using the resource
file at ~/D0280/labs/network-policy/deny-all.yaml.

6.1. Switch to the network-policy project.

[student@workstation ~]$ oc project network-policy
Now using project "network-policy" on server "https://api.ocp4.example.com:6443".

6.2. Change to the ~/D0280/1labs/network-policy directory.

[student@workstation ~]$ cd ~/D0280/labs/network-policy

6.3. Use a text editor to update the deny-all.yaml file with an empty podSelector
field to target all pods in the network-policy project.

Chapter 4 | Network Security

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
name: deny-all
spec:
podSelector: {}

Note
E A solution is provided at ~/D0280/solutions/network-policy/deny-
all.yaml.

6.4. Create the network policy with the oc create command.

[student@workstation network-policy]$ oc create -f deny-all.yaml
networkpolicy.networking.k8s.io/deny-all created

P 7. \Verify that the deny-all network policy forbids network access to pods in the network-
policy project.

7.1. Verify that the test pod can no longer access the IP address of the hello pod. Wait
a few seconds, and then press Ctr 1+C to exit the curl command that does not reply.

[student@workstation network-policy]$ oc rsh test-c4d74c9d5-5pq9s \
curl 10.8.0.13:8080 | grep Hello

nC

command terminated with exit code 130

7.2. Switch to the different-namespace project.

[student@workstation network-policy]$ oc project different-namespace
Now using project "different-namespace" on server "https://
api.ocp4.example.com:6443".

7.3. Verify that the sample-app pod can no longer access the IP address of the test
pod. Wait a few seconds, and then press Ctr 1+C to exit the cur L command that
does not reply.

[student@workstation network-policy]$ oc rsh sample-app-d5f945-spx9q \
curl 10.8.0.14:8080 | grep Hello

nC

command terminated with exit code 130

) 8. Create a network policy to allow traffic to the hel1lo pod in the network-policy project
from the sample-app pod in the different-namespace project via TCP on port 8080.
Use the resource file at ~/D0280/labs/network-policy/allow-specific.yaml.

8.1. Use a text editor to replace the CHANGE_ME sections in the allow-specific.yaml
file as follows:

Chapter 4 | Network Security

...output omitted...
spec:
podSelector:
matchLabels:
deployment: hello
ingress:
- from:
- namespaceSelector:
matchLabels:
network: different-namespace
podSelector:
matchLabels:
deployment: sample-app
ports:
- port: 8080
protocol: TCP

Note
E A solution is provided at ~/D0280/solutions/network-policy/allow-
specific.yaml.

8.2. Apply the network policy from the allow-specific.yaml file with the oc create
command

[student@workstation network-policy]$ oc create -n network-policy -f \
allow-specific.yaml
networkpolicy.networking.k8s.1io/allow-specific created

8.3. View the network policies in the network-policy project.

[student@workstation network-policy]$ oc get networkpolicies -n network-policy
NAME POD-SELECTOR AGE
allow-specific deployment=hello 11s
deny-all <none> 5més

P 9. Asthe admin user, label the different-namespace namespace with the
network=different-namespace label.

9.1. Loginasthe admin user.

[student@workstation network-policy]$ oc login -u admin -p redhatocp
Login successful.

...output omitted...

9.2. Apply the network=different-namespace label with the oc label command.

Chapter 4 | Network Security

[student@workstation network-policy]$ oc label namespace different-namespace \
network=different-namespace
namespace/different-namespace labeled

i~ | Important
= The allow-specific network policy uses labels to match the different-
namespace namespace. By default, namespaces and projects do not get any labels
automatically.

9.3. Confirm that the different-namespace label was applied.

[student@workstation network-policy]$ oc describe namespace different-namespace
Name: different-namespace

Labels: network=different-namespace

...output omitted. ..

9.4. Loginasthe developer user.

[student@workstation network-policy]$ oc login -u developer -p developer
Login successful.

...output omitted...

P 10. Verify that the sample-app pod can access the IP address of the hel1lo pod, but cannot
access the IP address of the test pod.

10.1. Switch to the different-namespace project.

[student@workstation network-policy]$ oc project different-namespace
Already on project "different-namespace" on server "https://
api.ocp4.example.com:6443".

10.2. Access the hello pod in the network-policy namespace with the oc rsh and
cur 1l commands via the 8080 port.

[student@workstation network-policy]$ oc rsh sample-app-d5f945-spx9q \
curl 10.8.0.13:8080 | grep Hello
<hi>Hello, world from nginx!</h1>

10.3. Verify that the hello pod cannot be accessed on another port. Because the network
policy allows access only to port 8080 on the hello pod, requests to any other port
are ignored and eventually time out. Wait a few seconds, and then press Ctr1+C to
exit the cur 1 command when no response occurs.

[student@workstation network-policy]$ oc rsh sample-app-d5f945-spx9q \
curl 10.8.0.13:8181 | grep Hello

nC

command terminated with exit code 130

Chapter 4 | Network Security

10.4. Verify that the test pod cannot be accessed from the sample-app pod. Wait a
few seconds, and then press Ctr 1+C to exit the cur L command when no response
occurs.

[student@workstation network-policy]$ oc rsh sample-app-d5f945-spx9q \
curl 10.8.0.14:8080 | grep Hello

ne

command terminated with exit code 130

P 1. Verify if the hello route cannot access the hello pod.

1M.1. Verify if the hello pod cannot be accessed via its exposed route.

[student@workstation network-policy]$ curl -s \
hello-network-policy.apps.ocp4.example.com
<hi>Hello, world from nginx!</h1>

The lab environment is a single-node cluster. Because the ingress pods use host
networking and the application pods are in the same node, the network policy does
not block the traffic.

) 12. Create a network policy that allows traffic to the hello pod via the exposed route. Use
the resource file at ~/D0280/labs/network-policy/allow-from-openshift-
ingress.yaml.

This step does not have an effect on the lab environment, because the lab environment
is a single-node cluster. On a cluster with multiple nodes, this step is required for correct
ingress operation.

12.]. Use a text editor to replace the CHANGE_ME values in the allow-from-
openshift-ingress.yaml file as follows:

...output omitted. ..
spec:

podSelector: {}

ingress:

- from:

- namespaceSelector:
matchLabels:
policy-group.network.openshift.io/ingress: ""

Note
S A solution is provided at ~/D0280/solutions/network-policy/allow-from-
openshift-ingress.yaml.

12.2. Apply the network policy from the allow-from-openshift-ingress.yaml file
with the oc create command.

[student@workstation network-policy]$ oc create -n network-policy -f \
allow-from-openshift-ingress.yaml
networkpolicy.networking.k8s.io/allow-from-openshift-ingress created

Chapter 4 | Network Security
12.3. View the network policies in the network-policy namespace.

[student@workstation network-policy]$ oc get networkpolicies -n network-policy

NAME POD-SELECTOR AGE
allow-from-openshift-ingress <none> 10s
allow-specific deployment=hello 8mil6s
deny-all <none> 13m

12.4. Login as the admin user.

[student@workstation network-policy]$ oc login -u admin -p redhatocp
Login successful.

...output omitted...

12.5. Access the hello pod via the exposed route with the cur 1 command.

[student@workstation network-policy]$ curl -s \
hello-network-policy.apps.ocp4.example.com | grep Hello
<hi>Hello, world from nginx!</h1>

P 13. Close the terminal window that contains the output of the display-project-info.sh
script, and navigate to the home directory.

[student@workstation network-policy]$ cd
Finish
On the workstation machine, use the lab command to complete this exercise. This step is

important to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab finish network-policy

Chapter 4 | Network Security

Protect Internal Traffic with TLS

Objectives

+ Configure and use automatic service certificates.

Zero-trust Environments

Zero-trust environments assume that every interaction begins in an untrusted state. Users can
access only files or objects that are specifically allowed; communication must be encrypted; and
client applications must verify the authenticity of servers.

By default, OpenShift encrypts network traffic between nodes and the control plane, and prevents
external entities from reading internal traffic. This encryption provides stronger security than
default Kubernetes, which does not automatically encrypt internal traffic. Although the control
plane traffic is encrypted, applications in OpenShift do not necessarily verify the authenticity of
other applications or encrypt application traffic.

Zero-trust environments require that a trusted certificate authority (CA) signs the certificates that
are used to encrypt traffic. By referencing the CA certificate, an application can cryptographically
verify the authenticity of another application with a signed certificate.

Service Certificates

OpenShift provides the service-ca controller to generate and sign service certificates for
internal traffic. The service-ca controller creates a secret that it populates with a signed
certificate and key. A deployment can mount this secret as a volume to use the signed certificate.
Additionally, client applications need to trust the service-ca controller CA.

Service Certificate Creation

To generate a certificate and key pair, apply the service.beta.openshift.io/serving-
cert-secret-name=your-secret annotation to a service. The service-ca controller creates
the your -secret secret in the same namespace if it does not exist, and populates it with a
signed certificate and key pair for the service.

[user@host ~]% oc annotate service hello \ o
service.beta.openshift.io/serving-cert-secret-name=hello-secret (2]
service/hello annotated

© The hello service is annotated.
© The secret that contains the certificate and key pair is named hello-secret.

After OpenShift generates the secret, you must mount the secret in the application deployment.
The location to place the certificate and key is application-dependent. The following YAML patch
is for an NGINX deployment:

Chapter 4 | Network Security

spec:
template:
spec:
containers:
- name: hello
volumeMounts:
- name: hello-volume o
mountPath: /etc/pki/nginx/ (2]
volumes:
- name: hello-volume ©
secret:
defaultMode: 420 (4]
secretName: hello-secret (=)
items:
- key: tls.crt 0o
path: server.crt (7]
- key: tls.key 0o
path: private/server.key (o]

0 © Defining the volume as hello-volume.

© The application-specific mount path.

O The read-write permissions that the application recommends.

© The secret that the earlier annotation defined.

@O The secret has t1s. crt as the signed certificate and t 1s. key as the key.
@ O The application-specific destinations for the certificate and key.

After mounting the secret to the application container, the application can use the signed
certificate for TLS traffic.

Client Service Application Configuration

For a client service application to verify the validity of a certificate, the application needs the CA
bundle that signed that certificate. The service-ca controller injects the CA bundle when you
apply the service.beta.openshift.io/inject-cabundle=true annotation to an object.
You can apply the annotation to configuration maps, APl services, custom resource definitions
(CRD), mutating webhooks, and validating webhooks.

Configuration Maps
Apply the service.beta.openshift.io/inject-cabundle=true annotation to a
configuration map to inject the CA bundle into the data: { service-ca.crt } field.
The service-ca controller replaces all data in the selected configuration map with the CA
bundle. You must therefore use a dedicated configuration map to prevent overwriting existing
data.

[user@host ~]$ oc annotate configmap ca-bundle \
service.beta.openshift.io/inject-cabundle=true
configmap/ca-bundle annotated

Chapter 4 | Network Security

APl service
Applying the annotation to an APl service injects the CA bundle into the spec.caBundle
field.

CRD
Applying the annotation to a CRD injects the CA bundle into the
spec.conversion.webhook.clientConfig.caBundle field.

Mutating or validating webhook
Applying the annotation to a mutating webhook or validating webhook injects the CA bundle
into the clientConfig.caBundle field.

Key Rotation

The service CA certificate is valid for 26 months by default and is automatically rotated after 13
months. After rotation is a 13-month grace period where the original CA certificate is still valid.
During this grace period, each pod that is configured to trust the original CA certificate must be
restarted in some way. A service restart automatically injects the new CA bundle.

You can also manually rotate the certificate for the service CA and for generated service
certificates. To rotate a generated service certificate, delete the existing secret, and the
service-ca controller automatically generates a new one.

[user@host ~]% oc delete secret certificate-secret
secret/certificate-secret deleted

To manually rotate the service CA certificate, delete the signing-key secretin the openshift-
service-canamespace.

[user@host ~]$ oc delete secret/signing-key -n openshift-service-ca
secret/signing-key deleted

This process immediately invalidates the former service CA certificate. You must restart all pods
that use it, for TLS to function.

Alternatives to Service Certificates

Other options can handle TLS encryption inside an OpenShift cluster, such as a service mesh or
the certmanager operator.

You can use the certmanager operator to delegate the certificate signing process to a trusted
external service, and also to renew a certificate.

You can also use Red Hat OpenShift Service Mesh for encrypted service-to-service
communication and for other advanced features. Service mesh is an advanced topic and is not
covered in the course.

Patching Kubernetes Resources

You can modify objects in OpenShift in a repeatable way with the oc patch command. The oc
patch command updates or adds fields in an existing object from a provided JSON or YAML
snippet or file. A software developer might distribute a patch file or snippet to fix problems before
a full update is available.

Chapter 4 | Network Security

To patch an object from a snippet, use the oc patch command with the -p option and the
snippet. The following example updates the hel1lo deployment to have a CPU resource request of
100m with a JSON snippet:

[user@host ~]$% oc patch deployment hello -p \
'{"spec":{"template":{"spec":{"resources":{"requests":{"cpu": "100m"}}}}}}"'
deployment/hello patched

To patch an object from a patch file, use the oc patch command with the --patch-file
option and the location of the patch file. The following example updates the he 110 deployment to
include the content of the ~/volume-mount.yaml patch file:

[user@host ~]$ oc patch deployment hello --patch-file ~/volume-mount.yaml
deployment.apps/hello patched

The contents of the patch file describe mounting a persistent volume claim as a volume:

spec:
template:
spec:
containers:
- name: hello
volumeMounts:
- name: www
mountPath: /usr/share/nginx/html/
volumes:
- name: www
persistentVolumeClaim:
claimName: nginx-www

This patch results in the following manifest for the he 110 deployment:

apiversion: apps/vi
kind: Deployment
metadata:
name: hello
...output omitted...
spec:
...output omitted...
template:
...output omitted...
spec:
containers:
...output omitted. ..
name: server
...output omitted. ..
volumeMounts:
- mountPath: /usr/share/nginx/html/
name: www
- mountPath: /etc/nginx/conf.d/
name: tls-conf
...output omitted. ..

Chapter 4 | Network Security

volumes:

- configMap:
defaultMode: 420
name: tls-conf

name: tls-conf

- persistentVolumeClaim:

claimName: nginx-www
name: www
...output omitted...

The patch applies to the hello deployment regardless of whether the www volume mount exists.
The oc patch command modifies existing fields in the object that are specified in the patch. If
the beginning state of the he 110 deployment already contains data as follows, then the end result
is the same as if the fields do not exist:

apivVersion: apps/vi
kind: Deployment
metadata:
name: hello
...output omitted. ..
spec:
...output omitted. ..
template:
...output omitted. ..
spec:
containers:
...output omitted. ..
name: server
...output omitted. ..
volumeMounts:
- mountPath: /usr/share/nginx/www/ (1]
name: www
- mountPath: /etc/nginx/conf.d/
name: tls-conf
...output omitted. ..
volumes:
- configMap:
defaultMode: 420
name: tls-conf
name: tls-conf
- persistentVolumeClaim:
claimName: deprecated-www (2]
name: www
...output omitted...

O © The www volume already exists. The patch replaces the existing data with the new data.

Chapter 4 | Network Security

References

For more information about service certificates, refer to the Securing Service Traffic
Using Service Serving Certificate Secrets section in the Configuring Certificates
chapter in the Red Hat OpenShift Container Platform 4.14 Security and Compliance
documentation at

https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.14/html-single/security_and_compliance#add-
service-serving

For more information about service mesh, refer to the About OpenShift Service
Mesh section in the Service Mesh 2.x chapter in the Red Hat OpenShift Container
Platform 4.14 Service Mesh documentation at
https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.14/html-single/service_mesh#ossm-about

For more information about the cert-manager operator, refer to the cert-manager
Operator for Red Hat OpenShift chapter in the Red Hat OpenShift Container
Platform 4.14 Security and Compliance documentation at
https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.14/html-single/security_and_compliance#cert-
manager-operator-for-red-hat-openshift

For more information about the oc patch command, refer to the oc patch section
in the OpenShift CLI Developer Command Reference chapter in the Red Hat
OpenShift Container Platform 4.14 CL/ Tools documentation at
https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.14/html-single/cli_tools/index#oc-patch

Red Hat Topics - What Is Zero Trust?
https://www.redhat.com/en/topics/security/what-is-zero-trust

D0O280-0OCP4.14-en-1-20240215 w

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/security_and_compliance#add-service-serving
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/security_and_compliance#add-service-serving
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/security_and_compliance#add-service-serving
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/service_mesh#ossm-about
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/service_mesh#ossm-about
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/security_and_compliance#cert-manager-operator-for-red-hat-openshift
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/security_and_compliance#cert-manager-operator-for-red-hat-openshift
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/security_and_compliance#cert-manager-operator-for-red-hat-openshift
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/cli_tools/index#oc-patch
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/cli_tools/index#oc-patch
https://www.redhat.com/en/topics/security/what-is-zero-trust

Chapter 4 | Network Security

» Guided Exercise

Protect Internal Traffic with TLS

Configure two applications to connect securely inside the cluster by using TLS certificates
that OpenShift manages.

Outcomes

+ Generate service certificates with the service-ca controller.
+ Mount a service certificate by using secrets.

+ Use a configuration map to inject a service certificate into a pod.

Before You Begin

As the student user on the workstation machine, use the lab command to prepare your
system for this exercise.

This command ensures that the OpenShift cluster is ready and creates the network-
svccerts project and server deployment for the exercise. The command also creates a
test pod named no-ca-bundle for use later in the exercise.

[student@workstation ~]$ lab start network-svccerts

Instructions

In this exercise, you work with the server deployment, which has an NGINX container that serves
a "Hello World!" page with the HTTPS protocol. This deployment differs from earlier NGINX
deployments, because it allows only the HTTPS protocol. The server application expects the
existence of a certificate that you create in the exercise steps.

P 1. Loginto the OpenShift cluster as the admin user and switch to the network-svccerts
project.

11. Use the oc login command to loginto api.ocp4.example.com:6443 as the
admin user with the redhatocp password.

[student@workstation ~]$ oc login -u admin -p redhatocp \
https://api.ocp4.example.com: 6443

Login successful.

...output omitted. ..

1.2. Use the oc project command to switch to the network-svccerts project.

[student@workstation ~]$ oc project network-svccerts
Now using project "network-svccerts" on server "https://
api.ocp4.example.com:6443".

Chapter 4 | Network Security

) 2. Generate a service certificate and secret that are named server-secret for the server
service, and then mount the secret in the server deployment.

2]. Annotate the server service with service.beta.openshift.io/serving-
cert-secret-name=server-secret by using the oc annotate command. It
automatically creates a secret named server-secret, which is populated with a
signed TLS key and certificate.

[student@workstation ~]$ oc annotate service server \
service.beta.openshift.io/serving-cert-secret-name=server-secret
service/server annotated

2.2. Use the oc describe command to view the service and secret descriptions to verify
that OpenShift created the secret.

[student@workstation ~]$ oc describe service server
...output omitted...
Annotations: service.beta.openshift.io/serving-cert-secret-name: server-
secret

service.beta.openshift.io/serving-cert-signed-by: openshift-
service-serving-signer@1667565598
...output omitted...

[student@workstation ~]$ oc describe secret server-secret
Name: server-secret

Namespace: network-svccerts

...output omitted...

Type: kubernetes.io/tls

Data

tls.key: 1675 bytes
tls.crt: 2615 bytes

2.3. Use a text editor to create a patch file to mount the server-secret secretin
the server deployment. Edit the resource file at ~/D0280/labs/network-
svccerts/server-secret.yaml. Replace the CHANGE_ME sections as shown in
the following example:

spec:
template:
spec:
containers:
- name: server
volumeMounts:
- name: server-secret
mountPath: /etc/pki/nginx/
volumes:
- name: server-secret
secret:
defaultMode: 420
secretName: server-secret
items:
- key: tls.crt

Chapter 4 | Network Security

path: server.crt
- key: tls.key
path: private/server.key

2.4. Apply the patch file to the server deployment with the oc patch command.

[student@workstation ~]$ oc patch deployment server \
--patch-file ~/D0280/1labs/network-svccerts/server-secret.yaml
deployment.apps/server patched

2.5. Use theopenssl s_client command in the no-ca-bundle pod to verify that
OpenShift supplied the server deployment with a certificate. Verify that the no-
ca-bundle pod needs to configure the CA that issued the OpenShift service
certificate for certificate validation.

[student@workstation ~]$ oc exec no-ca-bundle -- \
openssl s_client -connect server.network-svccerts.svc:443
depth=1 CN = openshift-service-serving-signer@1667565598
CONNECTED (00000004)
Certificate chain
0 s:CN = server.network-svccerts.svc
i:CN = openshift-service-serving-signer@1667565598
1 s:CN = openshift-service-serving-signer@1667565598
i:CN = openshift-service-serving-signer@1667565598
...output omitted...
verify error:num=19:self signed certificate in certificate chain
DONE

Note

S The output shows the verify error:num=19:self signed certificate
in certificate chain error, because the no-ca-bundle podis not
configured with the OpenShift cluster's CA bundle.

P 3. Generate the ca-bundle configuration map that contains the service CA bundle, and use
it to create the client pod.

3.1. Create an empty configuration map named ca-bundle by using the oc create
command

[student@workstation ~]$ oc create configmap ca-bundle
configmap/ca-bundle created

3.2. Annotate the ca-bundle configuration map with service.beta.openshift.io/
inject-cabundle=true by using the oc annotate command.

[student@workstation ~]$ oc annotate configmap ca-bundle \
service.beta.openshift.io/inject-cabundle=true
configmap/ca-bundle annotated

Chapter 4 | Network Security

3.3. View the YAML output of the ca-bundle configuration map to verify that the CA
bundle is present.

[student@workstation ~]$ oc get configmap ca-bundle -o yaml
...output omitted...
data:

service-ca.crt: |

...output omitted. ..

3.4. Use atext editor to add the ca-bundle configuration map to the client.yaml
pod definition. Edit the resource file at ~/D0280/ labs/network-svccerts/
client.yaml. Replace the CHANGE_ME sections of the file as shown in the
following example:

apiVersion: apps/vi
kind: Deployment
metadata:
annotations:
labels:
app: client
name: client
namespace: network-svccerts
spec:
replicas: 1
selector:
matchLabels:
deployment: client
strategy:
rollingUpdate:
maxsSurge: 25%
maxUnavailable: 25%
type: RollingUpdate
template:
metadata:
annotations:
openshift.io/generated-by: OpenShiftNewApp
labels:
deployment: client
spec:
containers:
- image: registry.ocp4.example.com:8443/redhattraining/hello-world-nginx
imagePullPolicy: IfNotPresent
name: client-deploy
ports:
- containerPort: 8080
protocol: TCP
volumeMounts:
- mountPath: /etc/pki/ca-trust/extracted/pem
name: trusted-ca
terminationMessagePath: /dev/termination-log
terminationMessagePolicy: File
dnsPolicy: ClusterFirst
restartPolicy: Always

Chapter 4 | Network Security

schedulerName: default-scheduler
terminationGracePeriodSeconds: 30
volumes:
- configMap:

defaultMode: 420

name: ca-bundle

items:

- key: service-ca.crt
path: tls-ca-bundle.pem
name: trusted-ca

name: trusted-ca

3.5. Apply the client.yaml file with the oc apply command to create the client
pod.

[student@workstation ~]$ oc apply -f ~/D0280/labs/network-svccerts/client.yaml
...output omitted...
pod/client created

4. Show that the server service is now accessible over HTTPS with a certificate that is
signed by the OpenShift cluster.

4]. Use the curl command within the client pod to test that the server service is
accessible on HTTPS.

[student@workstation ~]$ oc exec deploy/client -- \
curl -s https://server.network-svccerts.svc
<htm1>
<body>
<hi>Hello, world from nginx!</hi1>
</body>
</html>

4.2. Use the openssl s_client command within the client pod to verify that the
certificate is signed by the OpenShift cluster.

[student@workstation ~]$ oc exec deploy/client -- \
openssl s_client -connect server.network-svccerts.svc:443
CONNECTED (00000004)

Certificate chain
0 s:CN = server.network-svccerts.svc
i:CN = openshift-service-serving-signer@1667565598
1 s:CN = openshift-service-serving-signer@1667565598
i:CN = openshift-service-serving-signer@1667565598
...output omitted. ..
verify return:1
DONE

Chapter 4 | Network Security

Finish
On the workstation machine, use the Tab command to complete this exercise. This step is
important to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab finish network-svccerts

D0O280-0OCP4.14-en-1-20240215 w

Chapter 4 | Network Security

» Lab

Network Security

Configure firewall rules to protect microservice communication, and also configure TLS
encryption between those microservices and for external access.

Outcomes
+ Encrypt internal traffic between pods by using TLS service secrets that OpenShift
generates.

+ Route external traffic to terminate TLS within the cluster.
+ Restrict ingress traffic for a group of pods by using network policies.

Before You Begin

As the student user on the workstation machine, use the lab command to prepare your
system for this exercise.

[student@workstation ~]$ lab start network-review
This command ensures that the environment is ready and copies the necessary files for this
exercise.

This command also deploys an API that is composed of a product and a stock microservice
to the network-review project.

The product microservice is the entry point to the API. The stock microservice provides only
additional information to the product response. If the product microservice cannot reach the
stock microservice, then the product microservice returns the -1 value.

The developer deployed the APl without the security configuration. You must configure TLS
for end-to-end communications and restrict the ingress to pods for both microservices.

To complete the exercise, the following URLs must respond without errors:

+ https://stock.network-review.svc.cluster.local/product/1
+ https://product.apps.ocp4.example.com/products

Note
5 The lab start deploys solution files in the ~/D0280/solutions/network-
review/ directory.

Instructions

1.

2.

Log in to your OpenShift cluster as the admin user with the redhatocp password.

Create the stock-service-cert secret for the OpenShift service certificate to encrypt
communications between the product and the stock microservices.

Chapter 4 | Network Security

3.

Configure TLS on the stock microservice by using the stock-service-cert secret that
OpenShift generates.

Use the following settings in the deployment to configure TLS:
+ Set the path for the certificate and key to /etc/pki/stock/.
+ Setthe TLS_ENABLED environment variable to "true".

+ Update the liveness and readiness probes to use TLS.
+ Change the service to listen on the standard HTTPS 443 port.

Configure TLS between the product and the stock microservices by using the internal
Certificate Authority (CA) from OpenShift.

The product microservice requires the following settings:

+ The CERT_CA environment variable thatis set to /etc/pki/ca-trust/extracted/
pem/tls-ca-bundle.pem to access the OpenShift CA

+ The STOCK_URL environment variable with the HTTPS protocol

Configure TLS on the product microservice by using a signed certificate by a corporate CA
to accept TLS connections from outside the cluster.

You have the CA certificate and the signed certificate for the
product.apps.ocp4.example.comdomainin the certs directory of the lab.

Use the following settings in the deployment to configure TLS:

+ Set the path for the certificate and key to /etc/pki/product/.
+ Set the TLS_ENABLED environment variable to the "true" value.
+ Update the liveness and readiness probes to use TLS.

Expose the product microservice to outer cluster access by using the FQDN in the signed
certificate by the corporate CA. Use the product.apps.ocp4.example.comhostname.

Configure network policies to accept only ingress connections to the stock pod on the 8085
port that come from a pod with the app=product label.

Configure network policies to accept only ingress connections to the product pod on the
8080 port that come from the OpenShift router pods.

Evaluation

As the student user on the workstation machine, use the lab command to grade your work.
Correct any reported failures and rerun the command until successful.

[student@workstation ~]$ lab grade network-review

Finish
As the student user on the workstation machine, use the lab command to complete this

exercise. This step is important to ensure that resources from previous exercises do not impact
upcoming exercises.

[student@workstation ~]$ lab finish network-review

Chapter 4 | Network Security

» Solution

Network Security

Configure firewall rules to protect microservice communication, and also configure TLS
encryption between those microservices and for external access.

Outcomes
+ Encrypt internal traffic between pods by using TLS service secrets that OpenShift
generates.

+ Route external traffic to terminate TLS within the cluster.

+ Restrict ingress traffic for a group of pods by using network policies.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your
system for this exercise.

[student@workstation ~]$ lab start network-review
This command ensures that the environment is ready and copies the necessary files for this
exercise.

This command also deploys an API that is composed of a product and a stock microservice
to the network-review project.

The product microservice is the entry point to the API. The stock microservice provides only
additional information to the product response. If the product microservice cannot reach the
stock microservice, then the product microservice returns the -1 value.

The developer deployed the APl without the security configuration. You must configure TLS
for end-to-end communications and restrict the ingress to pods for both microservices.

To complete the exercise, the following URLs must respond without errors:

+ https://stock.network-review.svc.cluster.local/product/1
+ https://product.apps.ocp4.example.com/products

Note
E The lab start deploys solution files in the ~/D0280/solutions/network-
review/ directory.

Instructions

1. Login to your OpenShift cluster as the admin user with the redhatocp password.

11. Use the oc login command to log in to your OpenShift cluster as the admin user.

Chapter 4 | Network Security

[student@workstation ~]$ oc login -u admin -p redhatocp \
https://api.ocp4.example.com: 6443
Login successful.

...output omitted...

2. Create the stock-service-cert secret for the OpenShift service certificate to encrypt
communications between the product and the stock microservices.

2.1. Change to the network-review project.

[student@workstation ~]$ oc project network-review
Now using project "network-review" on server "https://api.ocp4.example.com:6443"

2.2. Change to the ~/D0280/labs/network-review directory to access the lab files.

[student@workstation ~]$ cd ~/D0280/1labs/network-review

2.3. Editthe stock-service.yaml manifest to configure the stock service with the
service.beta.openshift.io/serving-cert-secret-name: stock-
service-cert annotation. This annotation creates the stock-service-cert
secret with the service certificate and the key.

apiVersion: vi
kind: Service
metadata:

name: stock

namespace: network-review

annotations:

service.beta.openshift.io/serving-cert-secret-name: stock-service-cert

spec:
...output omitted...

2.4. Apply the stock service changes by using the oc apply command.

[student@workstation network-review]$ oc apply -f stock-service.yaml
service/stock configured

2.5. Verify that the stock-service-cert secret contains a valid certificate for the
stock.network-review.svc hostnamein the t1s.crt secret key. Decode the
secret output with the base64 command by using the -d option. Then, use the
openssl x509 command to read the output from standard input, and use the - text
option to print the certificate in text form.

Chapter 4 | Network Security

[student@workstation network-review]$ oc get secret stock-service-cert \

--output="jsonpath={.data.tls\.crt}" \

| base64 -d \

| openssl x509 -text
..output omitted. ..

X509v3 Subject Alternative Name:
DNS:stock.network-review.svc, DNS:stock.network-review.svc.cluster.local

..output omitted...

3. Configure TLS on the stock microservice by using the stock-service-cert secret that
OpenShift generates.

Use the following settings in the deployment to configure TLS:

+ Set the path for the certificate and key to /etc/pki/stock/
+ Set the TLS_ENABLED environment variable to "true".

+ Update the liveness and readiness probes to use TLS.

+ Change the service to listen on the standard HTTPS 443 port.

3.1. Editthe stock-deployment.yaml file to mount the stock-service-cert secret
on the /etc/pki/stock/ path.

apiVersion: apps/vi
kind: Deployment
metadata:
name: stock
namespace: network-review
spec:
...output omitted...
spec:
containers:
- name: stock
...output omitted...
env:
- name: TLS_ENABLED
value: "false"
volumeMounts:
- name: stock-service-cert
mountPath: /etc/pki/stock/
volumes:
- name: stock-service-cert
secret:
defaultMode: 420
secretName: stock-service-cert

3.2. Edit the stock deploymentin the stock-deployment.yaml file to configure TLS
for the application and for the liveness and readiness probes.

apivVersion: apps/vi
kind: Deployment
metadata:
name: stock
namespace: network-review
spec:

Chapter 4 | Network Security

...output omitted. ..
spec:
containers:
- name: stock
...output omitted. ..
ports:
- containerPort: 8085
readinessProbe:
httpGet:
port: 8085
path: /readyz
scheme: HTTPS
livenessProbe:
httpGet:
port: 8085
path: /livez
scheme: HTTPS
env:
- name: TLS_ENABLED
value: "true"
...output omitted...

3.3. Apply the stock deployment updates by using the oc apply command.

[student@workstation network-review]$ oc apply -f stock-deployment.yaml
deployment/stock configured

3.4. Editthe stock-service.yaml file to configure the stock service to listen on the
standard HTTPS 443 port.

apiVersion: vi
kind: Service
metadata:
name: stock
namespace: network-review
annotations:
service.beta.openshift.io/serving-cert-secret-name: stock-service-cert

spec:
selector:
app: stock
ports:

- port: 443
targetPort: 8085
name: https

3.5. Apply the stock service changes by using the oc apply command.

[student@workstation network-review]$ oc apply -f stock-service.yaml
service/stock configured

4. Configure TLS between the product and the stock microservices by using the internal

Certificate Authority (CA) from OpenShift.

The product microservice requires the following settings:

Chapter 4 | Network Security

+ The CERT_CA environment variable thatis set to /etc/pki/ca-trust/extracted/
pem/t1ls-ca-bundle.pem to access the OpenShift CA

+ The STOCK_URL environment variable with the HTTPS protocol

4. Edit the configuration map in the service-ca-configmap.yaml file to add the
service.beta.openshift.io/inject-cabundle: "true" annotation. This
annotation injects the OpenShift internal CA into the service-ca configuration map.

apiVersion: vi
kind: ConfigMap
metadata:
name: service-ca
namespace: network-review
annotations:
service.beta.openshift.io/inject-cabundle: "true"
data: {}

4.2. Create the service-ca configuration map by using the oc create command.

[student@workstation network-review]$ oc create -f service-ca-configmap.yaml
configmap/service-ca created

4.3. Verify that OpenShift injects the CA certificate by describing the service-ca
configuration map with the oc describe command.

[student@workstation network-review]$ oc describe configmap service-ca
Name: service-ca

Namespace: network-review

Labels: <none>

Annotations: service.beta.openshift.io/inject-cabundle: true

Data

service-ca.crt:

4.4. Editthe product-deployment.yaml file to configure the product deployment to
use the service-ca configuration map, to add the CERT_CA environment variable,
and to update the STOCK_URL environment variable to use the HTTPS protocol.

apivVersion: apps/vi
kind: Deployment
metadata:
name: product
namespace: network-review
spec:
...output omitted. ..
spec:
containers:
- name: product

Chapter 4 | Network Security

...output omitted. ..
env:
- name: CERT_CA
value: "/etc/pki/ca-trust/extracted/pem/tls-ca-bundle.pem"
- name: TLS_ENABLED
value: "false"
- name: STOCK_URL
value: "https://stock.network-review.svc"
volumeMounts:
- name: trusted-ca
mountPath: /etc/pki/ca-trust/extracted/pem
volumes:
- name: trusted-ca
configMap:
defaultMode: 420
name: service-ca
items:
- key: service-ca.crt
path: tls-ca-bundle.pem

4.5. Apply the product deployment updates by using the oc apply command.

[student@workstation network-review]$ oc apply -f product-deployment.yaml
deployment/product configured

4.6. Sendarequesttothe https://stock.network-review.svc/product/1 URL
from product deployment to verify that you can query the stock microservice
by using HTTPS. Run the oc exec command to run the cur 1 command to send a
request to the stock microservice.

[student@workstation network-review]$ oc exec deployment/product \
-- curl -s https://stock.network-review.svc/product/1
10

5. Configure TLS on the product microservice by using a signed certificate by a corporate CA
to accept TLS connections from outside the cluster.

You have the CA certificate and the signed certificate for the
product.apps.ocp4.example.comdomainin the certs directory of the lab.

Use the following settings in the deployment to configure TLS:
+ Set the path for the certificate and key to /etc/pki/product/.

+ Set the TLS_ENABLED environment variable to the "true" value.
+ Update the liveness and readiness probes to use TLS.

5.1. Create the passthrough-cert secret by using the product . pem certificate and the
product.key key from the lab directory.

[student@workstation network-review]$ oc create secret tls passthrough-cert \
--cert certs/product.pem --key certs/product.key
secret/passthrough-cert created

5.2. Edit the product deployment to mount the passthrough-cert secret on the /
etc/pki/product/ path.

Chapter 4 | Network Security

apivVersion: apps/vi
kind: Deployment
metadata:
name: product
spec:
...output omitted...
spec:
containers:
- name: product
...output omitted...
volumeMounts:
- name: passthrough-cert
mountPath: /etc/pki/product/
- name: trusted-ca
mountPath: /etc/pki/ca-trust/extracted/pem
volumes:
- name: passthrough-cert
secret:
defaultMode: 420
secretName: passthrough-cert
- name: trusted-ca
configMap:
defaultMode: 420
name: service-ca
items:
- key: service-ca.crt
path: tls-ca-bundle.pem

5.3. Editthe product deployment to configure TLS for the application and for the liveness
and readiness probes.

apiVersion: apps/vi
kind: Deployment
metadata:
name: product
spec:
...output omitted...
spec:
containers:
- name: product
...output omitted...
ports:
- containerPort: 8080
readinessProbe:
httpGet:
port: 8080
path: /readyz
scheme: HTTPS
livenessProbe:
httpGet:
port: 8080
path: /livez
scheme: HTTPS

Chapter 4 | Network Security

env:
- name: TLS_ENABLED
value: "true"
- name: STOCK_URL
value: "https://stock.network-review.svc"
...output omitted...

5.4. Apply the product deployment updates by using the oc apply command.

[student@workstation network-review]$ oc apply -f product-deployment.yaml
deployment.apps/product configured

6. Expose the product microservice to outer cluster access by using the FQDN in the signed
certificate by the corporate CA. Use the product.apps.ocp4.example.comhostname.

6.1. Create a passthrough route for the product service by using the
product.apps.ocp4.example.comhostname.

[student@workstation network-review]$ oc create route passthrough product-https \
--service product --port 8080 \
--hostname product.apps.ocp4.example.com

route.route.openshift.io/product-https created

6.2. Verify that you can query the product microservice from outside the cluster by using
the cur 1 command with the ca. pem CA certificate.

[student@workstation network-review]$ curl --cacert certs/ca.pem \
https://product.apps.ocp4.example.com/products
[{"id":1, "name":"rpi4_4gb", "stock":10}, {"id":2, "name":"rpi4_8gb", "stock":5}]

7. Configure network policies to accept only ingress connections to the stock pod on the 8085
port that come from a pod with the app=product label.

71. Editthe stock-ingresspolicy.yaml to add the network policy specification.

apivVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: ingress-stock-policy
spec:
podSelector:
matchLabels:
app: stock
ingress:
- from:
- podSelector:
matchLabels:
app: product
ports:
- protocol: TCP
port: 8085

7.2. Create the network policy.

Chapter 4 | Network Security

[student@workstation network-review]$ oc create -f stock-ingresspolicy.yaml
networkpolicy.networking.k8s.io/stock-ingress-policy created

8. Configure network policies to accept only ingress connections to the product pod on the
8080 port that come from the OpenShift router pods.

8.1. Editthe product-ingresspolicy.yaml file to accept ingress connections
from router pods by adding a namespace selector with the policy-
group.network.openshift.io/ingress label.

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: product-ingress-policy
spec:
podSelector:
matchLabels:
app: product
ingress:
- from:
- namespaceSelector:
matchLabels:
policy-group.network.openshift.io/ingress: ""
ports:
- protocol: TCP
port: 8080

8.2. Create the network policy.

[student@workstation network-review]$ oc create -f product-ingresspolicy.yaml
networkpolicy.networking.k8s.io/product-ingress-policy created

8.3. Change to the home directory.
[student@workstation network-ingress]$ cd

Evaluation

As the student user on the workstation machine, use the lab command to grade your work.
Correct any reported failures and rerun the command until successful.

[student@workstation ~]$ lab grade network-review
Finish
As the student user on the workstation machine, use the lab command to complete this

exercise. This step is important to ensure that resources from previous exercises do not impact
upcoming exercises.

[student@workstation ~]$ lab finish network-review

04

-—'|‘-;|-] ||]
o AR

— -
45 Al

AL

[;I:'.u

— E'

o B
P et

ALriens

AMOLISEAILILIS

AILLIS

0fsE

EAEPO

AL1IEA

dnie

= LUoD'e

p:

y 1yBAdoD

a

E

|Z |

28 7 C

“IeH p

|

Chapter 4 | Network Security

DO280-0OCP4.14-en-1-20240215

Chapter 4 | Network Security

Summary

+ With OpenShift routes, you can expose your applications to external networks securely.
+ The types of secure routes are edge, passthrough, and re-encryption.
+ With network policies, you can configure isolation policies for individual pods.

+ You can use network policies to create logical zones in the SDN that map to your organization
network zones.

+ In contrast to traditional firewalls, Kubernetes network policies control network traffic between
pods by using labels instead of IP addresses.

+ OpenShift provides the service-ca controller to generate and sign service certificates for
internal traffic.

+ To generate a certificate and key pair, apply the service.beta.openshift.io/serving-
cert-secret-name=your -secret annotation to a service.

+ OpenShift can inject its CA into configuration maps with a custom annotation. Client
applications can use these configuration maps to validate connections to services that run in the
cluster.

Chapter 5

Expose non-HTTP/SNI
Applications

Goal Expose applications to external access without ¢
using an ingress controller.
Objectives + Expose applications to external access by using .
load balancer services. “
+ Expose applications to external access by using ,
a secondary network. k.]
‘“ \
Sections + Load Balancer Services (and Guided Exercise)

w

o + Multus Secondary Networks (and Guided
; Exercise)

I Lab + Expose non-HTTP/SNI Applications

r/

D0O280-0OCP4.14-en-1-20240215

Chapter 5 | Expose non-HTTPF/SNI Applications

Load Balancer Services

Objectives

+ Expose applications to external access by using load balancer services.

Exposing Non-HTTP Services

When you use Kubernetes, you run workloads that provide services to users. You create resources
such as deployments to run workloads, for example a web application. Ingresses and routes
provide a way to expose the services that these workloads implement. However, in some
scenarios, ingresses and routes are not sufficient to expose the service that a pod provides.

Many internet services implement a process that listens on a given port and IP address. For
example, a service that uses the 1.2.3.4 IP address runs an SSH server that listens on port 22.
Clients connect to port 22 on that IP address to use the SSH service.

Web servers implement the HTTP protocol and other related protocols such as HTTPS.

Kubernetes ingresses and OpenShift routes use the virtual hosting property of the HTTP protocol
to expose web services that are running on the cluster. Ingresses and routes run a single web
server that uses virtual hosting to route each incoming request to a Kubernetes service by using
the request hostname.

For example, ingresses can route requests for the https://a.example.comURL to a
Kubernetes service in the cluster, and can route requests for the https://b.example.com URL
to a different service in the cluster.

However, many protocols do not have equivalent features. Ingress and route resources can expose
only HTTP services. To expose non-HTTP services, you must use a different resource. Because
these resources cannot expose multiple services on the same IP address and port, they require
more setup effort, and might require more resources, such as IP addresses.

i | Important
Preferably use ingresses and routes to expose services when possible.

Kubernetes Services

Kubernetes workloads are flexible resources that can create many pods. By creating multiple pods
for a workload, Kubernetes can provide increased reliability and performance. If a pod fails, then
other pods can continue providing a service. With multiple pods, which possibly run on different
systems, workloads can use more resources for increased performance.

However, if many pods provide a workload service, then users of the service can no longer access
the service by using the combination of a single IP address and a port. To provide transparent
access to workload services that run on multiple pods, Kubernetes uses resources of the Service
type. A service resource contains the following information:

+ A selector that describes the pods that run the service

188

Chapter 5 | Expose non-HTTPF/SNI Applications

+ Alist of the ports that provide the service on the pods
Different types of Kubernetes services exist, each with different purposes:

Internal communication
Services of the ClusterIP type provide service access within the cluster.

Exposing services externally
Services of the NodePort and LoadBalancer types, as well as the use of the external IP
feature of ClusterIP services, expose services that are running in the cluster to outside the
cluster.

Different providers can implement Kubernetes services, by using the type field of the service
resource.

Although these services are useful in specific scenarios, some services require extra configuration,
and they can pose security challenges. Load balancer services have fewer limitations and provide
load balancing.

Load Balancer Services

Load balancer services require the use of network features that are not available in all
environments.

For example, cloud providers typically provide their own load balancer services. These services use
features that are specific to the cloud provider.

If you run a Kubernetes cluster on a cloud provider, controllers in Kubernetes use the cloud
provider's APIs to configure the required cloud provider resources for a load balancing service. On
environments where managed load balancer services are not available, you must configure a load
balancer component according to the specifics of your network.

The MetalLB Component

MetalLB is a load balancer component that provides a load balancing service for clusters that

do not run on a cloud provider, such as a bare metal cluster, or clusters that run on hypervisors.
MetalLB operates in two modes: layer 2 and Border Gateway Protocol (BGP), with different
properties and requirements. You must plan the use of MetalLB to consider your requirements and
your network design.

MetalLB is an operator that you can install with the Operator Lifecycle Manager. After installing
the operator, you must configure MetalLB through its custom resource definitions. In most
situations, you must provide MetalLB with an IP address range.

Using Load Balancer Services

When a cluster has a configured load balancer component, you can create services of the
LoadBalancer type to expose non-HTTP services outside the cluster.

For example, the following resource definition exposes port 1234 on pods with the examp Le value
for the name label.

apiVersion: vi
kind: Service
metadata:
name: example-1lb
namespace: example

Chapter 5 | Expose non-HTTPF/SNI Applications

spec:
ports:

- port: 1234 ©@
protocol: TCP
targetPort: 1234

selector:
name: example (2]

type: LoadBalancer

© Exposed port
© Pod selector

© LoadBalancer service type You can also use the kubect1 expose command with the - -
type LoadBalancer argument to create load balancer services imperatively.

After you create the service, the load balancer component updates the service resource with
information such as the public IP address where the service is available.

[user@host ~]$%$ kubectl get service
NAME TYPE CLUSTER-IP EXTERNAL -IP PORT(S) AGE
example-1lb LoadBalancer 172.30.21.79 192.168.50.20 1234:31265/TCP 4m7s

You can now connect to the service on port 1234 of the 192.168.50.20 address.

You can also obtain the address from the status field of the resource.

[user@host ~]$ oc get example-1lb -o jsonpath="{.status.loadBalancer.ingress}"
[{"ip":"192.168.50.20"}]

Each load balancer service allocates IP addresses for services by following different processes.
For example, when installing MetalLB, you must provide ranges of IPs that MetalLB assigns to
services.

After exposing a service by using a load balancer, always verify that the service is available from
your intended network locations. Use a client for the exposed protocol to ensure connectivity, and
test that load balancing works as expected. Some protocols might require further adjustments

to work correctly behind a load balancer. You can also use network debugging tools, such as the
ping and traceroute commands to examine connectivity.

D References

For more information, refer to the Load Balancing with MetalL.B chapter in the
Red Hat OpenShift Container Platform 4.14 Networking documentation at
https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.14/html-single/networking/index#load-balancing-
with-metallb

Kubernetes Services
https://kubernetes.io/docs/concepts/services-networking/service/

MetalLB on OpenShift
https://metallb.universe.tf/installation/clouds/#metallb-on-openshift-ocp

W D0O280-0OCP4.14-en-1-20240215

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/networking/index#load-balancing-with-metallb
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/networking/index#load-balancing-with-metallb
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/networking/index#load-balancing-with-metallb
https://kubernetes.io/docs/concepts/services-networking/service/
https://metallb.universe.tf/installation/clouds/#metallb-on-openshift-ocp

Chapter 5 | Expose non-HTTPF/SNI Applications

» Guided Exercise

Load Balancer Services

Expose a deployment to external access by using a load balancer service.

Outcomes

+ Use load balancer services to expose the video streams that the application produces.
+ Access the video streams with a media player.

+ Realize that external factors can cause a load balancer to fail.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your
system for this exercise.

[student@workstation ~]$ lab start non-http-1lb

Instructions

P 1. Loginasthe developer user, and list the YAML resource manifests for the video
streaming application in the ~/D0280/1labs/non-http- 1b directory.

11. Loginto the cluster as the developer user.
[student@workstation ~]$ oc login -u developer -p developer \
https://api.ocp4.example.com: 6443

Login successful.

...output omitted. ..

1.2. Create the non-http- b project.

[student@workstation ~]$ oc new-project non-http-1lb
Now using project "non-http-1b" on server ...
...output omitted...

1.3. Change to the ~/D0280/labs/non-http- 1b directory.

[student@workstation ~]$ cd ~/D02806/1labs/non-http-1b
[student@workstation non-http-1b]$

1.4. List the contents of the directory. The YAML resource manifests represent three
instances of the video streaming application.

D0O280-0OCP4.14-en-1-20240215 w

Chapter 5 | Expose non-HTTPF/SNI Applications

[student@workstation non-http-1b]$ 1s -1

total 12

-rw-rw-r--. 1 student student 1561 Jun 21 16:29 virtual-rtsp-1.yaml
-rw-rw-r--. 1 student student 1563 Jun 21 16:29 virtual-rtsp-2.yaml
-rw-rw-r--. 1 student student 1565 Jun 21 16:21 virtual-rtsp-3.yaml

1.5. Each deployment emulates the video stream from a security camera on port 8554.

Deployment Video stream Location Image
virtual-rtsp-1 Cameral Downtown
virtual-rtsp-2 Camera 2 Roundabout
virtual-rtsp-3 Camera 3 Intersection /:’
-
=
Ca\era 3 r‘l:;:;erse(non

P 2. Deploy the first instance of the application, and expose the video stream from the
downtown camera by using a load balancer service.

21. Create the first instance of the video stream deployment. This application produces
the video stream of the downtown camera.

[student@workstation non-http-1b]$ oc apply -f virtual-rtsp-1.yaml
deployment.apps/virtual-rtsp-1 created

2.2. Wait until the pod is running and the deployment is ready. Press Ctr 1+C to exit the
watch command.

[student@workstation non-http-1lb]$ watch oc get deployments, pods

Every 2.0s: oc get deployments, pods workstation: Wed Jun 21 16:25:26 2023
NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/virtual-rtsp-1 1/1 1 1 59s

NAME READY STATUS RESTARTS AGE
pod/virtual-rtsp-1-98cd84d79a-ghn9r 1/1 Running 0 59s

W D0O280-0OCP4.14-en-1-20240215

Chapter 5 | Expose non-HTTPF/SNI Applications
2.3. Create aload balancer service to expose the first deployment.

[student@workstation non-http-1b]$ oc expose deployment/virtual-rtsp-1 \
--type=LoadBalancer --target-port=8554
service/virtual-rtsp-1 exposed

2.4. Get the external IP address of the load balancer service.

[student@workstation non-http-1b]$ oc get services
NAME TYPE CLUSTER-IP EXTERNAL -IP PORT(S) AGE
virtual-rtsp-1 LoadBalancer 172.30.4.18 192.168.50.20 8554:32170/TCP 59s

2.5. Verify that you can connect to the external IP address of the load balancer service on
port 8554.

[student@workstation non-http-1b]$ nc -vz 192.168.50.20 8554
Ncat: Version 7.91 (https://nmap.org/ncat)

Ncat: Connected to 192.168.50.20:8554.

Ncat: O bytes sent, 0 bytes received in 0.01 seconds

2.6. Open the URL in the media player to confirm that the video stream of the downtown
camera is working correctly.

* rtsp://192.168.50.20:8554/stream

[student@workstation non-http-1b]$ totem rtsp://192.168.50.20:8554/stream
...output omitted...

Close the media player window after confirming that the video stream works
correctly.

stream

Camera i = DowWntoWn

D0O280-0OCP4.14-en-1-20240215 w

Chapter 5 | Expose non-HTTPF/SNI Applications

P 3. Deploy the remaining instances of the video stream application. Expose the video streams
from the roundabout and intersection cameras by using a load balancer service.
Understand that the classroom is configured to provide only two IP addresses.

3.1. Create the second instance of the video stream deployment. This application
produces the video stream of the roundabout camera.

[student@workstation non-http-1b]$ oc apply -f virtual-rtsp-2.yaml
deployment.apps/virtual-rtsp-2 created

3.2. Create the third instance of the video stream deployment. This application produces
the video stream of the intersection camera.

[student@workstation non-http-1b]$ oc apply -f virtual-rtsp-3.yaml
deployment.apps/virtual-rtsp-3 created

3.3. Wait until the pods are running and the deployments are ready. Press Ctr 1+C to exit
the watch command.

[student@workstation non-http-1b]$ watch oc get deployments, pods

Every 2.0s: oc get deployments, pods workstation: Wed Jun 21 16:30:33 2023
NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/virtual-rtsp-1 1/1 1 1 5m
deployment.apps/virtual-rtsp-2 1/1 1 1 60s
deployment.apps/virtual-rtsp-3 1/1 1 1 30s

NAME READY STATUS RESTARTS AGE
pod/virtual-rtsp-1-98cd84d79a-qhn9r 1/1 Running 0 5m
pod/virtual-rtsp-2-769b5bch89-r8csp 1/1 Running 0] 60s
pod/virtual-rtsp-3-6cdb9f7ffb-g6dod 1/1 Running 0 30s

3.4. Create aload balancer service to expose the second deployment.

[student@workstation non-http-1b]$ oc expose deployment/virtual-rtsp-2 \
--type=LoadBalancer --target-port=8554
service/virtual-rtsp-2 exposed

3.5. Create aload balancer service to expose the third deployment.

[student@workstation non-http-1b]$ oc expose deployment/virtual-rtsp-3 \
--type=LoadBalancer --target-port=8554
service/virtual-rtsp-3 exposed

3.6. Get the external IP address of the second load balancer service.

[student@workstation non-http-1b]$ oc get services

NAME TYPE CLUSTER-IP EXTERNAL -IP PORT(S)
virtual-rtsp-1 LoadBalancer 172.30.94.188 192.168.50.20 8554:32325/TCP C
virtual-rtsp-2 LoadBalancer 172.30.15.148 192.168.50.21 8554:31640/TCP (1]
virtual-rtsp-3 LoadBalancer 172.30.228.35 <pending> 8554:32089/TCP

Chapter 5 | Expose non-HTTPF/SNI Applications

© The second load balancer service has an associated external IP address.

© No IP address is assigned to the third load balancer, and it is displayed as
<pending> because all available load balancer IP addresses are in use. The
MetalLB operator in the classroom uses the IPAddressPools configuration
to restrict the available load balancer IP addresses to 192.168.50.20 and
192.168.50.21.

3.7. Open the URL in the media player to confirm that the video stream of the
roundabout camera is working correctly.

+ rtsp://192.168.50.21:8554/stream

[student@workstation non-http-1lb]$ totem rtsp://192.168.50.21:8554/stream
...output omitted. ..

Close the media player window after confirming that the video stream works
correctly.

stream

) 4. Delete the first service to reallocate the IP address to the third service, and view the video
stream of the intersection camera.

41. Delete the first service to release the assigned IP address.

[student@workstation non-http-1b]$ oc delete service/virtual-rtsp-1
service "virtual-rtsp-1" deleted

4.2. Verify that the third service has an assigned external IP address.

[student@workstation non-http-1b]$ oc get services

NAME TYPE CLUSTER-IP EXTERNAL -IP PORT(S)
virtual-rtsp-2 LoadBalancer 172.30.15.148 192.168.50.21 8554:31640/TCP
virtual-rtsp-3 LoadBalancer 172.30.228.35 192.168.50.20 8554:32089/TCP o

D0O280-0OCP4.14-en-1-20240215 w

Chapter 5 | Expose non-HTTPF/SNI Applications

© The IP address is now allocated to the third service.

4.3. Open the URL in the media player to confirm that the video stream of the
intersection camera is working correctly.

+ rtsp://192.168.50.20:8554/stream

[student@workstation non-http-1lb]$ totem rtsp://192.168.50.20:8554/stream
...output omitted...

Close the media player window after confirming that the video stream works
correctly.

stream

P 5. Clean up the resources.

51 Change to the student HOME directory.

[student@workstation non-http-1b]$ cd
[student@workstation ~]$

5.2. Delete all the services in the namespace.

[student@workstation ~]$ oc delete services --all
service "virtual-rstp-2" deleted
service "virtual-rstp-3" deleted

5.3. Delete all the deployments in the namespace.

[student@workstation ~]$ oc delete deployments --all
deployment.apps "virtual-rtsp-1" deleted
deployment.apps "virtual-rtsp-2" deleted
deployment.apps "virtual-rtsp-3" deleted

W D0O280-0OCP4.14-en-1-20240215

Chapter 5 | Expose non-HTTPF/SNI Applications
5.4. Delete the non-http-1b project.

[student@workstation ~]$ oc delete project/non-http-1lb
project.project.openshift.io "non-http-1b" deleted

Finish
On the workstation machine, use the Tab command to complete this exercise. This step is
important to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab finish non-http-1b

D0O280-0OCP4.14-en-1-20240215 w

Chapter 5 | Expose non-HTTPF/SNI Applications

Multus Secondary Networks

Objectives

+ Expose applications to external access by using a secondary network.

Using Different Networks

Kubernetes manages a pod network and a service network. The pod network provides network
interfaces to each pod, and by default, provides network communication between all pods. The
service network provides stable addressing for services that run on pods. Furthermore, other
facilities provide mechanisms to expose services outside the cluster.

However, in some cases, connecting some pods to a different network can provide benefits or help
to address requirements.

For example, using a dedicated network with dedicated resources can improve the performance of
specific traffic. Additionally, a dedicated network can have different security properties from the
default network and help to achieve security requirements.

In addition to these advantages, using extra interfaces can also simplify some tasks, such as
controlling outgoing traffic from pods.

The Multus CNI (container network interface) plug-in helps to attach pods to custom networks.

These custom networks can be either existing networks outside the cluster, or custom networks
that are internal to the cluster.

Configuring Secondary Networks

To use existing custom networks, first you must make available the network on cluster nodes.

You can use operators, such as the Kubernetes NMState operator or the SR-IOV (Single Root I/O
Virtualization) network operator, to customize node network configuration. With these operators,
you define custom resources to describe the intended network configuration, and the operator
applies the configuration.

The SR-IOV network operator configures SR-IOV network devices for improved bandwidth and
latency on certain platforms and devices.

Attaching Secondary Networks

To configure secondary networks, create a NetworkAttachmentDefinition resource.
Alternatively, update the configuration of the cluster network operator to add a secondary
network. Some network attachment definitions create and manage virtual network devices,
including virtual bridges. The virtual network devices attach to existing networks that are
configured and managed outside OpenShift. Other network attachment definitions use existing
network interfaces on the cluster nodes. Network attachment definitions can also perform
additional network configuration.

W D0O280-0OCP4.14-en-1-20240215

Chapter 5 | Expose non-HTTPF/SNI Applications

Pod Annotations

Network attachment resources are namespaced, and are available only to pods in their
namespace.

When the cluster has additional networks, you can add the k8s.v1.cni.cncf.io/networks
annotation to the pod's template to use one of the additional networks. The value of the
annotation is the name of the network attachment definition to use, or a list of maps with
additional configuration options. Besides network attachments, you can also add pods to networks
that the SR-IOV network operator configures.

For example, the following deployment uses the examp le network:

apivVersion: apps/vi
kind: Deployment
metadata:
name: example
namespace: example
spec:
selector:
matchLabels:
app: example
name: example
template:
metadata:
annotations:
k8s.vl.cni.cncf.io/networks: example
labels:
app: example
name: example
spec:
...output omitted...

Multus updates the k8s.vl.cni.cncf.io/networks-status annotation with the status of
the additional networks.

[user@host ~]$ oc get pod example \
-0 jsonpath='{.metadata.annotations.k8s\.v1\.cni\.cncf\.io/networks-status}'

[{
"name": "ovn-kubernetes",
"interface": "etho",
"ips": [
"10.8.0.59"
1,
"mac": "Qa:58:0a:08:00:3b",
"default": true,
"dns": {}
Ao
"name": "non-http-multus/example", (1]
"interface": "net1",
"ips": [
"1.2.3.4"

1,

Chapter 5 | Expose non-HTTPF/SNI Applications

"mac": "52:54:00:01:33:0a",
"dns": {}
]

© The example pod is attached to the default pod network and to the examp le custom
network.

© To access the custom network, Multus creates a network interface in the pod. Multus uses the
net string followed by a number to name these network interfaces.

Note

S The period is the JSONPath field access operator. Normally, you use the period to
access parts of the resource, such as in the .metadata.annotations JSONPath
expression. To access fields that contain periods with JSONPath, you must escape
the periods with a backslash (\).

Network Attachment Custom Resource

You can create network attachment definitions of the following types:

Host device
Attaches a network interface to a single pod.

Bridge
Uses an existing bridge interface on the node, or configures a new bridge interface. The pods
that are attached to this network can communicate with each other through the bridge, and to
any other networks that are attached to the bridge.

IPVLAN
Creates an IPVLAN-based network that is attached to a network interface.

MACVLAN
Creates an MACVLAN-based network that is attached to a network interface.

Bridges are network interfaces that can forward packets between different network interfaces that
are attached to the bridge. Virtualization environments often use bridges to connect the network
interfaces of virtual machines to the network.

IPVLAN and MACVLAN are Linux network drivers that are designed for container environments.
Container environments often use these network drivers to connect pods to the network.

Although bridge interfaces, IPVLAN, and MACVLAN have similar purposes, they have different
characteristics, such as different usage of MAC addresses, filtering capabilities, and other
features. For example, you might need to use IPVLAN instead of MACVLAN in networks with a
limit of MAC addresses, because IPVLAN uses fewer MAC addresses.

The following resource definition shows a NetworkAttachmentDefinition resource for a host
device.

apivVersion: k8s.cni.cncf.io/v1
kind: NetworkAttachmentDefinition
metadata:

name: example (1]
spec:

config: |-

Chapter 5 | Expose non-HTTPF/SNI Applications

{
"cniVersion": "0.3.1",
"name": "example", (2]
"type": "host-device", (3]
"device": "ens4",
"ipam": { o

"type": "dhcp"

}

}

Q0O The network name
© The network type

O Additional network configuration

Network Operator Settings

You can also create the same network attachment by editing the cluster network operator
configuration:

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
name: cluster
spec:
...output omitted. ..
additionalNetworks:
- name: example (1]
namespace: example

rawCNIConfig: |- (3]
{
"cniVersion": "0.3.1",
"name": "example", (4]
"type": "host-device", (s
"device": "ens4",
"ipam": { o
"type": "dhcp"
}
}
type: Raw

OO The network name

© The namespace

© The network type

O Additional network configuration

The IP Address Management (IPAM) CNI plug-in provides IP addresses for other CNI plug-ins.

In the previous examples, the ipam key contains a network configuration that uses DHCP. You
can provide more complex network configurations in the ipam key. For example, the following
configuration uses a static address.

Chapter 5 | Expose non-HTTPF/SNI Applications

"ipam": {
"type": "static",
"addresses": [
{"address": "192.168.X.X/24"}

Although all the pods in the cluster still use the cluster-wide default network to maintain
connectivity across the cluster, you can define more than one additional network for your cluster.
The added networks give you flexibility when you configure pods that deliver network functions.

The network isolation that an additional network provides is useful for enhanced performance or
for security, depending on your needs.

References

For more information, refer to the Multiple Networks chapter in the Red Hat
OpenShift Container Platform 4.14 Networking documentation at
https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.14/html-single/networking/index#multiple-
networks

For more information about the SR-IOV network operator, including supported
platforms and devices, refer to the About Single Root |/O Virtualization (SR-IOV)
Hardware Networks section in the Hardware Networks chapter in the Red Hat
OpenShift Container Platform 4.14 Networking documentation at
https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.14/html-single/networking/index#about-sriov

For more information, refer to the About the Kubernetes NMState Operator section
in the About Networking chapter in the Red Hat OpenShift Container Platform 4.14
Networking documentation at

https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.14/html-single/networking/index#kubernetes-
nmstate

W D0O280-0OCP4.14-en-1-20240215

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/networking/index#multiple-networks
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/networking/index#multiple-networks
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/networking/index#multiple-networks
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/networking/index#about-sriov
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/networking/index#about-sriov
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/networking/index#kubernetes-nmstate
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/networking/index#kubernetes-nmstate
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/networking/index#kubernetes-nmstate

Chapter 5 | Expose non-HTTPF/SNI Applications

» Guided Exercise

Multus Secondary Networks

Expose a PostgreSQL database to external access by using a secondary network.

Outcomes
+ Make a PostgreSQL database accessible outside the cluster on an isolated network by
using an existing node network interface.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your
system for this exercise.

This command ensures that the environment is ready.

[student@workstation ~]$ lab start non-http-multus

Instructions
P 1. Deploy a sample database.

11. Login to the OpenShift cluster as the developer user with the developer
password.

[student@workstation ~]$ oc login -u developer -p developer \
https://api.ocp4.example.com: 6443
Login successful.

...output omitted. ..

1.2. Createanon-http-multus project.

[student@workstation ~]$ oc new-project non-http-multus
...output omitted. ..

1.3. Create the resources that the ~/D0280/1labs/non-http-multus/
deployment.yaml file contains.

[student@workstation ~]$ oc apply -f ~/D0286/1labs/non-http-multus/deployment.yaml
secret/database created

persistentvolumeclaim/database created

deployment.apps/database created

1.4. Wait until all resources are ready.

Chapter 5 | Expose non-HTTPF/SNI Applications

[student@workstation ~]$ oc get all

NAME READY STATUS RESTARTS AGE
pod/database-654db5f958-8p6m5 1/1 Running 0 3m36s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/database 1/1 1 1 3m36s

NAME DESIRED CURRENT READY AGE
replicaset.apps/database-654db5f958 1 1 1 3m36s

This application contains only a deployment, a persistent volume claim, and a secret.
The application does not contain any services, so the database is not accessible
outside the pod network.

This application uses a database that requires exclusive access to the database data.
On the database deployment, only one pod must be running at a time. To prevent
multiple pods from running at a time, the deployment uses the recreate strategy.

This scenario is part of the scenarios where you assign a network interface exclusively
to a pod. In these scenarios, the host device strategy is suitable. A network
attachment with the host device strategy is suitable only for a single pod.

In other scenarios, you must use more complex network attachments.
P 2. Examine the cluster nodes and inspect the network interface that you use in this exercise.

2.1. Login to the OpenShift cluster as the admin user with the redhatocp password.

[student@workstation ~]$ oc login -u admin -p redhatocp \
https://api.ocp4.example.com: 6443
Login successful.

...output omitted. ..

2.2. Usetheoc get node command to list the cluster nodes.

[student@workstation ~]$ oc get node
NAME STATUS ROLES AGE VERSION
masterol Ready control-plane, master,worker 36d v1l.27.6+f67aeb3

The cluster has a single node with the control plane and worker roles.

2.3. Runthe ip addr command in the node, by using the oc debug command to
execute commands in the node.

[student@workstation ~]$ oc debug node/master0l -- chroot /host ip addr

Temporary namespace openshift-debug-mrchh is created for debugging node...

Starting pod/master@1-debug

To use host binaries, run: chroot /host

Pod IP: 192.168.50.10

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 gqdisc noqueue state UNKNOWN group default
glen 1000

...output omitted. ..

2: ens3: <BROADCAST, MULTICAST,UP, LOWER_UP> mtu 1500 gdisc fqg_codel master ovs-
system state UP group default qlen 1000 (1]

Chapter 5 | Expose non-HTTPF/SNI Applications

link/ether 52:54:00:00:32:0a brd ff:ff:ff:ff:ff:ff
3: ens4: <BROADCAST,MULTICAST,UP, LOWER_UP> mtu 1500 gdisc fg_codel state UP group
default glen 1000 (2]
link/ether 52:54:00:01:33:0a brd ff:ff:ff:ff:ff:ff
inet 192.168.51.10/24 brd 192.168.51.255 scope global dynamic noprefixroute
ens4
valid_1ft 461179517sec preferred_1ft 461179517sec
inet6 fe80::b9dd:9436:4fc7:738/64 scope link noprefixroute
valid_1ft forever preferred_1ft forever
4: ovs-system: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group default
glen 1000
link/ether 22:31:45:7a:e2:e3 brd ff:ff:ff:ff:ff:ff
5: ovn-k8s-mp@: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1400 gdisc noqueue state
UNKNOWN group default qlen 1000
...output omitted...
6: br-int: <BROADCAST,MULTICAST> mtu 1400 qdisc noop state DOWN group default qlen
1000
link/ether 52:db:28:19:51:94 brd ff:ff:ff:ff:ff:ff
8: br-ex: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 gdisc noqueue state UNKNOWN
group default glen 1000
link/ether 52:54:00:00:32:0a brd ff:ff:ff:ff:ff:ff
inet 192.168.50.10/24 brd 192.168.50.255 scope global dynamic noprefixroute
br-ex
...output omitted...

©® The ens3interface is the main network interface of the cluster.

© The ens4interface is an additional network interface for exercises that require
an additional network. This interface is attached to a 192.168.51.0/24 network,
with the 192.168.51.10 IP address.

The system has other interfaces, including bridges and pod network interfaces.

P 3. Examine the networking configuration of the workstation machine. The workstation
machine has no access to the 192.168.51.0/24 network, which is the ens4 interface in the
cluster node.

3.1 Usethe ip addr command to examine the network interfaces in the workstation
machine.

[student@workstation ~]$ ip addr
1: lo: <LOOPBACK,UP, LOWER _UP> mtu 65536 gdisc noqueue state UNKNOWN group default
glen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_1ft forever preferred_1ft forever
inet6 ::1/128 scope host
valid_1ft forever preferred_1ft forever
2: ethO: <BROADCAST,MULTICAST,UP, LOWER_UP> mtu 1500 gdisc fg_codel state UP group
default qlen 1000 (1]
link/ether 52:54:00:00:fa:09 brd ff:ff:ff:ff:ff:ff
inet 172.25.250.9/24 brd 172.25.250.255 scope global noprefixroute etho
valid_1ft forever preferred_1ft forever

Chapter 5 | Expose non-HTTPF/SNI Applications

inet6 fe80::5054:ff:fe00:fa09/64 scope link
valid_1ft forever preferred_1ft forever
...output omitted. ..

© Theworkstation machine has a single Ethernet interface. This interface is on
a different network from the ens4 interface in the cluster node.

3.2. Use the route command to view the routing table in the workstation machine.

[student@workstation ~]$ ip route

default via 172.25.250.254 dev eth@ proto static metric 100

10.88.0.0/16 dev podman@ proto kernel scope link src 10.88.0.1
172.25.250.0/24 dev eth® proto kernel scope link src 172.25.250.9 metric 100
192.168.50.0/24 via 172.25.250.253 dev eth@ proto static metric 100

The workstation routing table does not have a route to the 192.168.51.0/24
network.

3.3. Use the ping command to check connectivity to the ens4 interface in the cluster.

[student@workstation ~]$ ping 192.168.51.10

PING 192.168.51.10 (192.168.51.10) 56(84) bytes of data.

nC

--- 192.168.51.10 ping statistics ---

6 packets transmitted, O received, 100% packet loss, time 5137ms

The command does not produce any output after printing the first line. Wait a
few seconds, and then press Ctr 1+C to interrupt the ping command. The ping
command prints that after transmitting some packets, no response is received.

The workstation machine cannot connect to the additional cluster network.

) 4. Examine the networking configuration of the utility machine. The utility machine has
access to the 192.168.51.0/24 network.

4.1. Use the ssh command to connect to the utility machine.

[student@workstation ~]$ ssh utility
...output omitted. ..
[student@utility ~]$

4.2. Use the ip addr command to examine the network interfaces in the utility
machine.

[student@utility ~]$ ip addr
...output omitted. ..
4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group
default glen 1000 o
link/ether 52:54:00:02:33:fe brd ff:ff:ff:ff:ff:ff
inet 192.168.51.254/24 brd 192.168.51.255 scope global noprefixroute eth2
...output omitted...

© The eth2interface is attached to the 192.168.51.0/24 network, with the
192.168.51.254 |IP address.

Chapter 5 | Expose non-HTTPF/SNI Applications
4.3. Use the ping command to check connectivity to the ens4 interface in the cluster.

[student@utility ~]$ ping 192.168.51.10

PING 192.168.51.10 (192.168.51.10) 56(84) bytes of data.

64 bytes from 192.168.51.10: icmp_seq=1 tt1=64 time=0.687 ms
64 bytes from 192.168.51.10: icmp_seq=2 tt1=64 time=0.169 ms
NC

--- 192.168.51.10 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 1058ms
rtt min/avg/max/mdev = 0.169/0.428/0.687/0.259 ms

Wait a few seconds, and then press Ctr 1+C to interrupt the ping command. The
ping command shows that the utility machine can connect to the additional
cluster network.

4.4. Exit the SSH session to go back to the workstation machine.

[student@utility ~]$ exit
logout

Connection to utility closed.
[student@workstation ~]$

P 5. Configure a network attachment definition for the ens4 interface, so that the custom
network can be attached to a pod.

5.1 Editthe ~/D0280/1labs/non-http-multus/network-attachment-
definition.yaml file. Use the custom name, the host-device type, and the
ens4 device. Configure IP address management to use the static type, with the
192.168.51.10/24 address.

apiVersion: k8s.cni.cncf.io/v1
kind: NetworkAttachmentDefinition

metadata:
name: custom
spec:
config: |-
{
"cniVersion": "0.3.1",
"name": "custom",
"type": "host-device",
"device": "ens4",
"ipam": {

"type": "static",
"addresses": [
{"address": "192.168.51.10/24"}

5.2. Use the diff command to compare your network attachment definition with
the solution in the ~/D0280/solutions/non-http-multus/network-
attachment-definition.yaml file. If the files are identical, then the diff
command does not return any output.

Chapter 5 | Expose non-HTTPF/SNI Applications

[student@workstation ~]$ diff \
~/D0280/labs/non-http-multus/network-attachment-definition.yaml \
~/D0280/solutions/non-http-multus/network-attachment-definition.yaml

5.3. Usetheoc create command to create the network attachment definition.

[student@workstation ~]$ oc create \
-f ~/D0280/1labs/non-http-multus/network-attachment-definition.yaml
networkattachmentdefinition.k8s.cni.cncf.io/custom created

) 6. Edit the deployment to add the k8s.v1.cni.cncf.io/networks annotation with the
custom value.

6.1. Login to the OpenShift cluster as the developer user with the deve loper
password.

[student@workstation ~]$ oc login -u developer -p developer \
https://api.ocp4.example.com: 6443
Login successful.

...output omitted...

6.2. Editthe ~/D0280/1labs/non-http-multus/deployment.yaml file to add the
k8s.vl.cni.cncf.io/networks annotation with the custom value.

apiVersion: vi

...output omitted...

- apiVersion: apps/vi
kind: Deployment

metadata:
name: database
spec:
replicas: 1
strategy:
type: Recreate
selector:
matchLabels:

name: database
app: database
template:
metadata:
labels:
name: database
app: database
annotations:
k8s.v1l.cni.cncf.io/networks: custom
spec:
...output omitted. ..

6.3. Use the oc apply command to add the annotation.

Chapter 5 | Expose non-HTTPF/SNI Applications

[student@workstation ~]$ oc apply -f ~/D0280/labs/non-http-multus/deployment.yaml
secret/database configured

persistentvolumeclaim/database unchanged

deployment.apps/database configured

6.4. Wait until all resources are ready.

[student@workstation ~]$ oc get all

NAME READY STATUS RESTARTS AGE
pod/database-74d79685f7-8p6m5 1/1 Running 0] 3m36s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/database 1/1 1 1 3m36s

NAME DESIRED CURRENT READY AGE
replicaset.apps/database-654db5f958 0 0] 0] 15m
replicaset.apps/database-74d79685f7 1 1 1 3m36s

6.5. Examine the k8s.v1l.cni.cncf.io/network-status annotationin the pod.

[student@workstation ~]$ oc get pod database-74d79685f7-6schp \
-0 jsonpath='{.metadata.annotations.k8s\.v1\.cni\.cncf\.io/network-status}'

[{

"name": "ovn-kubernetes",
"interface": "etho",
llipsll: [

"10.8.0.92"

1,
"mac": "@a:58:0a:08:00:5c",
"default": true,

"dns": {}
Ao
"name": "non-http-multus/custom",
"interface": "net1",
"ips": [
"192.168.51.10"
1,
"mac": "52:54:00:01:33:0a",
"dns": {}
1

Note

S The period is the JSONPath field access operator. Normally, you use the period to
access parts of the resource, such as in the .metadata.annotations JSONPath
expression. To access fields that contain periods with JSONPath, you must escape
the periods with a backslash (\).

P 7. Verify that you can access the database from the utility machine.

71. Use the ssh command to connect to the utility machine.

Chapter 5 | Expose non-HTTPF/SNI Applications

[student@workstation ~]$ ssh utility
...output omitted...
[student@utility ~]$

7.2. Login to the classroom container registry for access to an image with database
utilities.

[student@utility ~]$ podman login --tls-verify=false \
registry.ocp4.example.com:8443 -u developer -p developer
Login Succeeded!

7.3. Run acommand to execute a query on the database. Use the IP address on the
custom network to connect to the database. Use password as the password for the
user.

[student@utility ~]$ podman run -it --tls-verify=false \
--entrypoint=/usr/bin/psql \
registry.ocp4.example.com:8443/rhel8/postgresql-13:1-7 \
-h 192.168.51.10 -U user sample -c 'SELECT 1;'

...output omitted...

Password for user user: password

?column?

7.4. Exit the SSH session to return to the workstation machine.

[student@utility ~]$ exit
logout

Connection to utility closed.
[student@workstation ~1$

P 8. Verify that you cannot use the same process to access the database from the
workstation machine, because the workstation machine cannot access the custom
network.

8.1. Login to the classroom container registry for access to an image with database
utilities.

[student@workstation ~]$ podman login --tls-verify=false \
registry.ocp4.example.com:8443 -u developer -p developer
Login Succeeded!

8.2. Run a command to execute a query on the database. Use the IP address on the
custom network to connect to the database.

Chapter 5 | Expose non-HTTPF/SNI Applications

[student@workstation ~]$ podman run -it --tls-verify=false \
--entrypoint=/usr/bin/psql \
registry.ocp4.example.com:8443/rhel8/postgresql-13:1-7 \
-h 192.168.51.10 -U user sample -c 'SELECT 1;'

...output omitted...

Storing signatures

psql: error: could not connect to server: Connection refused

Is the server running on host "192.168.51.10" and accepting

TCP/IP connections on port 5432?

After the image is downloaded, the command pauses for over a minute, because you
cannot access the custom network from the workstation machine.

The deployment uses the custom network, and you can access the database only
through the custom network.

Finish
On the workstation machine, use the Tab command to complete this exercise. This step is
important to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab finish non-http-multus

Chapter 5 | Expose non-HTTPF/SNI Applications

» Lab

Expose non-HTTP/SNI Applications

Expose applications to external access without using an ingress controller.

Outcomes

+ Expose a non-http application to external access by using the LoadBalancer type
service.

+ Configure a network attachment definition for an isolated network.

+ Make an application accessible outside the cluster on an isolated network by using an
existing node network interface.

Before You Begin

As the student user on the workstation machine, use the lab command to prepare your
system for this exercise.

This command ensures that the cluster APl is reachable and configures the MetalLB
operator to provide a single IP address, 192.168.50. 20, for the load balancer services.

[student@workstation ~]$ lab start non-http-review

Instructions

1. Deploy the virtual-rtsp application to anew non-http-review-rtsp project as the
developer user with the developer password, and verify that the virtual-rtsp podis
running.

The application consists of the ~/D0280/1labs/non-http-review/virtual-
rtsp.yaml file.
Expose the virtual-rtsp deployment by using the LoadBalancer service.

3. Accessthe virtual-rtsp application by using the URL in the media player. Run the totem
rtsp://EXTERNAL-IP:8554/stream command to play the stream in the media player.

4., Deploy the nginx deployment to a new non-http-review-nginx project as the
developer user with the developer password, and verify that the nginx pod is running.
The application consists of the ~/D0280/ labs/non-http-review/nginx.yaml file.

i~ | Important
— The exercise is using an HTTP application as a stand-in for testing connectivity to an
external network.

5. Configure a network attachment definition for the ens4 interface, so that the isolated
network can be attached to a pod.

The master®01 node has two Ethernet interfaces. The ens3 interface is the main network
interface of the cluster. The ens4 interface is an additional network interface for exercises

Chapter 5 | Expose non-HTTPF/SNI Applications

that require an additional network. The ens4 interface is attached to a 192.168.51.0/24
network, with the 192.168.51.10 |IP address.

You can modify the ~/D0280/ labs/non-http-review/network-attachment-
definition.yaml file to configure a network attachment definition by using the following

parameters:
Parameter Value
name custom
type host-device
device ens4
ipam. type static
ipam.addresses {"address": "192.168.51.10/24"}

6. The nginx application does not contain any services, so the application is not accessible
outside the pod network.

Assign the ens4 network interface exclusively to the nginx pod, by using the

custom network attachment definition. Edit the nginx deployment to add the
k8s.vl.cni.cncf.io/networks annotation with the custom value as the developer
user with the developer password.

7. Verify that you can access the nginx application from the utility machine by using the
following URL:

http://isolated-network-IP-address:8080

8. Verify that you cannot access the nginx application from the workstation machine,
because the workstation machine cannot access the isolated network.

Evaluation

As the student user on the workstation machine, use the lab command to grade your work.
Correct any reported failures and rerun the command until successful.

[student@workstation ~]$ lab grade non-http-review
Finish
As the student user on the workstation machine, use the Tab command to complete this

exercise. This step is important to ensure that resources from previous exercises do not impact
upcoming exercises.

[student@workstation ~]$ lab finish non-http-review

Chapter 5 | Expose non-HTTPF/SNI Applications

» Solution

Expose non-HTTP/SNI Applications

Expose applications to external access without using an ingress controller.

Outcomes
+ Expose a non-http application to external access by using the LoadBalancer type
service.

- Configure a network attachment definition for an isolated network.

+ Make an application accessible outside the cluster on an isolated network by using an
existing node network interface.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your
system for this exercise.

This command ensures that the cluster APl is reachable and configures the MetalLB
operator to provide a single IP address, 192.168.50. 20, for the load balancer services.

[student@workstation ~]$ lab start non-http-review

Instructions

1.

Deploy the virtual-rtsp application to a new non-http-review-rtsp project as the
developer user with the developer password, and verify that the virtual-rtsp podis
running.

The application consists of the ~/D0280/1labs/non-http-review/virtual-
rtsp.yaml file.

11. Login to your OpenShift cluster as the developer user with the developer
password.

[student@workstation ~]$ oc login -u developer -p developer \
https://api.ocp4.example.com: 6443

Login successful.

...output omitted...

1.2. Change to the ~/D0280/1labs/non-http-review directory.

[student@workstation ~]$ cd ~/D0286/labs/non-http-review

1.3. Createanon-http-review-rtsp project.

Chapter 5 | Expose non-HTTPF/SNI Applications

[student@workstation non-http-review]$ oc new-project non-http-review-rtsp
Now using project "non-http-review-rtsp" on server ...
...output omitted...

1.4. Use the oc create command to create the virtual-rtsp deployment by using the
virtual-rtsp.yaml file.

[student@workstation non-http-review]$ oc create -f virtual-rtsp.yaml
deployment.apps/virtual-rtsp created

1.5. List the deployments and pods. Wait for the virtual-rtsp pod to be ready. Press
Ctr1+C to exit the watch command.

[student@workstation non-http-review]$ watch oc get deployments, pods

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/virtual-rtsp 1/1 1 1 21s
NAME READY STATUS RESTARTS AGE
pod/virtual-rtsp-54d8d6b57d-6jsvm 1/1 Running 0 21s

2. Expose the virtual-rtsp deployment by using the LoadBalancer service.

2. Create aload balancer service for the virtual-rtsp deployment.

[student@workstation non-http-review]$ oc expose deployment/virtual-rtsp \
--name=virtual-rtsp-loadbalancer --type=LoadBalancer
service/virtual-rtsp-loadbalancer exposed

2.2. Retrieve the external IP address of the virtual-rtsp-loadbalancer service.

[student@workstation non-http-review]$ oc get svc/virtual-rtsp-loadbalancer
NAME TYPE ... EXTERNAL-IP PORT(S)
virtual-rtsp-loadbalancer LoadBalancer ... 192.168.50.20 8554:32570/TCP

The virtual-rtsp-loadbalancer hasthe 192.168.50. 20 external IP address.

3. Accessthevirtual-rtsp application by using the URL in the media player. Run the totem
rtsp://EXTERNAL-IP:8554/stream command to play the stream in the media player.

3.1, Open the URL in the media player to confirm that the video stream is working correctly.
rtsp://192.168.50.20:8554/stream

[student@workstation non-http-review]$ totem rtsp://192.168.50.20:8554/stream
...output omitted. ..

Chapter 5 | Expose non-HTTPF/SNI Applications

stream

Close the media player window after confirming that the video stream works correctly.

4. Deploy the nginx deployment to a new non-http-review-nginx project as the
developer user with the developer password, and verify that the nginx pod is running.
The application consists of the ~/D0280/1labs/non-http-review/nginx.yaml file.

i~ | Important

— The exercise is using an HTTP application as a stand-in for testing connectivity to an

external network.

41. Createanon-http-review-nginx project.

[student@workstation non-http-review]$ oc new-project non-http-review-nginx

Now using project "non-http-review-nginx" on server ...

...output omitted. ..

4.2. Use the oc apply command to create the nginx deployment by using the

nginx.yaml file.

[student@workstation non-http-review]$ oc apply -f nginx.yaml

deployment.apps/nginx created

4.3. List the deployments and pods. Wait for the nginx pod to be ready. Press Ctr 1+C to

exit the watch command.

[student@workstation non-http-review]$ watch oc get deployments, pods

NAME READY UP-TO-DATE
deployment.apps/nginx 1/1 1
NAME READY STATUS

pod/nginx-649779chd-d6sbv 1/1

Running

AGE
53s

AGE
53s

D0O280-0OCP4.14-en-1-20240215

Chapter 5 | Expose non-HTTPF/SNI Applications

5. Configure a network attachment definition for the ens4 interface, so that the isolated
network can be attached to a pod.

The master@1 node has two Ethernet interfaces. The ens3 interface is the main network
interface of the cluster. The ens4 interface is an additional network interface for exercises
that require an additional network. The ens4 interface is attached to a 192.168.51.0/24
network, with the 192.168.51.10 |IP address.

You can modify the ~/D0280/labs/non-http-review/network-attachment-
definition.yaml file to configure a network attachment definition by using the following

parameters:
Parameter Value
name custom
type host-device
device ens4
ipam.type static
ipam.addresses {"address": "192.168.51.10/24"}

51. Login to your OpenShift cluster as the admin user with the redhatocp password.

[student@workstation non-http-review]$ oc login -u admin -p redhatocp \
https://api.ocp4.example.com: 6443

Login successful.

...output omitted. ..

5.2. Editthe ~/D0280/1labs/non-http-review/network-attachment-
definition.yaml file. Use the custom name, the host-device type, and the
ens4 device. Configure IP address management to use the static type, with the
192.168.51.10/24 address.

apiVersion: k8s.cni.cncf.io/v1
kind: NetworkAttachmentDefinition
metadata:
name: custom
spec:
config: |-
{
"cniVersion": "0.3.1",
"name": "custom",
"type": "host-device",
"device": "ens4",
"ipam": {
"type": "static",
"addresses": [
{"address": "192.168.51.10/24"}

Chapter 5 | Expose non-HTTPF/SNI Applications
5.3. Usethe oc create command to create the network attachment definition.

[student@workstation non-http-review]$ oc create -f \
network-attachment-definition.yaml
networkattachmentdefinition.k8s.cni.cncf.io/custom created

6. The nginx application does not contain any services, so the application is not accessible
outside the pod network.

Assign the ens4 network interface exclusively to the nginx pod, by using the

custom network attachment definition. Edit the nginx deployment to add the
k8s.vl.cni.cncf.io/networks annotation with the custom value as the developer
user with the developer password.

6.1. Login to the OpenShift cluster as the developer user with the deve loper password.

[student@workstation non-http-review]$ oc login -u developer -p developer \
https://api.ocp4.example.com: 6443
Login successful.

...output omitted...

6.2. Editthe ~/D0280/1labs/non-http-review/nginx.yaml file to add the
k8s.vl.cni.cncf.io/networks annotation with the custom value.

...output omitted. ..
spec:
replicas: 1
selector:
matchLabels:
app: nginx
strategy:
type: Recreate
template:
metadata:
labels:
app: nginx
annotations:
k8s.vl.cni.cncf.io/networks: custom
spec:
containers:
...output omitted...

6.3. Use the oc apply command to add the annotation.

[student@workstation non-http-review]$ oc apply -f nginx.yaml
deployment.apps/nginx configured

6.4. Wait for the nginx pod to be ready. Press Ctr 1+C to exit the watch command.

Chapter 5 | Expose non-HTTPF/SNI Applications

[student@workstation non-http-review]$ watch oc get deployments, pods

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/nginx 1/1 1 1 34m
NAME READY STATUS RESTARTS AGE
pod/nginx-6f45d9f89-wp2gg 1/1 Running 0 53s

6.5. Examine the k8s.v1.cni.cncf.io/networks-status annotation in the pod.

[student@workstation ~]$ oc get pod nginx-6f45d9f89-wp2gg \
-0 jsonpath='{.metadata.annotations.k8s\.v1\.cni\.cncf\.io/network-status}'

[{

"name": "ovn-kubernetes",
"interface": "etho",
llipsll : [

"10.8.0.82"

1,
"mac": "0a:58:0a:08:00:52",

"default": true,

"dns": {}
e
"name": "non-http-review-nginx/custom",
"interface": "net1",
llipsll: [
"192.168.51.10"
1
"mac": "52:54:00:01:33:0a",
"dns": {}
1

Note

S The period is the JSONPath field access operator. Normally, you use the period to
access parts of the resource, such as in the .metadata.annotations JSONPath
expression. To access fields that contain periods with JSONPath, you must escape
the periods with a backslash (\).

7. Verify that you can access the nginx application from the utility machine by using the
following URL:

http://isolated-network-IP-address:8080

71. Use the ssh command to connect to the utility machine.

[student@workstation non-http-review]$ ssh utility
...output omitted. ..
[student@utility ~]1%$

7.2. Verify that the nginx application is accessible. Use the IP address on the isolated
network to access the nginx application.

Chapter 5 | Expose non-HTTPF/SNI Applications

[student@utility ~]$ curl 'http://192.168.51.10:8080/"'
<html>
<body>
<hi>Hello, world from nginx!</h1>
</body>
</html>

7.3. Exit the SSH session to go back to the workstation machine.

[student@utility ~]$ exit

logout

Connection to utility closed.
[student@workstation non-http-review]$

8. Verify that you cannot access the nginx application from the workstation machine,
because the workstation machine cannot access the isolated network.

8.1. Verify that the nginx application is not accessible from the workstation machine.

[student@workstation non-http-review]$ curl 'http://192.168.51.10:8080/"'
curl: (7) Failed to connect to 192.168.51.10 port 8080: Connection timed out

8.2. Change to the student HOME directory.

[student@workstation non-http-review]$ cd
[student@workstation ~]$

Evaluation

As the student user on the workstation machine, use the lab command to grade your work.
Correct any reported failures and rerun the command until successful.

[student@workstation ~]$ lab grade non-http-review
Finish
As the student user on the workstation machine, use the lab command to complete this

exercise. This step is important to ensure that resources from previous exercises do not impact
upcoming exercises.

[student@workstation ~]$ lab finish non-http-review

Chapter 5 | Expose non-HTTPF/SNI Applications

Summary

+ Kubernetes ingresses and OpenShift routes use the virtual hosting property of the HTTP
protocol to expose web services that are running on the cluster.

« Different providers can implement Kubernetes services, by using the type field of the service
resource.

+ When a load balancer component is configured for a cluster, you can create services of the
LoadBalancer type to expose non-HTTP services outside the cluster.

+ The Multus CNI (container network interface) plug-in helps to attach pods to custom networks.

+ You can configure the additional network by using a network attachment definition resource.

For use by srinivas godavarthy sriniva

-

=

cho

VAL
LA W..

rinivas.godavarthy@bupa.com.sa

Copyright © 2024 Red Hat, Inc.

DO280-0OCP4.14-en-1-20240215

Chapter 6

Enable Developer Self-Service

Goal Configure clusters for safe self-service by ¢
developers from multiple teams, and disallow self-
service if operations staff must provision projects.
.
Objectives + Configure compute resource quotas and “
Kubernetes resource count quotas per project
and cluster-wide. n-
m + Configure default and maximum compute
' resource requirements for pods per project. i
; + Configure default quotas, limit ranges, role
P bindings, and other restrictions for new
- projects, and the allowed users to self-provision
new projects.
Sections + Project and Cluster Quotas (and Guided
Exercise)
+ Per-Project Resource Constraints: Limit
Ranges (and Guided Exercise)

The Project Template and the Self-Provisioner
Role (and Guided Exercise)

Lab + Enable Developer Self-Service

r/

D0O280-0OCP4.14-en-1-20240215

Chapter 6 | Enable Developer Self-Service

Project and Cluster Quotas

Objectives

+ Configure compute resource quotas and Kubernetes resource count quotas per project and
cluster-wide.

Limiting Workloads

Kubernetes clusters can run heterogeneous workloads across many compute nodes. By using
Kubernetes role-based access control (RBAC), cluster administrators can allow users to create
workloads on their own. Although RBAC can limit the kinds of resources that users can create,
administrators might want further measures to ensure correct operation of the cluster.

Clusters have limited resources, such as CPU, RAM, and storage. If workloads on a cluster exceed
the available resources, then workloads might not work correctly. A cluster that is configured

to autoscale might also incur unwanted economic costs if the cluster scales to accommodate
unexpected workloads.

To help with this issue, Kubernetes workloads can reserve resources and declare resource limits.
Workloads can specify the following properties:

Resource limits
Kubernetes can limit the resources that a workload consumes. Workloads can specify an
upper bound of the resources that they expect to use under normal operation. If a workload
malfunctions or has unexpected load, then resource limits prevent the workload from
consuming an excessive amount of resources and impacting other workloads.

Resource requests
Workloads can declare their minimum required resources. Kubernetes tracks requested
resources by workloads, and prevents deployments of new workloads if the cluster has
insufficient resources. Resource requests ensure that workloads get their needed resources.

These measures prevent workloads from affecting other workloads. However, cluster
administrators might need to prevent other risks.

For example, users might mistakenly create unwanted workloads. The resource requests of those
unwanted workloads can prevent legitimate workloads from executing.

By dividing workloads into namespaces, Kubernetes can offer enhanced protection features. The
namespace structure often mirrors the organization that runs the cluster. Kubernetes introduces
resource quotas to limit resource usage by the combined workloads in a namespace.

Resource Quotas

Kubernetes administrators can create resources of the ResourceQuota type in a namespace for
this purpose. When a resource quota exists in a namespace, Kubernetes prevents the creation of
workloads that exceed the quota.

Whereas quota features in other systems often act on users or groups of users, Kubernetes
resource quotas act on namespaces.

Chapter 6 | Enable Developer Self-Service

apiVersion: vi
kind: ResourceQuota
metadata:
name: memory
namespace: example
spec:
hard: o
limits.memory: 4Gi
requests.memory: 2Gi
scopes: {}
scopeSelector: {} ©

© The hard key lists restrictions.

OO The scopes and scopeSelector keys define which namespace resources the quota applies
to. This course does not cover those keys.

The following sections describe the compute and object count quotas that you can include in the
hard key. Other components can define other quotas and enforce them.

Compute Resource Quotas

You can set the following compute quotas:

« limits.cpu

+ limits.memory

* requests.cpu

* requests.memory

Limit quotas interact with resource limits, and request quotas interact with resource requests.

Limit quotas control the maximum compute resources that the workloads in a namespace can
consume. Consider a namespace where all workloads have a memory limit. No individual workload
can consume enough memory to cause a problem. However, because users can create any number
of workloads, the workloads of a namespace can consume enough memory to cause a problem for
workloads in other namespaces. If you set a namespace memory usage limit, then the workloads in
the namespace cannot consume more memory than this limit.

Request quotas control the maximum resources that workloads in a namespace can reserve. If
you do not set namespace request quotas, then a single workload can request any quantity of
resources, such as RAM or CPU. This request can cause further requests in other namespaces
to fail. By setting namespace request quotas, the total requested resources by workloads in a

namespace cannot exceed the quota.

Excessive quotas can cause resource underutilization and can limit workload performance
unnecessarily.

After setting any compute quota, all workloads must define the corresponding request or resource
limit. For example, if you create a 1imits. cpu quota, then the workloads that you create require
the resources. limits.cpu key.

Object Count Quotas

A quota can also limit the number of resources of a given type in a namespace. For example, you
can create a quota that prevents the creation of more than 10 deployments in a namespace.

Chapter 6 | Enable Developer Self-Service

Clusters store resource definitions in a backing store. Kubernetes backing stores are databases,
and like any other database, the more data that they store, the more resources are needed for
adequate performance. Namespaces with many resources can impact Kubernetes performance.
Additionally, any process that creates cluster resources might malfunction and create unwanted
resources.

Setting object count quotas can limit the damage from accidents, and maintain adequate cluster
performance.

Note

E Red Hat validates the performance of OpenShift up to a specific number of objects
in a set of configurations. If you are planning a large cluster, then these results can
help you to size the cluster and to establish object count quotas.

See the references section for more information.

Some Kubernetes resources might affect external systems. For example, creating a persistent
volume might create an entity in the storage provider. Many persistent volumes might cause
issues in the storage provider. Examine the systems that your cluster interacts with to learn about
possible resource constraints, and establish object count quotas to prevent issues.

Use the count/resource_type syntax to set a quota for resources of the core group. Use the
oc api-resources command with an empty api-group parameter to list resources of the core

group.

[user@host ~]$ oc api-resources --api-group="" --namespaced=true
NAME SHORTNAMES APIVERSION NAMESPACED KIND
bindings vl true Binding

...output omitted...

For resources in other groups, use the count/resource_type.group syntax.

Kubernetes initially supported quotas for a limited set of resource types. These quotas do not
use the count/resource_type syntax. You might find a services quota instead of a count/
services quota. The Resource Quotas reference further describes these quotas.

Applying Project Quotas

Navigate to Administration > ResourceQuotas to create a resource quota from the web console.
The YAML editor loads an example resource quota that you can edit for your needs.

You can also use the oc command to create a resource quota. The oc command can create
resource quotas without requiring a complete resource definition. Execute the oc create
resourcequota --help command to display examples and help for creating resource quotas
without a complete resource definition.

For example, execute the following command to create a resource quota that limits the number of
pods in a namespace:

[user@host ~]$ oc create resourcequota example --hard=count/pods=1
resourcequota/example created

The previous command is equivalent to creating a resource quota with the following definition:

Chapter 6 | Enable Developer Self-Service

apiVersion: vi
kind: ResourceQuota
metadata:
name: example
spec:
hard:
count/pods: "1"

After creating a resource quota, the status key in the resource describes the current values and
limits in the quota.

[user@host ~]$% oc get quota example -o yaml
apiversion: vi
kind: ResourceQuota
metadata:
creationTimestamp: "2024-01-30T17:59:5272"
name: example
namespace: default
resourceVersion: "193658"
uid: df12b484-4e78-4920-ach4-e04ab286a4al
spec:
hard:
count/pods: "1"
status:
hard:
count/pods: "1"
used:
count/pods: "@"

The oc get and oc describe commands show resource quota information in a custom format.
The oc get command displays the status of the quota in resource lists:

[user@host ~]$ oc get quota
NAME AGE REQUEST LIMIT
example 9m54s count/pods: 1/1

Resource quotas generate the kube_resourcequota metric. You can examine this metric for
planning and trend analysis.

Chapter 6 | Enable Developer Self-Service

Me‘triCS Refresh off = Actions

¢ Hide graph

15m - Reset zoom [Stacked

=)
a7}

(=]
o

2:59 PM1:00 PM 1.01 PM 1:02 PM 1:03 PM 1:04 PM 1:05 PM 1:06 PM 1:07 PM 1:08 PM 1:.09 PM 110 PM T11PM 112 PM 113 PM

Insert metric at cursor = Add query Run queries

v kube_resourcequota{resourcequota="example", namespace="default"} X D H
Name container endpoint job namespace prometheus resource
. kube_resourcequota kube-rbac- https-main kube-state- default openshift- count/pods
proxy-main metrics monitoring/k8s
kube_resourcequota kube-rbac- https-main kube-state- default openshift- count/pods
proxy-main metrics monitoring/kSs
1-20f2 « 1 of 1

Figure 6.1: The kube_resourcequota metric

Troubleshooting Resource Quotas

Because resource quotas are extensible, Kubernetes cannot verify that a resource quota is correct.
For example, the following command creates a resource quota that has no effect:

[user@host ~]$ oc create resourcequota example --hard=count/deployment=1
resourcequota/example created

The correct syntax for limiting the number of deployments is count/deployments.apps.

To ensure that a resource quota is correct, you can use the following procedures:

+ Create a quota with an artificially low value in a testing environment, and ensure that the
resource quota has an effect.

+ Review the quota status.

For example, if a namespace contains a deployment, then an incorrectly defined resource quota
shows O deployments:

W D0O280-0OCP4.14-en-1-20240215

Chapter 6 | Enable Developer Self-Service

[user@host ~]$ oc get resourcequota
NAME AGE REQUEST LIMIT
example 2ma7s count/deployment: 0/1

However, a correctly defined resource quota shows the deployment:

[user@host ~]%$ oc get resourcequota
NAME AGE REQUEST LIMIT
example 4s count/deployments.apps: 1/1

Exceeding a quota often produces an error immediately. For example, if you create a deployment
that exceeds the deployment quota, then the deployment creation fails.

[user@host ~]$ oc create deployment --image=nginx hello

error: failed to create deployment: deployments.apps "hello" is forbidden:
exceeded quota: example, requested: count/deployments.apps=1, used: count/
deployments.apps=1, limited: count/deployments.apps=1

However, some quotas do not cause operations to fail immediately. For example, if you set a
resource quota for pods, then creating a deployment appears to succeed, but the deployment
never becomes available. When a resource quota is acting indirectly, namespace events might
provide further information.

[user@host ~]$ oc get event --sort-by .metadata.creationTimestamp

LAST SEEN TYPE REASON OBJECT MESSAGE
...output omitted...

10s Normal ScalingReplicaSet deployment/hello Scaled up
replica set hello-5cdfd9c858 to 1

9s Warning FailedCreate replicaset/hello-5cdfd9c858 Error

creating: pods "hello-5cdfd9c858-zsgn9" is forbidden: exceeded quota: example,
requested: count/pods=1, used: count/pods=1, limited: count/pods=1
5s Warning FailedCreate replicaset/hello-5cdfd9c858 (combined
from similar events): Error creating: pods "hello-5cdfd9c858-h2dv4" is forbidden:
exceeded quota: example, requested: count/pods=1, used: count/pods=1, limited:
count/pods=1

The web console also shows quota information. Navigate to Administration > ResourceQuotas to
view resource quotas and their status. The project pages on both the developer and administrator
perspectives also show the quotas that apply to a specific project.

Creating Quotas Across Multiple Projects

Cluster administrators can use resource quotas to apply restrictions to namespaces.

Resource restrictions often follow organization structure. Although namespaces often reflect
organization structure, cluster administrators might apply restrictions to resources without being
limited to a single namespace.

For example, a group of developers manages many namespaces. Namespace quotas can limit
RAM usage per namespace. However, a cluster administrator cannot limit total RAM usage by all
workloads that the group of developers manages.

Chapter 6 | Enable Developer Self-Service

OpenShift introduces cluster resource quotas for those scenarios.

Cluster resource quotas follow a similar structure to namespace resource quotas. However, cluster
resource quotas use selectors to choose which namespaces the quota applies to.

Cluster resource quotas selectors use set-based requirements.

The following example shows a cluster resource quota:

apiVersion: quota.openshift.io/v1
kind: ClusterResourceQuota
metadata:
name: example
spec:
quota: (1]
hard:
limits.cpu: 4
selector: (2]
annotations: {}
labels:
matchLabels:
kubernetes.io/metadata.name: example

© The quota key contains the quota definition. This key follows the structure of the
ResourceQuota specification. The hard key is nested inside the quota key, instead of
being directly nested inside the spec key as in resource quotas.

© The selector key defines which namespaces the cluster resource quota applies to. Other
Kubernetes features, such as services and network policies, use the same selectors.

Navigate to Administration > CustomResourceDefinitions to create a cluster resource quota with
the web console.

You can also use the oc command to create a cluster quota. The oc command can

create quotas without requiring a complete resource definition. Execute the oc create
clusterresourcequota --help command to display examples and help about creating
cluster resource quotas without a complete resource definition.

For example, execute the following command to create a resource quota that limits total CPU
requests. The quota limits the total CPU requests on namespaces that have the group label with
the dev value.

[user@host ~]$ oc create clusterresourcequota example
--project-label-selector=group=dev --hard=requests.cpu=10
clusterresourcequota/example created

Cluster resource quotas collect total resource usage across namespaces and enforce the limits.
The following example shows the status of the previous cluster resource quota:

apiVersion: quota.openshift.io/v1
kind: ClusterResourceQuota
metadata:

name: example
spec:

quota:

Chapter 6 | Enable Developer Self-Service

hard:
requests.cpu: "10"
selector:
annotations: null
labels:
matchLabels:
group: dev
status:
namespaces: (1]
- namespace: example-3
status:
hard:
requests.cpu: "10"
used:
requests.cpu: 500m
- namespace: example-2
status:
hard:
requests.cpu: "10"
used:
requests.cpu: 250m
...output omitted...
total: (2]
hard:
requests.cpu: "10"
used:
requests.cpu: 2250m

© The namespaces key lists the namespaces that the quota applies to. For each namespace,
the used key shows the current utilization.

© The total key aggregates the data in the namespaces key.

Users might not have read access to cluster resource quotas. OpenShift creates resources

of the AppliedClusterResourceQuota type in namespaces that are affected by

cluster resource quotas. Project administrators can review quota usage by reviewing the
AppliedClusterResourceQuota resources. For example, use the oc describe command to
view the cluster resource quotas that apply to a specific namespace:

[user@host ~]$ oc describe AppliedClusterResourceQuota -n example-2
Name: example

Created: 9 minutes ago

Labels: <none>

Annotations: <none>

Namespace Selector: ["example-3" "example-2" "example-4" "example-1"]
Label Selector: group=dev

AnnotationSelector: map[]

Resource Used Hard

requests.cpu 2250m 10

Chapter 6 | Enable Developer Self-Service

4

Note

The --all-namespaces argument to oc commands such as the get and
describe commands does not work with AppliedClusterResourceQuota
resources. These resources are listed only when you select a namespace.

Navigate to Administration > ResourceQuotas to view quotas and their status. This page

displays cluster quotas along with namespace quotas. Although you can view resources of the
ClusterResourceQuota type and create resources of the ResourceQuota type in the
ResourceQuotas page, you cannot create objects of the ClusterResourceQuota in this page.

The project pages on both the developer and administrator perspectives also show the cluster
quotas that apply to a specific project.

]

References

For more information, refer to the Quotas chapter in the Red Hat OpenShift
Container Platform 4.14 Building Applications documentation at
https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.14/html-single/building_applications/index#quotas

For more information about object counts, refer to the Planning Your Environment
According to Object Maximums chapter in the Red Hat OpenShift Container
Platform 4.14 Scalability and Performance documentation at
https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.14/html-single/scalability_and_performance/
index#planning-your-environment-according-to-object-maximums

Requests and Limits
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
#requests-and-limits

Resource Quotas
https://kubernetes.io/docs/concepts/policy/resource-quotas/

W D0O280-0OCP4.14-en-1-20240215

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/building_applications/index#quotas
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/building_applications/index#quotas
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/scalability_and_performance/index#planning-your-environment-according-to-object-maximums
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/scalability_and_performance/index#planning-your-environment-according-to-object-maximums
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/scalability_and_performance/index#planning-your-environment-according-to-object-maximums
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#requests-and-limits
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#requests-and-limits
https://kubernetes.io/docs/concepts/policy/resource-quotas/

Chapter 6 | Enable Developer Self-Service

» Guided Exercise

Project and Cluster Quotas

Configure quotas for a project so that applications cannot scale to consume all capacity of a
cluster node.

Outcomes
+ Verify that requesting resources in one namespace can prevent creation of workloads in
different namespaces.

+ Set a quota to prevent workloads in a namespace from requesting excessive resources.

+ Verify that you can continue to create workloads in different namespaces.

Before You Begin

As the student user on the workstation machine, use the lab command to prepare your
system for this exercise.

This command ensures that the cluster APl is reachable and deletes the namespaces that
you use in this exercise.

[student@workstation ~]$ lab start selfservice-quotas

Instructions

P 1. Login to your OpenShift cluster as the deve loper user with the deve loper password.

11. Loginto the cluster as the developer user.

[student@workstation ~]$ oc login -u developer -p developer \
https://api.ocp4.example.com: 6443
Login successful.

...output omitted...

) 2. Createaselfservice-quotas project.

21. Usethe oc new-project command to create the project.

[student@workstation ~]$ oc new-project selfservice-quotas
Now using project "selfservice-quotas" on server "https://
api.ocp4.example.com:6443".

...output omitted. ..

P 3. Create a deployment with a container that requests one CPU.

3.1. Usetheoc create command to create the deployment.

Chapter 6 | Enable Developer Self-Service

[student@workstation ~]$ oc create deployment test \
--image registry.ocp4.example.com:8443/redhattraining/hello-world-nginx
deployment.apps/test created

3.2. Usetheoc set resources command to request one CPU in the container
specification.

[student@workstation ~]$ oc set resources deployment test --requests=cpu=1
deployment.apps/test resource requirements updated

3.3. Use the oc get command to ensure that the deployment starts a pod correctly.

[student@workstation ~]$ oc get pod,deployment

NAME READY STATUS RESTARTS AGE
pod/test-8b9fdfbd9-bltlc 1/1 Running 0] 13s
NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/test 1/1 1 1 49s

Execute the command until the deployment and the pod are ready.
P 4. Try to scale the deployment to eight replicas.

4.1. Usetheoc scale command to scale the deployment.

[student@workstation ~]$ oc scale deployment test --replicas=8
deployment.apps/test scaled

4.2. Use the oc get command to view pods and deployments.

[student@workstation ~]$ oc get pod,deployment

NAME READY STATUS RESTARTS AGE
pod/test-6c66b55ch5-2keclt 1/1 Running 0 48m
pod/test-6c66b55ch5-5n58r 0/1 Pending 0 5s
pod/test-6c66b55ch5-8x929 0/1 Pending 0 5s
pod/test-6c66b55ch5-blgms 0/1 Pending 0 5s
pod/test-6c66b55ch5-d6z42 1/1 Running 0 6s
pod/test-6c66b55ch5-fc8bk 0/1 Pending 0 5s
pod/test-6c66b55ch5-t29dh 0/1 Pending 0 6s
pod/test-6c66b55ch5-xqr66 0/1 Pending 0 6s
NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/test 2/8 8 2 54m

Out of eight pods that the deployment creates, only some of them change to
Running status. The other pods stay in Pending status. Not all replicas of the
deployment are ready and available.

4.3. Use the oc get command to list events. Sort the events by their creation timestamp.

Chapter 6 | Enable Developer Self-Service

[student@workstation ~]$ oc get event --sort-by .metadata.creationTimestamp

LAST SEEN TYPE REASON OBJECT MESSAGE
...output omitted...
3m58s Normal ScalingReplicaSet deployment/test Scaled up
replica set test-6c66b55ch5 to 8
3m58s Normal Scheduled pod/test-6c66b55ch5-d6z42

Successfully assigned selfservice-quotas/test-6c66b55ch5-d6z42 to master0l
3m57s warning FailedScheduling pod/test-6c66b55ch5-5n58r 0/1 nodes

are available: 1 Insufficient cpu. preemption: 0/1 nodes are available: 1 No
preemption victims found for incoming pod..
...output omitted...

Replicas fail to schedule, because the cluster has insufficient CPU.
) 5. Examine the cluster as an administrator.

5.1. Login to the cluster as the admin user with the redhatocp password.

[student@workstation ~]$ oc login -u admin -p redhatocp
Login successful.

...output omitted...

5.2. Usetheoc adm top command to display the resource usage of nodes.

[student@workstation ~]$ oc adm top node
NAME CPU(cores) CPU% MEMORY(bytes) MEMORY%
master@l 772m 14% 10185Mi 68%

The cluster does not show high CPU usage.

5.3. Usetheoc describe command to view the node details.

[student@workstation ~]$ oc describe node/masteroil
Name: masterol
...output omitted...
Capacity:
cpu: 6
...output omitted...
Allocatable:
cpu: 5500m
...output omitted...
Allocated resources:
(Total limits may be over 100 percent, i.e., overcommitted.)

Resource Requests Limits
cpu 4627m (84%) 0 (0%)

memory 12102Mi (81%) O (0%)
ephemeral-storage 0 (0%) 0 (0%)
hugepages-1Gi 0 (0%) 0 (0%)
hugepages-2Mi 0 (0%) 0 (0%)

...output omitted...

Chapter 6 | Enable Developer Self-Service
The node has a capacity of six CPUs, and has more than five allocatable CPUs.
However, over five CPUs are requested, so less than one CPU is available for new

workloads.

) 6. Create a test project as an administrator, and verify that you cannot create new workloads
that request a CPU.

6.1. Usethe oc new-project command to create the project.

[student@workstation ~]$ oc new-project test
Now using project "test" on server "https://api.ocp4.example.com:6443".
...output omitted...

6.2. Use the oc create command to create the deployment.

[student@workstation ~]$ oc create deployment test \
--image registry.ocp4.example.com:8443/redhattraining/hello-wor ld-nginx
deployment.apps/test created

6.3. Usetheoc set resources command to request one CPU in the container
specification.

[student@workstation ~]$ oc set resources deployment test --requests=cpu=1
deployment.apps/test resource requirements updated

6.4. Use the oc get command to review the pods and deployments in the test
namespace.

[student@workstation ~]$ oc get pod,deployment

NAME READY STATUS RESTARTS AGE
pod/test-8b9fdfbd9-rrn7t 0/1 Pending 0 8s

pod/test-c454765f-vkt96 1/1 Running 0 100s
NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/test 1/1 1 1 100s

The deployment created one pod before adding the CPU request. When you updated
the deployment to request a CPU, the deployment tried to replace the pod to add
the CPU request. The new pod is in the Pending state, because the cluster has less
than one CPU available to request.

The workload in the selfservice-quotas namespace prevents the creation of
workloads in other namespaces.

6.5. Use the oc delete command to delete the test namespace.

[student@workstation ~]$ oc delete namespace test
namespace "test" deleted

P 7. Asanadministrator, scale the deployment to one replica.

71. Usethe oc project command to switch to the selfservice-quotas project.

Chapter 6 | Enable Developer Self-Service

[student@workstation ~]$ oc project selfservice-quotas
Now using project "selfservice-quotas" on server "https://
api.ocp4.example.com:6443".

7.2. Usethe oc scale command to scale the test deployment to one replica.

[student@workstation ~]$ oc scale deployment test --replicas=1
deployment.apps/test scaled

) 8. Create a quota to prevent workloads in the selfservice-quotas namespace from
requesting more than one CPU.

8.1. Usetheoc create command to create the quota.

[student@workstation ~]$ oc create quota one-cpu --hard=requests.cpu=1
resourcequota/one-cpu created

8.2. Use the oc get command to verify the quota.

[student@workstation ~]$ oc get quota one-cpu -o yaml
apiVersion: vi
kind: ResourceQuota
metadata:
creationTimestamp: "2024-01-30T18:26:49Z2"
name: one-cpu
namespace: selfservice-quotas
...output omitted...
spec:
hard:
requests.cpu: "1"
status:
hard:
requests.cpu: "1"
used:
requests.cpu: "1"

The test deployment already requests one CPU.
P 9. Try toscale the deployment to eight replicas and to create a second deployment.

9.1. Use the oc scale command to scale the deployment.

[student@workstation ~]$ oc scale deployment test --replicas=8
deployment.apps/test scaled

9.2. Usethe oc create command to create a second deployment.

[student@workstation ~]$ oc create deployment test2 \
--image registry.ocp4.example.com:8443/redhattraining/hello-world-nginx
deployment.apps/test2 created

Chapter 6 | Enable Developer Self-Service
9.3. Use the oc get command to review pods and deployments.

[student@workstation ~]$ oc get pod,deployment

NAME READY STATUS RESTARTS AGE
pod/test-6c66b55ch5-mdxjl 1/1 Running 0 2m58s
NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/test 1/8 1 1 3m20s
deployment.apps/test2 0/1 0 0 14s

The test deployment creates only two pods. The second deployment does not create
any pods.

9.4. Use the oc get command to examine the quota status.

[student@workstation ~]$ oc get quota one-cpu -o yaml
apiVersion: vi
kind: ResourceQuota
metadata:
name: one-cpu
namespace: selfservice-quotas
...output omitted. ..
spec:
hard:
requests.cpu: "1"
status:
hard:
requests.cpu: "1"
used:
requests.cpu: "1"

The used status is kept at 1 because the test2 deployment can't request more
resources in the quota.

9.5. Use the oc get command to list events. Sort the events by their creation timestamp.

[student@workstation ~]$ oc get event --sort-by .metadata.creationTimestamp

LAST SEEN TYPE REASON OBJECT MESSAGE
...output omitted. ..
4m42s Warning FailedCreate replicaset/test-6c66b55ch5

(combined from similar events): Error creating: pods " test -6c66b55ch5-
djrr9" is forbidden: exceeded quota: one-cpu, requested: requests.cpu=1, used:
requests.cpu=2, limited: requests.cpu=2
9Im3s wWarning FailedCreate replicaset/test2-7b9df44445 Error
creating: pods "test2-7b9df44445-98wxp" is forbidden: failed quota: one-cpu: must
specify requests.cpu for: hello-world-nginx
...output omitted. ..

The test deployment cannot create further pods, because the new pods would
exceed the quota. The test2 deployment cannot create pods, because the

deployment does not set a CPU request.

P 10. Create a test project to verify that you can create new workloads in other namespaces
that request CPU resources.

Chapter 6 | Enable Developer Self-Service
10.1. Use the oc new-project command to create the project.

[student@workstation ~]$ oc new-project test
Now using project "test" on server "https://api.ocp4.example.com:6443".
...output omitted...

10.2. Use the oc create command to create the deployment.

[student@workstation ~]$ oc create deployment test --image \
registry.ocp4.example.com:8443/redhattraining/hello-world-nginx
deployment.apps/test created

10.3. Use the oc set resources command to request one CPU in the container
specification.

[student@workstation ~]$ oc set resources deployment test --requests=cpu=1
deployment.apps/test resource requirements updated

10.4. Use the oc get command to review the pods and deployments in the test
namespace.

[student@workstation ~]$ oc get pod,deployment

NAME READY STATUS RESTARTS AGE
pod/test-8b9fdfbd9-447w9 1/1 Running 0] 21s
NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/test 1/1 1 1 51s

Even though you cannot create further workloads in the selfservice-quotas
namespace, you can create workloads that request CPUs in other namespaces when
the node has CPUs and memory available.

Finish
On the workstation machine, use the Tab command to complete this exercise. This step is
important to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab finish selfservice-quotas

Chapter 6 | Enable Developer Self-Service

Per-Project Resource Constraints: Limit
Ranges

Objectives

+ Configure default and maximum compute resource requirements for pods per project.

Managing Namespace Resources

Cluster administrators can set resource quotas on namespaces. Namespace quotas limit the
resources that workloads in a namespace use. Quotas address resource management at the
cluster level.

Kubernetes users might have further resource management needs within a namespace.

+ Users might accidentally create workloads that consume too much of the namespace quota.
These unwanted workloads might prevent other workloads from running.

+ Users might forget to set workload limits and requests, or might find it time-consuming to
configure limits and requests. When a namespace has a quota, creating workloads fails if the
workload does not define values for the limits or requests in the quota.

Kubernetes introduces limit ranges to help with these issues. Limit ranges are namespaced objects
that define limits for workloads within the namespace.

Limit Ranges

The following YAML file shows an example limit range:

apiVersion: vi
kind: LimitRange
metadata:
name: mem-limit-range
namespace: default

spec:
limits:
- default:
memory: 512Mi
defaultRequest:

memory: 256Mi
type: Container

Limit ranges can specify the following limit types:

Default limit
Use the default key to specify default limits for workloads.

Default request
Use the defaultRequest key to specify default requests for workloads.

Maximum
Use the max key to specify the maximum value of both requests and limits.

Chapter 6 | Enable Developer Self-Service

Minimum
Use the min key to specify the minimum value of both requests and limits.

Limit-to-request ratio
The maxLimitRequestRatio key controls the relationship between limits and requests. If
you set a ratio of two, then the resource limit cannot be more than twice the request.

This course does not cover limit-to-request ratios in detail.

Limit ranges can apply to containers, pods, images, image streams, and persistent volume claims.

Setting Maximum and Minimum Limit Ranges

When you set the max key, users cannot create workloads that declare limits or that make resource
requests over the maximum.

Use maximums to prevent accidentally high resource requests and limits. These situations can
exhaust quotas and cause other issues.

Consider allowing users who create workloads to edit maximum limit ranges. Although maximum
limit ranges act as a convenient safeguard, excessively low limits can prevent users from creating
legitimate workloads.

Minimum limit ranges are useful to ensure that users create workloads with enough requests and
limits. If users create such workloads often, then consider adding minimums.

Setting Defaults

Defaults are convenient in namespaces with quotas, and eliminate a need to declare limits
explicitly in each workload. When a quota is present, all workloads must specify the corresponding
limits and requests. When you set the default and defaultRequest keys, workloads use the
requests and limits from the limit range by default.

Defaults are especially convenient in scenarios where many workloads are created dynamically.
For example, continuous integration tools might run tests for each change to a source code
repository. Each test can create multiple workloads. Because many tests can run concurrently,
the resource usage of testing workloads can be significant. Setting quotas for testing workloads
is often needed to limit resource usage. If you set CPU and RAM quotas for requests and limits,
then the continuous integration tool must set the corresponding limits in every testing workload.
Setting defaults can save time with configuring limits. However, determining appropriate defaults
might be complex for namespaces with varied workloads.

Creating Limit Ranges

Consider a namespace with the following quota:

apiversion: vi
kind: ResourceQuota
metadata:

name: example

namespace: example
spec:

hard:

limits.cpu: "8"

Chapter 6 | Enable Developer Self-Service

limits.memory: 8Gi
requests.cpu: "4"
requests.memory: 4Gi

The following command creates a deployment:

[user@host ~]$ oc create deployment example --image=image
deployment.apps/example created

The quota prevents the deployment from creating pods:

[user@host ~]$ oc get event --sort-by .metadata.creationTimestamp

LAST SEEN TYPE REASON OBJECT MESSAGE
...output omitted...
13s Warning FailedCreate replicaset/example-74c57c8dff Error

creating: pods "example-74c57c8dff-rz1l7w" is forbidden: failed quota: example:
must specify limits.cpu for: hello-world-nginx; limits.memory for: hello-world-
nginx; requests.cpu for: hello-world-nginx; requests.memory for: hello-world-nginx
...output omitted...

The following limit range includes all types of limits:

apivVersion: vi
kind: LimitRange
metadata:
name: example
namespace: example

spec:
limits:
- default:
cpu: 500m
memory: 512Mi
defaultRequest:
cpu: 250m
memory: 256Mi
max:
cpu: "1"
memory: 1Gi
min:
cpu: 125m

memory: 128Mi
type: Container

Limit ranges do not affect existing pods. If you delete the deployment and run the oc create
command again, then the deployment creates a pod with the applied limit range.

[user@host ~]$ oc describe pod
...output omitted. ..

Containers:
hello-world-nginx:

Limits:
cpu: 500m

Chapter 6 | Enable Developer Self-Service

memory: 512Mi

Requests:
cpu: 250m
memory: 256M1

...output omitted. ..

The values correspond to the default and defaultRequest keys in the limit range.

The deployment does not contain any limits in the specification. The Kubernetes API server
includes an admission controller that enforces limit ranges. The controller affects pod definitions,
but not deployments, stateful sets, or other workloads.

You can replace the CPU limit, or add other resource specifications, by using the oc set
resources command:

[user@host ~]$ oc set resources deployment example --limits=cpu=new-cpu-limit

You can experiment with different CPU limits.

If you request CPU values outside the range that the min and max keys define, then Kubernetes
does not create the pods, and it logs warnings.

[user@host ~]$ oc get event --sort-by .metadata.creationTimestamp

LAST SEEN TYPE REASON OBJECT MESSAGE
...output omitted. ..
5m43s Warning FailedCreate replicaset/example-7c4dfc5fb8 Error

creating: pods "example-7c4dfc5fb8-q7x94" is forbidden: maximum cpu usage per
Container is 1, but limit is 1200m

...output omitted. ..

5m26s Warning FailedCreate replicaset/example-798d65c854 Error
creating: pods "example-798d65c854-b94k8" is forbidden: minimum cpu usage per
Container is 125m, but request is 100m

...output omitted. ..

S Note
When you experiment with deployments and resource quotas, consider what
happens when you modify a deployment. Modifications create a replacement replica
set, and the existing replica set also continues to run until the rollout completes.

The pods of both replica sets count towards the resource quota.

If the new replica set satisfies the quota, but the combined replica sets exceed the
quota, then the rollout cannot complete.

When creating a limit range, you can specify any combination of the default, defaultRequest,
min, and max keys. However, if you do not specify the default or defaultRequest keys, then
Kubernetes modifies the limit range to add these keys. These keys are copied from the min or max
keys. For more predictable behavior, always specify the default and defaultRequest keys if
you specify the min or max keys.

Also, the values for CPU or memory keys must follow these rules:

+ The max value must be higher than or equal to the default value.

Chapter 6 | Enable Developer Self-Service

+ The default value must be higher than or equal to the defaultRequest value.
+ The defaultRequest value must be higher than or equal to the min value.

Do not create conflicting limit ranges in a namespace. For example, if two default CPU values are
specified, then it would be unclear which one is applied.

References

For more information, refer to the Restrict Resource Consumption with Limit Ranges
section in the Working with Clusters chapter in the Red Hat OpenShift Container
Platform 4.14 Nodes documentation at
https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.14/html-single/nodes/index#nodes-cluster-limit-
ranges

Limit Ranges
https://kubernetes.io/docs/concepts/policy/limit-range/

W D0O280-0OCP4.14-en-1-20240215

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/nodes/index#nodes-cluster-limit-ranges
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/nodes/index#nodes-cluster-limit-ranges
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/nodes/index#nodes-cluster-limit-ranges
https://kubernetes.io/docs/concepts/policy/limit-range/

Chapter 6 | Enable Developer Self-Service

» Guided Exercise

Per-Project Resource Constraints: Limit
Ranges

Configure a project with default compute resource limits so pods do not run unconstrained.

Outcomes
+ Verify that workloads have no limits by default.

+ Create a limit range.

+ Create a workload and inspect the limits that the limit range adds to the containers.

Before You Begin

As the student user on the workstation machine, use the lab command to prepare your
system for this exercise.

This command ensures that the cluster APl is reachable and deletes the namespace that you
use in this exercise.

[student@workstation ~]$ lab start selfservice-ranges

Instructions

P 1. Asthe admin user, locate and navigate to the OpenShift web console.

11. Login to your OpenShift cluster as the admin user.

[student@workstation ~]$ oc login -u admin -p redhatocp \
https://api.ocp4.example.com: 6443
Login successful.

...output omitted. ..

1.2. ldentify the URL for the web console.

[student@workstation ~]$ oc whoami --show-console
https://console-openshift-console.apps.ocp4.example.com

1.3. Open a web browser and navigate to https://console-openshift-
console.apps.ocp4.example.com.

1.4. Click Red Hat Identity Management and log in as the admin user with the
redhatocp password.

P 2. Createaselfservice-ranges project.

Chapter 6 | Enable Developer Self-Service

2.1. Navigate to Home > Projects, and then click Create Project.

m
Projec Status Requester Created
Qjects
© Active No requeste @ Jan 23, 2024, 6:59 AM
@ Active No requeste: @ Jan 23, 2024, 6:59 AM ¥
@ Active No requeste: @ Jan 23, 2024, 6:59 AM

2.2. Type selfservice-ranges in the Name field, and then click Create.

Create Project
An OpenShift project is an alternative representation of a Kubernetes namespace,
Learn more about werking with projects &

Name * @

selfservice-ranges

Display name

Description

SIS ‘

P 3. Create an example deployment.

3.1. Navigate to Workloads > Deployments, and then click Create Deployment.

& Administrator

Create Deployment

Operat

No Deployments found

Deployments

3.2. Ensure that Form view is selected, and then type example in the Name field.

W D0O280-0OCP4.14-en-1-20240215

Chapter 6 | Enable Developer Self-Service

Project: selfservice-ranges +~

Configurevia: ® Formview O YAML view

€ DeploymentConfigis being deprecated with OpenShift 414

Feature development of DeploymentConfigs will be deprecated in OpenShift Container Platform 4.4
DeploymentCaonfigs will continue to be supported for security and critical fixes, but you should migrate to Deployments wherever it is possible,

Learn more about Deployments&

) Note: Some fields may not be represented in this form view. Please select "YAML view" for full control. x

Name *

example

You create this deployment several times during this exercise. To use the terminal
instead for the exercise, copy the deployment definition from the YAML editor.

3.3. Click Create to create the deployment.
P 4. Examine the containers in the deployment.

41. Wait a few seconds until the Deployment Details section shows that the deployment
scaled to three pods.

Deployments *» Deployment details

©® example Actions ~

Details Metrics YAML ReplicaSets Pods Environment Events

Deployment details

Name Update strategy
example RollingUpdate

4.2. Click the Pods tab, and then click the name of any of the pods in the example
deployment.

D0O280-0OCP4.14-en-1-20240215 w

Chapter 6 | Enable Developer Self-Service

Details Metrics

Y Filter ~

Name T

Name

@ example

85ffc588bb-7nmzv

@ example-

85f1c588bb-pwjbs

e example-

85ffc588bb-rsw7v

YAML

Status

& Running

< Running

2 Running

ReplicaSets Environment

/
Ready
il o
i1 0
w1 o

Restarts

Events

Owner

@ example

85ffc588bb

eoxnmalo-

85ffc588bb

° example-

85ffc588bb

The name of the pods might differ from the ones you get.

4.3. Scroll to the Containers section, and then click container.

Project: selfservice-ranges +«

Jnnatations

4 annotations #

Created at
@ Feb 6,2024, 3:36 PM

Owner

@ example-85ffc588bb

Containers

Name

e container

Image

image-registry.openshift-image...

Node
@ masterQ]
Image pull secret
9 default kercfg-j9477
PodDisruptionBudget
No PodDisruptionBudget
Receiving Traffic
N
State Restarts
& Running o

Memory

Started

@ Feb 6, 2024, 3:36
PM

Figure 6.8: The container link in the pod details page

4.4. Verify that the Resource requests and Resource limits fields show a hyphen.
Containers do not have resource requests nor limits by default.

D0O280-0OCP4.14-en-1-20240215

Chapter 6 | Enable Developer Self-Service

Project: selfservice-ranges =

@ container & running

Container details

State

& Running

ID
cri-o/f437elaf437dcbcc69ee56alf2801814560696b85de2605falbbd02de542f04e

Restarts
4]

Resource requests

Resource limits

Figure 6.9: Container resources
P 5. Create alimitrange.

5.1. Navigate to Administration > LimitRanges, and then click Create LimitRange.

Create LimitRange

Mo LimitRanges found

5.2. The YAML editor displays a template that defines a limit range for containers. The
limit range sets a default memory request of 256 Mi and a default memory limit of
512 Mi.

D0O280-0OCP4.14-en-1-20240215 w

Chapter 6 | Enable Developer Self-Service

Project: selfservice-ranges v

Create LimitRange

Create by manually entering YAML or JSON definitions, or by dragging and dropping a file into the editor.

t +|Fl| Accessibility help @ View shortcuts Show tooltips LimitRange X

Schema

wWoN e

LimitRange sets resource usage
limits for each kind of resource in a

4
5
6
)
8

Namespace.

o

= apivVersion

string

I
(==

APIVersion defines the
versioned schema of this
representation of an object

Servers should convert
Click Create to create a limit range with the template definition.

) 6. Examine the containers of the original deployment to verify that the limit range did not add
resource requests nor limits.

6.1. Navigate to Workloads > Pods, and then click the name of any of the pods in the
examp le deployment.

L Metr YAMIL R % Environn Even
Y Filter = Name / m
Name T Status Ready Restarts Owner Memory
% Runining 11 0
Bbb-7nmzv
2 Running "l 4] -
v .)'.
< Running i (o] -

6.2. Scroll to the Containers section, and then click container.

Chapter 6 | Enable Developer Self-Service

Project: selfservice-ranges
Node
Annotations @ master0!
4 annotations #
Image pull secret
Created at © default-dockercfg-j9477
@ reb 65,2024, 3:36 PM

PodDisruptionBudget
Owner No PodDisruptionBudget
@ example-B5ficsa8bb
Receiving Traffic
N
Containers
Name Image State Restarts Started
e container image-registry.openshift-image £ Running (4] @ reb 6, 2024 336
PM

6.3. The Resource requests and Resource limits fields continue to show a hyphen.

Project: selfservice-ranges =

@ container 2 running

Container details

State

& Running

ID
cri-o,//437elaf437dcbcc69ee56alf2801814560696b815de26b5falbbd02de 54204

Restarts
0

Resource requests

Resource limits

) 7. Delete the deployment.

7). Navigate to Workloads > Deployment. Click the vertical ellipsis (:) menu at the end
of the example row, and then click Delete Deployment. Click Delete to confirm.

D0O280-0OCP4.14-en-1-20240215 w

Chapter 6 | Enable Developer Self-Service

Name Status Labels Pod selector

@ example 3 of 3 pods Mo labels Q app=example
Edit Pod count
Add HorizontalPodAutoscaler
Add PodDisruptionBudget
Pause rollouts
Restart rollout
Add Health Checks
Add storage
Edit update strategy
Edit resource limits
Edit labels
Edit annotations
Edit Deployment

Delete Deployment

) 8. Create the example deployment again.

8.1. Navigate to Workloads > Deployments, and then click Create Deployment.

Deployment

No Deployments found

Deployments

8.2. Ensure that Form view is selected, and then type example in the Name field.
Project: selfservice-ranges +~

Configurevia: ® Formview O YAML view

(i] DeploymentConfig is being deprecated with OpenShift 414
Feature development of DeploymentConfigs will be deprecated in OpenShift Container Platform 4.14.
DeploymentCaonfigs will continue to be supported for security and critical fixes, but you should migrate to Deployments wherever it is possible,

Learn more about Deplo nts2

) Note: Some fields may not be represented in this form view. Please select "YAML view" for full control. x

Name *

example

8.3. Click Create to create the deployment.

W D0O280-0OCP4.14-en-1-20240215

Chapter 6 | Enable Developer Self-Service

P 9. Examine the containers in the deployment.

9.1. Wait a few seconds until the Deployment Details section shows that the deployment

scaled to three pods.

Deployments * Deployment details

©® example
Details Metrics YAML ReplicaSets Pods Environment Events
Deployment details
-~
Name Update strategy
example RollingUpdate
9.2. Click the Pods tab, and then click the name of any of the pods.
Details Metrics YAML ReplicaSets Pods Environment Events
Y Filter = MName = m
Name T Status Ready Restarts Qwner
@%\x:mpl?— 2 Running 11 0 @ example-
85ffc588bb-7hlcc 85ffc588bb
e.axemplp— & Running 111 o] @ example-
85ffc588bb-swk5f 85ffc58Bbb
@Mampl’a— & Running /1 (o] @ example-
85ffc588bb-x9z4h 85ffc588bb

9.3. Scroll to the Containers section, and then click container.

Node
Annotations @ master0l
5 annotations &
Image pull secret
Created at © default-dockercig-j9477
@ Feb 6, 2024, 730 PM
PodDisruptionBudget
Owner Neo PodDisruptionBudget
€D =xample-85ifc588bb
Recelving Traffic
Ny
Containers
Mame Image State Restarts
@ container image-registry.openshift-image... £ Running 4]

Memory

Started

Actions «

..

@ Feb 6,2024, 7:30

PM

9.4. Note that the Resource requests and Resource limits fields now have values that

correspond to the limit range.

D0O280-0OCP4.14-en-1-20240215

Chapter 6 | Enable Developer Self-Service

Container details

State

& Running

D
cri-o./fd9e2a2994i 3e7d092c1874a7f8a9ed43c4be57bi313a8bc71953bae277 daalt

Restarts
0

Resource requests

memeory: 256Mi

Resource limits

memaory: 512Mi

Lifecycle hooks

P 10. Examine the deployment.

10.1. Navigate to Workloads > Deployments, and then click example.

Name =

Name Status Labels Pod selector

3 of 3 pods Mo Q\|.|.;a|'-|.-.-

10.2. Click YAML to show the YAML editor.

©® example Pations b=

Deta Metrics | YAML ReplicaSets Pods Environment Events

Alt |+ F1 Acce: v helf @ View shortcuts Show tooltips 0 view sidebar

~ W E W N

8
9

-
=3

10.3. The YAML editor displays the resource definition of the deployment.

kind: Deployment
apivVersion: apps/vi
metadata:
name: example
namespace: selfservice-ranges
...output omitted. ..
spec:
replicas: 3

Chapter 6 | Enable Developer Self-Service

selector:
matchLabels:
app: example
template:
metadata:
creationTimestamp: null
labels:
app: example
spec:
containers:
- name: container
image: >-

image-registry.openshift-image-registry.svc:5000/openshift/
httpd: latest
ports:
- containerPort: 8080
protocol: TCP
resources: {}
terminationMessagePath: /dev/termination-log
...output omitted. ..

Although the containers have resource limits and requests, the resources key in
the deployment is empty. Limit ranges modify containers to add resource limits and
requests, but not deployments.

P 1. Evaluate the limit range by examining pod metrics.

1.1. Navigate to Workloads > Pods, and then click the name of any of the pods.

Metrics YAML Repl Pods Environment Ev

Y Filter ~ Name =~ m
Name 1 Status Ready Restarts Qwner Memory
2 Running 11 o] -
& Running il o] -
£ Running il o -

1.2. Click Metrics.

D0O280-0OCP4.14-en-1-20240215 w

Chapter 6 | Enable Developer Self-Service

Project: selfservice-ranges
@ example-85ffc588bb-7hlcc 2 runming D o
Details Metrics | YAM Environment Logs Events Terminal
Memory usage
40
735 PM 740 PM 7:45PM

Finish

Figure 6.25: Pod metrics

The Memory usage graph displays the memory usage of the pod (about 50 MiB), the
request (256 MiB), and the limit (512 MiB).

The template deployment in the web console uses an ht tpd image that consumes
little memory. In this case, the limit range requests more memory than the container
requires to work. If you create many similar deployments, then the limit range can
cause the deployments to request more memory than they need. If the namespace
has resource quotas, then you might not be able to create workloads even if the
cluster has enough available resources.

Most real workloads have larger memory usage that varies with load. Evaluate the
resource usage of your workloads to decide whether limit ranges can help you to
manage cluster resources, and examine resource usage to find adequate values.

On the workstation machine, use the Tab command to complete this exercise. This step is
important to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab finish selfservice-ranges

D0O280-0OCP4.14-en-1-20240215

Chapter 6 | Enable Developer Self-Service

The Project Template and the Self-
Provisioner Role

Objectives

+ Configure default quotas, limit ranges, role bindings, and other restrictions for new projects, and
the allowed users to self-provision new projects.

Project Creation

Kubernetes provides namespaces to isolate workloads.

Namespace metadata has security implications in clusters. For example, policy controllers might
use namespace labels to limit capabilities in a namespace. If users can modify namespaces, then
malicious users can modify namespace metadata to override security measures.

Additionally, namespaces are not namespaced. Therefore, granting granular access to
namespaces poses some challenges. For example, with Kubernetes role-based access control, you
cannot allow users to list a subset of namespaces. However, to allow users to list their namespaces,
you must allow them to list all namespaces.

E Note
Listing resources and viewing individual resources are different operations. You
can grant users permissions to view specific namespaces, but listing namespaces
requires a separate permission.

OpenShift introduces projects to improve security and users' experience of working with
namespaces. The OpenShift APl server adds the Project resource type. When you make a query
to list projects, the APl server lists namespaces, filters the visible namespaces to your user, and
returns the visible namespaces in project format.

Additionally, OpenShift introduces the ProjectRequest resource type. When you create

a project request, the OpenShift APl server creates a namespace from a template. By using

a template, cluster administrators can customize namespace creation. For example, cluster
administrators can ensure that new namespaces have specific permissions, resource quotas, or
limit ranges.

These features provide self-service management of namespaces. Cluster administrators can
allow users to create namespaces without allowing users to modify namespace metadata.
Administrators can also customize the creation of namespaces to ensure that namespaces follow
organizational requirements.

Planning a Project Template

You can add any namespaced resource to the project template. For example, you can add
resources of the following types:

Roles and role bindings
Add roles and role bindings to the template to grant specific permissions in new projects.
The default template grants the admin role to the user who requests the project. You can
keep this permission or use another similar permission, such as granting the admin role to

Chapter 6 | Enable Developer Self-Service

a group of users. You can also add different permissions, such as more granular permissions
over specific resource types.

Resource quotas and limit ranges
Add resource quotas to the project template to ensure that all new projects have resource
limits. If you add resource quotas, then creating workloads requires explicit resource limit
declarations. Consider adding limit ranges to reduce the effort for workload creation.

Even with quotas in all namespaces, users can create projects to continue adding workloads
to a cluster. If this scenario is a concern, then consider adding cluster resource quotas to the
cluster.

Network policies
Add network policies to the template to enforce organizational network isolation
requirements.

Creating a Project Template

The oc adm create-bootstrap-project-template command prints a template that you
can use to create your own project template.

This template has the same behavior as the default project creation in OpenShift. The template
adds a role binding that grants the admin cluster role over the new namespace to the user who
requests the project.

Project templates use the same template feature as the oc new-app command.

Execute the following command to create a file with an initial template:

[user@host ~]% oc adm create-bootstrap-project-template -o yaml > file

This initial template has the following content:

apiVersion: template.openshift.io/v1
kind: Template
metadata:
creationTimestamp: null
name: project-request
objects: (1]
- apiVersion: project.openshift.io/v1 (2]
kind: Project
metadata:
annotations:
openshift.io/description: ${PROJECT_DESCRIPTION}
openshift.io/display-name: ${PROJECT_DISPLAYNAME}
openshift.io/requester: ${PROJECT_REQUESTING_USER}
creationTimestamp: null
name: ${PROJECT_NAME}
spec: {}
status: {}
- apiVersion: rbac.authorization.k8s.io/v1 (3]
kind: RoleBinding
metadata:
creationTimestamp: null
name: admin

Chapter 6 | Enable Developer Self-Service

namespace: ${PROJECT_NAME}
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: admin
subjects:
- apiGroup: rbac.authorization.k8s.io
kind: User
name: ${PROJECT_ADMIN_USER}
parameters:
- name: PROJECT_NAME
- name: PROJECT_DISPLAYNAME
- name: PROJECT_DESCRIPTION
- name: PROJECT_ADMIN_USER
- name: PROJECT_REQUESTING_USER

The resources that OpenShift creates in new namespaces
The project resource

A role binding to grant the admin role to the requesting user

©O 0 0 ©

The parameters that are available to the template

When a user requests a project, OpenShift replaces the ${VARIABLE?} syntax with the parameters
of the project request, and creates the objects in the objects key.

Modify the object list to add the required resources for new namespaces.

The YAML output of oc commands that return lists of objects is formatted similarly to the
template objects key.

[user@host ~]$ oc get limitrange,resourcequota -o yaml
apiVersion: vi
items:
- apiversion: vi
kind: LimitRange
metadata:
creationTimestamp: "2024-01-31T17:48:232"
name: example
namespace: example
resourceVersion: "881771"
uid: dOc19c60-00a9-4028-acc5-22680f1ea658

spec:
limits:
- default:
cpu: 500m
memory: 512Mi
defaultRequest:
cpu: 250m
memory: 256Mi
max:
cpu: "1"
memory: 1Gi
min:

Chapter 6 | Enable Developer Self-Service

cpu: 125m
memory: 128Mi
type: Container
- apiversion: vi
kind: ResourceQuota
metadata:
creationTimestamp: "2024-01-31T17:48:04Z2"
name: example
namespace: example
resourceVersion: '"881648"
uid: 108f0771-dcl11-4289-ae76-6514d58bbece
spec:
hard:
count/pods: "1"
status:
...output omitted...
kind: List
metadata:
resourceVersion: ""

Some common resources in project templates, such as quotas, do not have strict validation. For
example, if the previous template contains the count/pod text instead of the count/pods text,
then the quota does not work. You can create the project template, and new namespaces contain
the quota, but the quota does not have an effect. To define a project template and to reduce the
risk of errors, you can perform the following steps:

+ Create a namespace.
+ Create your chosen resources and test until you get the intended behavior.
+ List the resources in YAML format.

+ Edit the resource listing to ensure that the definitions create the correct resources. For example,
remove elements that do not apply to resource creation, such as the creationTimestamp or
status keys.

+ Replace the namespace name with the ${PROJECT_NAME} value.

+ Add the list of resources to the project template that the oc adm create-bootstrap-
project-template command generates.

E Note
Extracting a resource definition from an existing resource might not always produce
correct results. Besides including elements that do not apply to resource creation,
existing definitions might contain attributes that generate unexpected behavior. For
example, a controller might add to resources some annotations that are unsuitable
for template definitions.

Even after testing the resources in a test namespace, always verify that the projects
that are created from your template have only the required behavior.

Use the oc create command to create the template resource in the openshift-config
namespace:

Chapter 6 | Enable Developer Self-Service

[user@host ~]$ oc create -f template -n openshift-config
template.template.openshift.io/project-request created

Configuring the Project Template

Update the projects.config.openshift.io/cluster resource to use the new project
template. Modify the spec section. By default, the name of the project template is project -
request.

apiVersion: config.openshift.io/v1
kind: Project
metadata:
...output omitted. ..

name: cluster
...output omitted. ..
spec:

projectRequestTemplate:

name: project-request

A successful update to the projects.config.openshift.io/cluster resource rolls out a
new version of the apiserver deploymentin the openshift-apiserver namespace. After
the new apiserver deployment completes, new projects create the resources in the customized
project template.

i ; Note
During the apiserver deployment rollout, APl requests can produce unexpected
results.

To revert to the original project template, modify the projects.config.openshift.io/
cluster resource to clear the spec resource to match the spec: {} format.

Managing Self-provisioning Permissions

Users with the self-provisioner cluster role can create projects. By default, the self-
provisioner role is bound to all authenticated users.

Control the binding of the role to limit which users can request new projects.

i~ | Important
Remember that users with namespace permissions can create namespaces that do
not use the project template.

Use the oc describe command to view the role bindings.

[user@host ~]$ oc describe clusterrolebinding.rbac self-provisioners
Name: self-provisioners

Labels: <none>

Annotations: rbac.authorization.kubernetes.io/autoupdate: true
Role:

Chapter 6 | Enable Developer Self-Service

Kind: ClusterRole
Name: self-provisioner
Subjects:
Kind Name Namespace

Group system:authenticated:oauth

This role binding has an rbac.authorization. kubernetes.io/autoupdate annotation.
This annotation protects roles and bindings from modifications that can interfere with the working
of clusters. When the API server starts, the cluster restores resources with this annotation
automatically, unless you set the annotation to the false value.

To make changes, disable automatic updates with the annotation, and edit the subjects in the
binding.

i | Important
= Theoc adm policy remove-cluster-role-from-group command removes
the cluster role binding when you remove the last subject.

Use extra caution or avoid this command to manage protected role bindings. The
command removes the permission, but only until the APl server restarts. Removing
the permission permanently after deleting the binding is a lengthier process than
changing the subjects.

For example, to disable self-provisioning, execute the following commands:

[user@host ~]$ oc annotate clusterrolebinding/self-provisioners \
--overwrite rbac.authorization.kubernetes.io/autoupdate=false
clusterrolebinding.rbac.authorization.k8s.io/self-provisioners annotated
[user@host ~]$ oc patch clusterrolebinding.rbac self-provisioners \
-p '{"subjects": null}'
clusterrolebinding.rbac.authorization.k8s.io/self-provisioners patched

You can also use the oc edit command to modify any value of a resource. The command
launches the vi editor to apply your modifications. For example, to change the subject of the role
binding from the system:authenticated:oauth group to the provisioners group, execute
the followign command:

[user@host ~]$ oc edit clusterrolebinding/self-provisioners
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
...output omitted...
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: self-provisioner

subjects:
- apiGroup: rbac.authorization.k8s.io
kind: Group

name: provisioners

Chapter 6 | Enable Developer Self-Service

References

For more information, refer to the Configuring Project Creation section in the
Projects chapter in the Red Hat OpenShift Container Platform 4.14 Building
Applications documentation at
https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.14/html-single/building_applications/
index#configuring-project-creation

Customizing OpenShift Project Creation
https://developers.redhat.com/blog/2020/02/05/customizing-openshift-project-
creation/

D0O280-0OCP4.14-en-1-20240215 w

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/building_applications/index#configuring-project-creation
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/building_applications/index#configuring-project-creation
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/building_applications/index#configuring-project-creation
https://developers.redhat.com/blog/2020/02/05/customizing-openshift-project-creation/
https://developers.redhat.com/blog/2020/02/05/customizing-openshift-project-creation/

Chapter 6 | Enable Developer Self-Service

» Guided Exercise

The Project Template and the Self-
Provisioner Role

Restrict the ability to self-provision projects to a group of users, and ensure that all users
from that group have write privileges on all projects that any of them creates. Also, ensure
that their new projects are constrained by a limit range that restricts memory usage.

Outcomes
+ Limit project creation to a group of users.

+ Customize project creation.

Before You Begin

As the student user on the workstation machine, use the lab command to prepare your
system for this exercise.

This command performs the following actions:
+ Ensure that the cluster APl is reachable.

- Create the provisioner1 and provisioner2 users with the redhat password.

[student@workstation ~]$ lab start selfservice-projtemplate

Instructions

In this exercise, you configure the cluster so that only members of the provisioners group can
create projects. Members of the provisioners group have full permissions on new projects.
Users cannot create workloads that request more than 1 GiB of RAM in new projects.

P 1. Login to your OpenShift cluster as the admin user with the redhatocp password.

11. Loginto the cluster as the admin user.

[student@workstation ~]$ oc login -u admin -p redhatocp \
https://api.ocp4.example.com: 6443

Login successful.

...output omitted. ..

P 2. Allow only members of the provisioners group to create projects.

2. Examine the provisioners group.

Chapter 6 | Enable Developer Self-Service

[student@workstation ~]$ oc describe group provisioners

Name: provisioners

Created: 12 seconds ago

Labels: <none>

Annotations: <none>

Users: provisioneril
provisioner2

The provisioners group contains the provisionerl and provisioner2 users.

2.2. Usetheoc edit command to edit the self-provisioners cluster role binding.

[student@workstation ~]$ oc edit clusterrolebinding self-provisioners

The oc edit command launches the vi editor to apply your modifications. Change
the subject of the role binding from the system:authenticated:oauth group to
the provisioners group.

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
...output omitted. ..
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: self-provisioner

subjects:
- apiGroup: rbac.authorization.k8s.io
kind: Group

name: provisioners

S Note
The rbac.authorization.kubernetes.io/autoupdate annotation protects
this cluster role binding. If the API server restarts, then Kubernetes restores this
cluster role binding.

In this exercise context, you are not required to make the change permanent.

Not in this exercise, but in a real-world context, you would make the change
permanent by using the following command:

[user@host ~]$ oc annotate clusterrolebinding/self-provisioners \

--overwrite rbac.authorization.kubernetes.io/autoupdate=false

P 3. \Verify that users outside the provisioners group cannot create projects.

3.1. Loginto the cluster as the deve loper user with the developer password.

Chapter 6 | Enable Developer Self-Service

[student@workstation ~]$ oc login -u developer -p developer
Login successful.

You don't have any projects. Contact your system administrator to request a
project.

After the role binding is changed, the oc login command reports that you must
contact your system administrator to request a project, because the developer user

cannot create projects.

3.2. Verify that the developer user cannot create projects.

[student@workstation ~]$ oc new-project test
Error from server (Forbidden): You may not request a new project via this API.

P 4. Verify that members of the provisioners group can create projects.

4]. Loginto the cluster as the provisioner1 user with the redhat password.

[student@workstation ~]$ oc login -u provisionerl -p redhat
Login successful.

You don't have any projects. You can try to create a new project, by running
...output omitted. ..

4.2. Create a project by using the oc new-project command.

[student@workstation ~]$ oc new-project test
Now using project "test" on server "https://api.ocp4.example.com:6443".
...output omitted...

4.3. Verify that you can create resources in the test project.

[student@workstation ~]$ oc create configmap test
configmap/test created

P 5. Verify that another member of the provisioners group cannot access the test project.

51 Loginto the cluster as the provisioner2 user with the redhat password.

[student@workstation ~]$ oc login -u provisioner2 -p redhat
Login successful.

You don't have any projects. You can try to create a new project, by running
oc new-project <projectname>

The oc login command reports that the provisioner2 user does not have any
projects.

5.2. Try to change to the test project with the oc project command.

Chapter 6 | Enable Developer Self-Service

[student@workstation ~]$ oc project test

error: You are not a member of project "test".

You are not a member of any projects. You can request a project to be created with
the 'new-project' command.

P 6. Loginto the cluster as the admin user with the redhatocp password, to clean up.

6.]. Loginasthe admin user.

[student@workstation ~]$ oc login -u admin -p redhatocp
...output omitted. ..

6.2. Delete the test project.

[student@workstation ~]$ oc delete project test
project.project.openshift.io "test" deleted

P 7. Create a namespace to design a project template. Add a limit range that prevents users
from creating workloads that request more than 1 GiB of RAM.

71. Usetheoc create namespace command to create the template-test
namespace.

[student@workstation ~]$ oc create namespace template-test
namespace/template-test created

7.2. Editthe ~/D0280/1labs/selfservice-projtemplate/limitrange.yaml file
to add the limit. The file must match the following content:

apivVersion: vi
kind: LimitRange
metadata:

name: max-memory

namespace: template-test
spec:

limits:

- max:

memory: 1Gi
type: Container

7.3. Usethe oc create command to create the limit range that the ~/D0280/labs/
selfservice-projtemplate/limitrange.yaml file defines.

[student@workstation ~]$ oc create \
-f ~/D0280/1labs/selfservice-projtemplate/limitrange.yaml
limitrange/max-memory created

7.4. Examine the ~/D0280/1labs/selfservice-projtemplate/deployment.yaml
file. This file defines a deployment that requests 2 GiB of RAM.

Chapter 6 | Enable Developer Self-Service

apivVersion: apps/vi
kind: Deployment
metadata:
...output omitted...
name: test
spec:
...output omitted...
template:
...output omitted...
spec:
containers:
- image: registry.ocp4.example.com:8443/redhattraining/hello-wor1ld-
nginx:v1.0
name: hello-world-nginx
resources:
limits:
memory: 26Gi

7.5. Create the deployment by using the ~/D0280/labs/selfservice-
projtemplate/deployment.yaml file.

[student@workstation ~]$ oc create \
-f ~/D0280/1labs/selfservice-projtemplate/deployment.yaml \
-n template-test

deployment.apps/test created

7.6. Examine the pods and eventsin the template-test namespace.

[student@workstation ~]$ oc get pod -n template-test
No resources found in template-test namespace.

[student@workstation ~]$ oc get event -n template-test \
--sort-by=metadata.creationTimestamp

LAST SEEN TYPE REASON OBJECT MESSAGE
...output omitted...
39s Warning FailedCreate replicaset/test-846769884c Error

creating: pods "test-846769884c-5zjhw" is forbidden: maximum memory usage per
Container is 1Gi, but limit is 2Gi

The limit range maximum prevents the deployment from creating pods.

) 8. Define the project template.

The ~/D0280/solutions/selfservice-projtemplate/template.yaml file
contains a solution.

81. Usetheoc adm create-bootstrap-project-template command to printan
initial project template. Redirect the output to the template.yaml file.

[student@workstation ~]$ oc adm create-bootstrap-project-template \
-0 yaml >template.yaml

Chapter 6 | Enable Developer Self-Service

8.2. Use the oc command to list the limit range in YAML format. Redirect the output to
append to the template.yaml file.

[student@workstation ~]$ oc get limitrange -n template-test \
-0 yaml >>template.yaml

8.3. Editthe template.yaml file to perform the following operations:
+ Apply the following changes to the subjects key in the admin role binding:
- Change the kind key to Group.
- Change the name key to provisioners.
+ Move the limit range to immediately after the role binding definition.

+ Replace the namespace: template-test text with the namespace:
${PROJECT_NAME} text.

+ Remove any left-over content after the parameters block.

+ Remove the following keys from the limit range and quota definitions:
- creationTimestamp
- resourcevVersion
- uid

If you use the vi editor, then you can use the following procedure to move a block of
text:

+ Move to the beginning of the block.

+ Press V to enter visual line mode. This mode selects entire lines for manipulation.
+ Move to the end of the block. The editor highlights the selected lines.

+ Press d to delete the lines and to store them in a register for later use.

+ Move to the destination.

+ Press P to insert the lines that are stored in the register.

You can also press dd to delete entire lines, and press . to repeat the operation.

The resulting file should match the following content:

apiVersion: template.openshift.io/v1
kind: Template
metadata:
creationTimestamp: null
name: project-request
objects:
- apiVersion: project.openshift.io/v1
kind: Project
metadata:
annotations:
openshift.io/description: ${PROJECT_DESCRIPTION}
openshift.io/display-name: ${PROJECT_DISPLAYNAME}
openshift.io/requester: ${PROJECT_REQUESTING_USER}

Chapter 6 | Enable Developer Self-Service

creationTimestamp: null
name: ${PROJECT_NAME}

spec: {}

status: {}

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding

metadata:

creationTimestamp: null
name: admin
namespace: ${PROJECT_NAME}
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: admin

subjects:
- apiGroup: rbac.authorization.k8s.io
kind: Group

name: provisioners
apiVersion: vi

kind:

LimitRange

metadata:

name: max-memory
namespace: ${PROJECT_ NAME}

spec:
limits:
- default:
memory: 1Gi
defaultRequest:
memory: 1Gi
max:

memory: 1Gi

type: Container

parameters:

- name: PROJECT_NAME

- name: PROJECT_DISPLAYNAME

- name: PROJECT_DESCRIPTION

- name: PROJECT_ADMIN_USER

- name: PROJECT_REQUESTING_USER

{4

Note
The limit range has default and defaultRequest limits, although the definition

does not contain these keys. When creating a limit range, always set the default
and defaultRequest limits for more predictable behavior.

P 9. Create and configure the project template.

9.1

Use the oc command to create the project template.

[student@workstation ~]$ oc create -f template.yaml -n openshift-config
template.template.openshift.io/project-request created

9.2. Use the oc edit command to change the global cluster project configuration.

Chapter 6 | Enable Developer Self-Service

[student@workstation ~]$ oc edit projects.config.openshift.io cluster

Edit the resource to match the following content:

apiVersion: config.openshift.io/v1
kind: Project
metadata:
...output omitted...

name: cluster
...output omitted. ..
spec:

projectRequestTemplate:

name: project-request

9.3. Use the watch command to view the API server pods.

[student@workstation ~]$ watch oc get pod -n openshift-apiserver
NAME READY STATUS RESTARTS AGE
apiserver-6b7b. .. 2/2 Running 0 2m30s

Wait until new pods are rolled out. The rollout can take a few minutes to start. Press
Ctr1+C to exit the watch command.

P 10. Create a project as the provisioneri user.

10.1. Login to the cluster as the provisioner1 user with the redhat password.

[student@workstation ~]$ oc login -u provisionerl -p redhat
Login successful.
...output omitted. ..

10.2. Create a project by using the oc new-project command.

[student@workstation ~]$ oc new-project test
Now using project "test" on server "https://api.ocp4.example.com:6443".
...output omitted...

P 1. Verify that the provisioner2 user can access the test project and create resources.
Verify that the limit range has the intended effect.

1.1. Loginto the cluster as the provisioner2 user with the redhat password.

[student@workstation ~]$ oc login -u provisioner2 -p redhat
Login successful.

You have one project on this server: "test"
Using project "test".

The oc login command reports that the provisioner2 user has the test
project. The command selects the project.

Chapter 6 | Enable Developer Self-Service
1N.2. Create aresource on the test project.

[student@workstation ~]$ oc create configmap test
configmap/test created

The provisioner2 user can create resources in a project that the provisioneri
user created.

1.3. Create a deployment that exceeds the limit range by using the ~/D0280/ labs/
selfservice-projtemplate/deployment.yaml file.

[student@workstation ~]$ oc create \
-f ~/D0280/1labs/selfservice-projtemplate/deployment.yaml
deployment.apps/test created

11.4. Examine the pods and events in the template-test namespace.

[student@workstation ~]$ oc get pod
No resources found in test namespace.

[student@workstation ~]$ oc get event --sort-by=metadata.creationTimestamp

LAST SEEN TYPE REASON OBJECT MESSAGE
...output omitted...
39s Warning FailedCreate replicaset/test-846769884c Error

creating: pods "test-846769884c-5zjhw" is forbidden: maximum memory usage per
Container is 1Gi, but 1limit is 2Gi

The limit range works as expected.
Finish

On the workstation machine, use the Tab command to complete this exercise. This step is
important to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab finish selfservice-projtemplate

Chapter 6 | Enable Developer Self-Service

» Lab

Enable Developer Self-Service

Configure a project with restrictions that prevent its users and applications from consuming
all capacity of a cluster.

Outcomes

+ Configure project creation to use a custom project template.
+ Limit resource usage for new projects.

Before You Begin

As the student user on the workstation machine, use the lab command to prepare your
system for this exercise.

This command ensures that the cluster APl is reachable.

[student@workstation ~]$ lab start selfservice-review

Instructions
1. Login to your OpenShift cluster as the admin user with the redhatocp password.

2. Design a project template with the following properties:
+ The user who requests the project has the default admin role binding.

+ The workloads in the project cannot request a total of more than 2 GiB of RAM, and they
cannot use more than 4 GiB of RAM.

Each workload in the project has the following properties:
+ Default memory request of 256 MiB

+ Default memory limit of 512 MiB

+ Minimum memory request of 128 MiB

+ Maximum memory usage of 1 GiB

You can use the oc create quota command to create the resource quota without
creating a YAML definition. A template for the limit range is available at ~/D0280/1labs/
selfservice-review/limitrange.yaml.

You can create a template-test namespace to design your project template.

Note

S The next steps assume that you design the template in a template-test
namespace. The lab scripts clean and grade the design namespace only if you
create it with the template-test name.

Chapter 6 | Enable Developer Self-Service

3. Verify that the quota and limit range have the intended effect.

For example, create a deployment that uses the registry.ocp4.example.com: 8443/
redhattraining/hello-world-nginx:v1.0 image without resource specifications.
Verify that the limit range adds requests and limits to the pods. Scale the deployment to 10
replicas. Examine the deployment and the quota to verify that they have the intended effect.

If you design your template without creating a test namespace, then you must verify your
design by other means.

4. Create a project template definition with the same properties.

S Note
The solution for this step assumes that you designed your template in a template-
test namespace. If you do not create a template-test namespace to design the
template, then you must create the project template by other means.

The ~/D0280/solutions/selfservice-review/template.yaml file contains a
solution.

Create and configure the project template.

6. Create a project to verify that the template works as intended.

Note
E The lab scripts clean up only a template-validate namespace.

Evaluation

As the student user on the workstation machine, use the lab command to grade your work.
Correct any reported failures and rerun the command until successful.

[student@workstation ~]$ lab grade selfservice-review
Finish
As the student user on the workstation machine, use the Tab command to complete this

exercise. This step is important to ensure that resources from previous exercises do not impact
upcoming exercises.

[student@workstation ~]$ lab finish selfservice-review

Chapter 6 | Enable Developer Self-Service

» Solution

Enable Developer Self-Service

Configure a project with restrictions that prevent its users and applications from consuming
all capacity of a cluster.

Outcomes

+ Configure project creation to use a custom project template.

+ Limit resource usage for new projects.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your
system for this exercise.

This command ensures that the cluster APl is reachable.

[student@workstation ~]$ lab start selfservice-review

Instructions

1. Login to your OpenShift cluster as the admin user with the redhatocp password.

11. Login to the cluster as the admin user.

[student@workstation ~]$ oc login -u admin -p redhatocp \
https://api.ocp4.example.com: 6443
Login successful.

...output omitted. ..

2. Design a project template with the following properties:
+ The user who requests the project has the default admin role binding.

+ The workloads in the project cannot request a total of more than 2 GiB of RAM, and they
cannot use more than 4 GiB of RAM.

Each workload in the project has the following properties:
+ Default memory request of 256 MiB

+ Default memory limit of 512 MiB

+ Minimum memory request of 128 MiB

+ Maximum memory usage of 1 GiB

Chapter 6 | Enable Developer Self-Service

You can use the oc create quota command to create the resource quota without
creating a YAML definition. A template for the limit range is available at ~/D0280/1labs/
selfservice-review/limitrange.yaml.

You can create a template-test namespace to design your project template.

Note

{:; The next steps assume that you design the template ina template-test
namespace. The lab scripts clean and grade the design namespace only if you
create it with the template-test name.

2.1. Use the oc command to create a template-test namespace.

[student@workstation ~]$ oc create namespace template-test
namespace/template-test created

2.2. Usetheoc create quotacommand to create the memory quotain the template-
test namespace.

[student@workstation ~]$ oc create quota memory \
--hard=requests.memory=26i, limits.memory=46i \
-n template-test

resourcequota/memory created

2.3. Edit the limit range definition at ~/D0280/labs/selfservice-review/
limitrange.yaml. Replace the CHANGE_ME text to match the following file:

apiVersion: vi
kind: LimitRange
metadata:
name: memory
namespace: template-test

spec:

limits:

- min:
memory: 128Mi
defaultRequest:
memory: 256Mi

default:

memory: 512Mi

max:

memory: 16i
type: Container

2.4. Use the oc command to create the limit range.

[student@workstation ~]$ oc create \
-f ~/D0280/1labs/selfservice-review/limitrange.yaml
limitrange/memory created

3. Verify that the quota and limit range have the intended effect.

Chapter 6 | Enable Developer Self-Service

4.

For example, create a deployment that uses the registry.ocp4.example.com: 8443/
redhattraining/hello-world-nginx:v1.0 image without resource specifications.
Verify that the limit range adds requests and limits to the pods. Scale the deployment to 10
replicas. Examine the deployment and the quota to verify that they have the intended effect.

If you design your template without creating a test namespace, then you must verify your
design by other means.

31. Usetheoc create deployment command to create a deployment without resource
specifications.

[student@workstation ~]$ oc create deployment -n template-test test-limits \
--image registry.ocp4.example.com:8443/redhattraining/hello-world-nginx:v1.0
deployment.apps/test-limits created

3.2. Use the oc command to view the resources key of the container specification.
Optionally, use the jg command to indent the output.

[student@workstation ~]$ oc get pod -n template-test \
-0 jsonpath='{.items[0].spec.containers[0].resources}’
{"limits": {"memory":"512Mi"}, "requests": {"memory":"256Mi"}}

Although you create the deployment without specifying resources, the limit range
applies RAM requests and limits.

3.3. Usethe oc scale command to scale the deployment to verify that the quota has an
effect.

[student@workstation ~]$ oc scale deployment -n template-test test-limits \
--replicas=10
deployment.apps/test-limits scaled

3.4. Examine the deployment and the quota.

[student@workstation ~]$ oc get deployment -n template-test
NAME READY UP-TO-DATE AVAILABLE AGE
test-limits 8/10 8 8 8m41s

[student@workstation ~]$ oc describe resourcequota -n template-test memory
Name: memory

Namespace: template-test
Resource Used Hard
limits.memory 46i 46i

requests.memory 2Gi 26Gi
The deployment uses the quota completely, and scales only to eight pods. Each pod
requests 256 MiB of RAM, and eight pods request 2 GiB of RAM. Each pod has a
512 MiB RAM limit, and eight pods have a 4 GiB RAM limit.

Create a project template definition with the same properties.

Chapter 6 | Enable Developer Self-Service

Note

E The solution for this step assumes that you designed your template in a template-
test namespace. If you do not create a template-test namespace to design the
template, then you must create the project template by other means.

The ~/D0280/solutions/selfservice-review/template.yaml file contains a
solution.

41. Usetheoc adm create-bootstrap-project-template to printaninitial project
template. Redirect the output to the template.yaml file.

[student@workstation ~]$ oc adm create-bootstrap-project-template \
-0 yaml >template.yaml

4.2. Use the oc command to list the limit ranges and quotas in YAML format. Redirect the
output to append to the template.yaml file.

[student@workstation ~]$ oc get limitrange,quota -n template-test \
-0 yaml >>template.yaml

4.3. Editthe template.yaml file to perform the following operations:

+ Move the limit range and quota definitions immediately after the role binding
definition.

+ Remove any left-over content after the parameters block.

+ Remove the following keys from the limit range and quota definitions:
- creationTimestamp

resourcevVersion

- uid

status

+ Replace the namespace: template-test text with the namespace:
${PROJECT_NAME} text.

If you use the vi editor, then you can use the following procedure to move a block of
text:

+ Move to the beginning of the block.

+ Press V to enter visual line mode. This mode selects entire lines for manipulation.
+ Move to the end of the block. The editor highlights the selected lines.

+ Press d to delete the lines and to store them in a register for later usage.

+ Move to the destination.

+ Press P to insert the lines that are stored in the register.

You can also press dd to delete entire lines, and . to repeat the operation.

The resulting file should match the following content:

Chapter 6 | Enable Developer Self-Service

apiVersion: template.openshift.io/v1l
kind: Template
metadata:
creationTimestamp: null
name: project-request
objects:
- apiVersion: project.openshift.io/v1l
kind: Project
metadata:
annotations:
openshift.io/description: ${PROJECT_DESCRIPTION}
openshift.io/display-name: ${PROJECT_DISPLAYNAME}
openshift.io/requester: ${PROJECT_REQUESTING_USER}
creationTimestamp: null
name: ${PROJECT_NAME}
spec: {}
status: {}
- apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
creationTimestamp: null
name: admin
namespace: ${PROJECT_NAME}
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: admin
subjects:
- apiGroup: rbac.authorization.k8s.io
kind: User
name: ${PROJECT_ADMIN_USER}
- apiVersion: vi
kind: LimitRange
metadata:
name: memory
namespace: ${PROJECT_NAME}

spec:
limits:
- default:
memory: 512Mi
defaultRequest:
memory: 256Mi
max:
memory: 1Gi
min:

memory: 128Mi
type: Container
- apiVersion: vi
kind: ResourceQuota
metadata:
name: memory
namespace: ${PROJECT_ NAME}
spec:

Chapter 6 | Enable Developer Self-Service

hard:
limits.memory: 46Gi
requests.memory: 2Gi
parameters:
- name: PROJECT_NAME
- name: PROJECT_DISPLAYNAME
- name: PROJECT_DESCRIPTION
- name: PROJECT_ADMIN_USER
- name: PROJECT_REQUESTING_USER

5. Create and configure the project template.

5.1. Use the oc command to create the project template.

[student@workstation ~]$ oc create -f template.yaml -n openshift-config
template.template.openshift.io/project-request created

5.2. Usethe oc edit command to change the cluster project configuration

[student@workstation ~]$ oc edit projects.config.openshift.io cluster

Edit the resource to match the following content:

apiVersion: config.openshift.io/v1
kind: Project
metadata:
...output omitted...

name: cluster
spec:

projectRequestTemplate:

name: project-request

To edit the file, you use the default vi editor.

5.3. Use the watch command to view the APl server pods.
[student@workstation ~]$ watch oc get pod -n openshift-apiserver
NAME READY STATUS RESTARTS AGE
apiserver-5cfd... 2/2 Running 0 2m50s

Wait until new pods are rolled out. Press Ctr 1+C to exit the watch command.

6. Create a project to verify that the template works as intended.

Note
{:: The lab scripts clean up only a template-validate namespace.

6.]. Usetheoc new-project command to create a template-validate project.

Chapter 6 | Enable Developer Self-Service

[student@workstation ~]$ oc new-project template-validate
Now using project "template-validate" on server "https://
api.ocp4.example.com:6443".
...output omitted...

6.2. Describe the quotas in the current namespace.

[student@workstation ~]$ oc describe quota

Name: memory

Namespace: template-validate
Resource Used Hard
limits.memory 0 4G1
requests.memory 0O 261

6.3. Describe the limit ranges in the current namespace.

[student@workstation ~]$ oc describe limitrange

Name :
Namespace:

Type

Container

memory
template-validate
Resource Min Max

memory 128Mi 16Gi

Default Request Default Limit

6.4. Optionally, execute again the commands that you used earlier to create a deployment.
Scale the deployment, and verify the limits

Evaluation

As the student user on the workstation machine, use the lab command to grade your work.
Correct any reported failures and rerun the command until successful.

[student@workstation ~]$ lab grade selfservice-review

Finish

As the student user on the workstation machine, use the lab command to complete this
exercise. This step is important to ensure that resources from previous exercises do not impact
upcoming exercises.

[student@workstation ~]$ lab finish selfservice-review

Chapter 6 | Enable Developer Self-Service

Summary

+ Cluster administrators can create quotas to limit resource usage by namespace.

+ Cluster resource quotas implement resource limits across groups of namespaces that
namespace selectors define.

+ Limit ranges provide resource defaults, minimums, and maximums for workloads in a
namespace.

+ Cluster administrators can configure project templates to add resources to all new projects.
These resources can implement permissions, quotas, network policies, and others.

+ The self-provisioner role grants permissions to create projects. By default, this role is
bound to all authenticated users.

w D0O280-0OCP4.14-en-1-20240215

Chapter 7

Manage Kubernetes Operators

Goal Install and update operators that the Operator
Lifecycle Manager and the Cluster Version
Operator manage.

Objectives + Explain the operator pattern and different
approaches for installing and updating
Kubernetes operators.

+ Install and update operators by using the web

- console and the Operator Lifecycle Manager.

w

; + Install and update operators by using the

Operator Lifecycle Manager APlIs.
Sections + Kubernetes Operators and the Operator
Lifecycle Manager (and Matching Quiz)
+ Install Operators with the Web Console (and
Guided Exercise)

Install Operators with the CLI (and Guided
Exercise)

Lab * Manage Kubernetes Operators

r/

D0O280-0OCP4.14-en-1-20240215

Chapter 7 | Manage Kubernetes Operators

Kubernetes Operators and the Operator
Lifecycle Manager

Objectives

+ Describe the operator pattern and different approaches for installing and updating Kubernetes
operators.

The Operator Pattern

You can deploy workloads to Kubernetes with resources such as deployments, replica sets, stateful
sets, daemon sets, jobs, and cron jobs. All of these resources create a workload that runs software
that is packaged as a container image, in different modalities. For example, jobs execute a one-
off task; cron jobs execute tasks periodically; and the other resources create persistent workloads.
Resources such as deployments, stateful sets, or daemon sets differ on how the workload is
distributed in a cluster.

These resources are sufficient to deploy many workloads. However, more complex workloads
might require significant work to deploy with only these resources. For example, a workload can
involve different component workloads, such as a database server, a back-end service, and a
front-end service.

A workload might have maintenance tasks that can be automated, such as backing up data or
updating the workload.

The operator pattern is a way to implement reusable software to manage such complex workloads.

An operator typically defines custom resources (CRs). The operator CRs contain the needed
information to deploy and manage the workload. For example, an operator that deploys
database servers defines a database resource where you can specify the database name, sizing
requirements, and other parameters.

The operator watches the cluster for instances of the CRs, and then creates the Kubernetes
resources to deploy the custom workload. For example, when you create a database resource, the
database operator creates a stateful set and a persistent volume that provide the database that
is described in the database resource. If the database resource describes a backup schedule and
target, then the operator creates a cron job that backs up the database to the target according to
the schedule.

By using operators, cluster administrators create CRs that describe a complex workload, and the
operator creates and manages the workload.

Deploying Operators
Many pieces of software implement the operator pattern, in different ways.

Cluster operators
Cluster operators provide the platform services of OpenShift, such as the web console and
the OAuth server.

Chapter 7 | Manage Kubernetes Operators

Add-on operators
OpenShift includes the Operator Lifecycle Manager (OLM). The OLM helps users to install
and update operators in a cluster. Operators that the OLM manages are also known as add-on
operators, in contrast with cluster operators that implement platform services.

Other operators
Software providers can create software that follows the operator pattern, and then distribute
the software as manifests, Helm charts, or any other software distribution mechanism.

Cluster Operators

The Cluster Version Operator (CVO) installs and updates cluster operators as part of the
OpenShift installation and update processes.

The CVO provides cluster operator status information as resources of the ClusterOperator
type. Inspect the cluster operator resources to examine cluster health.

[user@host ~]% oc get clusteroperator

NAME VERSION AVAILABLE PROGRESSING DEGRADED ... MESSAGE
authentication 4.14.0 True False False
baremetal 4.14.0 True False False
cloud-controller-manager 4.14.0 True False False

...output omitted...

The status of cluster operator resources includes conditions to help with identifying cluster issues.
The oc command shows the message that is associated with the latest condition. This message
can provide further information about cluster issues.

To view cluster operator resources in the web console, navigate to Administration > Cluster
Settings, and then click the ClusterOperators tab.

The Operator Lifecycle Manager and the OperatorHub

Administrators can use the OLM to install, update, and remove operators.

You can use the web console to interact with the OLM. The OLM also follows the operator
pattern, and so the OLM provides CRs to manage operators with the Kubernetes API.

The OLM uses operator catalogs to find available operators to install. Operator catalogs are
container images that provide information about available operators, such as descriptions and
available versions.

OpenShift includes several default catalogs:

Red Hat
Red Hat packages, ships, and supports operators in this catalog.

Certified
Independent software vendors support operators in this catalog.

Community
Operators without official support.

Marketplace
Commercial operators that you can buy from Red Hat Marketplace.

You can also create your own catalogs, or mirror catalogs for offline clusters.

Chapter 7 | Manage Kubernetes Operators

E Note
The lab environment includes a single catalog with the operators you use in the
course. The lab environment hosts the contents of this catalog, so that the course
can be completed without internet access.

The OLM creates a resource of the PackageManifest type for each available operator. The web
console also displays available operators and provides a wizard to install operators. You can also
install operators by using the Subscription CR and other CRs.

S Note
Operators that are installed with the OLM have a different lifecycle from cluster
operators. The CVO installs and updates cluster operators in lockstep with the
cluster. Administrators use the OLM to install, update, and remove operators
independently from cluster updates.

Some operators might require additional steps to install, update, or remove.

Implementing Operators

An operator is composed of a set of custom resource definitions and a Kubernetes workload. The
operator workload uses the Kubernetes API to watch instances of the CRs and to create matching
workloads.

i ; Note
A cluster contains two workload sets for each operator.

+ The operator workload, which the OLM manages

+ The workloads that are associated with the custom resources, and which the
operator manages

You can implement operators to automate any manual Kubernetes task that fits the operator
pattern. You can use most software development platforms to create operators. The following
SDKs provide components and frameworks to help with developing operators:

The Operator SDK
The Operator SDK contains tools to develop operators with the Go programming language,
and Ansible. The Operator SDK also contains tools to package Helm charts as operators.

The Java Operator SDK
The Java Operator SDK contains tools to develop operators with the Java programming
language. The Java Operator SDK has a Quarkus extension to develop operators with the
Quarkus framework.

Chapter 7 | Manage Kubernetes Operators

References

For more information, refer to the Operators guide in the Red Hat OpenShift
Container Platform 4.14 documentation at
https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.14/html-single/operators/index

Operator SDK
https://sdk.operatorframework.io/

Java Operator SDK
https://javaoperatorsdk.io/

Quarkus Operator SDK
https://github.com/quarkiverse/quarkus-operator-sdk

D0O280-0OCP4.14-en-1-20240215

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index
https://sdk.operatorframework.io/
https://javaoperatorsdk.io/
https://github.com/quarkiverse/quarkus-operator-sdk

Chapter 7 | Manage Kubernetes Operators

» Quiz

Kubernetes Operators and the Operator
Lifecycle Manager

Match the following items to their counterparts in the table.

A component that manages add-on operators
A component that manages cluster operators
A component that provides cluster platform services

A component that the Operator Lifecycle Manager installs

A way to implement reusable software to manage complex workloads

Term Definition

Operator pattern

Cluster operator

Add-on operator

Cluster Version Operator

Operator Lifecycle
Manager

288 D0O280-0OCP4.14-en-1-20240215

Chapter 7 | Manage Kubernetes Operators

» Solution

Kubernetes Operators and the Operator
Lifecycle Manager

Match the following items to their counterparts in the table.

Term

Operator pattern

Cluster operator

Add-on operator

Cluster Version Operator

Operator Lifecycle
Manager

Definition

A way to implement reusable software to manage
complex workloads

A component that provides cluster platform services

A component that the Operator Lifecycle Manager installs

A component that manages cluster operators

A component that manages add-on operators

Chapter 7 | Manage Kubernetes Operators

Install Operators with the Web Console

Objectives

+ Install and update operators by using the web console and the Operator Lifecycle Manager.

Installing Operators with the Web Console

The OpenShift web console provides a graphical interface to the Operator Lifecycle Manager
(OLM). The OperatorHub page lists available operators and provides an interface for installing
them. The Installed Operators page lists installed operators. You can inspect and uninstall
operators from the Installed Operators page.

The Install Operator Wizard

Navigate to Operators > OperatorHub to display the list of available operators. The OperatorHub
page displays operators, and has filters to locate operators by category, source, provider,
subscription required, and other criteria.

RedHat
OpenShift

Project: All Projects
o Administrator

OperatorHub

Home
Discover Operators from the Kubernetes community and Red Hat partners, curated by Red Hat. You can purchase commercial softwa
Operators clusters to provide optienal add-ons and shared services to your developers. After installation, the Operator capabilities will appear in

OperatorHub s I All ltems All ltems

Instal r Developer Tools

EY |

Monitering
Networking
Security
Networking Storage
Other

do280 Operator do280 Operator Catalog
n Catalog Red Hat % Red Hat

Storage

Builds

Compliance Operator
provided by Red Hat Inc
Source

[J do280 Operator Catalog An operator which runs

DevWorkspace Operator
provided by Devfile

The DevWorkspace Operator

Red Hat (6) OpenSCAP and allows you to enables cluster-level support for
keep your cluster compliant with... the [Devfile 2.0...
Observe Provider
O RedHat (5)
Compute O Devfile (1)

do280 Operator Catalog
‘ Red Hat

Figure 7.1: Available operators

Click an operator to display further information.

1| Important

n do280 Operator Catalog
(A) Red Hat

Before installing an operator, review the operator information and consult the
operator documentation. You might need to configure the operator further for
successful deployment.

Chapter 7 | Manage Kubernetes Operators

Click Install to begin the Install Operator wizard.

You can choose installation options in the Install Operator wizard.

Update channel
You can choose the most suitable operator update channel for your requirements. For more
information, refer to Operator Update Channels.

Installation mode
The default Allnamespaces on the cluster (default) installation mode should be suitable for
most operators. This mode configures the operator to monitor all namespaces for custom
resources.

For example, an operator that deploys database servers defines a custom resource that
describes a database server. When using the All namespaces on the cluster (default)
installation mode, users can create those custom resources in their namespaces. Then, the
operator deploys database servers in the same namespaces, along with other user workloads.

Cluster administrators can combine this mode with self-service features and other
namespace-based features, such as role-based access control and network policies, to control
user usage of operators.

Installed namespace
The OLM installs the operator workload to the selected namespace in this option. Some
operators install by default to the openshift-operators namespace. Other operators
suggest creating a namespace.

Although users might require access to the workloads that the operator manages, typically
only cluster administrators require access to the operator workload.

Update approval
The OLM updates operators automatically when new versions are available. Choose manual
updates to prevent automatic updates.

For an operator that includes monitoring in its definition, the wizard displays a further option to
enable the monitoring. Adding monitoring from non-Red Hat operators is not supported.

The installation mode and installed namespace options are related. Review the documentation of
the operator to learn the supported options.

After you configure the installation, click Install. The web console creates subscription and
operator group resources according to the selected options in the wizard. After the installation
starts, the web console displays progress information.

Viewing Installed Operators

When the OLM finishes installing an operator, click View Operator to display the Operator details
page. You can also view information about installed operators by navigating to Operators >
Installed Operators.

The Installed Operators page lists the installed cluster service version (CSV) resources that
correspond to installed operators.

Every version of an operator has a CSV. The OLM uses information from the CSV to install the
operator. The OLM updates the status key of the CSV with installation information.

Chapter 7 | Manage Kubernetes Operators

CSVs are namespaced, so the Installed Operator page has a similar namespace filter to other web
console pages. Operators that were installed with the "all namespaces" mode have a CSV in all
namespaces.

S Note
The operator installation mode determines which namespaces the operator
monitors for custom resources. This mode is a distinct option from the installed
namespace option, which determines the operator workload namespace.

The Installed Operators page shows information such as the operator status and available
updates. Click an operator to navigate to the Operator details page.

The Operator details page contains the following tabs, where you can view further details and
perform other actions.

Details
Displays information about the CSV.

YAML
Displays the CSV in YAML format.

Subscription
In this tab, you can change installation options, such as the update channel and update
approval. This tab also links to the install plans of the operator. When you configure an
operator for manual updates, you approve install plans for updates in this tab.

Events
Lists events that are related to the operator.

The Operator details page also has tabs for custom resources. For each custom resource that the
operator defines, a web console tab lists all resources of that type. Additionally, the All instances
tab aggregates all resources of types that the operator defines.

Using Operators

Custom resources are the most common way to interact with operators. You can create custom
resources by using the custom resource tabs on the Installed Operators page. Select the tab to
correspond to the custom resource type to create, and then click the create button.

Custom resources use the same creation page as other Kubernetes resources. You can choose
either the YAML view or the form view to configure the new resource.

In the YAML view, you use the YAML editor to compose the custom resource. The editor provides
a starting template that you can customize. The YAML view also displays documentation about the
custom resource schema. The oc explain command provides the same documentation.

The form view presents a set of fields in a resource. Instead of composing a full YAML definition,
you can edit the fields individually. When complete, OpenShift creates a resource from the values
in the form.

Fields might provide help text and further configuration help. For example, fields with a limited set
of values might provide a drop-down list with the possible values. The form view might provide
more guidance, but might not contain fields to customize all possible options of a custom resource.

Chapter 7 | Manage Kubernetes Operators

Troubleshooting Operators

The OLM might fail to install or update operators, or operators might not work correctly.

To identify operator installation issues, examine the status and conditions of the CSV, subscription,
and install plan resources.

E Note
Installation issues can be operator-specific, so consult the documentation of
malfunctioning operators to determine support options.

To troubleshoot further issues that cause operators to work incorrectly, first identify the operator
workload. The Operator Deployments field in the Operator details page shows operator
workloads. Operators might create further workloads, including workloads that follow the
definitions that you provide in custom resources.

Project: openshift-operators =

Installed Operators » Operator details
Web Terminal

>- 1.6.0 provided by Red Hat Actions +

Details YAML Subscription Events

Provided APIs
No Kubernetes APIs are being provided by this Operator.
Description

Start a Web Terminal in your browser with common CLI tools for interacting with the cluster.

ClusterServiceVersion details

Name Status

web-terminalvl.6.0 @ Succeeded

Status reason
Namespace ;)
------------------------ install strategy completed with no errors

@ openshift-operators

Operator Deployments

I.'.‘?b. _e_l_; Edit #* @ web-terminal-controller

onerator

Figure 7.2: Operator deployments

Identify and troubleshoot the operator workload as with any other Kubernetes workload. The
following resources are common starting points when troubleshooting:

+ The status of Kubernetes workload resources, such as deployments or stateful sets
+ Pod logs and their status
+ Events

D0O280-0OCP4.14-en-1-20240215 w

Chapter 7 | Manage Kubernetes Operators

References

For more information, refer to the Installing from OperatorHub Using the Web
Console section in the Administrator Tasks chapter in the Red Hat OpenShift
Container Platform 4.14 Operators documentation at
https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.14/html-single/operators/index#olm-installing-
from-operatorhub-using-web-console_olm-adding-operators-to-a-cluster

For more information about monitoring configuration, refer to the Maintenance and
Support for Monitoring section in the Configuring the Monitoring Stack chapter in
the Red Hat OpenShift Container Platform 4.14 Monitoring documentation at
https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.14/html-single/monitoring/index#maintenance-
and-support_configuring-the-monitoring-stack

W D0O280-0OCP4.14-en-1-20240215

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index#olm-installing-from-operatorhub-using-web-console_olm-adding-operators-to-a-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index#olm-installing-from-operatorhub-using-web-console_olm-adding-operators-to-a-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index#olm-installing-from-operatorhub-using-web-console_olm-adding-operators-to-a-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/monitoring/index#maintenance-and-support_configuring-the-monitoring-stack
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/monitoring/index#maintenance-and-support_configuring-the-monitoring-stack
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/monitoring/index#maintenance-and-support_configuring-the-monitoring-stack

Chapter 7 | Manage Kubernetes Operators

» Guided Exercise

Install Operators with the Web Console

Install an operator by using the web console.

Outcomes

+ Install and uninstall an operator with the web console.

+ Examine the resources that the web console creates for the installation, and the operator
workloads.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your
system for this exercise.

This command ensures that the environment is ready.

[student@workstation ~]$ lab start operators-web

Instructions

P 1. Asthe admin user, locate and navigate to the OpenShift web console.

11. Login to your OpenShift cluster as the admin user.

[student@workstation ~]$ oc login -u admin -p redhatocp \
https://api.ocp4.example.com: 6443
Login successful.

...output omitted. ..

1.2. Identify the URL for the web console.

[student@workstation ~]$ oc whoami --show-console
https://console-openshift-console.apps.ocp4.example.com

1.3. Open a web browser and navigate to https://console-openshift-
console.apps.ocp4.example.com.

1.4. Click Red Hat Identity Management and log in as the admin user with the
redhatocp password.

P 2. |Install the File Integrity operator.

2.1. Click Operators > OperatorHub. In the Filter by keyword field, type integrity to
locate the File Integrity operator, and then click File Integrity Operator.

Chapter 7 | Manage Kubernetes Operators

= RedHat 23 -
= EH 2 Ad torw
—_— OpenShift A © @ S
Project: All Projects v
o Administrato
OperatorHub
Discover Operators from the Kubernetes community and Red Hat partners, curated by Red Hat. You can purchase commercial software through
Operators Red Hat Marketplace . You can install Operators on your clusters to provide optional add-ons and shared services to your developers. After installation,
the Operator capabilities will appear in the Dev er Cat providing a self-service experience.
OperatorHub
All ltems

Monitoring

x litems

d0280 Operator Catalog
cs

Source File Integrity Operator

provided by Red Hat
do280 Operator Catalog
Builds cs()

Provider

Red Hat (1)

= Community (0)
Compute

Install state

User Management Installed (O

2.2. The web console displays information about the File Integrity operator. Click Install to
proceed to the Install Operator page.

File Integrity Operator X
by R Tt

Install

Channel An operator that manages file integrity checks on nodes.

stable v

Capability level
@ Basic Install

© Seamless Upgrades

Source

do280 Operator Catalog
Cs

Provider

2.3. The Install Operator page contains installation options. You can use the default
options.

The lab environment cluster is a disconnected cluster to ensure that exercises are
reproducible. The Operator Lifecycle Manager is configured to use a mirror registry
with only the required operators for the course. In this registry, the File Integrity
operator has a single available update channel.

By default, the File Integrity operator installs to all namespaces and creates the
openshift-file-integrity namespace. The operator workload resides in this
namespace.

Cha

o

pter 7 | Manage Kubernetes Operators

Do not enable monitoring, which this exercise does not cover.

Red Hat , i
OpenShift P A © @ Ad trato
Operator Installation

Install Operator

Install your Operator by subscribing to one of the update channels to keep the Operator up to date. The strategy determines either manual or automatic

Administrator

updates.
- A
Update channel = File Integrity Operator
=4 t
stable v
Provided APIs

Version *

133 - () File Integrity

FileIntegrity is the Schema for the

Installation mode * fileintegrities AP1

® All namespaces on the cluster (default)

A specific namespace on the cluster
(D FileintegrityNodeStatus

FilelntegrityNodeStatus defines the

Installed Namespace *
tus of a specific node

® Operator recommended Namespace: (g§) openshift-file-integrity

Select a Namespace

mpute

© Namespace creation
Namespace openshift-file-integrity does not exist and will be
created

For more information about the File Integrity operator, refer to the File Integrity
Operator chapter in the Red Hat OpenShift Container Platform 4.14 Security and
Compliance documentation at https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.14/html-single/security_and_compliance/index#file-
integrity-operator

2.4. Click Install to install the operator.

The web console displays some progress information. Click View Operator.

Note
S The web console might display the View Operator button briefly before the OLM

finishes the installation. The web console can also display errors briefly.

Wait until the web console displays View Operator for more than a few seconds.

DO

280-0OCP4.14-en-1-20240215 w

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/security_and_compliance/index#file-integrity-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/security_and_compliance/index#file-integrity-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/security_and_compliance/index#file-integrity-operator

Chapter 7 | Manage Kubernetes Operators

RedHat sse =
OpenShift a2 © ©

o Administrat
Home

Operators

OperatorHub

File Integrity Operator
O » ©

Installed operator: ready for use

Compute

Ensure that the openshift-file-integrity projectis selected in the Project list.

Chapter 7 | Manage Kubernetes Operators

P 3. The web console displays details about the installed operator.

The Details tab displays information about the operator and the related cluster service
version resource.

— RedHat se -
= = 2 Adr strator
= OpenShift L © e : RO
Project: openshift-file-integrity «
8¢ Administr
Operator details
7= File Integrity Operator
Operators
Details L E tar ile | t F
Provided APIs e
Red Hat
Created at
File Integrit) 1::) FileintegrityNodeStatus
@ i ol @ Jan 25, 2024, 9:27 AM
Filelntegrity is the Schema for the FilelntegrityNodeStatus defines the
fileintegrities API status of a specific node Links
File Integrity Operator upstream
repo
® Create nst @ Create instanc: it
nt ty tor@
File Integrity Operator
Description documentation

User Management ity penshift

An operator that manages file integrity checks on nodes. t

Administration

Scroll down to the Conditions section to review the evolution of the installation process.
The last condition is for the Succeeded phase, because the installation completed
correctly.

The YAML tab displays the cluster service version resource API resource in YAML format.

Click the Subscription tab to view information about the operator subscription resource. In
this tab, you can change the update channel and the update approval configuration. The
tab also links to the install plan. The install plan further describes the operator installation
process. When the OLM finds an update for an operator that is configured for manual
updates, then the OLM creates an install plan for the update. You approve the update in the
install plan details page.

) 4. Optionally, test the File Integrity operator.

The File Integrity operator watches resources of the FileIntegrity type. When
you create a file integrity resource, the operator creates a workload that verifies the
file integrity of nodes. The results of the verification are presented as resources of the
FileIntegrityNodeStatus type.

4]. Click the File Integrity tab, and click Create Filelntegrity.

D0O280-0OCP4.14-en-1-20240215 w

Chapter 7 | Manage Kubernetes Operators

RedHat
OpenShift

A2 [+] (2] Administrator v

Project: openshift-file-integrity «
0 Administrator

Operator details

File Integrity Operator
/) vided by Red Hat Actions ¥

Home

Operators

Filelntegrities Showoperandsin: @ All namespaces Current namespace only

No operands found

User Management

4.2. Use YAML view and modify the gracePeriod to 60. Then, click Create to create a
file integrity resource.

RedHat -] 3 Administrator ¥
OpenShift ## Az O @ dministrato
Project: openshift-file-integrity

Create FileIlntegrity

Create by manually entering YAML or JSON definitions, or by dragging and dropping a file into the editor

Home
Configure via: Formview ® YAML view

+|F1 view tcut /] Show tooltips 1 1
Installed Operators o SRS Filelntegrity X

Filelntegr e Schema for

the fileintegrities API

« apiVersion

APIVer:

value, a
unrecognized values.

More info:

4.3. Click the FilelntegrityNodeStatus tab. After a few minutes, the list shows a new
example-fileintegrity-master01 resource.

Chapter 7 | Manage Kubernetes Operators

»
©

RedHat
OpenShift

Project: openshift-file-integrity
o8 Administrator

Operator details

7= File Integrity Operator
) 133 provided by Red Hat

Operators

FileIntegrityNodeStatu showoperands @ Allnamespaces

in " ames I

ses Current namespace only
Name

Name Kind Namespace Status

GO examy FilelntegrityNodeStatus @8 of

Compute

Actions ¥

Create FilelntegrityNodeStatus

Labels

file-integrity... example

i ; Note
The first file integrity resource that you create might not work correctly.

If the operator does not create the FileIntegrityNodeStatus resource in a few

minutes, then delete and create again the FileIntegrity resource.

The exercise outcome does not depend on obtaining a
FileIntegrityNodeStatus resource.

4.4. After FileIntegrityNodeStatus has successfully been created, run
this as the admin user to modify the node's filesystem: oc debug node/

master@l—touch /host/etc/foobar

[student@workstation ~]$ oc debug node/master01 -- touch /host/etc/foobar

Starting pod/master@1-debug-192pd
To use host binaries, “run chroot /host”

Removing debug pod

4.5. Click Workloads > ConfigMaps to list configmaps in the openshift-file-

integrity namespace.

D0O280-0OCP4.14-en-1-20240215

Chapter 7 | Manage Kubernetes Operators

Red Hat ~ . .
OpenShift - A o e it
Project: openshift-file-integrity v
Administrator
T ConfigMaps Create ConfigMap
Name

Name Size Created
M xample-fileintegrity 1 @ Jan 25,2024,12:08 PM
@ @ Jan 25,2024, 11:39 AM
@ einit 1 @ Uan 25,2024, 11:39 AM
@D example-fileintegrity 1 @ Jan 25, 2024, 11:39 AM
@D kube-root-cacrt ! @ Jan 25,2024, 1138 AM
@D o ft-se rt 1 @ Jan 25,2024, 11:38 AM

4.6. Selectaide-example-fileintegrity-master01-failed and view the report
below Data

RedHat E] 3 Administrator *
OpenShift s oA © e Administrator

Project: openshift-file-integrity

Owner

Data

integritylog
L]

Start timestamp: 2024-01-25 17:16:58 +06000 (AIDE 0.16)
AIDE found differences between database and filesystem!!

ConfigMaps Summary :
Total number of entries: 32358
Added entries: 1
Removed entries: (]
Changed entries: (]

P 5. Examine and differentiate the File Integrity operator workloads from the operator-
managed workloads.

5.1. Click Workloads > Deployments to list deployments in the openshift-file-
integrity namespace.

Chapter 7 | Manage Kubernetes Operators

RedHat) 2 Administrator v
OpenShift # A2 O @ d trato

Project: openshift-file-integrity v
08 Administrator

i Deployment details
©® file-integrity-operator

Managed by@ file-integrity-operatorv1l.3.3

Actions w

YAML ReplicaSet P Env ment Event
Workloads
Deployments
Name Update strategy
file-integrity-operator RollingUpdate
Namespace Max unavailable
(5] ft-file-integrity 25% of 1 pod
Labels Edit # Maxsurge
25% greater than 1 pod
olm deployment-spec-hash=7cddf6bf49
olm.owner~file-integrity-ope Progress deadline seconds

The file-integrity-operator deploymentis the operator workload that the
OLM creates. This deployment watches file integrity resources, and creates the
workloads to verify file integrity.

5.2. Click Workloads > DaemonSets to list daemon sets in the openshift-file-
integrity namespace.

= RedHat -) I
- OpenShift : A2 © @ j trato

Project: openshift-file-integrity v
Workloads

Dae t DaemonSet details

@D aide-example-fileintegrity

Managed by@ example-fileintegrity

Actions «
YAM P

DaemonSet details

DaemonSets

Name Current count

aide-example-fileintegrity 1

Namespace Desired count
@ openshift-f tegrity 1
Labels Edit & PodDisruptionBudget

No PodDisruptionBudget
file-integrity.openshift.io/owner-example-fileintegrity

If you create a file integrity resource, then the operator creates an aide-example-
fileintegrity daemon set to verify file integrity.

P 6. Uninstall the File Integrity operator.

6.1. Click Operators > Installed Operators.

D0O280-0OCP4.14-en-1-20240215 w

Chapter 7 | Manage Kubernetes Operators

6.2. Inthe list of installed operators, click File Integrity Operator.

6.3. Select Uninstall Operator from the Actions list, and then click Uninstall.

RedHat -~]
OpenShift # A2 O €

Project: openshift-file-integrity «
o Administrator

Operator details

Home 7= File Integrity Operator

DRSS Edit Subscription
AML uDSC t Ev t ta F Inte ty F €
Provided APls e
Red Hat
) File Integrity (GI'D FileintegrityNodeStatus Crented at
@ Jan 25, 2024, 9:27 AM
Filelntegrity is the Schema for the FilelntegrityNodeStatus defines the
fileintegrities API status of a specific node Links
File Integrity Operator upstream
repo
@ Create insta @ Create insta Tt thut
ntegrity-operator &
File Integrity Operator

Description documentation

An operator that manages file integrity checks on nodes. tainer-platform/latest

P 7. Delete the openshift-file-integrity namespace.

The OLM creates the openshift-file-integrity namespace when installing the File
Integrity operator.

Before deleting an operator, always review the operator documentation to learn specific
deletion actions.

71. Click Home > Projects.
72. Type integrity in the Name filter field.
7.3. Click openshift-file-integrity.

7.4. Select Delete Project from the Actions list. Then, type openshift-file-
integrity and click Delete.

W D0O280-0OCP4.14-en-1-20240215

Chapter 7 | Manage Kubernetes Operators

Delete Project?

This action cannot be undone. It will destroy all pods, services and other objects in the
namespace openshift-file-integrity.

Confirm deletion by typing openshift-file-integrity below:

| openshift-file-integrity] I

Finish
On the workstation machine, use the lab command to complete this exercise. This step is
important to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab finish operators-web

D0O280-0OCP4.14-en-1-20240215 w

Chapter 7 | Manage Kubernetes Operators

Install Operators with the CLI

Objectives

+ Install and update operators by using the Operator Lifecycle Manager APlIs.

Installing Operators

To install an operator, you must perform the following steps:
+ Locate the operator to install.

+ Review the operator and its documentation for installation options and requirements.

Decide the update channel to use.

Decide the installation mode. For most operators, you should make them available to all
namespaces.

Decide to deploy the operator workload to an existing namespace or to a new namespace.

Decide whether the Operator Lifecycle Manager (OLM) applies updates automatically, or
requires an administrator to approve updates.

+ Create an operator group if needed for the installation mode.
+ Create a namespace for the operator workload if needed.
+ Create the operator subscription.

+ Review and test the operator installation.

Operator Resources

The OLM uses the following resource types:

Catalog source
Each catalog source resource references an operator repository. Periodically, the OLM
examines the catalog sources in the cluster and retrieves information about the operators in
each source.

Package manifest
The OLM creates a package manifest for each available operator. The package manifest
contains the required information to install an operator, such as the available channels.

Operator group
Operator groups define how the OLM presents operators across namespaces.

Subscription
Cluster administrators create subscriptions to install operators.

Operator
The OLM creates operator resources to store information about installed operators.

Chapter 7 | Manage Kubernetes Operators

Install plan
The OLM creates install plan resources as part of the installation and update process. When
requiring approvals, administrators must approve install plans.

Cluster service version (CSV)
Each version of an operator has a corresponding CSV. The CSV contains the information that
the OLM requires to install the operator.

When installing an operator, an administrator must create only the subscription and the operator
group. The OLM generates all other resources automatically.

Examining Available Operators

Examine catalog sources in the openshift-marketplace namespace to know which catalog
sources are available in a cluster.

[user@host ~]% oc get catalogsource -n openshift-marketplace
NAME DISPLAY TYPE ... AGE
do280-catalog-cs do280 Operator Catalog Cs grpc ... 7dé6h

The OLM creates a package manifest for each available operator that a catalog source references.
List the package manifests to know which operators are available for installation.

[user@host ~]$ oc get packagemanifests

NAME CATALOG AGE
lvms-operator do280 Operator Catalog Cs 7d6h
kubevirt-hyperconverged do280 Operator Catalog Cs 7d6h
file-integrity-operator do280 Operator Catalog Cs 7d6h
compliance-operator do280 Operator Catalog Cs 7d6h
metallb-operator do280 Operator Catalog Cs 7d6h

To gather the required information to install an operator, view the details of a specific package
manifest. Use the oc describe command on a package manifest to view details about an
operator.

[user@host ~]$ oc describe packagemanifest lvms-operator -n openshift-marketplace
Name: lvms-operator
...output omitted...
Spec:
Status:
Catalog Source: do280-catalog-cs (1]
Catalog Source Display Name: do280 Operator Catalog Cs
Catalog Source Namespace: openshift-marketplace (2]
Catalog Source Publisher:
Channels:
Current CSV: lvms-operator.v4.14.1 ©
Current CSV Desc:

Annotations:
...output omitted...
Capabilities: Seamless Upgrades
Categories: Storage
Container Image: registry.redhat.io/lvms4/1lvms-

rhel9-operator@sha256:545a...67e9

Chapter 7 | Manage Kubernetes Operators

Description: Logical volume manager storage
provides dynamically provisioned local storage for container workloads
...output omitted. ..

operatorframework.io/suggested-namespace: openshift-storage

operators.openshift.io/infrastructure-features: ["csi", "disconnected"]

operators.openshift.io/valid-subscription: ["OpenShift Container
Platform", "OpenShift Platform Plus"]

operators.operatorframework.io/builder: operator-sdk-v1.23.0

...output omitted...
Apiservicedefinitions:
Customresourcedefinitions:

Owned:

Kind: LogicalVolume
Name: logicalvolumes. topolvm.io
Version: vl
Description: LVMCluster is the Schema for the lvmclusters API
Display Name: LVMCluster
Kind: LVMCluster
Name: lvmclusters. lvm. topolvm.io
Version: vlialphal
Kind: LVMVo lumeGroupNodeStatus
Name: lvmvolumegroupnodestatuses. lvm. topolvm. io
Version: vlialphal
Kind: LVMVo LumeGroup
Name: lvmvolumegroups. lvm. topolvm.io
Version: vlialphal

Description: Logical volume manager storage provides dynamically

provisioned local storage.
Display Name: LVM Storage
Install Modes: ©
Supported: true

Type: OwnNamespace
Supported: true
Type: SingleNamespace
Supported: false
Type: MultiNamespace
Supported: false
Type: AllNamespaces
...output omitted. ..
Links:

Name: Source Repository
URL: https://github.com/openshift/lvm-operator
...output omitted...
Maturity: alpha
Provider:
Name: Red Hat
...output omitted. ..

Version: 4.14.1
Name: stable-4.14 @
Default Channel: stable-4.14
Package Name: lvms-operator
Provider:
Name: Red Hat
Events: <none>

Chapter 7 | Manage Kubernetes Operators

© O The catalog source and namespace for the operator, which are required to identify the
operator when creating the subscription.

© O Examine the available channels and CSVs to decide which upgrade path to use.

OO The description and links provide useful information and documentation for installation and
uninstallation procedures.

© The install modes provide information about supported namespace operation modes.

Installing Operators

After you examine the package manifest, review the operator documentation. Operators might
require specific installation procedures.

If you decide to deploy the operator workload to a new namespace, then create the namespace.
Many operators recommend to use the existing openshift-operators namespace, or require
specific namespaces.

Determine whether you need to create an operator group. Operators use the operator group in
their namespace. Operators monitor custom resources in the namespaces that the operator group
targets.

The openshift-operators namespace contains a global-operators operator group.
Operators that are installed in the openshift-operators namespace use this operator group
and monitor all namespaces.

If the global-operators operator group is not suitable, then create another operator group.
The following YAML definition describes the structure of an operator group:

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
name: name
namespace: namespace 1)
spec:
targetNamespaces: (2]
- namespace

© Operators follow the operator group in the namespace that they are deployed in.

© Listthe namespaces that the operator monitors for custom resources. You can also use the
spec.selector field to select namespaces by using labels.

After creating the necessary namespaces or operator groups, you create a subscription. The
following YAML file is an example of a subscription:

apiVersion: operators.coreos.com/vlialphal
kind: Subscription
metadata:
name: lvms-operator
namespace: openshift-storage (1]
spec:
channel: stable-4.14 (2]
name: lvms-operator

Chapter 7 | Manage Kubernetes Operators

source: do280-catalog-cs o
installPlanApproval: Automatic (5]
sourceNamespace: openshift-marketplace

© The namespace for the operator workload

© The update channel, from the discovered information from the oc describe
packagemanifest command

© The package manifest to subscribe to

O The source catalog, from the discovered information from the oc describe
packagemanifest command

© Theinstall plan approval mode, either Automatic or Manual

Install Plans

The OLM creates an install plan resource to represent the required process to install or update
an operator. The OLM updates the operator resource to reference the install plan in the
status.components.refs field. You can view the reference by using the oc describe
command on the operator resource.

[user@host ~]$% oc describe operator file-integrity-operator

Name: file-integrity-operator.openshift-file-integrity
Namespace:
Labels: <none>

Annotations: <none>
API Version: operators.coreos.com/vl

Kind: Operator
...output omitted. ..
Status:
Components:
...output omitted. ..
Refs:
API Version: operators.coreos.com/vlalphal
Kind: InstallPlan
Name: install-pmh78
Namespace: openshift-file-integrity
API Version: operators.coreos.com/vlalphal
Conditions:
Last Transition Time: 2024-01-26T17:53:27Z
Message: all available catalogsources are healthy
Reason: AllCatalogSourcesHealthy
Status: False
Type: CatalogSourcesUnhealthy
Last Transition Time: 2024-01-26T17:53:49Z
Reason: RequiresApproval
Status: True
Type: InstallPlanPending
Kind: Subscription
Name: file-integrity-operator
Namespace: openshift-file-integrity
Events: <none>

Chapter 7 | Manage Kubernetes Operators

If the install plan mode is set to Manua'l in the subscription, then you must manually approve the
install plan. To approve an install plan, change the spec.approved field to true. For example,
you can use the oc patch command to approve an install plan:

[user@host ~]% oc patch installplan install-pmh78 --type merge -p \
'{"spec":{"approved":true}}' -n openshift-file-integrity
installplan.operators.coreos.com/install-pmh78 patched

With an Automatic install plan mode, the OLM applies updates as soon as they are available.

Using Operators

Typically, operators create custom resource definitions. You create instances of those custom
resources to use the operator. Review the operator documentation to learn how to use an
operator.

Additionally, you can learn about the available custom resource definitions by examining

the operator. The CSV contains a list of the custom resource definitions in the
spec.customresourcedefinitions field. For example, use the following command to list the
custom resource definitions:

[user@host ~]$ oc get csv metallb-operator.v4.14.0-202401151553 \
-0 jsonpath="{.spec.customresourcedefinitions.owned[*].name}{'\n"'}"
addresspools.metallb.io addresspools.metallb.io bfdprofiles.metallb.io
bgpadvertisements.metallb.io bgppeers.metallb.io bgppeers.metallb.io
communities.metallb.io ipaddresspools.metallb.io 12advertisements.metallb.io
metallbs.metallb.io

You can also use the oc explain command to view the description of individual custom resource
definitions.

Troubleshooting Operators

Some operators require additional steps to install or update. Review the documentation to validate
whether you performed all necessary steps, and to learn about support options.

You can examine the status of the operator, install plan, and CSV resources. When installing or
updating operators, the OLM updates those resources with progress information.

Even if the OLM installs an operator correctly, the operator might not function correctly.

Operators typically contain two kinds of workloads:
+ The operator workload, which monitors custom resources.

+ The workloads that individual instances of the custom resources created.

The spec.install.spec.deployments in the CSV contains the deployments that the

OLM creates when installing an operator. These deployments often correspond to the operator
workload. However, the operator might create further deployments either for its own workload, or
for the workloads that are associated with custom resources.

Chapter 7 | Manage Kubernetes Operators

References

For more information about operators, refer to the Operators Overview chapter in
the Red Hat OpenShift Container Platform 4.14 Operators documentation at
https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.14/html-single/operators/index#operators-
overview

For more information about installing operators, refer to the Installing from
OperatorHub Using the CLI section in the Administrator Tasks chapter in the Red Hat
OpenShift Container Platform 4.14 Operators documentation at
https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.14/html-single/operators/index#olm-installing-
operator-from-operatorhub-using-cli_olm-adding-operators-to-a-cluster

For more information about operator groups, refer to the Operator Groups section
in the Understanding Operators chapter in the Red Hat OpenShift Container
Platform 4.14 Operators documentation at
https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.14/html-single/operators/index#olm-
operatorgroups-about_olm-understanding-olm

w D0O280-0OCP4.14-en-1-20240215

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index#operators-overview
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index#operators-overview
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index#operators-overview
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index#olm-installing-operator-from-operatorhub-using-cli_olm-adding-operators-to-a-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index#olm-installing-operator-from-operatorhub-using-cli_olm-adding-operators-to-a-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index#olm-installing-operator-from-operatorhub-using-cli_olm-adding-operators-to-a-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index#olm-operatorgroups-about_olm-understanding-olm
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index#olm-operatorgroups-about_olm-understanding-olm
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index#olm-operatorgroups-about_olm-understanding-olm

Chapter 7 | Manage Kubernetes Operators

» Guided Exercise

Install Operators with the CLI

Install an operator by using the command-line interface and Kubernetes manifests.

Outcomes

+ Install operators from the CLI with manual updates.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your
system for this exercise.

This command ensures that the cluster is ready, and removes the openshift-file-
integrity namespace and File Integrity operator if they exist.

[student@workstation ~]$ lab start operators-cli

Instructions

In this exercise, you install the File Integrity operator with manual updates. The documentation of
the File Integrity operator contains specific installation instructions.

For more information, refer to the Installing the File Integrity Operator Using the CL/ section

in the File Integrity Operator chapter in the Red Hat OpenShift Container Platform 4.14
Security and Compliance documentation at https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.14/html-single/security_and_compliance/index#installing-file-
integrity-operator-using-cli_file-integrity-operator-installation

P 1. Login to the OpenShift cluster as the admin user with the redhatocp password.

[student@workstation ~]$ oc login -u admin -p redhatocp \
https://api.ocp4.example.com: 6443
Login successful.

...output omitted...

P 2. Find the details of the File Integrity operator within the OpenShift package manifests.

2.1. View the available operators within the OpenShift Marketplace by using the oc get
command.

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/security_and_compliance/index#installing-file-integrity-operator-using-cli_file-integrity-operator-installation
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/security_and_compliance/index#installing-file-integrity-operator-using-cli_file-integrity-operator-installation
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/security_and_compliance/index#installing-file-integrity-operator-using-cli_file-integrity-operator-installation

Chapter 7 | Manage Kubernetes Operators

[student@workstation ~]$ oc get packagemanifests

NAME CATALOG AGE
file-integrity-operator do280 Operator Catalog Cs 37h
lvms-operator do280 Operator Catalog Cs 37h
compliance-operator do280 Operator Catalog Cs 37h
metallb-operator do280 Operator Catalog Cs 37h
kubevirt-hyperconverged do280 Operator Catalog Cs 37h

2.2. Examine the File Integrity operator package manifest by using the oc describe
command

[student@workstation ~]$ oc describe packagemanifest file-integrity-operator
Name: file-integrity-operator
...output omitted. ..
Spec:
Status:
Catalog Source: do280-catalog-cs
Catalog Source Display Name: do280 Operator Catalog Cs
Catalog Source Namespace: openshift-marketplace
Catalog Source Publisher:
Channels:
..output omitted. ..
Install Modes:
Supported: true

Type: ownNamespace
Supported: true
Type: SingleNamespace
Supported: false
Type: MultiNamespace
Supported: true
Type: AllNamespaces

..output omitted...

Name: stable
Default Channel: stable
Package Name: file-integrity-operator

..output omitted...

The operator is in the do280-catalog-cs catalog source in the openshift-
marketplace namespace. The operator has a single channel with the v1 name. The
operator has the file-integrity-operator name.

P 3. |Install the File Integrity operator. By following the operator installation instructions, you
must install the operator in the openshift-file-integrity namespace. Also, you must
make the operator available only in that namespace. The File Integrity operator requires you
to create a namespace with specific labels.

3.1. The operator documentation provides a YAML definition of the required
namespace. The definition is available in the ~/D0280/ labs/operators-cli/
namespace.yaml path. Examine the definition and create the namespace.

Chapter 7 | Manage Kubernetes Operators

apiVersion: vi
kind: Namespace
metadata:
labels:
openshift.io/cluster-monitoring: "true"
pod-security.kubernetes.io/enforce: privileged
name: openshift-file-integrity

[student@workstation ~]$ oc create -f ~/D0280/labs/operators-cli/namespace.yaml
namespace/openshift-file-integrity created

3.2. Create an operator group in the operator namespace. The operator group targets the
same namespace. You can use the template in the ~/D0280/labs/operators-
cli/operator-group.yaml path. Edit the file and configure the namespaces.

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
name: file-integrity-operator
namespace: openshift-file-integrity
spec:
targetNamespaces:
- openshift-file-integrity

Create the operator group.

[student@workstation ~]$ oc create \
-f ~/D0280/1labs/operators-cli/operator-group.yaml
operatorgroup.operators.coreos.com/file-integrity-operator created

3.3. Create the subscription in the operator namespace. You can use the template in the
~/D0280/labs/operators-cli/subscription.yaml path. Edit the file with
the data that you obtained in a previous step. Set the approval policy to Manual.

apiVersion: operators.coreos.com/vlialphal
kind: Subscription
metadata:
name: file-integrity-operator
namespace: openshift-file-integrity
spec:
channel: "stable"
installPlanApproval: Manual
name: file-integrity-operator
source: do280-catalog-cs
sourceNamespace: openshift-marketplace

Create the subscription.

[student@workstation ~]$ oc create -f ~/D0280/labs/operators-cli/subscription.yaml
subscription.operators.coreos.com/file-integrity-operator created

Chapter 7 | Manage Kubernetes Operators

P 4. Approve the install plan.

4.1. Examine the operator resource that the OLM created.

[student@workstation ~]$ oc describe operator file-integrity-operator

Name: file-integrity-operator.openshift-file-integrity
...output omitted...
Status:

Components:

Label Selector:
Match Expressions:

Key: operators.coreos.com/file-integrity-operator.openshift-file-
integrity
Operator: Exists
Refs:
...output omitted...
Kind: InstallPlan
Name: install-4wsq6
Namespace: openshift-file-integrity
API Version: operators.coreos.com/vlialphal
Conditions:
Last Transition Time: 2024-01-26T10:38:22Z7
Message: all available catalogsources are healthy
Reason: AllCatalogSourcesHealthy
Status: False
Type: CatalogSourcesUnhealthy
Last Transition Time: 2024-01-26T10:38:21Z
Reason: RequiresApproval
Status: True
Type: InstallPlanPending
Kind: Subscription
Name: file-integrity-operator
Namespace: openshift-file-integrity
Events: <none>

Verify that the operator has a condition of the InstallPlanPending type. The
operator can have other conditions, and they do not indicate a problem. The operator
references the install plan. You use the install plan name in a later step. If the install
plan is not generated, then wait a few moments and run the oc describe command
again.

4.2. View the install plan specification with the oc get command. Replace the name with
the install plan name that you obtained in a previous step.

[student@workstation ~]$ oc get installplan -n openshift-file-integrity \
install-4wsq6 -o jsonpath='{.spec}{"\n"}'

{"approval":"Manual", "approved":false, "clusterServiceVersionNames":["file-

integrity-operator.v1.3.3","file-integrity-operator.v1.3.3"], "generation":1}

The install plan is set to manual approval, and the approved field is set to false.

4.3. Approve the install plan with the oc patch command. Replace the name with the
install plan name that you obtained in a previous step.

Chapter 7 | Manage Kubernetes Operators

[student@workstation ~]$ oc patch installplan install-4wsq6 --type merge -p \
'{"spec":{"approved":true}}' -n openshift-file-integrity
installplan.operators.coreos.com/install-4wsg6 patched

4.4. Verify that the operator installs successfully, by using the oc describe command.
Check the latest transaction for the current status. The installation might not
complete immediately. If the installation is not complete, then wait a few minutes and
view the status again.

[student@workstation ~]$ oc describe operator file-integrity-operator
...output omitted...
Status:
Components:
Label Selector:
Match Expressions:

Key: operators.coreos.com/file-integrity-operator.openshift-file-
integrity
Operator: Exists
Refs:
...output omitted. ..
Conditions:
Last Transition Time: 2024-01-26T18:21:03Z
Last Update Time: 2024-01-26T18:21:03Z
Message: install strategy completed with no errors
Reason: InstallSucceeded
Status: True
Type: Succeeded
Kind: ClusterServiceVersion
Name: file-integrity-operator.v1.0.0
Namespace: openshift-file-integrity

...output omitted...

4.5. Examine the workloads in the openshift-file-integrity namespace.

[student@workstation ~]$ oc get all -n openshift-file-integrity

Warning: apps.openshift.io/v1l DeploymentConfig is deprecated in v4.14+,
unavailable in v4.10000+

NAME READY STATUS RESTARTS AGE
pod/file-integrity-operator-6985588576-x2k49 1/1 Running 1 (50s ago) 56s

...output omitted. ..

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/file-integrity-operator 1/1 1 1 56s
NAME DESIRED CURRENT READY
AGE

replicaset.apps/file-integrity-operator-6985588576 1 1 1

56s

The namespace has a ready deployment.

Chapter 7 | Manage Kubernetes Operators

) 5.

Test the operator to ensure that it is functional. The operator watches FileIntegrity
resources, runs file integrity checks on nodes, and creates FileIntegrityNodeStatus
with the results of the checks.

51. CreateaFileIntegrity custom resource by applying the file at ~/D0280/ labs/
operators-cli/worker-fileintegrity.yaml with the oc apply command.

[student@workstation ~]$ oc apply -f \
~/D0280/labs/operators-cli/worker-fileintegrity.yaml
fileintegrity.fileintegrity.openshift.io/worker-fileintegrity created

5.2. Verify that the operator functions, by viewing the worker -fileintegrity object

with the oc describe command.

[student@workstation ~]$ oc describe fileintegrity worker-fileintegrity \
-n openshift-file-integrity

Name: worker-fileintegrity
Namespace: openshift-file-integrity
Labels: <none>

Annotations: <none>
API Version: fileintegrity.openshift.io/vilalphal

Kind: FileIntegrity
...output omitted. ..
Spec:

Config:

Grace Period: 900
Max Backups: 5

Node Selector:
node-role.kubernetes.io/worker:

Tolerations:

Effect: NoSchedule
Key: node-role.kubernetes.io/master
Operator: Exists
Effect: NoSchedule
Key: node-role.kubernetes.io/infra
Operator: Exists

Events: <none>

5.3. Useoc edit toeditthe Grace Periodto 60inthe FileIntegrity custom
resource to trigger a failure.

[student@workstation ~]$ oc edit fileintegrity worker-fileintegrity \
-n openshift-file-integrity

Name: worker-fileintegrity
Namespace: openshift-file-integrity
Labels: <none>

Annotations: <none>
API Version: fileintegrity.openshift.io/vlialphal

Kind: FileIntegrity
...output omitted. ..
Spec:

Config:

Grace Period: 60
Max Backups: 5

Chapter 7 | Manage Kubernetes Operators

Node Selector:
node-role.kubernetes.io/worker:

Tolerations:
Effect: NoSchedule
Key: node-role.kubernetes.io/master
Operator: Exists
Effect: NoSchedule
Key: node-role.kubernetes.io/infra

Operator: Exists
Events: <none>

5.4. Verify that the operator automatically creates a FileIntegrityNodeStatus
object, by using the oc get command. You might need to wait a few minutes for the
object to generate.

E Note
The first file integrity resource that you create might not work correctly.

If the operator does not create the FileIntegrityNodeStatus resource in a few
minutes, then delete the FileIntegrity resource and create it again.

The exercise outcome does not depend on obtaining a
FileIntegrityNodeStatus resource.

[student@workstation ~]$ oc get fileintegritynodestatuses \
-n openshift-file-integrity

NAME NODE STATUS

worker-fileintegrity-masterol masterol Succeeded

5.5. After FileIntegrityNodeStatus has successfully been created, run
this as the admin user to modify the node's filesystem: oc debug node/
master@l—touch /host/etc/foobar

[student@workstation ~]$ oc debug node/master01 -- touch /host/etc/foobar
Starting pod/master@l1-debug-192pd ...
To use host binaries, ‘run chroot /host"

Removing debug pod ...

56. Runoc get configmaps -n openshift-file-integrity to list configmaps
inthe openshift-file-integrity namespace.

[student@workstation ~]$ oc get configmaps -n openshift-file-integrity --watch
NAME DATA AGE

aide-pause 1 109m
aide-reinit 1 109m
aide-worker-fileintegrity-master01-failed 1 108m
kube-root-ca.crt 1 117m
openshift-service-ca.crt 1 117m
worker-fileintegrity 1 109m

Chapter 7 | Manage Kubernetes Operators

E Note
It may take several minutes for aide-worker-fileintegrity-master01-
failed to show. Use the - -watch flag and wait a few minutes until the failed
configmap shows to move on to the next step. Press Ctr 1+C to exit.

57. Runoc describe toview the reportinaide-worker-fileintegrity-
master@l1-failed configmap in the openshift-file-integrity namespace.

[student@workstation ~]$ oc describe \
configmap/aide-worker-fileintegrity-master01-failed \
-n openshift-file-integrity

Name: aide-worker-fileintegrity-master@1-failed
Namespace: openshift-file-integrity
Labels: file-integrity.openshift.io/node=master01

file-integrity.openshift.io/owner=worker-fileintegrity
file-integrity.openshift.io/result-log=

Annotations: file-integrity.openshift.io/files-added: 1
file-integrity.openshift.io/files-changed: 0
file-integrity.openshift.io/files-removed: 0

integritylog:

N\ocoo

Start timestamp: 2024-01-26 18:31:16 +0000 (AIDE 0.16)
AIDE found differences between database and filesystem!!

Summary:
Total number of entries: 32359
Added entries: 1
Removed entries: 0
Changed entries: 0

f++++++++++++++++: /hostroot/etc/cni/multus/certs/multus-
client-2024-01-26-15-14-01.pem
f++++++++++++++++: /hostroot/etc/foobar

/hostroot/etc/kubernetes/aide.db.gz

MD5 1 UswXQiVa/Vpj LXF1rCPOVA==

SHA1 ! S6tO6MCRrDgc4x0WnX6vksrflGU=

RMD160 : jvDdvAOC7/tI0TjDe7Kzmy5nUk8=

TIGER 1 TjW192YTQBmMG40Gza7siI6CBRnztgrp6

SHA256 : E8rWurdI9HgGP6402gWY+1DAaLoGiyNs
PEka/siI1F0=

Chapter 7 | Manage Kubernetes Operators
SHA512 : JPDhgoEnNiTaDLgawkGtHplRW8f6zm3g

jDB3E6X6XM4+13yhjwh/pokFAp5BhRSC
0C4XX1ibXsS40YXYiE5hBaw==

End timestamp: 2024-01-26 18:31:45 +0000 (run time: Om 29s)

BinaryData
\====

Events: <none>
Finish
On the workstation machine, use the lab command to complete this exercise. This step is

important to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab finish operators-cli

D0O280-0OCP4.14-en-1-20240215 w

Chapter 7 | Manage Kubernetes Operators

» Lab

Manage Kubernetes Operators

Install an operator and verify that it is healthy.

Outcomes

+ Install the Compliance operator on the command line.

Before You Begin

As the student user on the workstation machine, use the lab command to prepare your

system for this exercise.

This command ensures that the cluster APl is reachable and that the operator that is used in

this exercise is not present.

[student@workstation ~]$ lab start operators-review

Instructions

In this exercise, you install the Compliance operator. For more information, refer to the
Compliance Operator chapter in the Red Hat OpenShift Container Platform 4.14 Security

and Compliance documentation at https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.14/html-single/security_and_compliance/index#compliance-

operator.

1. Login to your OpenShift cluster as the admin user with the redhatocp password.

2. Examine the package manifest for the Compliance operator to discover the operator name,
catalog name, suggested namespace, and channel.

3. Create the recommended openshift-compliance namespace.

Create an operator group with the compliance-operator name in the openshift-
compliance namespace. The target namespace of the operator group is the openshift-
compliance namespace. You can use the ~/D0280/labs/operators-review/
operator-group.yaml file as a template.

5. Createacompliance-operator subscriptionin the openshift-compliance
namespace. The subscription has the following parameters:

Field
channel
spec.name
source

sourceNamespace

Value

stable
compliance-operator
do280-catalog-cs

openshift-marketplace

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/security_and_compliance/index#compliance-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/security_and_compliance/index#compliance-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/security_and_compliance/index#compliance-operator

Chapter 7 | Manage Kubernetes Operators

You can use the ~/D0280/ labs/operators-review/subscription.yaml file as a
template.

You can configure automatic install plan approvals.

6. Wait until the operator is installed.

The Operator Lifecycle Manager creates a cluster service version in the openshift-
compliance namespace. Wait until the cluster service version resource (CSV) is in the
Succeeded phase.

Although the CSV defines a single compliance-operator deployment, the operator has
two additional deployments. Wait until the compliance-operator, ocp4-openshift-
compliance-pp, and rhcos4-openshift-compliance-pp deployments are ready.

7. Verify that the operator works correctly.

This operator watches custom resources of the ScanSettingBinding type and runs file
integrity checks on cluster nodes. The operator reports results with custom resources of the
ComplianceSuite type.

Create a scan setting binding in the openshift-compliance namespace. You can use the
~/D0280/labs/operators-review/scan-setting-binding.yaml file as a template.

You can also use the web console to create the scan setting binding. The YAML editor in the
web console provides the same scan setting binding resource as an example.

Wait until a resource of the ComplianceSuite type in the DONE phase is present in the
openshift-compliance namespace.

Evaluation

As the student user on the workstation machine, use the lab command to grade your work.
Correct any reported failures and rerun the command until successful.

[student@workstation ~]$ lab grade operators-review
Finish
As the student user on the workstation machine, use the lab command to complete this

exercise. This step is important to ensure that resources from previous exercises do not impact
upcoming exercises.

[student@workstation ~]$ lab finish operators-review

Chapter 7 | Manage Kubernetes Operators

» Solution

Manage Kubernetes Operators

Install an operator and verify that it is healthy.

Outcomes

+ Install the Compliance operator on the command line.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your
system for this exercise.

This command ensures that the cluster APl is reachable and that the operator that is used in
this exercise is not present.

[student@workstation ~]$ lab start operators-review

Instructions

In this exercise, you install the Compliance operator. For more information, refer to the
Compliance Operator chapter in the Red Hat OpenShift Container Platform 4.14 Security

and Compliance documentation at https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.14/html-single/security_and_compliance/index#compliance-
operator.

1. Login to your OpenShift cluster as the admin user with the redhatocp password.

11. Login to the cluster as the admin user.

[student@workstation ~]$ oc login -u admin -p redhatocp \
https://api.ocp4.example.com: 6443
Login successful.

...output omitted. ..

2. Examine the package manifest for the Compliance operator to discover the operator name,
catalog name, suggested namespace, and channel.

2.1. Use the oc command to list the package manifest resources.

[student@workstation ~]$ oc get packagemanifest

NAME CATALOG AGE

lvms-operator do280 Operator Catalog Cs 2d5h
file-integrity-operator do280 Operator Catalog Cs 2d5h
metallb-operator do280 Operator Catalog Cs 2d5h
compliance-operator do280 Operator Catalog Cs 2d5h

kubevirt-hyperconverged do280 Operator Catalog Cs 2d5h

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/security_and_compliance/index#compliance-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/security_and_compliance/index#compliance-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/security_and_compliance/index#compliance-operator

Chapter 7 | Manage Kubernetes Operators
2.2. Examine the compliance-operator package manifest.

[student@workstation ~]$ oc get packagemanifest compliance-operator -o yaml
apiVersion: packages.operators.coreos.com/v1l
kind: PackageManifest
metadata:
creationTimestamp: "2024-01-24T14:05:27Z2"
labels:
catalog: do280-catalog-cs
catalog-namespace: openshift-marketplace
...output omitted...
name: compliance-operator
namespace: default
spec: {}
status:
...output omitted. ..
channels:
- currentCSV: compliance-operator.v1i.4.0
currentCsvDesc:
annotations:
alm-examples: |-
...output omitted. ..
operatorframework.io/suggested-namespace: openshift-compliance
...output omitted...
version: 1.4.0
name: stable
defaultChannel: stable
packageName: compliance-operator
...output omitted. ..

The package manifest contains the following information:

Field Value

catalog do280-catalog-cs
catalog-namespace openshift-marketplace
suggested-namespace openshift-compliance
defaultChannel stable

packageName compliance-operator

3. Create the recommended openshift-compliance namespace.

3.1. Use the oc command to create the namespace.

[student@workstation ~]$ oc create namespace openshift-compliance
namespace/openshift-compliance created

4. Create an operator group with the compliance-operator name in the openshift-
compliance namespace. The target namespace of the operator group is the openshift-
compliance namespace. You can use the ~/D0280/labs/operators-review/
operator-group.yaml file as a template.

Chapter 7 | Manage Kubernetes Operators
4]. Create anoperator-group.yaml file with the following content:

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
name: compliance-operator
namespace: openshift-compliance
spec:
targetNamespaces:
- openshift-compliance

4.2. Use the oc command to create the operator group:

[student@workstation ~]$ oc create -f operator-group.yaml
operatorgroup.operators.coreos.com/compliance-operator created

5. Createacompliance-operator subscriptionin the openshift-compliance
namespace. The subscription has the following parameters:

Field Value

channel stable

spec.name compliance-operator
source do280-catalog-cs
sourceNamespace openshift-marketplace

You can use the ~/D0280/ labs/operators-review/subscription.yaml file as a
template.

You can configure automatic install plan approvals.

5.1 Create asubscription.yaml file with the following content:

apiVersion: operators.coreos.com/vialphal
kind: Subscription
metadata:
name: compliance-operator
namespace: openshift-compliance
spec:
channel: stable
installPlanApproval: Automatic
name: compliance-operator
source: do280-catalog-cs
sourceNamespace: openshift-marketplace

5.2. Use the oc command to create the operator group:

[student@workstation ~]$ oc create -f subscription.yaml
subscription.operators.coreos.com/compliance-operator created

6. Wait until the operator is installed.

Chapter 7 | Manage Kubernetes Operators

The Operator Lifecycle Manager creates a cluster service version in the openshift-
compliance namespace. Wait until the cluster service version resource (CSV) is in the
Succeeded phase.

Although the CSV defines a single compliance-operator deployment, the operator has
two additional deployments. Wait until the compliance-operator, ocp4-openshift-
compliance-pp, and rhcos4-openshift-compliance-pp deployments are ready.

6.1. Select the openshift-compliance project.

[student@workstation ~]$ oc project openshift-compliance
Now using project "openshift-compliance" on server "https://
api.ocp4.example.com:6443".

6.2. Wait until the CSV is in the Succeeded phase.

[student@workstation ~]$ oc get csv

NAME DISPLAY VERSION ... PHASE
compliance-operator.v1.4.0 Compliance Operator 1.4.0 ... Succeeded
...output omitted...

The available CSV version in the lab might change. Commands in the following steps
require you to replace the available version in the lab.

6.3. Inspect the CSV to view the operator deployment. Replace the version that you
obtained in a previous step. The .spec.install.spec.deployments JSONPath
expression describes the location of the operator deployments in the CSV resource.
Optionally, use the jg command to indent the output.

[student@workstation ~]$ oc get csv compliance-operator.vi.4.0 \
-0 jsonpath={.spec.install.spec.deployments} | jq

"name": "compliance-operator",
"spec": {
...output omitted...

The Compliance operator describes a single deployment with the compliance-
operator name.

6.4. Use the oc command to list the workloads in the operator namespace.

[student@workstation ~]$ oc get all
NAME

pod/compliance-operator-...
pod/ocp4-openshift-compliance-pp-...
pod/rhcos4-openshift-compliance-pp-...

...output omitted. ..

NAME READY
deployment.apps/compliance-operator 1/1
deployment.apps/ocp4-openshift-compliance-pp 1/1

Chapter 7 | Manage Kubernetes Operators
deployment.apps/rhcos4-openshift-compliance-pp 1/1

...output omitted. ..

Besides the compliance-operator deployment, the Compliance operator creates
two other deployments.

Wait until all deployments are ready.

Verify that the operator works correctly.

This operator watches custom resources of the ScanSettingBinding type and runs file
integrity checks on cluster nodes. The operator reports results with custom resources of the
ComplianceSuite type.

Create a scan setting binding in the openshift-compliance namespace. You can use the
~/D0280/labs/operators-review/scan-setting-binding.yaml file as a template.

You can also use the web console to create the scan setting binding. The YAML editor in the
web console provides the same scan setting binding resource as an example.

Wait until a resource of the ComplianceSuite type in the DONE phase is present in the
openshift-compliance namespace.

7.1. Examine the alm-examples annotation in the CSV. Replace the version that you
obtained in a previous step.

[student@workstation ~]$ oc get csv compliance-operator.vi.4.0 \
-0 jsonpath={.metadata.annotations.alm-examples} | jq
[
...output omitted. ..
{
"apiVersion": "compliance.openshift.io/vialphal",
"kind": "ScanSettingBinding",
"metadata": {
"name": '"nist-moderate"
}
"profiles": [
{
"apiGroup": "compliance.openshift.io/vialphal",
"kind": "Profile",
"name": "rhcos4-moderate"
}
1,
"settingsRef": {
"apiGroup": "compliance.openshift.io/vlialphal",
"kind": "ScanSetting",
"name": "default"
}
}
...output omitted. ..

]

The annotation contains an example scan setting binding that you can use. The
example is in JSON format. When creating a scan setting binding in the web console,
the YAML editor loads the same example.

You can also use the oc explain command to describe the scan setting binding
resource.

Chapter 7 | Manage Kubernetes Operators

7.2. Create the scan setting binding resource by using the example file in the ~/D0280/
labs/operators-review/scan-setting-binding.yaml path.

[student@workstation ~]$ oc create \
-f ~/D0280/1labs/operators-review/scan-setting-binding.yaml
scansettingbinding.compliance.openshift.io/nist-moderate created

7.3. Use the oc command to list compliance suite and pod resources. Execute the
command repeatedly until the compliance suite resource is in the DONE phase.

[student@workstation ~]$ oc get compliancesuite, pod

NAME PHASE RESULT
compliancesuite.compliance.openshift.io/nist-moderate DONE NON-COMPLIANT
NAME

pod/compliance-operator-...
pod/ocp4-openshift-compliance-pp-...
pod/rhcos4-openshift-compliance-pp-...

To execute the scan, the compliance operator creates extra pods. The pods disappear
when the scan completes.

Evaluation

As the student user on the workstation machine, use the lab command to grade your work.
Correct any reported failures and rerun the command until successful.

[student@workstation ~]$ lab grade operators-review
Finish
As the student user on the workstation machine, use the lab command to complete this
exercise. This step is important to ensure that resources from previous exercises do not impact

upcoming exercises.

[student@workstation ~]$ lab finish operators-review

Chapter 7 | Manage Kubernetes Operators

Summary

Operators extend the capabilities of a Kubernetes cluster.
Cluster operators provide the platform services of OpenShift, such as the web console.

The Operator Lifecycle Manager manages add-on operators, which are sourced from catalogs
such as the OperatorHub.

Most operators create and manage complex workloads based on declarative custom resources.
Users can view, install, update, and troubleshoot add-on operators by using the web console.

Users can use the package manifest, subscription, operator group, and install plan resources to
manage add-on operators from the command line or from the API.

Chapter 8

Application Security

Goal
Objectives

‘“ |

-

I—

i -

I Sections
Lab

r/

Run applications that require elevated or special U
privileges from the host operating system or
Kubernetes.
.
+ Create service accounts and apply permissions, 4
and manage security context constraints.
* Run an application that requires access to the P-
Kubernetes API of the application's cluster.
Automate regular cluster and application i

management tasks by using Kubernetes cron
jobs.

+ Control Application Permissions with Security
Context Constraints (and Guided Exercise)

+ Allow Application Access to Kubernetes
APIs (and Guided Exercise)

Cluster and Node Maintenance with Kubernetes
Cron Jobs (and Guided Exercise)

+ Application Security

D0O280-0OCP4.14-en-1-20240215

Chapter 8 | Application Security

Control Application Permissions with
Security Context Constraints

Objectives

+ Create service accounts and apply permissions, and manage security context constraints.

Security Context Constraints (SCCs)

Red Hat OpenShift provides security context constraints (SCCs), a security mechanism that limits
the access from a running pod in OpenShift to the host environment. SCCs control the following
host resources:

+ Running privileged containers

+ Requesting extra capabilities for a container
+ Using host directories as volumes

+ Changing the SELinux context of a container
+ Changing the user ID

Some community-developed containers might require relaxed security context constraints to
access resources that are forbidden by default, such as file systems or sockets, or to access an
SELinux context.

Cluster administrators can run the following command to list the SCCs that OpenShift defines:

[user@host ~]$% oc get scc

OpenShift provides the following default SCCs:

+ anyuid

+ hostaccess

+ hostmount-anyuid
+ hostnetwork

+ hostnetwork-v2

+ lvms-topolvm-node
+ lvms-vgmanager

+ machine-api-termination-handler
- node-exporter

+ nonroot

* nonroot-v2

+ privileged

+ restricted

+ restricted-v2

For additional information about an SCC, use the oc describe command:

Chapter 8 | Application Security

[user@host ~]$ oc describe scc anyuid

Name: anyuid
Priority: 10
Access:
Users: <none>
Groups: system:cluster-admins
Settings:

...output omitted...

Most pods that OpenShift creates use the restricted-v2 SCC, which provides limited access
to resources that are external to OpenShift. Use the oc describe command to view the security
context constraint that a pod uses.

[user@host ~]$% oc describe pod console-5df4fcbb47-67c52 \
-n openshift-console | grep scc
openshift.io/scc: restricted-v2

Container images that are downloaded from public container registries, such as Docker Hub, might
fail to run when using the restricted-v2 SCC. For example, a container image that requires
running as a specific user ID can fail because the restricted-v2 SCC runs the container by
using a random user ID. A container image that listens on port 80 or on port 443 can fail for a
related reason. The random user ID that the restricted-v2 SCC uses cannot start a service
that listens on a privileged network port (port numbers that are less than 1024). Use the scc-
subject-review subcommand to list all the security context constraints that can overcome the
limitations that hinder the container:

[user@host ~]% oc get deployment deployment-name -o yaml | \
oc adm policy scc-subject-review -f -

The anyuid SCC defines the run as user strategy to be RunAsAny, which means that the
pod can run as any available user ID in the container. With this strategy, containers that require a
specific user can run the commands by using a specific user ID.

To change the container to run with a different SCC, you must create a service account that is
bound to a pod. Use the oc create serviceaccount command to create the service account,
and use the -n option if the service account must be created in a different namespace from the
current one:

[user@host ~]$ oc create serviceaccount service-account-name

To associate the service account with an SCC, use the oc adm policy command. Identify a
service account by using the -z option, and use the -n option if the service account exists in a
different namespace from the current one:

[user@host ~]% oc adm policy add-scc-to-user SCC -z service-account

i~ | Important

Only cluster administrators can assign an SCC to a service account or remove an
SCC from a service account. Allowing pods to run with a less restrictive SCC can
make your cluster less secure. Use with caution.

Chapter 8 | Application Security

Change an existing deployment or deployment configuration to use the service account by using
the oc set serviceaccount command:

[user@host ~]$ oc set serviceaccount deployment/deployment-name \
service-account-name

If the command succeeds, then the pods that are associated with the deployment or deployment
configuration redeploy.

Privileged Containers

Some containers might need to access the runtime environment of the host. For example, the
S2l builder class of privileged containers requires access beyond the limits of its own containers.
These containers can pose security risks, because they can use any resources on an OpenShift
node. Use SCCs to enable access for privileged containers by creating service accounts with
privileged access.

D References

For more information, refer to the Managing Security Context Constraints chapter
in the Red Hat OpenShift Container Platform 4.14 Authentication and Authorization
documentation at
https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.14/html-single/authentication_and_authorization/
index#managing-pod-security-policies

w D0O280-0OCP4.14-en-1-20240215

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/authentication_and_authorization/index#managing-pod-security-policies
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/authentication_and_authorization/index#managing-pod-security-policies
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/authentication_and_authorization/index#managing-pod-security-policies

Chapter 8 | Application Security

» Guided Exercise

Control Application Permissions with
Security Context Constraints

Deploy applications that require pods with extended permissions.

Outcomes
+ Create service accounts and assign security context constraints (SCCs) to them.

+ Assign a service account to a deployment configuration.

+ Run applications that need root privileges.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your
system for this exercise.

This command ensures that the cluster APl is reachable and creates some HTPasswd users
for the exercise.

[student@workstation ~]$ lab start appsec-scc

Instructions

P 1. Loginto the OpenShift cluster and create the appsec-scc project.

11. Loginto the cluster as the developer user with the developer password.

[student@workstation ~]$ oc login -u developer -p developer \
https://api.ocp4.example.com: 6443

Login successful.

...output omitted. ..

1.2. Create the appsec-scc project.

[student@workstation ~]$ oc new-project appsec-scc
Now using project "appsec-scc" on server ...
...output omitted. ..

P 2. Deploy an application named git lab by using the container image at
registry.ocp4.example.com:8443/redhattraining/gitlab-ce:8.4.3-ce.0.
This image is a copy of the container image at docker.io/gitlab/gitlab-ce:8.4.3-
ce. 0. Verify that the reason for the pod failure is because the container image needs root
privileges.

2.1. Deploy the gitlab application.

Chapter 8 | Application Security

[student@workstation ~]$ oc new-app --name gitlab \
--image registry.ocp4.example.com:8443/redhattraining/gitlab-ce:8.4.3-ce.0
...output omitted...
--> Creating resources ...
imagestream.image.openshift.io "gitlab" created
deployment.apps "gitlab" created
service "gitlab" created
--> Success
...output omitted...

2.2. Determine whether the application is successfully deployed. It should give an error,
because this image needs root privileges to deploy

[student@workstation ~]$ oc get pods
NAME READY STATUS RESTARTS AGE

gitlab-d89cd88f8-jwgbhp 0/1 Error 0] 36s

Note
5 It might take some time for the image to reach the Error state. You might also see
the CrashLoopBackOff status when you validate the health of the pod.

2.3. Review the application logs to confirm that insufficient privileges caused the failure.

[student@workstation ~]$ oc logs pod/gitlab-d89cd88f8-jwqbp
...output omitted. ..

Recipe Compile Error in /opt/gitlab/embedded/cookbooks/cache/cookbooks/gitlab/
recipes/default.rb

Chef::Exceptions: :InsufficientPermissions

directory[/etc/gitlab] (gitlab::default 1line 26) had an error:
Chef::Exceptions::InsufficientPermissions: Cannot create directory[/etc/gitlab]
at /etc/gitlab due to insufficient permissions

...output omitted. ..

The application tries to write to the /etc directory. To allow the application to write
to the /etc directory, you can make the application run as the root user. To run the
application as the root user, you can grant the anyuid SCC to a service account.

P 3. Create a service account and assign the anyuid SCC to it.

3.1. Loginasthe admin user with the redhatocp password.

[student@workstation ~]$ oc login -u admin -p redhatocp \
https://api.ocp4.example.com: 6443

Login successful.

...output omitted...

3.2. Verify the appropriate SCC to use with this deployment.

Chapter 8 | Application Security

[student@workstation]$ oc get deploy
NAME READY UP-TO-DATE AVAILABLE AGE
gitlab 0/1 1 (0] 109s

[student@workstation]$ oc get deploy/gitlab -o yaml | oc adm policy \
scc-subject-review -f -

RESOURCE ALLOWED BY

Deployment/gitlab anyuid

The output confirms that the anyuid SCC allows the git lab deployment to create
and update pods.

3.3. Create a service account named gitlab-sa.

[student@workstation ~]$ oc create sa gitlab-sa
serviceaccount/gitlab-sa created

3.4. Assignthe anyuid SCC to the gitlab-sa service account.

[student@workstation ~]$ oc adm policy add-scc-to-user anyuid -z gitlab-sa
clusterrole.rbac.authorization.k8s.io/system:openshift:scc:anyuid added: "gitlab-
Sall

P 4. Modify the gitlab application to use the newly created service account. Verify that the
new deployment succeeds.

4. Loginasthe developer user.

[student@workstation ~]$ oc login -u developer -p developer
Login successful.
...output omitted. ..

4.2. Assign the gitlab-sa service account to the gitlab deployment.

[student@workstation ~]$ oc set serviceaccount deployment/gitlab gitlab-sa
deployment.apps/gitlab serviceaccount updated

4.3. Verify that the git lab redeployment succeeds. You might need to run the oc get
pods command multiple times until you see a running application pod.

[student@workstation ~]$ oc get pods
NAME READY STATUS RESTARTS AGE
gitlab-86d6d65-zm2fd 1/1 Running 0 55s

P 5. Verify that the gitlab application works.

5.1. Expose the gitlab application. Because the gitlab service listens on ports 22, 80,
and 443, you must use the - -port option.

Chapter 8 | Application Security

[student@workstation ~]$ oc expose service/gitlab --port 80 \
--hostname gitlab.apps.ocp4.example.com
route.route.openshift.io/gitlab exposed

5.2. Get the exposed route.

[student@workstation ~]$ oc get routes
NAME HOST/PORT PATH SERVICES PORT
gitlab gitlab.apps.ocp4.example.com gitlab 80

5.3. Verify that the gitlab application is answering HTTP queries.
[student@workstation ~]$ curl -sL http://gitlab.apps.ocp4.example.com/ | \

grep '<title>'
<title>Sign in - GitLab</title>

) 6. Delete the appsec-scc project.

[student@workstation ~]$ oc delete project appsec-scc
project.project.openshift.io "appsec-scc" deleted

Finish
On the workstation machine, use the Tab command to complete this exercise. This step is
important to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab finish appsec-scc

Chapter 8 | Application Security

Allow Application Access to Kubernetes
APlIs

Objectives

+ Run an application that requires access to the Kubernetes API of the application's cluster.

Securing Kubernetes APIs

With the Kubernetes APIs, a user or an application can query and modify the cluster state.
To protect your cluster from malicious interactions, you must grant access to the different
Kubernetes APIs.

Role-based access control (RBAC) authorization is preconfigured in OpenShift. An application
requires explicit RBAC authorization to access restricted Kubernetes APls.

Application Authorization with Service Accounts

A service account is a Kubernetes object within a project. The service account represents the
identity of an application that runs in a pod.

To grant an application access to a Kubernetes API, take these actions:
+ Create an application service account.
+ Grant the service account access to the Kubernetes API.

+ Assign the service account to the application pods.

If the pod definition does not specify a service account, then the pod uses the default service
account. OpenShift grants no rights to the default service account, which is expected for
business workloads. It is not recommended to grant additional permissions to the default
service account, because it grants those additional permissions to all pods in the project, which
might not be intended.

Use Cases for Kubernetes API Access

Regular business applications can successfully use the default service account, without requiring
access to the Kubernetes APls. On the contrary, infrastructure applications need access to
monitor or to modify the cluster resources. These infrastructure applications might be classified
into the following use cases:

Monitoring Applications
Applications in this category need read access to watch cluster resources or to verify cluster
health. For example, a service such as Red Hat Advanced Cluster Security (ACS) needs read
access to scan your cluster containers for vulnerabilities.

Controllers
Controllers are applications that constantly watch and try to reach the intended state of a
resource.

For example, GitOps tools, such as ArgoCD, have controllers that watch cluster resources that
are stored in a repository, and update the cluster to react to changes in that repository.

D0O280-0OCP4.14-en-1-20240215 w

Chapter 8 | Application Security

Operators
Operators automate creating, configuring, and managing instances of Kubernetes-native
applications. Therefore, operators need permissions for configuration and maintenance tasks.

For example, a database operator might create a deployment when it detects a CR that
defines a new database.

Application Kubernetes API Authorization with Roles

To provide the application with the needed permissions only, you can create roles or cluster roles
that describe the application requirements. Roles grant permissions to Kubernetes API resources
within a single namespace. Cluster roles grant permissions, either within one or more namespaces,
or to all the cluster.

For example, you can create a cluster role for an application to read secrets.

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: secret-reader
rules:
- apiGroups: [""] (1)
resources: ["secrets"] (2]
verbs: ["get", "watch", "list"] (3]

© The API groups, where an empty string represents the core API
© The resources that the role refers to

© The verbs or actions that the role allows the application to perform on the resource

You can also use the default cluster roles that OpenShift defines, which have wider permissions.
For example, you can use the edit cluster role to get read access on secrets, as in the previous
secret-reader cluster role.

The edit cluster role is less restrictive, and allows the application to create or update most
objects.

Binding Roles to Service Accounts

For an application to use the role permissions, you must bind the role or cluster role to the
application service account.

To bind a role or cluster role to a service account in a namespace, you can use the oc adm
policy command with the add-role-to-user subcommand.

This command assigns a cluster role to a service account that exists in the current project:

[user@host ~]$ oc adm policy add-role-to-user cluster-role -z service-account

You can optionally use -z to avoid specifying the system: serviceaccount:project prefix
when you assign the role to a service account that exists in the current project.

To create a cluster role binding, you can use the oc adm policy command with the add-
cluster-role-to-user subcommand.

Chapter 8 | Application Security
The following command assigns a cluster role to a service account with a cluster scope:

[user@host ~]$ oc adm policy add-cluster-role-to-user cluster-role service-account

Assigning an Application Service Account to Pods

OpenShift uses RBAC authorization by using the roles that are associated to the service
account to grant or deny access to the resource. You specify the service account name in the
spec.serviceAccountName pod definition field.

Applications must use the service account token internally when accessing a Kubernetes API. In
earlier OpenShift versions than 4.11, OpenShift generated a secret with a token when creating a
service account. Starting from OpenShift 4.11, tokens are no longer generated automatically. You
must use the TokenRequest API to generate the service account token. You must mount the token
as a pod volume for the application to access it.

Scoping Application Access to Kubernetes API
Resources

An application might require access to a resource in the same namespace, or in a different
namespace, or in all namespaces.

Accessing API Resources in the Same Namespace

To grant an application access to resources in the same namespace, you need a role or a cluster
role and a service account in that namespace. You then create a role binding that associates to the
service account the actions that the role grants on the resource. Using a role binding with a cluster
role grants access only to the resource within the namespace.

Accessing APl Resources in a Different Namespace

To give an application access to a resource in a different namespace, you must create the role
binding in the project with the resource. The subject for the binding references the application
service account that is in a different namespace from the binding.

You can use the following syntax to refer to service accounts from other projects:

system:serviceaccount:project:service-account

For example, if you have an application pod in the project-1 project that requires access to
project-2 secrets, then you must take these actions:

+ Create an app-sa service account in the project -1 project.
+ Assign the app - sa service account to your application pod.

+ Create a role binding on the project -2 project that references the app-sa service account
and the secret-reader role or cluster role.

Chapter 8 | Application Security

Cluster

Project1

Pod

app-sa

ServiceAccount

Name: app-sa

Project 2

Secret

RoleBinding

A

system:serviceaccount:projectl:app-sa

secret-reader

ClusterRole

Name: secret-reader

Figure 8.1: Grant access to a service account to a different project

In this way, you restrict an application's access to a Kubernetes API to specified namespaces.

Accessing APl Resources in All Namespaces

Grant your application service account the cluster role by using a cluster role binding. The cluster

role binding grants the application cluster access to the API.

D0O280-0OCP4.14-en-1-20240215

Chapter 8 | Application Security

References

For more information, refer to the Using RBAC to Define and Apply Permissions
chapter in the Red Hat OpenShift Container Platform 4.14 Authentication and
Authorization documentation at

https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.14/html-single/authentication_and_authorization/
index#using-rbac

For more information, refer to the Understanding and Creating Service Accounts
chapter in the Red Hat OpenShift Container Platform 4.14 Authentication and
Authorization documentation at

https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.14/html-single/authentication_and_authorization/
index#understanding-and-creating-service-accounts

For more information, refer to the Using Service Accounts in Applications chapter in
the Red Hat OpenShift Container Platform 4.14 Authentication and Authorization
documentation at

https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.14/html-single/authentication_and_authorization/
index#using-service-accounts

For more information, refer to the About Automatically-generated Service

Account Token Secrets section in the Red Hat OpenShift Container Platform 4.14
Authentication and Authorization documentation at
https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.14/html-single/authentication_and_authorization/
index#auto-generated-sa-token-secrets_using-service-accounts

D0O280-0OCP4.14-en-1-20240215 w

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/authentication_and_authorization/index#using-rbac
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/authentication_and_authorization/index#using-rbac
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/authentication_and_authorization/index#using-rbac
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/authentication_and_authorization/index#understanding-and-creating-service-accounts
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/authentication_and_authorization/index#understanding-and-creating-service-accounts
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/authentication_and_authorization/index#understanding-and-creating-service-accounts
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/authentication_and_authorization/index#using-service-accounts
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/authentication_and_authorization/index#using-service-accounts
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/authentication_and_authorization/index#using-service-accounts
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/authentication_and_authorization/index#auto-generated-sa-token-secrets_using-service-accounts
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/authentication_and_authorization/index#auto-generated-sa-token-secrets_using-service-accounts
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/authentication_and_authorization/index#auto-generated-sa-token-secrets_using-service-accounts

Chapter 8 | Application Security

» Guided Exercise

Allow Application Access to Kubernetes
APlIs

Configure an application with limited access to Kubernetes API resources.

Outcomes

You should be able to grant Kubernetes APl access to an application by using a service
account that has a role with the required privileges.

Before You Begin

As the student user on the workstation machine, use the lab command to prepare your
system for this exercise.

The lab command copies the following files to the lab directory:

+ The deployment manifest to install the Stakater Reloader application, at https://
github.com/stakater/Reloader. This application is a controller that watches for changes in
configuration maps and does rolling upgrades on associated deployments.

+ The manifests to install the config-app API, which has an endpoint to show its
internal configuration. The deployment manifest mounts the API configuration from a
configuration map.

In this exercise, you grant permissions on the appsec-api project to the Reloader
application, for read access to the configuration map APl and edit access to the deployment
API.

Warning
Using a controller to update a Kubernetes resource by reacting to changes is
an alternative to, and might conflict with, using GitOps.

[student@workstation ~]$ lab start appsec-api

Instructions
P 1. Change to the lab directory.

11. Change to the ~/D0280/ labs/appsec-api directory.

[student@workstation ~]$ cd ~/D0280/1labs/appsec-api

P 2. Login asthe admin user and change to the configmap-reloader project.

2.1. Open aterminal window and log in as the admin user with the redhatocp password.

https://github.com/stakater/Reloader
https://github.com/stakater/Reloader

Chapter 8 | Application Security

[student@workstation appsec-api]$ oc login -u admin -p redhatocp \
https://api.ocp4.example.com: 6443

Login successful.

...output omitted...

2.2. Usetheoc project command to change to the configmap-reloader
namespace.

[student@workstation appsec-api]$ oc project configmap-reloader
Now using project "configmap-reloader" on server ...

P 3. Create the configmap-reloader service account to hold the permissions for the
Reloader application. Then, assign the configmap-reloader service account to the
configmap-reloader deployment.

3.1. Create the configmap-reloader service account.

[student@workstation appsec-api]$ oc create sa configmap-reloader-sa
serviceaccount/configmap-reloader-sa created

3.2. Addthe configmap-reloader -sa service account to the deployment in the
reloader-deployment.yaml file.

apivVersion: apps/vi
kind: Deployment
metadata:
labels:
app: configmap-reloader
name: configmap-reloader
namespace: configmap-reloader
spec:
selector:
matchLabels:
app: configmap-reloader
release: "reloader"
template:
metadata:
labels:
app: configmap-reloader
spec:
serviceAccountName: configmap-reloader-sa
containers:
...output omitted. ..

3.3. Use the oc command to create the configmap-reloader deployment from the
reloader-deployment.yaml file.

[student@workstation appsec-api]$ oc apply -f reloader-deployment.yaml
deployment.apps/configmap-reloader created

P 4. Asthe developer user, create the appsec-api project.

Chapter 8 | Application Security
4.1. Login to the cluster as the developer user with the developer password.

[student@workstation appsec-api]$ oc login -u developer -p developer \
https://api.ocp4.example.com: 6443

Login successful.

...output omitted...

4.2. Usethe oc new-project command to create the appsec-api project.

[student@workstation appsec-api]$ oc new-project appsec-api
Now using project "appsec-api" on server ...

P 5. Grant permissions to the configmap-reloader - sa service account to watch
configuration map resources and roll out deployments on the appsec-api project.

51. Assignthe edit "cluster role to the “configmap-reloader-sa service
account in the appsec-api project. To assign the cluster role, create a local role
binding by using the oc policy add-role-to-user command with the following
options:

+ The edit default cluster role.

+ The system:serviceaccount:configmap-reloader:configmap-
reloader -sa username to reference the configmap-reloader -sa service
account in the configmap-reloader project.

+ The --rolebinding-name option to use the reloader -edit name for the role
binding.

+ The -n appsec-api, which is optional because you are already in the appsec-
api project.

[student@workstation appsec-api]$ oc policy add-role-to-user edit \
system:serviceaccount:configmap-reloader:configmap-reloader-sa \
--rolebinding-name=reloader-edit \

-n appsec-api
clusterrole.rbac.authorization.k8s.io/edit added:
"system:serviceaccount:configmap-reloader:configmap-reloader-sa"

S Note
The edit cluster role with the local role binding allows the configmap-
reloader - sa service account to modify most objects in the appsec-api project.
In a production scenario, it is best to grant access only to the APIs that your
application requires.

P 6. Install the config-app API by using the manifest files in the config-app directory.

6.1. Use the oc apply command with the -f option to create all the manifests in the
config-app directory.

Chapter 8 | Application Security

[student@workstation appsec-api]$ oc apply -f ./config-app
configmap/config-app created

deployment.apps/config-app created
route.route.openshift.io/config-app created
service/config-app created

6.2. Readthe config.yaml content from the config-app configuration map by
running the oc get command.

[student@workstation appsec-api]$ oc get configmap config-app \
--output="jsonpath={.data.config\.yaml}"

application:
name: "config-app"
description: "config-app"

6.3. Run the curl command to verify that the exposed route, https://config-app-
appsec-api.apps.ocp4.example.com/config, shows the config-app
configuration map content.

[student@workstation appsec-api]$ curl -s \
https://config-app-appsec-api.apps.ocp4.example.com/config | jq
{
"application": {
"description": "config-app",
"name": "config-app"

) 7. Configure the config-app deployment with the
configmap.reloader.stakater.com/reload: "config-app" annotation so that
the controller can roll out deployments automatically when the config-app configuration
map changes.

71. Addthe configmap.reloader.stakater.com/reload: "config-app"
annotation to the deployment in the config-app/deployment.yaml file.

apiVersion: apps/vi
kind: Deployment
metadata:
name: config-app
namespace: appsec-api
annotations:
configmap.reloader.stakater.com/reload: "config-app"
spec:
...output omitted. ..

7.2. Use the oc apply command to update the resource.

[student@workstation appsec-api]$ oc apply -f config-app/deployment.yaml
deployment.apps/config-app configured

Chapter 8 | Application Security

7.3. Verify that the configmap.reloader.stakater.com/reload: "config-app"
annotation is present in the config-app deployment object.

[student@workstation appsec-api]$ oc get deployment config-app -o yaml
apiVersion: apps/vi
kind: Deployment
metadata:

annotations:

configmap.reloader.stakater.com/reload: config-app

spec:
...output omitted. ..

) 8. Update the config-app configuration map description key and query /config
endpoint to verify that the Reloader controller upgrades the config-app deployment.

8.1. Update the description data in the configuration map in the config-app/
configmap.yaml file to the API that exposes its configuration value.

apiversion: vi
kind: ConfigMap
metadata:
name: config-app
namespace: appsec-api
data:
config.yaml: |
application:
name: '"config-app"
description: "API that exposes its configuration"

8.2. Use the oc command to apply the changes to the config-app/configmap.yaml
file.

[student@workstation appsec-api]$ oc apply -f config-app/configmap.yaml
configmap/config-app configured

8.3. Use the watch command to query the API /config endpoint by using the curl
command to verify that the API configuration changes. Press Ctr 1+C to exit.

[student@workstation appsec-api]$ watch \
"curl -s https://config-app-appsec-api.apps.ocp4.example.com/config | jq"
Every 2.0s: curl -s https://config-app-appsec-api.apps.ocp4.example.com/config |

jq
workstation:
{
"application": {
"description": "API that exposes its configuration",
"name": "config-app"
}
}

Wait until the controller application upgrades the deployment.

Chapter 8 | Application Security

P 9. Change to the home directory to complete the exercise.
9.1. Change to the home directory.
[student@workstation appsec-api]$ cd
Finish
On the workstation machine, use the lab command to complete this exercise. This step is

important to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab finish appsec-api

D0O280-0OCP4.14-en-1-20240215 w

Chapter 8 | Application Security

Cluster and Node Maintenance with
Kubernetes Cron Jobs

Objectives

+ Automate regular cluster and application management tasks with Kubernetes cron jobs.

Maintenance Tasks

Cluster administrators can use scheduled tasks to automate maintenance tasks in the cluster.
Other users can create scheduled tasks for regular application maintenance.

Maintenance tasks vary in the privileges that they require. Cluster maintenance tasks require
privileged pods, whereas most applications might not require elevated privileges.

Kubernetes Batch APl Resources

You can automate tasks in OpenShift by using standard Kubernetes jobs and cron jobs. The
automated tasks can be configured to run once or on a regular schedule.

Job
Kubernetes jobs specify a task that is executed once.

Cron Job
Kubernetes cron jobs have a schedule to execute a task regularly.

When a cron job is due for execution, Kubernetes creates a job resource. Kubernetes creates these
jobs from a template in the cron job definition. Other than this relationship, Kubernetes jobs and
cron jobs are workload resource types, such as deployments or daemon sets.

Kubernetes Jobs

The job resource includes a pod template that describes the task to execute. You can use the oc
create job --dry-run=client command to getthe YAML representation of the Kubernetes
job resource:

[user@host ~]% oc create job --dry-run=client -o yaml test \
--image=registry.access.redhat.com/ubi8/ubi:8.6 \
-- curl https://example.com

A job contains a pod template, and this pod template must specify at least one container. You can
add metadata such as labels or annotations to the job definition and pod template.

apiVersion: batch/v1
kind: Job
metadata:
creationTimestamp: null
name: test
spec: (1)
template: (2]
metadata:

Chapter 8 | Application Security

creationTimestamp: null
spec: (3]
containers: o
- command:
- curl
- https://example.com
image: registry.access.redhat.com/ubi8/ubi:8.6 o
name: test
resources: {}
restartPolicy: Never
status: {}

Job specification
Pod template
Pod specification
Pod containers

Command

© 06 6 0 0 O

Container image

Kubernetes Cron Jobs

The cron job resource includes a job template that describes the task and a schedule. You can use
the oc create cronjob --dry-run=client command to get the YAML representation of
the Kubernetes cron job resource:

[user@host ~]$ oc create cronjob --dry-run=client -o yaml test \
--image=registry.access.redhat.com/ubi8/ubi:8.6 \
--schedule='0 0 * * *' \

-- curl https://example.com

In Kubernetes, cron job resources are similar to job resources. The jobTemplate key follows the
same structure as a job. The schedule key describes when the task runs.

apiVersion: batch/vi
kind: CronJob
metadata:
creationTimestamp: null
name: test
spec:
jobTemplate: (2]
metadata:
creationTimestamp: null
name: test
spec: o
template: o
metadata:
creationTimestamp: null
spec:
containers:

Chapter 8 | Application Security

- command: o
- curl
- https://example.com
image: registry.access.redhat.com/ubi8/ubi:8.6 o
name: test
resources: {}

restartPolicy: OnFailure

schedule: 6 6 * * * (8]
status: {}

Cron job specification
Job template

Job specification

Pod template

Pod specification
Command

Container image

©O 0 60 00 0 0

Cron job schedule specification

Linux Cron Jobs

The schedule specification for Kubernetes cron jobs is derived from the specification in Linux
cron jobs. The crontab file specifies the scheduled tasks for the current user. The schedule
specification has five fields to define the date and time when the job is executed. The /etc/
crontab file comments include a syntax diagram:

Example cron job definition:

#o minute (0@ - 59)

| —— hour (0 - 23)

| | —— day of month (1 - 31)

| | | — month (1 - 12) or jan,feb,mar,apr ...

| | | | — day of week (0 - 7) or sun,mon, tue,wed, thu, fri, sat
| | | | | (Sunday is 0 or 7)

m h dom mon dow command

0 */2 * * * /path/to/task_executable arguments

Some examples of cron job specifications are as follows:

Schedule specification | Description

QO *** Run the specified task every day at midnight
00**7 Run the specified task every Sunday at midnight
Q% * ** Run the specified task every hour

O */4 * * * Run the specified task every four hours

Chapter 8 | Application Security

Note
E Refer to the crontab(5) manual page for more information about the cron job
schedule specification.

Automate Maintenance Tasks with Cron Jobs

You can automate the maintenance tasks for applications that run inside the cluster, and also
execute low-level commands inside privileged debug pods to apply cluster maintenance tasks.

Automating Application Maintenance Tasks

Regular maintenance tasks might need to run for applications that run in the cluster.

For example, consider creating periodic backups for an application. This application requires the
following steps to create the backup:

+ Activate maintenance mode.

+ Create a compressed database backup.

+ Deactivate maintenance mode.

+ Copy the database backup to an external location.

The following cron job definition shows a possible implementation of these steps:

apiVersion: batch/vi
kind: CronJob
metadata:
name: wordpress-backup
spec:
schedule: 0 2 * * 7 (1]
jobTemplate: (2]
spec:
template: (3)
spec: (4]
dnsPolicy: ClusterFirst
restartPolicy: Never
containers: (5]
- name: wp-cli
image: registry.io/wp-maintenance/wp-cli:2.7 0o
resources: {}
command:
- bash
- -Xc
args: 0o
- >
wp maintenance-mode activate ;
wp db export | gzip > database.sql.gz ;
wp maintenance-mode deactivate ;
rclone copy database.sql.gz s3://bucket/backups/ ;
rm -v database.sql.gz ;

© Schedule for every Sunday at 2 AM

© The Kubernetes job template

Chapter 8 | Application Security

The Kubernetes pod template

The Kubernetes pod specification

The pod container configuration

The container image that runs the maintenance task

The command to execute inside the pod

O ©0 6 0 00

Maintenance commands to execute

Note

E The > symbol uses the YAML folded style, which converts all newlines to spaces
when parsing. Each command is separated with a semicolon (;), because the string
in the args key is passed as a single argument to the bash -xc command.

This combination of the command and args keys has the same effect as executing
the commands in a single line inside the container:

[user@host ~]$ bash -xc 'wp maintenance-mode activate ; wp db export |
gzip > database.sql.gz ; wp maintenance-mode deactivate ; rclone copy
database.sql.gz s3://bucket/backups/ ; rm -v database.sql.gz ;'

For more information about the YAML folded style, refer to https://yaml.org/
spec/1.2.2/#folded-style

Automating Cluster Maintenance Tasks

Cluster maintenance might require executing complex scripts in privileged pods. You can create a
shell script with the commands to execute the maintenance task, and mount the script in the pod
by using a configuration map.

For example, when images are updated, clusters might accumulate unused images. These images
might occupy much space. Executing the crictl rmi --prune command on all nodes of the
cluster frees this space.

The following configuration map contains a shell script that cleans images in all cluster nodes by
executing a debug pod and running the crict 1 command with the chroot command to access
the root file system of the node:

apiVersion: vi
kind: ConfigMap
metadata:
name: maintenance
app: crictl
data:
maintenance.sh: |
#!/bin/bash
NODES=$(oc get nodes -o=name) (1]
for NODE in ${NODES} ©
do
echo ${NODE}
oc debug ${NODE} -- \ ©

https://yaml.org/spec/1.2.2/#folded-style
https://yaml.org/spec/1.2.2/#folded-style

Chapter 8 | Application Security

chroot /host \
/bin/bash -xc 'crictl images ; crictl rmi --prune' o
echo $?
done

List the nodes in the cluster.
Iterate over the nodes.

Run a debug pod on the node.

©O 0 0 ©

Prune the images.

This task can be scheduled regularly by using a cron job. The quay.io/openshift/origin-
cli:4.14 container provides the oc command that runs the debug pod. The pod mounts the
configuration map and executes the maintenance script.

apiVersion: batch/vi
kind: CronJob
metadata:
name: image-pruner
spec:
schedule: 0 * * * *
jobTemplate:
spec:
template:
spec:

dnsPolicy: ClusterFirst

restartPolicy: Never

containers:

- name: image-pruner
image: quay.io/openshift/origin-cli:4.14
resources: {}
command:

- /opt/scripts/maintenance.sh (1]
volumeMounts: (2]
- name: scripts

mountPath: /opt

volumes: ©

- name: scripts
configMap:

name: maintenance
defaultMode: 0555

© Path to the script
© © Mounting the configuration map as a volume

Cluster maintenance tasks might require elevated privileges. Administrators can assign service
accounts to any workload, including Kubernetes jobs and cron jobs.

You can create a service account with the required privileges, and specify the service account
with the serviceAccountName key in the pod definition. You can also use the oc set
serviceaccount command to change the service account of an existing workload.

Chapter 8 | Application Security

References
Kubernetes Job
https://kubernetes.io/docs/concepts/workloads/controllers/job/

Kubernetes Cron Job
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/

How to Delete Exited Containers and Dangling Images with crict1?
https://access.redhat.com/solutions/5610941

W D0O280-0OCP4.14-en-1-20240215

https://kubernetes.io/docs/concepts/workloads/controllers/job/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://access.redhat.com/solutions/5610941

Chapter 8 | Application Security

» Guided Exercise

Cluster and Node Maintenance with
Kubernetes Cron Jobs

Automate periodic cluster node cleaning for a development environment.

Outcomes
+ Manually delete unused images from the nodes.

+ Automate the image pruning by using a cron job.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your
system for this exercise.

[student@workstation ~]$ lab start appsec-prune

Instructions
P 1. Loginto the OpenShift cluster and switch to the appsec - prune project.

11. Login to the cluster as the admin user.
[student@workstation ~]$ oc login -u admin -p redhatocp \

https://api.ocp4.example.com: 6443
Login successful.

...output omitted...

1.2. Create the appsec-prune project.

[student@workstation ~]$ oc new-project appsec-prune
Now using project "appsec-prune" on server "https://api.ocp4.example.com:6443".

...output omitted...

1.3. Change to the ~/D0280/ labs/appsec-prune directory.

[student@workstation ~]$ cd ~/D0280/labs/appsec-prune
[student@workstation appsec-prunel]$

P 2. Clean up the unused container images in the node.

2.1. List the deployments and pods in the prune-apps namespace. Each deployment
has a pod that uses a different image.

Chapter 8 | Application Security

[student@workstation appsec-prune]$ oc get deployments -n prune-apps -o wide
NAME ... IMAGES

nginx-ubi7 ... registry.ocp4.example.com:8443/ubi7/nginx-118: latest
nginx-ubi8 ... registry.ocp4.example.com:8443/ubi8/nginx-118: latest
nginx-ubi9 ... registry.ocp4.example.com:8443/ubi9/nginx-120: latest

[student@workstation appsec-prune]$ oc get pods -n prune-apps

NAME READY STATUS RESTARTS AGE
pod/nginx-ubi7-594f548665-qvfg6 1/1 Running (0] 5m
pod/nginx-ubi8-855f6959b-jvs6h 1/1 Running 0 5m
pod/nginx-ubi9-dd4c566d7-7vrrv 1/1 Running 0 5m

2.2. List the container images in the node. The node has three httpd images and three
nginximages.

[student@workstation appsec-prune]$ oc debug node/master@l -- \
chroot /host crictl images | egrep 'AIMAGE|httpd|nginx'

...output omitted. ..

Starting pod/master@1-debug

To use host binaries, run “chroot /host”

IMAGE TAG IMAGE ID

registry.ocp4.example.com:8443/rhscl/httpd-24-rhel7 1latest ¢19a96fc0Ob019
registry.ocp4.example.com:8443/ubi8/httpd-24 latest e54df115d5f0c
registry.ocp4.example.com:8443/ubi9/httpd-24 latest 4afe283d911ab
registry.ocp4.example.com:8443/ubi7/nginx-118 latest 3adc6d109b363
registry.ocp4.example.com:8443/ubi8/nginx-118 latest 90f91167f6d1d
registry.ocp4.example.com:8443/ubi9/nginx-120 latest 0227435134784

Removing debug pod
...output omitted...

2.3. Remove the unused images in the node. Only the httpd containerimages are
deleted, because no other container uses them.

[student@workstation appsec-prune]$ oc debug node/master0l -- \

chroot /host crictl rmi --prune

...output omitted. ..

Starting pod/master@1-debug

To use host binaries, run “chroot /host’

E1213 00:43:40.788951 166213 remote_image.go:266] "RemoveImage from image service
failed" err="rpc error: code = Unknown desc = Image used by 5027ebb4...: image is
in use by a container" image="c464e04f..." (1]

Deleted: registry.ocp4.example.com:8443/rhscl/httpd-24-rhel7:latest

Deleted: registry.ocp4.example.com:8443/ubi8/httpd-24:1latest

Deleted: registry.ocp4.example.com:8443/ubi9/httpd-24:1latest

Removing debug pod
...output omitted...

© You can ignore the error that a container is using the image.

Chapter 8 | Application Security

2.4. Delete the deployments in the prune-apps namespace to remove the pods that use
the nginx images.

[student@workstation appsec-prune]$ oc delete deployment nginx-ubi{7,8,9} \
-n prune-apps

deployment.apps "nginx-ubi7" deleted

deployment.apps "nginx-ubi8" deleted

deployment.apps "nginx-ubi9" deleted

S Note
The cron job removes the unused container images in a later step.

P 3. Create a cron job to automate the image pruning process.

3.1. Editthe ~/D0280/1labs/appsec-prune/configmap-prune.yaml file to match
the following specification:

apiVersion: vi
kind: ConfigMap
metadata:
name: maintenance
labels:
ge: appsec-prune
app: crictl
data:
maintenance.sh: |
#!/bin/bash -eu
NODES=$(oc get nodes -o=name)
for NODE in ${NODES}
do
echo ${NODE}
oc debug ${NODE} -- \
chroot /host \
/bin/bash -euxc 'crictl images ; crictl rmi --prune'
done

Note
S The ~/D0280/solutions/appsec-prune/configmap-prune.yaml file
contains the correct configuration and can be used for comparison.

3.2. Create the configuration map:

[student@workstation appsec-prune]$ oc apply -f configmap-prune.yaml
configmap/maintenance created

3.3. Editthe ~/D0280/1labs/appsec-prune/cronjob-prune.yaml file to match the
following specification:

Chapter 8 | Application Security

apiVersion: batch/vi
kind: CronJob
metadata:
name: image-pruner
labels:
ge: appsec-prune
app: crictl
spec:
schedule: '*/4 * * * *!
jobTemplate:
spec:
template:
spec:
dnsPolicy: ClusterFirst
restartPolicy: Never
containers:
- name: crictl
image: registry.ocp4.example.com:8443/openshift/origin-cli:4.14 o
resources: {}
command:
- /opt/maintenance.sh
volumeMounts:
- name: scripts
mountPath: /opt
volumes:
- name: scripts
configMap:
name: maintenance
defaultMode: 0555

©® Theregistry.ocp4.example.com:8443/openshift/origin-cli:4.14
container image is a copy of the official quay.io/openshift/origin-
cli:4.14 image that contains the oc command.

Note
S The ~/D0280/solutions/appsec-prune/cronjob-prune.yaml file contains
the correct configuration and can be used for comparison.

3.4. Apply the changes to the image pruner resource.

[student@workstation appsec-prune]$ oc apply -f cronjob-prune.yaml
cronjob.batch/image-pruner created

Note
E A warning indicates that the pod would violate several policies. The pod fails when

the cron job is executed, because it lacks permissions to execute the maintenance
task. A fix for this issue is implemented in a later step.

Chapter 8 | Application Security

3.5. Wait until the cron job is scheduled, and get the name of the associated job. The job
completion status is @/1, and the pod has an error status. Press Ctr 1+C to exit the
watch command.

[student@workstation appsec-prune]$ watch oc get cronjobs, jobs, pods

Every 2.0s: oc get cronjobs, jobs, pods workstation: Mon Feb 13 13:00:47 2024
NAME SCHEDULE SUSPEND ACTIVE LAST SCHEDULE AGE
cronjob.batch/image-pruner */4 * xox o x False 1 53s 6m
NAME COMPLETIONS DURATION AGE
job.batch/image-pruner-27883800 0/1 30s 30s

NAME READY STATUS RESTARTS AGE
pod/image-pruner-27950092-g761lb 0/1 Error 0 15s

3.6. Get the logs of the pod. A permission error is displayed.

[student@workstation appsec-prune]$ oc logs pod/image-pruner-27950092-9g761b

Error from server (Forbidden): nodes is forbidden: User
"system:serviceaccount:appsec-prune:default" cannot list resource "nodes" in API
group "" at the cluster scope

3.7. Delete the failed cron job. This action deletes the failed job and pod resources.

[student@workstation appsec-prune]$ oc delete cronjob/image-pruner
cronjob.batch "image-pruner" deleted

P 4. Set the appropriate permissions to run the image pruner cron job.

4]. Addthe privileged SCC to the default service account of the namespace.

[student@workstation ~]$ oc adm policy add-scc-to-user -z default privileged
clusterrole.rbac.authorization.k8s.io/system:openshift:scc:privileged added:
"default"

4.2. Addthe cluster-admin role to the default service account of the namespace.

[student@workstation ~]$ oc adm policy add-cluster-role-to-user \
cluster-admin -z default
clusterrole.rbac.authorization.k8s.io/cluster-admin added: "default"

4.3. Create the cron job resource again.

[student@workstation appsec-prune]$ oc apply -f cronjob-prune.yaml
cronjob.batch/image-pruner created

4.4. Wait until the new job and the pod are created. Press Ctr 1+C to exit the watch
command when the job and the pod are marked as completed.

Chapter 8 | Application Security

[student@workstation appsec-prune]$ watch oc get cronjobs, jobs, pods

Every 2.0s: oc get cronjobs, jobs, pods workstation: Mon Feb 13 11:58:44 2024
NAME SCHEDULE SUSPEND ACTIVE LAST SCHEDULE AGE
cronjob.batch/image-pruner */4 * * * * False 0 30s 2m
NAME COMPLETIONS DURATION AGE
job.batch/image-pruner-27883660 1/1 9s 30s

NAME READY STATUS RESTARTS AGE
pod/image-pruner-27883660-2ghvv 0/1 Completed © 30s

45. Get the logs of the pod that executed the maintenance task.

[student@workstation appsec-prune]$ oc logs pod/image-pruner-27883660-2ghvv | tail
...output omitted. ..

+ crictl rmi --prune

E0106 18:08:31.686489 374926 remote_image.go:266] "RemoveImage from image service
failed" err="rpc error: code = Unknown desc = Image used by 0c9ab998...: image is
in use by a container" image="c464e04f..." (1]

Deleted: registry.ocp4.example.com:8443/ubi7/nginx-118:latest

Deleted: registry.ocp4.example.com:8443/ubi8/nginx-118:latest

Deleted: registry.ocp4.example.com:8443/ubi9/nginx-120:latest

Removing debug pod
...output omitted. ..

© You canignore the error that a container is using the image.
5. Clean up resources.

51. Change to the student user home directory.

[student@workstation appsec-prune]$ cd
[student@workstation ~]$

5.2. Ensure that you are working on the appsec-prune project.

[student@workstation ~]$ oc project
Using project "appsec-prune" on server "https://api.ocp4.example.com:6443".

5.3. Remove the cron job resource and the configuration map.

[student@workstation ~]$ oc delete cronjob/image-pruner configmap/maintenance
cronjob.batch "image-pruner" deleted
configmap "maintenance" deleted

5.4. Remove the security constraint from the service account.

Chapter 8 | Application Security

[student@workstation ~]$ oc adm policy remove-scc-from-user \
-z default privileged
clusterrole.rbac.authorization.k8s.io/system:openshift:scc:privileged removed:
"default"

5.5. Remove the role from the service account.

[student@workstation ~]$ oc adm policy remove-cluster-role-from-user \
cluster-admin -z default
clusterrole.rbac.authorization.k8s.io/cluster-admin removed: "default"

5.6. Delete the appsec-prune project.

[student@workstation ~]$ oc delete project appsec-prune prune-apps
project.project.openshift.io "appsec-prune" deleted
project.project.openshift.io "prune-apps" deleted

Finish
On the workstation machine, use the lab command to complete this exercise. This step is
important to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab finish appsec-prune

Chapter 8 | Application Security

» Lab

Application Security

Deploy an application that requires additional operating system privileges to run.

Deploy an application that requires access to the Kubernetes APIs to perform cluster
maintenance tasks.

Outcomes

+ Deploy a cluster maintenance application that must be executed regularly.
+ Grant application access to Kubernetes APIs.

+ Run an application with a security context constraint (SCC).

Before You Begin

As the student user on the workstation machine, use the lab command to prepare your
system for this exercise.

[student@workstation ~]$ lab start appsec-review

In this exercise, you deploy two applications:
+ Alegacy payroll application that must run as the fixed O UID to open the TCP 80 port.

+ A project cleaner deletes projects with the appsec-review-cleaner label and that are
longer than 10 seconds. This short expiration time is deliberate for the lab purposes.

You must deploy the project cleaner application to delete obsolete projects every minute.

The lab start command copies the required files for the exercise to the lab directory:
+ A deployment manifest with the payroll application.

+ A pod manifest that contains a project cleaner application. You can use this pod to test the
project cleaner application and copy the pod specification into the cron job to complete
the exercise.

- A manifest with the project-cleaner cluster role that grants the application access to
find and delete namespaces.

+ A cron job template file that you can edit to create cron jobs.

A script that generates projects to verify that the project cleaner application works.

Instructions

1.

2.

Log in to your OpenShift cluster as the deve loper user with the developer password and
create the appsec-review project.

Change to the ~/D0280/labs/appsec-review directory and deploy the payroll
application in the payroll-app.yaml file. Verify that the application cannot run.

Chapter 8 | Application Security

3. Asthe admin user, look for an SCC that allows the workload in the payroll-app.yaml
deployment to run.

4. Create the payroll-sa service account and assign to it the SCC that the application
requires. Then, assign the payroll-sa service account to the payroll-api deployment.

5. Verify that the payroll APl is accessible by running the cur 1 command from the payroll-
api deployment. Use the http://1localhost/payments/status URL to verify that the
APl is working.

6. Create the project-cleaner -sa service account and assign it to the project -
cleaner.yaml pod manifest to configure the application permissions.

7. Createthe project-cleaner roleinthe cluster-role.yaml file and assign it to the
project-cleaner-sa service account.

8. Editthecron-job.yaml file to create the appsec-review-cleaner cron job by using
the project-cleaner.yaml pod manifest as the job template. Create the cron job and
configure it to run every minute. You can use the solution file in the ~/D0280/solutions/
appsec-review/cron-job.yaml path.

9. Optionally, verify that the project cleaner executed correctly. Use the generate-
projects. sh script from the lab directory to generate projects for deletion. Wait for the
next job execution and print the logs from that job's pod.

Evaluation

As the student user on the workstation machine, use the lab command to grade your work.
Correct any reported failures and rerun the command until successful.

[student@workstation ~]$ lab grade appsec-review
Finish
As the student user on the workstation machine, use the lab command to complete this

exercise. This step is important to ensure that resources from previous exercises do not impact
upcoming exercises.

[student@workstation ~]$ lab finish appsec-review

Chapter 8 | Application Security

» Solution

Application Security

Deploy an application that requires additional operating system privileges to run.

Deploy an application that requires access to the Kubernetes APIs to perform cluster
maintenance tasks.

Outcomes
+ Deploy a cluster maintenance application that must be executed regularly.

+ Grant application access to Kubernetes APlIs.

+ Run an application with a security context constraint (SCC).

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your
system for this exercise.

[student@workstation ~]$ lab start appsec-review

In this exercise, you deploy two applications:
+ Alegacy payroll application that must run as the fixed O UID to open the TCP 80 port.

+ A project cleaner deletes projects with the appsec-review-cleaner label and that are
longer than 10 seconds. This short expiration time is deliberate for the lab purposes.

You must deploy the project cleaner application to delete obsolete projects every minute.
The lab start command copies the required files for the exercise to the lab directory:
+ A deployment manifest with the payroll application.

+ A pod manifest that contains a project cleaner application. You can use this pod to test the
project cleaner application and copy the pod specification into the cron job to complete
the exercise.

+ A manifest with the project-cleaner cluster role that grants the application access to
find and delete namespaces.

+ A cron job template file that you can edit to create cron jobs.

+ A script that generates projects to verify that the project cleaner application works.

Instructions

1.

Log in to your OpenShift cluster as the deve loper user with the developer password and
create the appsec-review project.

Chapter 8 | Application Security

3.

11. Login as the developer user.

[student@workstation ~]$ oc login -u developer -p developer \
https://api.ocp4.example.com: 6443
Login successful.

...output omitted...

1.2. Create the appsec-review project.

[student@workstation ~]$ oc new-project appsec-review

Now using project "appsec-review" on server ...
...output omitted...

Change to the ~/D0280/ labs/appsec-review directory and deploy the payroll
application in the payroll-app.yaml file. Verify that the application cannot run.

21. Change to the ~/D0280/1labs/appsec-review directory to access the lab files.

[student@workstation ~]$ cd ~/D0280/1labs/appsec-review

2.2. Runthe oc apply command to create the payroll deployment.

[student@workstation appsec-review]$ oc apply -f payroll-app.yaml

deployment.apps/payroll-api created

2.3. Verify that the application fails to run by reading the deployment logs.

[student@workstation

[2023-03-13
[2023-03-13
[2023-03-13
[2023-03-13
[2023-03-13
[2023-03-13
[2023-03-13

08:
08:
08:
08:
08:
08:
08:

13:
13:
13:
13:
13:
13:
13:

30
30
31
32
33
34
35

appsec-review]$ oc logs deployment/payroll-api

+0000]
+0000]
+0000]
+0000]
+0000]
+0000]
+0000]

[1]
[1]
[1]
[1]
[1]
[1]
[1]

[INFO] Starting gunicorn 20.1.0

[ERROR]
[ERROR]
[ERROR]
[ERROR]
[ERROR]
[ERROR]

Retrying in 1
Retrying in
Retrying in
Retrying in
Retrying in
Can't connect

1
1
1
1

second.
second.
second.
second.
second.
to ('', 80)

The container in the pod runs as root to listen on port 80.

As the admin user, look for an SCC that allows the workload in the payroll-app.yaml
deployment to run.

31, Loginasthe admin user with the redhatocp password.

[student@workstation appsec-review]$ oc login -u admin -p redhatocp \

https://api.ocp4.example.com: 6443
Login successful.
...output omitted...

3.2. Runtheoc adm policy scc-subject-review command to getan SCC that
allows the application to run.

Chapter 8 | Application Security

4.

[student@workstation appsec-review]$ oc adm policy scc-subject-review \
-f payroll-app.yaml

RESOURCE ALLOWED BY

Deployment/payroll-api anyuid

Create the payroll-sa service account and assign to it the SCC that the application
requires. Then, assign the payrol1l-sa service account to the payroll-api deployment.

41. Runtheoc create command to create the payroll-sa service account.

[student@workstation appsec-review]$ oc create sa payroll-sa
serviceaccount/payroll-sa created

4.2. Assign the anyuid SCC to the payroll-sa service account.

[student@workstation appsec-review]$ oc adm policy \

add-scc-to-user anyuid -z payroll-sa
clusterrole.rbac.authorization.k8s.io/system:openshift:scc:anyuid added: "payroll-
Sall

4.3. Usetheoc set serviceaccount command to add the payroll-sa service
account to the payroll-api deployment.

[student@workstation appsec-review]$ oc set serviceaccount deployment \
payroll-api payroll-sa
deployment.apps/payroll-api serviceaccount updated

Verify that the payroll APl is accessible by running the cur 1 command from the payroll-
api deployment. Use the http://1localhost/payments/status URL to verify that the
APl is working.

5.1. Use the oc exec command with the payroll-api deployment to run the curl
command. Provide the -sS option to hide progress output and show errors.

[student@workstation appsec-review]$ oc exec deployment/payroll-api \
-- curl -sS http://localhost/payments/status

[{"id":240, "status":"Paid", "userId":1003},

{"id":241, "status":"Pending", "userId":1003}]

Create the project-cleaner -sa service account and assign it to the project -
cleaner.yaml pod manifest to configure the application permissions.

6.. Create the project-cleaner -sa service account.

[student@workstation appsec-review]$ oc create sa project-cleaner-sa
serviceaccount/project-cleaner-sa created

6.2. Editthe project-cleaner.yaml pod manifest file to use the project-cleaner-
sa service account.

Chapter 8 | Application Security

apiVersion: vi
kind: Pod
metadata:
name: project-cleaner
namespace: appsec-review
spec:
restartPolicy: Never
serviceAccountName: project-cleaner-sa
containers:
- name: project-cleaner
...output omitted...

7. Createthe project-cleaner roleinthe cluster-role.yaml file and assign it to the
project-cleaner-sa service account.

71. Create the project-cleaner cluster role by applying the cluster-role.yaml
manifest file.

[student@workstation appsec-review]$ oc apply -f cluster-role.yaml
clusterrole.rbac.authorization.k8s.io/project-cleaner created

72. Usetheoc adm policy add-clusterrole-to-user command to add the
project-cleaner role to the project-cleaner -sa service account.

[student@workstation appsec-review]$ oc adm policy add-cluster-role-to-user \
project-cleaner -z project-cleaner-sa
clusterrole.rbac.authorization.k8s.io/project-cleaner added: "project-cleaner-sa"

8. Editthecron-job.yaml file to create the appsec-review-cleaner cron job by using
the project-cleaner.yaml pod manifest as the job template. Create the cron job and
configure it to run every minute. You can use the solution file in the ~/D0280/solutions/
appsec-review/cron-job.yaml path.

8.1. Editthe cron-job.yaml file to replace the CHANGE_ME string with the "*/1 * * *
*" schedule to execute the job every minute.

apiVersion: batch/vi
kind: CronJob
metadata:
name: appsec-review-cleaner
namespace: appsec-review
spec:
schedule: "*/1 * * * *u
concurrencyPolicy: Forbid
jobTemplate:
...output omitted. ..

8.2. Replace the CHANGE_ME label in the jobTemplate definition with the spec definition
from the project-cleaner.yaml pod manifest. Although the long image name
might show across two lines, you must add it as one line.

Chapter 8 | Application Security

apiVersion: batch/vi
kind: CronJob
metadata:
name: appsec-review-cleaner
namespace: appsec-review
spec:
schedule: "*/1 * * * *n
concurrencyPolicy: Forbid
jobTemplate:
spec:
template:
spec:
restartPolicy: Never
serviceAccountName: project-cleaner-sa
containers:
- name: project-cleaner
image: registry.ocp4.example.com:8443/redhattraining/do280-project-
cleaner:vi.1
imagePullPolicy: Always
env:
- name: "PROJECT_TAG"
value: "appsec-review-cleaner"
- name: "EXPIRATION_SECONDS"
value: "10"

8.3. Create the cron job.

[student@workstation appsec-review]$ oc apply -f cron-job.yaml
cronjob.batch/appsec-review-cleaner created

9. Optionally, verify that the project cleaner executed correctly. Use the generate-
projects. sh script from the lab directory to generate projects for deletion. Wait for the
next job execution and print the logs from that job's pod.

9.1. Runthe generate-projects.sh script to create test projects that the project
cleaner will delete the next time that it runs.

[student@workstation appsec-review]$./generate-projects.sh
obsolete-appsec-review-1 created at 15:29:14
obsolete-appsec-review-2 created at 15:29:15
obsolete-appsec-review-3 created at 15:29:16
namespace/obsolete-appsec-review-1 labeled
namespace/obsolete-appsec-review-2 labeled
namespace/obsolete-appsec-review-3 labeled

Last appsec-review-cleaner label applied at 15:29:20
...output omitted...

9.2. Listthe podsin the appsec-review project until you see a pod with the Completed
status that is later than the last label that the script applied.

Chapter 8 | Application Security

[student@workstation appsec-review]$ oc get pods

NAME READY STATUS RESTARTS AGE
appsec-review-cleaner-27909204-g49gr 0/1 Completed 0 2m37s
appsec-review-cleaner-27909205-q2f2t 0/1 Completed 0 97s
appsec-review-cleaner-27909206-xcswb 0/1 Completed 0 37s

9.3. Print the logs from the last completed job, to verify that it deleted the obsolete
projects.

[student@workstation appsec-review]$ oc logs pod/appsec-review-cleaner-27909206-
xcswb

...output omitted. ..

Namespace 'obsolete-appsec-review-1' deleted

Namespace 'obsolete-appsec-review-2' deleted

Namespace 'obsolete-appsec-review-3' deleted

9.4. Change to the home directory to prepare for the next exercise.

[student@workstation appsec-review]$ cd

Evaluation

As the student user on the workstation machine, use the lab command to grade your work.
Correct any reported failures and rerun the command until successful.

[student@workstation ~]$ lab grade appsec-review
Finish
As the student user on the workstation machine, use the lab command to complete this
exercise. This step is important to ensure that resources from previous exercises do not impact

upcoming exercises.

[student@workstation ~]$ lab finish appsec-review

Chapter 8 | Application Security

Summary

+ Security context constraints (SCCs) limit the access from a running pod in OpenShift to the
host environment.

+ An application can assign an SCC to the application service account to use it.
+ With the Kubernetes APlIs, a user or an application can query and modify the cluster state.

+ To give an application access to the Kubernetes APIs, you can create roles or cluster roles that
describe the application requirements, and assign those roles to the application service account.

+ You can automate cluster and application management tasks by creating Kubernetes cron jobs
that run periodic management jobs.

Chapter 9

OpenShift Updates

Goal Update an OpenShift cluster and minimize ¢
disruption to deployed applications.
Objectives * Describe the cluster update process. .
Identify applications that use deprecated y
Kubernetes APls. ,
+ Update OLM-managed operators by using the "
- web console and CLI. i

= gections + The Cluster Update Process (and Quiz)
. Detect Deprecated Kubernetes API Usage (and

Quiz)
+ Update Operators with the OLM (and Quiz)
+ OpenShift Updates (Quiz)

w

r/

D0O280-0OCP4.14-en-1-20240215

Chapter 9 | OpenShift Updates

The Cluster Update Process

Objectives

+ Describe the cluster update process.

Introducing Cluster Updates

Red Hat OpenShift Container Platform 4 adds many new features by using Red Hat Enterprise
Linux CoreOS. Red Hat released a new software distribution system that provides the upgrade
path to update your cluster and the underlying operating system. With this new distribution
system, OpenShift clusters can perform Over-the-Air updates (OTA).

This software distribution system for OTA manages the controller manifests, cluster roles, and
any other resources to update a cluster to a particular version. With this feature, a cluster can run
the 4.14.x version seamlessly. With OTA, a cluster can use new features as they become available,
including the latest bug fixes and security patches. OTA substantially decreases downtime due to
upgrades.

Red Hat hosts and manages this service at https://console.redhat.com/openshift, and hosts
cluster images at https://quay.io. You use a single interface to manage the lifecycle of all your
OpenShift clusters. With OTA, you can update faster by skipping intermediate versions. For
example, you can update from 4.14.1to 4.14.3, and thus bypass 4.14.2.

i~ | Important

Starting with OpenShift 4.10, the OTA system requires a persistent connection to
the internet. For more information about how to update disconnected clusters,
consult the Updating a Restricted Network Cluster chapter in the references section.

Clusters

Y Cluster type v Create cluster Registe ster

Name Status Type cre.. | Version Pravider (Re...

[] ﬁc:ldy ROSA 08 Feb 41230 AWS (us
2024 east-2)
=
g
g
F]
g
@ Ready ROSA 23 Jan 41230 AWS (us- 8
'Y
2024 east2) | g
@ Ready ocP days left 46,02 OpenStack

Figure 9.1: Managing clusters at cloud.redhat.com

W D0O280-0OCP4.14-en-1-20240215

https://console.redhat.com/openshift
https://quay.io

Chapter 9 | OpenShift Updates

The service defines upgrade paths that correspond to cluster eligibility for certain updates.
Upgrade paths belong to update channels. Consider a channel as a representation of the upgrade
path. The channel controls the frequency and stability of updates. The OTA policy engine
represents channels as a series of pointers to particular versions within the upgrade path.

A channel name consists of the following parts: the tier (release candidate, fast, stable, and
extended update support), the major version (4), and the minor version (.12). Example channel
names include: candidate-4.14, fast-4.14, stable-4.14, and eus-4.14. Each channel
delivers patches for a given cluster version.

The Candidate Channel

The candidate channel delivers updates for testing feature acceptance in the next version of
OpenShift Container Platform. The release candidate versions are subject to further checks, and
are promoted to the fast or stable channels when they meet the quality standards.

i | Important
Red Hat does not support the updates that are listed only in the candidate channel.

The Fast Channel

The fast channel delivers updates as soon as Red Hat declares the given version as a general
availability release. Red Hat supports the updates that are released in this channel, and it is best
suited to development and QA environments.

Note

S Customers can help to improve OpenShift by joining the Red Hat connected
customers program. If you join this program, then your cluster is registered to the
fast channel.

The Stable Channel

Red Hat support and site reliability engineering (SRE) teams monitor operational clusters with the
updates from the fast channel. If operational clusters pass additional testing and validation, then
updates in the fast channel are enabled in the stable channel. Red Hat supports the updates that
are released in this channel, and it is best suited to production environments.

If Red Hat observes operational issues from a fast channel update, then that update is skipped in
the stable channel. The stable channel delay provides time to observe any unforeseen problems in
OpenShift clusters that testing did not reveal.

The Extended Update Support Channel

Starting with OpenShift Container Platform 4.8, Red Hat denotes all even-numbered minor
releases (for example, 4.8, 4.10, 4.12, and 4.14) as Extended Update Support (EUS) releases.

EUS releases have no difference between stable-4.x and eus-4. x channels (where x denotes
the even-numbered minor release) until OpenShift Container Platform moves to the EUS phase.
You can switch to the EUS channel as soon as it becomes available.

Chapter 9 | OpenShift Updates

Support Status for Update Channels

Red Hat offers support for all released updates in the fast, stable, and eus update channels.
Red Hat supports the released updates in the candidate channel only if they are also listed in the
fast or stable channels.

Update channel Support status

candidate-4.x Supported if the update is also listed in the fast or stable channels.
fast-4.x Supported

stable-4.x Supported

eus-4.x Supported

S Note
The x in the channel name denotes the minor version.

Upgrade Paths

You can apply each of the upgrade channels to a Red Hat OpenShift Container Platform version
4.4 cluster in different environments. The following paragraphs describe an example scenario
where the 4.14.3 version has a defect.

Stable channel
When using the stable-4.14 channel, you can upgrade your cluster from 4.14.0 to 4.14.1
orto 4.14.2. If anissue is discovered in the 4.14.3 release, then you cannot upgrade to that
version. When a patch becomes available in the 4.14.4 release, you can update your cluster to
that version.

This channel is suited to production environments, because the Red Hat SRE teams and
support services test the releases in that channel.

Fast channel
The fast-4.14 channel can deliver 4.14.1 and 4.14.2 updates but not 4.14.3. Red Hat also
supports this channel, and you can apply it to development, QA, or production environments.

Administrators must specifically choose a different minor version channel, such as
fast-4.14, to upgrade to a new release in a new minor version when it becomes available.

Candidate channel
You can use the candidate-4.14 channel to install the latest features of OpenShift. With
this channel, you can upgrade to all z-stream releases, such as 4.14.1, 4.14.2, and 4.14.3.

You use this channel to access the latest features of the product as they get released. This
channel is suited to development and pre-production environments.

EUS channel

When switching to the eus-4.14 channel, the stable-4.14 channel does not receive z-
stream updates until the next EUS version becomes available.

Chapter 9 | OpenShift Updates

Note
E Starting with OpenShift Container Platform 4.8, Red Hat denotes all even-
numbered minor releases as Extended Update Support (EUS) releases.

The following graphic describes the update graphs for the stable and candidate channels:

lil_ 4.x.0 lil_ 4.x.0

stable 4.x1 4.x.2 4.x1 4.x.2

| —

The view of the update graph from a client in the stable-4.x channel The view of the update graph from a client in the candidate-4.x channel

4.x.4 candidate

—> path defined by previous @—> path defined by next
Figure 9.2: Update graphs for stable and candidate channels

Red Hat provides support for the General Availability (GA) updates that are released in the stable
and fast channels. Red Hat does not support updates that are listed only in the candidate channel.

To ensure the stability of the cluster and the proper level of support, switch only from a stable
channel to a fast channel. Although it is possible to switch from a stable channel or a fast channel
to a candidate channel, it is not recommended. The candidate channel is best suited to testing
feature acceptance and to assist in qualifying the next version of OpenShift Container Platform.

Note

S The release of updates for patch and security fixes ranges from several hours to
a day. This delay provides time to assess any operational impacts to OpenShift
clusters.

Changing the Update Channel

You can change the update channel to eus-4.14, stable-4.14, fast-4.14, or
candidate-4.14 by using the web console or the OpenShift CLI client:

Web console
Navigate to the Administration > Cluster Settings page on the details tab, and then click the

pencil icon.

Chapter 9 | OpenShift Updates

Cluster Settings
Details ClusterOperators Configuration

Current version Update status Channel &

4140 @ Avallable updates

View release notesg

4140 S au
("+ More)) fest-414 chaenel

Subscription
Openshift Cluster Manager o

Cluster ID
bid66ica-7fb3-42e2-262a-968b 80672189

Figure 9.3: Current update channel in the web console

A window displays options to select an update channel.

Select channel

The current version is available in the channels listed in the dropdown below. Selecta
channel that reflects the desired version. Critical security updates will be delivered to
any vuinerable channels

Learn more about OpenShift update channels o

Channel

fast-414 -

candidate-414

candidate-415

eus-414

fast-214

stable-414

Figure 9.4: Changing the update channel in the web console

Command line
Execute the following command to switch to another update channel by using the oc client.
You can also switch to another update channel, such as stable-4.14, to update to the next
minor version of OpenShift Container Platform.

[user@host ~]$% oc patch clusterversion version --type="merge" \
--patch '{"spec":{"channel":"fast-4.14"}}"'
clusterversion.config.openshift.io/version patched

Pausing the Machine Health Check Resource

During the upgrade process, nodes in the cluster might become temporarily unavailable. In the
case of worker nodes, the machine health check might identify such nodes as unhealthy and
reboot them. To avoid rebooting such nodes, pause all the machine health check resources before
updating the cluster.

5 Note
The prerequisite to pause the machine health check resources is not required on
single-node installations.

W D0O280-0OCP4.14-en-1-20240215

Chapter 9 | OpenShift Updates
Run the following command to list all the available machine health check resources.

[user@host ~]$% oc get machinehealthcheck -n openshift-machine-api
NAME MAXUNHEALTHY EXPECTEDMACHINES CURRENTHEALTHY
machine-api-termination-handler 100%

Add the cluster.x-k8s.1i0/paused annotation to the machine health check resource to pause
it before updating the cluster.

[user@host ~]$ oc annotate machinehealthcheck -n openshift-machine-api \
machine-api-termination-handler cluster.x-k8s.io/paused=""
machinehealthcheck.machine.openshift.io/machine-api-termination-handler annotated

Remove the annotation after the cluster is updated.

[user@host ~]$ oc annotate machinehealthcheck -n openshift-machine-api \
machine-api-termination-handler cluster.x-k8s.io/paused-
machinehealthcheck.machine.openshift.io/machine-api-termination-handler annotated

Over-the-air Updates

OTA follows a client-server approach. Red Hat hosts the cluster images and the update
infrastructure. OTA generates all possible update paths for your cluster. OTA also gathers
information about the cluster and your entitlement to determine the available upgrade paths. The
web console sends a notification when a new update is available.

The following diagram describes the updates architecture: Red Hat hosts both the cluster images
and a "watcher", which automatically detects new images that are pushed to Quay. The Cluster
Version Operator (CVO) receives its update status from that watcher. The CVO starts by updating
the cluster components via their operators, and then updates any extra components that the
Operator Lifecycle Manager (OLM) manages.

Red Hat software distribution system

Red Hat
container
registries

Watches for new version Updates
back end

Checks for new update paths

Customer cluster

Downloads new version

}

Operator OpenShift —
lifecycle manager cluster version
(OLM) operator Cluster
| administrator
Manages lifecycle Manages lifecycle
Add-on Cluster

operators operators

Figure 9.5: OpenShift Container Platform updates architecture

D0O280-0OCP4.14-en-1-20240215 w

Chapter 9 | OpenShift Updates

With telemetry, Red Hat can determine the update path. The cluster uses a Prometheus-based
Telemeter component to report on the state of each cluster operator. The data is anonymized and
sent back to Red Hat servers that advise cluster administrators about potential new releases.

Note

5 Red Hat values customer privacy. For a complete list of the data that Telemeter
gathers, consult the Data Collection and Telemeter Sample Metrics documents in
the references section.

In the future, Red Hat intends to extend the list of updated operators that are included in the
upgrade path to include independent software vendor (ISV) operators.

Red Hat software distribution system

Red Hat Red Hat
Clsystem Pushes new images contalner Watches for new version Updates Alerts e [—
o back end
registries back end
& Checks for new update paths Pushes metrics

Developer

Customer cluster

Downloads new version

}

. i OpensShift — ¢«———— Telemetry client
lifecycle manager cluster version (Telemeter)
(OLM) operator Cluster
I | administrator |
Manages lifecycle Manages lifecycle Queries metrics
|
¥ v I
Collects update metrics
Add-on Cluster Cluster
— s
operators operators monitoring

! |

OpenShift cluster
and platform
services

Managed
software

Figure 9.6: Managing cluster updates by using telemetry

The Update Process

The following components are involved in the cluster update process:

Machine Config Operator
The Machine Config Operator applies the desired machine state to each of the nodes. This
component also handles the rolling upgrade of nodes in the cluster, and uses CoreQOS Ignition
as the configuration format.

Operator Lifecycle Manager
The OLM orchestrates updates to any operators that are running in the cluster.

Updating the Cluster

You can update the cluster via the web console or from the command line. The Administration

> Cluster Settings page displays an update status of Available updates when a new update is
available. From this page, click Select a version, and then select the version and the cluster update
option that you want to install:

W D0O280-0OCP4.14-en-1-20240215

Chapter 9 | OpenShift Updates

Update cluster

Current version
4140
Select new version

4140

Update eptions @

® Full cluster update

) Partial cluster update

Figure 9.7: Update the cluster by using the web console

i~ | Important

Rolling back your cluster to an earlier version is not supported. If your update is
failing to complete, contact Red Hat support.

The update process also updates the underlying operating system when updates are available.
The updates use the rpm-ostree technology for managing transactional upgrades. Updates are
delivered via container images and are part of the OpenShift update process. When the update
deploys, the nodes pull the new image, extract it, write the packages to the disk, and then modify
the bootloader to boot into the new version. The machine reboots and implements a rolling update
to ensure that the cluster capacity is minimally impacted.

Update the Cluster by Using the Command Line

The following steps describe the procedure for updating a cluster as a cluster administrator by
using the command-line interface:

+ Be sure to update all operators that are installed through the OLM to the 4.14 version before
updating the OpenShift cluster.

+ Retrieve the cluster version and review the current update channel information. If you are
running the cluster in production, then ensure that the channel reads stable.

[user@host ~]$% oc get clusterversion
NAME VERSION AVAILABLE PROGRESSING SINCE STATUS
version 4.14.0 True False 2d Cluster version is 4.14.0

[user@host ~]% oc get clusterversion -o jsonpath='{.items[0].spec.channel}{"\n"}'
stable-4.14

+ View the available updates and note the version number of the update to apply.

[user@host ~]$ oc adm upgrade
Cluster version is 4.14.0

Upstream is unset, so the cluster will use an appropriate default.

D0O280-0OCP4.14-en-1-20240215 w

Chapter 9 | OpenShift Updates

Channel: stable-4.14 (available channels: candidate-4.14, candidate-4.15,
eus-4.14, fast-4.14, stable-4.14)

Recommended updates:
VERSION IMAGE

4.14.10 quay.io/openshift-release-dev/ocp-release@sha256:...
...output omitted...

+ Apply the latest update to your cluster, or update to a specific version:
- Run the following command to install the latest available update for your cluster.

[user@host ~]$ oc adm upgrade --to-latest=true

- Run the following command to install a specific version. VERSION corresponds to one of the
available versions that the oc adm upgrade command returns.

[user@host ~]$% oc adm upgrade --to=VERSION

+ The previous command initializes the update process. Run the following command to review the
status of the Cluster Version Operator (CVO) and the installed cluster operators.

[user@host ~]$ oc get clusterversion
NAME VERSION AVAILABLE PROGRESSING SINCE STATUS
version 4.14.0 True True 1m Working towards 4.14.10 ..

[user@host ~]$ oc get clusteroperators

NAME VERSION AVAILABLE PROGRESSING DEGRADED
authentication 4.14.0 True False False
baremetal 4.14.10 False True False
cloud-controller-manager 4.14.10 True False True

...output omitted...

+ Use the following command to review the cluster version history and monitor the status of the
update. It might take some time for all the objects to finish updating.

The history contains a list of the most recent versions that were applied to the cluster. This list is
updated when the CVO applies an update. The list is ordered by date, where the newest update
is first in the list.

If the rollout completed successfully, then updates in the history have a Completed state.
Otherwise, the update has a Partial state if it failed or did not complete.

[user@host ~]$ oc describe clusterversion
...output omitted...

History:
Completion Time: 2024-02-10T04:38:127
Image: quay.io/openshift-release-dev/ocp-release@sha256:...
Started Time: 2024-02-10T03:35:05Z2
State: Partial
Verified: true
Version: 4.14.10

Chapter 9 | OpenShift Updates

Completion Time: 2024-02-10T12:39:02Z
Image: quay.io/openshift-release-dev/ocp-release@sha256:...
Started Time: 2024-02-10T12:23:147
State: Completed
Verified: false
Version: 4.14.10
i~ | Important

—— When an update is failing to complete, the Cluster Version Operator (CVO) reports
the status of any blocking components and attempts to reconcile the update.

Rolling back your cluster to a previous version is not supported. If your update is

failing to complete, contact Red Hat support.

+ After the process completes, you can confirm that the cluster is updated to the new version.

[user@host ~]$ oc get clusterversion
NAME VERSION AVAILABLE PROGRESSING SINCE STATUS
version 4.14.10 True False 30m Cluster version is 4.14.10

Chapter 9 | OpenShift Updates

References

For more information about update channels, update prerequisites, and updating
clusters in disconnected environments, refer to the Updating a Restricted Network
Cluster and Updating a Cluster Between Minor Versions chapters in the Red Hat
OpenShift Container Platform 4.14 Updating Clusters documentation at
https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.14/html-single/updating_clusters/index#updating-
restricted-network-cluster

For more information about updating operators that are installed through the
Operator Lifecycle Manager, refer to the Upgrading Installed Operators section in
the Administrator Tasks chapter in the Red Hat OpenShift Container Platform 4.14
Working with Operators documentation at
https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.14/html-single/operators/index#olm-upgrading-
operators

For more information about performing an EUS-to-EUS update, refer to the
Preparing to Perform an EUS-to-EUS Update chapter in the Red Hat OpenShift
Container Platform 4.14 Updating Clusters documentation at
https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.14/html-single/updating_clusters/index#updating-
eus-to-eus-upgrade_eus-to-eus-upgrade

For more information about the OpenShift Container Platform upgrade paths, visit
the following page in the customer portal:
https://access.redhat.com/solutions/4583231

For more information about the OpenShift Container Platform update graph, visit
the following page in the customer portal:
https://access.redhat.com/labs/ocpupgradegraph/update_path

For more information about OpenShift Extended Update Support (EUS), visit the
following page in the customer portal:
https://access.redhat.com/support/policy/updates/openshift-eus

For more information about the OpenShift Container Platform lifecycle policy, visit
the following page in the customer portal:
https://access.redhat.com/support/policy/updates/openshift

OpenShift 4 Data Collection
https://github.com/openshift/cluster-monitoring-operator/blob/master/
Documentation/data-collection.md

OpenShift 4 Telemeter Sample Metrics
https://github.com/openshift/cluster-monitoring-operator/blob/master/
Documentation/sample-metrics.md

W D0O280-0OCP4.14-en-1-20240215

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/updating_clusters/index#updating-restricted-network-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/updating_clusters/index#updating-restricted-network-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/updating_clusters/index#updating-restricted-network-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index#olm-upgrading-operators
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index#olm-upgrading-operators
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index#olm-upgrading-operators
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/updating_clusters/index#updating-eus-to-eus-upgrade_eus-to-eus-upgrade
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/updating_clusters/index#updating-eus-to-eus-upgrade_eus-to-eus-upgrade
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/updating_clusters/index#updating-eus-to-eus-upgrade_eus-to-eus-upgrade
https://access.redhat.com/solutions/4583231
https://access.redhat.com/labs/ocpupgradegraph/update_path
https://access.redhat.com/support/policy/updates/openshift-eus
https://access.redhat.com/support/policy/updates/openshift
https://github.com/openshift/cluster-monitoring-operator/blob/master/Documentation/data-collection.md
https://github.com/openshift/cluster-monitoring-operator/blob/master/Documentation/data-collection.md
https://github.com/openshift/cluster-monitoring-operator/blob/master/Documentation/sample-metrics.md
https://github.com/openshift/cluster-monitoring-operator/blob/master/Documentation/sample-metrics.md

Chapter 9 | OpenShift Updates

» Quiz

The Cluster Update Process

Choose the correct answers to the following questions:

P 1. Which component retrieves the updated cluster images from Quay.io?
a. Cluster Monitoring (Prometheus)
b. Operator Lifecycle Manager (OLM)
c. Cluster Version Operator (CVO)
d. Telemetry client (Telemeter)

P 2. Which component manages the updates of operators that are not cluster operators?
a. Operator Lifecycle Manager (OLM)
b. Telemetry client (Telemeter)
c. Cluster Version Operator (CVO)

P 3. Which two commands can retrieve the currently running cluster version? (Choose two.)
a. oc get updatechannels

. oc adm upgrade

oc get clusterchannel

oc get clusterversion

® a0 T

oc get clusterupgrades

P 4. Which two channels are classified as general availability? (Choose two.)
a. candidate-4.14
b. fast-4.14
c. stable-4.14
d. eus-4.14

P 5. Which statement is true regarding the OTA feature?

a. The stable channel is classified as General Availability (GA), whereas the fast channel is
classified as a Release Candidate (RC).

b. When using the stable channel, you cannot skip intermediary versions. For example, when
updating from 4.14.8 to 4.14.10, OpenShift must install the 4.14.9 version first.

c. Itis not recommended to switch from a stable channel or a fast channel to a candidate
channel. However, you can switch from a fast channel to a stable channel and vice versa.

d. Red Hat supports rolling back a failed update only when it was performed on z-stream
versions of the same minor version (for example, from 4.14.2 to 4.14.3, but not from 4.12.3
to 4.14.0).

D0O280-0OCP4.14-en-1-20240215 w

Chapter 9 | OpenShift Updates

» Solution

The Cluster Update Process

Choose the correct answers to the following questions:

b1

P 2.

P 3.

) 4.

b 5.

Which component retrieves the updated cluster images from Quay.io?
a. Cluster Monitoring (Prometheus)

b. Operator Lifecycle Manager (OLM)

c. Cluster Version Operator (CVO)

d. Telemetry client (Telemeter)

Which component manages the updates of operators that are not cluster operators?
a. Operator Lifecycle Manager (OLM)

b. Telemetry client (Telemeter)

c. Cluster Version Operator (CVO)

Which two commands can retrieve the currently running cluster version? (Choose two.)
a. oc get updatechannels

. 0c adm upgrade

oc get clusterchannel

oc get clusterversion

® a0 T

oc get clusterupgrades

Which two channels are classified as general availability? (Choose two.)
a. candidate-4.14

b. fast-4.14

c. stable-4.14

d. eus-4.14

Which statement is true regarding the OTA feature?

a. The stable channel is classified as General Availability (GA), whereas the fast channel is
classified as a Release Candidate (RC).

b. When using the stable channel, you cannot skip intermediary versions. For example, when
updating from 4.14.8 to 4.14.10, OpenShift must install the 4.14.9 version first.

c. Itis not recommended to switch from a stable channel or a fast channel to a candidate
channel. However, you can switch from a fast channel to a stable channel and vice versa.

d. Red Hat supports rolling back a failed update only when it was performed on z-stream
versions of the same minor version (for example, from 4.14.2 to 4.14.3, but not from 4.12.3
to 4.14.1).

W D0O280-0OCP4.14-en-1-20240215

Chapter 9 | OpenShift Updates

Detect Deprecated Kubernetes API
Usage

Objectives

+ ldentify applications that use deprecated Kubernetes APls.

OpenShift Versions

Kubernetes is an open source container orchestration engine for automating the deployment,
scaling, and management of containerized applications. The OpenShift Container Platform
foundation is based on Kubernetes and therefore shares the underlying technology. The following
table lists the OpenShift version and the Kubernetes version that it is based on:

OpenShift version Kubernetes version
412 1.25
413 1.26
414 1.27

Kubernetes API Deprecation Policy

The Kubernetes API versions are categorized based on feature maturity (experimental, pre-
release, and stable).

API version Category Description

vlalphal Alpha Experimental features

vibetal Beta Pre-release features

vl Stable Stable features, generally available

Use the following command to view the current version of a resource:

[user@host ~]$ oc api-resources | egrep '~ANAME|cronjobs'
NAME SHORTNAMES APIVERSION NAMESPACED KIND
cronjobs cj batch/vi true CronJob

When a stable version of a feature is released, the beta versions are marked as deprecated and are
removed after three Kubernetes releases. If a request uses a deprecated API version, then the API
server returns a deprecation warning that includes the name of the current version of the cluster.

D0O280-0OCP4.14-en-1-20240215 w

Chapter 9 | OpenShift Updates

[user@host ~]$% egrep 'kind|apiVersion' cronjob-beta.yaml
kind: CronJob
apiVersion: batch/vibetal

[user@host ~]$ oc create -f cronjob-beta.yaml

Warning: batch/vibetal CronJob is deprecated in v1.21+, unavailable in v1.25+;
use batch/vi CronJob

cronjob.batch/hello created

If a request uses an API version that Kubernetes removed, then the APl server returns an error,
because that API version is not supported in the cluster.

[user@host ~]$% egrep 'kind|apiVersion' cronjob-alpha.yaml
apiVersion: batch/vialphal
kind: CronJob

[user@host ~]% oc create -f cronjob-alpha.yaml

error: resource mapping not found for name: "hello" namespace: "" from "cronjob-
alpha.yaml": no matches for kind "CronJob" in version "batch/vibetal"

ensure CRDs are installed first

Deprecated and Removed Features in Kubernetes

The Kubernetes 1.27 release stopped serving some API versions that were marked as deprecated
in previous releases. The following table contains a short list of the deprecated and removed API
versions.

Resource Removed API Group Current API Group

CSIStorageCapacity storage.k8s.io/vibetal storage.k8s.io/v1

E Note
For more information about the API versions that are deprecated and removed in
Kubernetes, consult Kubernetes Deprecated API Migration Guide in the references
section.

Identifying Deprecated APIs

You can identify from the API request count whether a workload uses a deprecated API version.
The API request count output contains four columns. A value in the REMOVEDINRELEASE column
indicates that the APl version is deprecated and specifies the Kubernetes version that will remove
it.

[user@host ~]$ oc get apirequestcounts | awk '{if(NF==4){print $6}}'
NAME
REMOVEDINRELEASE REQUESTSINCURRENTHOUR REQUESTSINLAST24H
...output omitted. ..
cronjobs.vlbetal.batch

1.25 15 44
horizontalpodautoscalers.v2beta2.autoscaling
1.26 6 30

388

Chapter 9 | OpenShift Updates

podsecuritypolicies.vilbetal.policy
1.25 28 77

...output omitted. ..

If the REMOVEDINRELEASE column is blank, then it indicates that the current API version is not
deprecated, and that version will be kept in future releases.

Note
E You can use a JSONPath filter to retrieve the results. The FILTER variable is written
on asingle line.

[user@host ~]$ FILTER='{range .items[?(@.status.removedInRelease!="")]}
{.status.removedInRelease}{"\t"}{.status.requestCount}{"\t"}{.metadata.name}
{"\n"}{end}'
[user@host ~]$ oc get apirequestcounts -o jsonpath="${FILTER}" | \
column -t -N "RemovedInRelease, RequestCount, Name"
RemovedInRelease RequestCount Name
1.25 44 cronjobs.vlbetal.batch
...output omitted. ..

If the command does not retrieve any information, then it indicates that none of the
installed APIs are deprecated.

You can use a JSONPath filter for a list of actions for that resource and who did them.

[user@host ~]$ FILTER='{range .status.currentHour..byUser[*]}{..byVerb[*].verb}
{","}{.username}{", "}{.userAgent}{"\n"}{end}"'
[user@host ~]$ TYPE=apirequestcount.apiserver.openshift.io/cronjobs.vl.batch
[user@host ~]% echo ${TYPE} ; oc get ${TYPE} -o jsonpath="${FILTER}" | \

column -t -s ',' -N "Verbs,Username,UserAgent"

apirequestcount.apiserver.openshift.io/cronjobs.v1.batch

Verbs Username UserAgent

get update system:serviceaccount:kube-system:cronj... kube-controller-manager/
vi...

watch system:kube-controller-manager kube-controller-manager/
vi...

...output omitted...

Deprecated and Removed Features in OpenShift

Red Hat OpenShift Container Platform (RHOCP) is a set of modular components and services
that are built on top of a Kubernetes container infrastructure.

Some features that were available in previous OpenShift releases are deprecated or removed.
A deprecated feature is not recommended for new deployments, because a future release will
remove it. The following table contains a short list of the deprecated and removed features in

OpenShift.

Chapter 9 | OpenShift Updates

OpenShift
412

General
Availability

Deprecated

Deprecated

Not
Available

General
Availability

14

Note
For more information about the deprecated and removed API versions in

OpenShift
413

General
Availability

Deprecated

Deprecated

General
Availability

General
Availability

OpenShift
414
Deprecated

Deprecated

Deprecated

Removed

Deprecated

Feature

Operator lifecycle and development deprecated
CoreDNS wildcard queries for the

cluster. local domain

Persistent storage that uses FlexVolume

--include-local-oci-catalogs parameter
foroc-mirror

DeploymentConfig objects

Kubernetes, consult the OpenShift Container Platform 4.14 release notes in the
references section.

Deprecated API Alerts in OpenShift

OpenShift includes two alerts that are triggered when a workload uses a deprecated API version:

APIRemovedinNextReleaselnUse
This alert is triggered for APIs that OpenShift Container Platform will remove in the next

release.

APIRemovedinNextEUSReleaselnUse
This alert is triggered for APIs that OpenShift Container Platform Extended Update Support
(EUS) will remove in the next release.

The alert describes the situation with context to identify the affected workload.

Figure 9.8: Deprecated APl alert

You can extract the alerts in JSON format from the Prometheus stateful set, and then filter the
result to retrieve the deprecated API alerts.

[user@host ~]$ oc exec -it statefulset/prometheus-k8s -c prometheus \
-n openshift-monitoring -- \

curl -fsSL 'http://localhost:9090/api/vi/alerts’

[user@host ~]% jq '[.data.alerts[] |
select(.labels.alertname=="APIRemovedInNextReleaseInUse" or
. labels.alertname=="APIRemovedInNextEUSReleaseInUse")]' < alerts.json

[
{

"labels": {

"alertname":

...output omitted. ..

| jg . > alerts.json

"APIRemovedInNextReleaseInUse",

Chapter 9 | OpenShift Updates

H
"state": "firing",
...output omitted. ..
H

{
"labels": {

"alertname": "APIRemovedInNextEUSReleaseInUse",
...output omitted...
H
"state": "firing",
...output omitted...

}

Note
E If the output of the jq command is an empty JSON array [], then the alerts were
not reported.

Explicit Acknowledgment Before Cluster Updates

OpenShift Container Platform 4.14 uses Kubernetes 1.27, which removed deprecated vibetal
APIs.

OpenShift Container Platform requires an administrator to provide a manual acknowledgment
before the cluster can be upgraded from version 4.13 to 4.14. This requirement helps to prevent
issues after upgrading to OpenShift Container Platform 4.14, where workloads, tools, or other
components that run on or interact with the cluster still use removed APls.

Administrators must evaluate their cluster for workloads that use removed APIs, and migrate the
affected components to the appropriate new API version. After migration, the administrator can
provide an acknowledgment.

[user@host ~]$ oc patch configmap admin-acks -n openshift-config --type=merge \
--patch '{"data":{"ack-4.13-kube-1.27-api-removals-in-4.14":"true"}}'
configmap/admin-acks patched

Chapter 9 | OpenShift Updates

References

For more information about the removed features in OpenShift, refer to the
Deprecated and Removed Features section in the Red Hat OpenShift Container
Platform 4.14 release notes at
https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.14/html-single/release_notes/index#ocp-4-14-
deprecated-removed-features

For more information about what version of the Kubernetes APl is included with
each OpenShift 4.x release, visit the following page in the customer portal:
https://access.redhat.com/solutions/4870701

For more information about the Kubernetes API deprecations and removals, visit the
following page in the customer portal:
https://access.redhat.com/articles/6955985

For more information about the deprecated APIs in OpenShift Container Platform
414, visit the following page in the customer portal:
https://access.redhat.com/articles/6955381

For more information about how to get fired alerts on OpenShift by using the
command-line, visit the following page in the customer portal:
https://access.redhat.com/solutions/4250221

What's New in Red Hat OpenShift 4.14
https://www.redhat.com/en/whats-new-red-hat-openshift

Preparing to Update to OpenShift Container Platform 4.14
https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.14/html-single/updating_clusters/index#updating-
cluster-prepare

Kubernetes Deprecation Policy
https://kubernetes.io/docs/reference/using-api/deprecation-policy/

Kubernetes Deprecated API Migration Guide
https://kubernetes.io/docs/reference/using-api/deprecation-guide/

Kubernetes Removals and Deprecations in 1.27
https://kubernetes.io/blog/2023/03/17/upcoming-changes-in-kubernetes-v1-27/

Kubernetes 1.27 release announcement
https://kubernetes.io/blog/2023/04/11/kubernetes-v1-27-release/

W D0O280-0OCP4.14-en-1-20240215

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/release_notes/index#ocp-4-14-deprecated-removed-features
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/release_notes/index#ocp-4-14-deprecated-removed-features
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/release_notes/index#ocp-4-14-deprecated-removed-features
https://access.redhat.com/solutions/4870701
https://access.redhat.com/articles/6955985
https://access.redhat.com/articles/6955381
https://access.redhat.com/solutions/4250221
https://www.redhat.com/en/whats-new-red-hat-openshift
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/updating_clusters/index#updating-cluster-prepare
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/updating_clusters/index#updating-cluster-prepare
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/updating_clusters/index#updating-cluster-prepare
https://kubernetes.io/docs/reference/using-api/deprecation-policy/
https://kubernetes.io/docs/reference/using-api/deprecation-guide/
https://kubernetes.io/blog/2023/03/17/upcoming-changes-in-kubernetes-v1-27/
https://kubernetes.io/blog/2023/04/11/kubernetes-v1-27-release/

Chapter 9 | OpenShift Updates

» Quiz

Detect Deprecated Kubernetes API
Usage

Choose the correct answers to the following questions:

P 1. Red Hat OpenShift Container Platform 4.14 is based on which version of Kubernetes?
a. Kubernetes 1.24
b. Kubernetes 1.27
c. Kubernetes 1.26

d. OpenShift Container Platform is not based on Kubernetes.

P 2. Whatis the feature maturity status for Kubernetes resources with the vibetal API
version?
a. Experimental
b. Pre-release
c. Stable

P 3. Which command can the cluster administrator use to identify deprecated API
resources?
a. oc get apirequestcounts
b. oc get deprecatedapis -n openshift-config
c. oc get apis --deprecated
d. oc get configmap deprecated-apis -n openshift-config

P 4. Which two alerts identify the use of deprecated API versions in the OpenShift cluster?
(Choose two.)
a. APIRemovedInNextReleaseInUse
b. APIRequestCounts
c. APIRemovedInNextEUSReleaseInUse
d. DeprecatedAPIRequestCountsInUse

P 5. True or False: OpenShift Container Platform requires administrators to provide a
manual acknowledgement before applying an update that removes deprecated API
versions.

a. True
b. False

D0O280-0OCP4.14-en-1-20240215 w

Chapter 9 | OpenShift Updates

» Solution

Detect Deprecated Kubernetes API
Usage

Choose the correct answers to the following questions:

(R

b 2.

P 3.

) 4.

5.

Red Hat OpenShift Container Platform 4.14 is based on which version of Kubernetes?
a. Kubernetes 1.24

b. Kubernetes 1.27

c. Kubernetes 1.26

d. OpenShift Container Platform is not based on Kubernetes.

What is the feature maturity status for Kubernetes resources with the vibetal API
version?

a. Experimental

b. Pre-release

c. Stable

Which command can the cluster administrator use to identify deprecated API
resources?

a. oc get apirequestcounts

b. oc get deprecatedapis -n openshift-config

c. oc get apis --deprecated

d. oc get configmap deprecated-apis -n openshift-config

Which two alerts identify the use of deprecated API versions in the OpenShift cluster?
(Choose two.)

a. APIRemovedInNextReleaseInUse

b. APIRequestCounts

c. APIRemovedInNextEUSReleaseInUse

d. DeprecatedAPIRequestCountsInUse

True or False: OpenShift Container Platform requires administrators to provide a
manual acknowledgement before applying an update that removes deprecated API
versions.

a. True

b. False

w D0O280-0OCP4.14-en-1-20240215

Chapter 9 | OpenShift Updates

Update Operators with the OLM

Objectives

+ Update OLM-managed operators by using the web console and CLI.

Operator Updates

For operators that are installed in an OpenShift cluster, operator providers can release new
versions. These new versions can contain bug fixes and new features. The Operator Lifecycle
Manager (OLM) can update these operators.

However, new operator versions can introduce bugs and incompatibilities.

Cluster administrators should define operator update policies to ensure that bug fixes and new
functions are adopted, with the cluster continuing to operate correctly.

OpenShift provides features to help to implement such policies.

+ For each installed operator, you can decide whether the OLM automatically applies updates, or
whether the updates require administrator approval.

+ Operator providers can create multiple channels for an operator. The provider can follow
different policies to push updates to each channel, so that each channel contains different
versions of the operator. When installing an operator, you choose the channel to follow for
updates.

+ You can create custom catalogs, and decide which versions of operators to include in the
catalog. For example, in a multicluster environment, you configure operators to update
automatically, but add only tested versions to the catalog.

Providers can publish operators by other means than the OLM and operator catalogs. For
example, a provider can publish operators as Helm charts or YAML resource files. The OLM does
not manage operators that are installed by other means.

Operator Update Channels

Each operator provider can create multiple channels for an operator.

For example, a provider can create stable and preview channels for an operator. The provider
publishes each new version of the operator to the preview channel. You can use the preview
channel to test new features and to validate that the new versions fix bugs. If the provider receives
feedback for preview versions of the operator and finds no serious issues with the latest version,
then the provider publishes the version to the stable channel. You can use the stable channel for
environments with higher reliability requirements, and trade off slower adoption of new features
for improved stability.

Additionally, operators might have new features that introduce significant changes or
incompatibilities with earlier versions. Operator providers might adopt a versioning scheme for the
operator that separates major updates from minor updates, depending on the adoption cost of
the new version. In this scenario, providers can create channels for different major versions of the
operator.

Chapter 9 | OpenShift Updates

For example, a provider creates an operator that installs an application. The provider creates
version-1andversion-2 channels, to correspond to different major versions of the
application. Users of the operator can stay on the version-1 channelin the production
environment, and test and design an update process to adopt the version-2 channelin a staging
environment.

When you install an operator, determine the most suitable channel for your requirements. Clusters
with varying reliability requirements might use different channels.

You can edit an operator subscription to switch channels. Switching channels does not cause any
operator update, unless switching channel makes a later version available and the operator is
configured for automatic updates. Switching channels might cause unwanted results; always refer
to the operator documentation to learn about possible issues.

Automatic and Manual Updates

When you install an operator, you can decide whether the OLM automatically applies updates, or
whether the OLM requires an administrator to approve the update. On the operator installation
wizard, you can choose between automatic or manual approval. When you create a subscription by
using the oc command, the resource specification contains an installPlanApproval property
that requires an Automatic or Manual value.

If the publishing policies of an operator suit your requirements, then you can configure automatic
approvals. Click Operators > Installed Operators on the web console, or examine cluster service
versions with the oc command, to review the version of installed operators.

If you install an operator and configure manual approvals, then you must approve updates before
the OLM updates the operator.

The Installed Operators page in the web console displays available upgrades.

Red Hat
OpenShift

& Administrator Project: openshift-operators v

Installed Operators

within this Name:

Operators
ator and ClusterServiceV

!
Installed Operators e <
Name Managed Namespaces Status
Worklo
+ DevWorkspace All Namespaces @ Succeeded
Pods Operator Up to date

016

rovided by
Deployments Devfile

MetallLB Operator All Namespaces @ Succeeded
4 57 Up to date

Web Terminal All Namespaces @ Succeeded
@ Upgrade available
CronJobs

Figure 9.9: The Installed Operators page with an available upgrade

Chapter 9 | OpenShift Updates

The subscription resources and the install plan resources contain information about upgrades. You
can use the oc command to examine those resources to find available upgrades.

[user@host ~]% oc get sub -n openshift-operators web-terminal -o yaml
...output omitted...
spec:
channel: fast
installPlanApproval: Manual
name: web-terminal
source: do280-catalog-redhat
sourceNamespace: openshift-marketplace
startingCSV: web-terminal.v1.5.1
status:
...output omitted...
conditions:
...output omitted. ..
- lastTransitionTime: "2022-11-24T13:46:212"
reason: RequiresApproval
status: "True"
type: InstallPlanPending
currentCsv: web-terminal.vi.6.0 @
installPlanGeneration: 2
installPlanRef:
apiVersion: operators.coreos.com/vialphal
kind: InstallPlan
name: install-72vnw ©
namespace: openshift-operators
resourceVersion: "194989"
uid: 8dc979fe-936f-475a-8977-36d210c4da98
installedCSV: web-terminal.vi.5.1 ©
..output omitted...
state: UpgradePending

© ThecurrentCSV key shows the latest available version in the channel.
© The installPlanRef section contains a reference to the install plan resource.
© The installedCSV key shows the current version.

The OLM also creates an install plan resource when the operator channel contains a later version
of an operator.

[user@host ~]$ oc get installplan -n openshift-operators install-72vnw -o yaml
apiVersion: operators.coreos.com/vialphal
kind: InstallPlan
...output omitted...
spec:
approval: Manual (1]
approved: false (2]
clusterServiceVersionNames:
- web-terminal.v1.6.0 o
generation: 2
status:

Chapter 9 | OpenShift Updates

...output omitted. ..
phase: RequiresApproval
...output omitted. ..

© The approval key indicates whether updates must be approved.
© The approved key shows whether the update is approved.
© TheclusterServiceVersionNames shows the updated version.

To install the update, edit the specification of the install plan to change the approved key value to
true.

[user@host ~]$% oc patch installplan install-72vnw --type merge \
--patch '{"spec":{"approved":true}}'
installplan.operators.coreos.com/install-72vnw patched

You can also use the web console to approve an update. In the Installed Operators, click Upgrade
available, and then click Preview InstallPlan to view the install plan. Review the install plan, and
then click Approve to update the operator.

Project: openshift-operators
InstallPlans * InstallPlan details

@ |nsta||—q9k‘t5 RequiresApproval Actions v

Details YAML Components

Review manual InstallPlan

Review the manual install plan for operators web-terminal.v1.6.0. Once approved, the following resources will be created in order
to satisfy the requirements for the components specified in the plan. Click the resource name to view the resource in detail.

web-terminalv1.6.0

Name Kind Status APl version

@ web-terminalvl.6.0 ClusterServiceVersion Unknown operators.coreos.com/vlalphal
@ web-terminal-controller ServiceAccount Unknown core/vl

e Role Unknown rbac.authorization k8s.io/v1

web-terminal vl 6.0-web-terminal-controller-596ff5ccc

@ RoleBinding Unknown rbac.authorization k8s.io/v1

web-terminalvl.6.0-web-terminal-controller-596ff5ccc

Figure 9.10: Reviewing an install plan

Operator Updates and Cluster Updates

Operators might be incompatible with later versions of OpenShift. For example, an operator that
uses an APl that is removed from later versions of OpenShift does not work correctly when the
cluster is updated. Operators can define a list of compatible OpenShift versions.

W D0O280-0OCP4.14-en-1-20240215

Chapter 9 | OpenShift Updates

When updating a cluster, you might need to update operators if the installed version of the
operator is not compatible with the updated OpenShift version. Before you update a cluster,
review and install any operator updates that are needed for compatibility fixes. If no compatible
updates are available, then you must update the cluster by uninstalling incompatible operators.

Uninstalling Operators

You can uninstall operators by using the web console or the oc command.

In the console, click Operators > Installed operators and locate the operator. Click the vertical
ellipsis (:) menu, and then click Uninstall Operator.

Web Terminal All Namespaces @ Succeeded -
>- 1.5.1 provided by @ Upgrade available
Red Hat Edit Subscription

Uninstall Operator

i
Figure 9.11: The uninstall operator button
After confirming the operation by clicking Uninstall, the OLM uninstalls the operator.
Alternatively, delete the subscription and cluster service versions by using the oc command.

i~ | Important

Uninstalling an operator can leave operator resources on the cluster. Always review
the operator documentation to learn about cleanup processes that you must follow
to completely remove an operator.

D References
Refer to the Upgrading Installed Operators section in the Administrator
Tasks chapter in the Red Hat OpenShift Container Platform 4.14 Operators
documentation at
https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.14/html-single/operators/index#olm-upgrading-
operators

Refer to the Deleting Operators from a Cluster section in the Administrator
Tasks chapter in the Red Hat OpenShift Container Platform 4.14 Operators
documentation at

https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.14/html-single/operators/index#olm-deleting-
operators-from-a-cluster

For more information about creating custom catalogs with controlled operator
versions, refer to the Managing Custom Catalogs section in the Administrator
Tasks chapter in the Red Hat OpenShift Container Platform 4.14 Operators
documentation at

https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.14/html-single/operators/index#olm-managing-
custom-catalogs

D0O280-0OCP4.14-en-1-20240215 w

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index#olm-upgrading-operators
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index#olm-upgrading-operators
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index#olm-upgrading-operators
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index#olm-deleting-operators-from-a-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index#olm-deleting-operators-from-a-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index#olm-deleting-operators-from-a-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index#olm-managing-custom-catalogs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index#olm-managing-custom-catalogs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index#olm-managing-custom-catalogs

Chapter 9 | OpenShift Updates

» Quiz

Update Operators with the OLM

Choose the correct answers to the following questions:

b1

b 2.

P 3.

b 4.

b 5.

Which component manages the updates of operators that are not cluster operators?
a. Operator Lifecycle Manager (OLM)

b. Cluster Version Operator (CVO)

c. Telemetry client (Telemeter)

In which two ways can you configure operator updates? (Choose two.)

a. With automatic updates, the OLM updates an operator as soon as the configured channel
has a later version of the operator.

b. With automatic updates, the OLM switches the update channel automatically to the
channel with the latest version of the operator, and updates to this version.

c. With manual updates, the OLM does not monitor channels, and you apply updates
manually.

d. With manual updates, the OLM updates an operator when the configured channel has a

later version of the operator, and an administrator approves the update.

In which two ways can you approve updates of an operator? (Choose two.)

a. Update the subscription resource with the intended version.

b. Use the web console to review and approve the install plan resource.

c. Modify the install plan resource by using the Kubernetes API to approve the update.

d. Update the CVO resource specification with the intended version.

Which statement is true about update channels?

a. The OLM restricts changes to the update channel to a set of supported changes.

b. You can change to any update channel.

c. The OLM can change the update channel automatically.

d. You cannot change the update channel of an installed operator. You must uninstall the
operator to use a different update channel.

In which two ways can you uninstall an operator? (Choose two.)

a. Delete the subscription and cluster service versions by using the Kubernetes API.
b. Change the install field of the subscription resource to the false value.

c. Use the web console to uninstall the operator.

d. Remove the operator from the CVO resource specification.

W D0O280-0OCP4.14-en-1-20240215

Chapter 9 | OpenShift Updates

» Solution

Update Operators with the OLM

Choose the correct answers to the following questions:

P 1. Which component manages the updates of operators that are not cluster operators?
a. Operator Lifecycle Manager (OLM)
b. Cluster Version Operator (CVO)

c. Telemetry client (Telemeter)

P 2. Inwhich two ways can you configure operator updates? (Choose two.)

a. With automatic updates, the OLM updates an operator as soon as the configured channel
has a later version of the operator.

b. With automatic updates, the OLM switches the update channel automatically to the
channel with the latest version of the operator, and updates to this version.

¢. With manual updates, the OLM does not monitor channels, and you apply updates
manually.

d. With manual updates, the OLM updates an operator when the configured channel has a
later version of the operator, and an administrator approves the update.

P 3. In which two ways can you approve updates of an operator? (Choose two.)
a. Update the subscription resource with the intended version.
b. Use the web console to review and approve the install plan resource.
c. Modify the install plan resource by using the Kubernetes API to approve the update.

d. Update the CVO resource specification with the intended version.

P 4. Which statement is true about update channels?
a. The OLM restricts changes to the update channel to a set of supported changes.
b. You can change to any update channel.
¢. The OLM can change the update channel automatically.
d. You cannot change the update channel of an installed operator. You must uninstall the

operator to use a different update channel.

P 5. In which two ways can you uninstall an operator? (Choose two.)
a. Delete the subscription and cluster service versions by using the Kubernetes API.
b. Change the install field of the subscription resource to the false value.
c. Use the web console to uninstall the operator.

d. Remove the operator from the CVO resource specification.

D0O280-0OCP4.14-en-1-20240215 w

Chapter 9 | OpenShift Updates

» Quiz

OpenShift Updates

Choose the correct answers to the following questions:

b1

b 2.

P 3.

b 4.

Which component retrieves the updated cluster images from Quay.io?
a. Cluster Version Operator (CVO)

b. Operator Lifecycle Manager (OLM)

c. Telemetry client (Telemeter)

d. Cluster Monitoring (Prometheus)

Which component manages the updates of operators that are not cluster operators?
a. Telemetry client (Telemeter)

b. Operator Lifecycle Manager (OLM)

c. Cluster Version Operator (CVO)

Which statement is true about deprecated APIs?

a. Beta versions of features are maintained indefinitely.

b. When a stable version of a feature is released, the beta versions are marked as
deprecated and are removed in the next Kubernetes release.

c. When a stable version of a feature is released, the beta versions are marked as
deprecated. When a deprecated API can no longer be maintained, the APl is removed.

d. When a stable version of a feature is released, the beta versions are marked as
deprecated and are removed after three Kubernetes releases.

In which three ways can you discover usage of deprecated APIs? (Choose three.)

a. You can disable deprecated APlIs, so that usage of deprecated APIs fails.

b. APIRequestCount objects count APl requests. Review the request count for deprecated
APIs.

c. OpenShift monitoring includes alerts that notify administrators when the cluster receives
a request that uses a deprecated API.

d. OpenShift annotates workloads that use deprecated APIs.

e. If arequest uses a deprecated APl version, then the APl server returns a deprecation
warning.

f. Cluster updates are not possible if deprecated APIs are in use.

W D0O280-0OCP4.14-en-1-20240215

Chapter 9 | OpenShift Updates

P 5. Which resource do you edit to approve an operator update?
a. PackageManifest
b. Subscription
c. InstallPlan
d. ClusterServiceVersion

D0O280-0OCP4.14-en-1-20240215

Chapter 9 | OpenShift Updates

» Solution

OpenShift Updates

Choose the correct answers to the following questions:

b1

P 2.

P 3.

) 4.

Which component retrieves the updated cluster images from Quay.io?
a. Cluster Version Operator (CVO)

b. Operator Lifecycle Manager (OLM)

c. Telemetry client (Telemeter)

d. Cluster Monitoring (Prometheus)

Which component manages the updates of operators that are not cluster operators?
a. Telemetry client (Telemeter)

b. Operator Lifecycle Manager (OLM)

c. Cluster Version Operator (CVO)

Which statement is true about deprecated APIs?

a. Beta versions of features are maintained indefinitely.

b. When a stable version of a feature is released, the beta versions are marked as
deprecated and are removed in the next Kubernetes release.

c. When a stable version of a feature is released, the beta versions are marked as
deprecated. When a deprecated API can no longer be maintained, the APl is removed.

d. When a stable version of a feature is released, the beta versions are marked as
deprecated and are removed after three Kubernetes releases.

In which three ways can you discover usage of deprecated APIs? (Choose three.)

a. You can disable deprecated APIs, so that usage of deprecated APIs fails.

b. APIRequestCount objects count APl requests. Review the request count for deprecated
APIs.

c. OpenShift monitoring includes alerts that notify administrators when the cluster receives
a request that uses a deprecated API.

d. OpenShift annotates workloads that use deprecated APIs.

e. If arequest uses a deprecated APl version, then the APl server returns a deprecation
warning.

f. Cluster updates are not possible if deprecated APIs are in use.

W D0O280-0OCP4.14-en-1-20240215

Chapter 9 | OpenShift Updates

P 5. Which resource do you edit to approve an operator update?
a. PackageManifest
b. Subscription
c. InstallPlan
d. ClusterServiceVersion

D0O280-0OCP4.14-en-1-20240215

Chapter 9 | OpenShift Updates

Summary

+ A major benefit of OpenShift 4 architectural changes is that you can update your clusters Over-
the-Air (OTA).

+ Red Hat provides a software distribution system that ensures the best path for updating your
OpenShift 4 cluster and the underlying operating system.

+ Red Hat maintains several distribution channels:

The fast channel delivers updates as soon as they are available.

The stable channel delivers updates that passed additional testing and validation in
operational clusters.

The candidate channel delivers updates for testing feature acceptance in the next version of
OpenShift Container Platform.

The eus channel (which is available only for Extended Updated Support releases) extends the
maintenance phase.

+ Red Hat does not support reverting your cluster to an earlier version.
+ The Kubernetes API versions are categorized based on feature maturity.

+ When a stable version of an APl is released, the beta versions are marked as deprecated and are
removed after three Kubernetes releases.

+ Requests to a deprecated API display warnings and trigger alerts. You can track deprecated API
usage by using APIRequestCount objects.

+ The Operator Lifecycle Manager (OLM) can update operators that are installed in an OpenShift
cluster.

+ For each installed operator, you can decide whether the OLM automatically applies updates, or
whether the updates require administrator approval.

+ Operator providers can create multiple channels for an operator with different release policies.

Chapter 10

Comprehensive Review

Goal Review tasks from Red Hat OpenShift ¢
Administration Il: Configuring a Production Cluster.

Sections + Comprehensive Review .

L

Lab + Cluster Self-service Setup r-

Secure Applications i

; Deploy Packaged Applications

i

D0O280-0OCP4.14-en-1-20240215

w7

Chapter 10 | Comprehensive Review

Comprehensive Review

Objectives

After completing this section, you should have reviewed and refreshed the knowledge and skills
that you learned in Red Hat OpenShift Administration Il: Configuring a Production Cluster.

Reviewing Red Hat OpenShift Administration Il:
Configuring a Production Cluster

Before beginning the comprehensive review for this course, you should be comfortable with
the topics covered in each chapter. Do not hesitate to ask the instructor for extra guidance or
clarification on these topics.

Chapter 1, Declarative Resource Management

Deploy and update applications from resource manifests that are parameterized for different
target environments.

+ Deploy and update applications from resource manifests that are stored as YAML files.
+ Deploy and update applications from resource manifests that are augmented by Kustomize.

Chapter 2, Deploy Packaged Applications

Deploy and update applications from resource manifests that are packaged for sharing and
distribution.

+ Deploy an application and its dependencies from resource manifests that are stored in an
OpenShift template.

+ Deploy and update applications from resource manifests that are packaged as Helm charts.

Chapter 3, Authentication and Authorization

Configure authentication with the HTPasswd identity provider and assign roles to users and
groups.

+ Configure the HTPasswd identity provider for OpenShift authentication.

+ Define role-based access controls and apply permissions to users.

Chapter 4, Network Security

Protect network traffic between applications inside and outside the cluster.

+ Allow and protect network connections to applications inside an OpenShift cluster.
+ Restrict network traffic between projects and pods.

+ Configure and use automatic service certificates.

408

Chapter 10 | Comprehensive Review

Chapter 5, Expose non-HTTP/SNI Applications

Expose applications to external access without using an ingress controller.
+ Expose applications to external access by using load balancer services.

+ Expose applications to external access by using a secondary network.

Chapter 6, Enable Developer Self-Service

Configure clusters for safe self-service by developers from multiple teams, and disallow self-
service if operations staff must provision projects.

- Configure compute resource quotas and Kubernetes resource count quotas per project and
cluster-wide.

+ Configure default and maximum compute resource requirements for pods per project.

- Configure default quotas, limit ranges, role bindings, and other restrictions for new projects, and
the allowed users to self-provision new projects.

Chapter 7, Manage Kubernetes Operators

Install and update operators that the Operator Lifecycle Manager and the Cluster Version
Operator manage.

+ Explain the operator pattern and different approaches for installing and updating Kubernetes
operators.

+ Install and update operators by using the web console and the Operator Lifecycle Manager.

+ Install and update operators by using the Operator Lifecycle Manager APlIs.

Chapter 8, Application Security

Run applications that require elevated or special privileges from the host operating system or
Kubernetes.

+ Create service accounts and apply permissions, and manage security context constraints.
+ Run an application that requires access to the Kubernetes API of the application's cluster.

+ Automate regular cluster and application management tasks by using Kubernetes cron jobs.

Chapter 9, OpenShift Updates

Update an OpenShift cluster and minimize disruption to deployed applications.
+ Describe the cluster update process.
+ ldentify applications that use deprecated Kubernetes APls.

+ Update OLM-managed operators by using the web console and CLI.

Chapter 10 | Comprehensive Review

» Lab

Cluster Self-service Setup

Configure a cluster with default settings for self-service projects.

Outcomes

+ Create a project template that sets quotas, ranges, and network policies.
+ Restrict access to the self-provisioners cluster role.
+ Create groups and assign users to groups.

+ Use role-based access control (RBAC) to grant permissions to groups.

Before You Begin

As the student user on the workstation machine, use the lab command to prepare your
system for this exercise.

[student@workstation ~]$ lab start compreview-review

The lab command copies the exercise files to the ~/D0280 directory and creates the
following users:

+ do280-support

+ do280-platform
+ do280-presenter
+ do280-attendee

The goal, as the cluster administrator, is to configure a dedicated cluster to host workshops
on different topics.

Each workshop requires a project, so that workshops are isolated from each other.

You must set up the cluster so that when the presenter creates a workshop project, the
project gets a base configuration.

The presenter must be mostly self-sufficient to administer a workshop with little help from
the workshop support team.

The workshop support team must deploy applications that administer workshops and that

enhance the workshop experience. You set up a project and the applications for this purpose
on a second lab.

Specifications

Use the following values to access the OpenShift cluster:

Item Value

Dev user/password developer/developer

Chapter 10 | Comprehensive Review

Item Value
Admin user/password admin/redhatocp
API URL https://api.ocp4.example.com:6443

The following workshop groups are required:

+ Create the groups with the specified users in the following table:

Group User

platform do280-platform
presenters do280-presenter
workshop-support do280-support

The lab start command creates the users with the redhat password.
+ The platform group administers the cluster.
« The presenters group consists of the people who deliver the workshops.

+ The workshop-support group maintains the needed applications to support the workshops
and the workshop presenters.

+ Ensure that only users from the following groups can create projects:

Group
platform
presenters

workshop-support

+ An attendee must not be able to create projects. Because this exercise requires steps that
restart the Kubernetes API server, this configuration must persist across API server restarts.

+ The workshop-support group requires the following roles in the cluster:
- The admin role to administer projects
- A custom role that is provided in the groups-role.yaml file You must create this custom
role to enable support members to create workshop groups and to add workshop attendees.

+ The platform group must be able to administer the cluster without restrictions.

+ The workshop-support group must perform the following tasks for the workshop project:
- Create a workshop-specific attendees group.
- Assign the edit role to the attendees group.
- Add users to the attendees group.

+ Each workshop must be hosted in an independent project.

+ All the resources that the cluster creates with a new workshop project must use workshop as
the name for grading purposes.

Chapter 10 | Comprehensive Review

+ Each workshop must enforce the following maximum constraints:
- The project uses up to 2 CPUs.
- The project uses up to 1 Gi of RAM.
- The project requests up to 1.5 CPUs.
- The project requests up to 750 Mi of RAM.

+ Each workshop must enforce constraints to prevent an attendee's workload from consuming all
the allocated resources for the workshop:
- A workload uses up to 750m CPUs.
- A workload uses up to 750 Mi.

+ Each workshop must have a resource specification for workloads:
- A default limit of 500m CPUs.
- A default limit of 500 Mi of RAM.
- Adefault request of 0.1 CPUs.
- A default request of 250 Mi of RAM.

You can use the templates that are provided in the quota.yaml, limitrange.yaml, and
networkpolicy.yaml files.

+ Each workshop project must have this additional default configuration:
- Alocal binding for the presenter user to the admin cluster role with the workshop name
- Theworkshop=project_name label to help to identify the workshop workload
- Must accept traffic only from within the same workshop or from the ingress controller.

+ Usethe registry.ocp4.example.com:8443/redhattraining/hello-world-
nginx:v1.0 image, which listens on the 8080 port, to simulate a workshop workload.

+ Asthe do280-presenter user, you must create a workshop with the do280 name.

+ As the do280-support user, you must create the do280-attendees group with the do280 -
attendee user, and assign the edit cluster role to the do280-attendees group.

Evaluation

As the student user on the workstation machine, use the lab command to grade your work.
Correct any reported failures and rerun the command until successful.

[student@workstation ~]$ lab grade compreview-review
Finish
As the student user on the workstation machine, use the lab command to complete this

exercise. This step is important to ensure that resources from previous exercises do not impact
upcoming exercises.

[student@workstation ~]$ lab finish compreview-review

Chapter 10 | Comprehensive Review

» Solution

Cluster Self-service Setup

1.

Configure a cluster with default settings for self-service projects.

Outcomes

+ Create a project template that sets quotas, ranges, and network policies.
+ Restrict access to the self-provisioners cluster role.
+ Create groups and assign users to groups.

+ Use role-based access control (RBAC) to grant permissions to groups.

Before You Begin

As the student user on the workstation machine, use the lab command to prepare your
system for this exercise.

[student@workstation ~]$ lab start compreview-review

The lab command copies the exercise files to the ~/D0280 directory and creates the
following users:

+ do280-support

+ do280-platform
+ do280-presenter
- do280-attendee

The goal, as the cluster administrator, is to configure a dedicated cluster to host workshops
on different topics.

Each workshop requires a project, so that workshops are isolated from each other.

You must set up the cluster so that when the presenter creates a workshop project, the
project gets a base configuration.

The presenter must be mostly self-sufficient to administer a workshop with little help from
the workshop support team.

The workshop support team must deploy applications that administer workshops and that
enhance the workshop experience. You set up a project and the applications for this purpose
on a second lab.

Change to the ~/D0280/labs/compreview-review directory and login to the cluster as
the admin user.

11. Change to the lab directory.

[student@workstation ~]$ cd ~/D0280/1labs/compreview-review

Chapter 10 | Comprehensive Review
1.2. Open a terminal window and log in as the admin user with the redhatocp password.
[student@workstation compreview-review]$ oc login -u admin -p redhatocp \
https://api.ocp4.example.com: 6443

Login successful.
...output omitted...

2. Create the following groups and add a user as specified in the following table.

Group User
workshop-support do280-support
presenters do280-presenter
platform do280-platform

2.1. Create the workshop-support group.

[student@workstation compreview-review]$ oc adm groups new workshop-support
group.user.openshift.io/workshop-support created

2.2. Addthe do280-support user to the workshop-support group.

[student@workstation compreview-review]$ oc adm groups add-users \
workshop-support do280-support
group.user.openshift.io/workshop-support added: "do280-support"

2.3. Create the presenters group.

[student@workstation compreview-review]$ oc adm groups new presenters
group.user.openshift.io/presenters created

2.4. Addthe do280-presenter user to the presenters group.

[student@workstation compreview-review]$ oc adm groups add-users \
presenters do280-presenter
group.user.openshift.io/presenters added: "do280-presenter"

2.5. Create the platform group.

[student@workstation compreview-review]$ oc adm groups new platform
group.user.openshift.io/platform created

2.6. Addthe do280-platformuserto the platform group.

[student@workstation compreview-review]$ oc adm groups add-users \
platform do280-platform
group.user.openshift.io/platform added: "do280-platform"

Chapter 10 | Comprehensive Review
2.7. Usetheoc get groups command to verify that the group configuration is correct.

[student@workstation compreview-review]$ oc get groups

NAME USERS

...output omitted...

platform do280-platform
presenters do2806-presenter
workshop-support do280-support

3. Granttotheworkshop-support group the admin and the custom manage-groups
cluster roles. You must create the manage -groups custom cluster role from the
groups-role.yaml file.

3.1. Grant the admin cluster role to the workshop-support group.

[student@workstation compreview-review]$ oc adm policy \
add-cluster-role-to-group admin workshop-support
clusterrole.rbac.authorization.k8s.io/admin added: "workshop-support"

3.2. Runtheoc create command to create the manage-groups cluster role in the
groups-role.yaml file.

[student@workstation compreview-review]$ oc create -f groups-role.yaml
clusterrole.rbac.authorization.k8s.io/manage-groups created

3.3. Grant the manage-groups cluster role to the workshop-support group.

[student@workstation compreview-review]$ oc adm policy \
add-cluster-role-to-group manage-groups workshop-support
clusterrole.rbac.authorization.k8s.io/manage-groups added: "workshop-support"

4. Create a cluster role binding to assign the cluster -admin cluster role to the platform
group.

[student@workstation compreview-review]$ oc adm policy \
add-cluster-role-to-group cluster-admin platform
clusterrole.rbac.authorization.k8s.io/cluster-admin added: "platform"

5. Allowonly the platform, workshop-support and presenters groups to create
projects, by editing the self -provisioner cluster role. Enforce that only users from
these groups can create projects. Also, make this change permanent by setting the
rbac.authorization.kubernetes.io/autoupdate annotation with the false value.

5.1. Usetheoc edit command to edit the self-provisioners cluster role binding.

[student@workstation compreview-review]$ oc edit clusterrolebinding \
self-provisioners

Replace the subject of the role binding for the system:authenticated:oauth
group with the platform, workshop-support, and presenters groups.

Chapter 10 | Comprehensive Review

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
annotations:
rbac.authorization.kubernetes.io/autoupdate: "false"
creationTimestamp: "2023-01-24T723:31:00Z2"
name: self-provisioners
resourceVersion: "250330"
uid: a6053896-f68f-41ff-9bb3-5da579a701bc
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: self-provisioner

subjects:
- apiGroup: rbac.authorization.k8s.io
kind: Group

name: platform

- apiGroup: rbac.authorization.k8s.io
kind: Group
name: workshop-support

- apiGroup: rbac.authorization.k8s.io
kind: Group
name: presenters

5.2. Asthe do280-attendee user, verify that you cannot create a project.
Login as the do280-attendee user with the redhat password.

[student@workstation compreview-review]$ oc login -u do280-attendee -p redhat
Login successful.

You don't have any projects. Contact your system administrator to request a
project.

Use the oc new-project command to try to create a template-test project.

[student@workstation compreview-review]$ oc new-project template-test
Error from server (Forbidden): You may not request a new project via this API.

6. Asthe admin user, create a template-test namespace to design the project template.
6.1. Login asthe admin user with the redhatocp password.

[student@workstation compreview-review]$ oc login -u admin -p redhatocp
Login successful.
...output omitted...

6.2. Use the oc new-project command to create the template-test project.

[student@workstation compreview-review]$ oc new-project template-test
Now using project "template-test" on server...
...output omitted. ..

Chapter 10 | Comprehensive Review

7. Create a template resource quota with the following specification.

Quota Value
limits.cpu 2
limits.memory 161
requests.cpu 1500m
requests.memory 750Mi

71. Editthe quota.yaml file and replace the CHANGE_ME label to match the following
definition.

apiVersion: vi
kind: ResourceQuota
metadata:
name: workshop
namespace: template-test
spec:
hard:
limits.cpu: 2
limits.memory: 16Gi
requests.cpu: 1500m
requests.memory: 750Mi

7.2. Use the oc create command to create the quotain the template-test project.

[student@workstation compreview-review]$ oc create -f quota.yaml
resourcequota/workshop created

8. Create the workshop limit range with the following specification.

Limit type Value
max.cpu 750m
max .mem 750M1
default.cpu 500m
default.memory 500Mi
defaulRequest.cpu 100m
defaulRequest.memory 250Mi

8.1. Editthe limitrange.yaml file and replace the CHANGE_ME label to match the
following definition.

Chapter 10 | Comprehensive Review

apiVersion: vi
kind: LimitRange
metadata:
name: workshop
namespace: template-test
spec:
limits:
- max:
cpu: 750m
memory: 750Mi
default:
cpu: 500m
memory: 500Mi
defaultRequest:
cpu: 100m
memory: 250Mi
type: Container

8.2. Use the oc create command to create the limit range in the template-test
project.

[student@workstation compreview-review]$ oc create -f limitrange.yaml
limitrange/workshop created

9. Create a network policy to accept traffic from within the workshop project or from outside
the cluster. To identify the workshop project traffic, label the template-test namespace
with the workshop=template-test label.

9.1. Usetheoc create deployment command to create a deployment without resource
specifications.

[student@workstation compreview-review]$ oc create deployment test-workload \
--image registry.ocp4.example.com:8443/redhattraining/hello-world-nginx:v1.0
deployment.apps/test-workload created

9.2. Get the IP address of one of the NGINX pods.

[student@workstation compreview-review]$ oc get pod -o wide
NAME READY STATUS 000 IP
test-workload-56bf7dc6fc-mshn9 1/1 Running ... 10.8.0.138

9.3. Use the oc debug command to run the cur1 command from a pod in the default
project.
Use the cur 1L command from the default namespace to query the NGINX server
that runs in the test workload.

[student@workstation compreview-review]$ oc debug --to-namespace="default" \
-- curl -s http://10.8.0.138:8080

Starting pod/image-debug

<htm1l>
<body>

Chapter 10 | Comprehensive Review

<hi1>Hello, world from nginx!</h1>
</body>
</htm1l>

Removing debug pod

9.4. Use the oc label command to add the label to the template-test namespace.

[student@workstation compreview-review]$ oc label ns template-test \
workshop=template-test
namespace/template-test labeled

9.5. Edit the network policy from the networkpolicy.yaml file. Replace the CHANGE_ME
labels according to the following specification.

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:

name: workshop

namespace: template-test

spec:
podSelector: {}
ingress:
- from:
- namespaceSelector:
matchLabels:
workshop: template-test
- namespaceSelector:
matchLabels:

policy-group.network.openshift.io/ingress: ""

9.6. Runthe oc create command to create the policy in the template-test project.

[student@workstation compreview-review]$ oc create -f networkpolicy.yaml
networkpolicy.networking.k8s.io/workshop created

9.7. \Verify that you cannot connect to the workshop pod from the default project.

[student@workstation compreview-review]$ oc debug --to-namespace="default" \
-- curl -sS --connect-timeout 5 http://10.8.0.138:8080

Starting pod/image-debug

curl: (28) Connection timed out after 5000 milliseconds

Removing debug pod

9.8. \Verify that you can connect to the workshop pod from the workshop project.

[student@workstation compreview-review]$ oc debug \
--to-namespace="template-test" \
-- curl -sS http://10.8.0.138:8080
Warning: would violate PodSecurity "restricted:latest": ...output omitted...
Starting pod/image-debug

Chapter 10 | Comprehensive Review

<htm1l>
<body>
<hi>Hello, world from nginx!</h1>
</body>
</htm1l>

Removing debug pod ...

10. Create the workshop project template by using the previously created template resources.

10.1. Runtheoc adm create-bootstrap-project-template command to create the
project-template.yaml file to use as the template for new projects.

[student@workstation compreview-review]$ oc adm \
create-bootstrap-project-template \
-0 yaml > project-template.yaml

10.2. Use the oc get command to create a YAML list with the following resources:

+ resourcequota/workshop
+ limitrange/workshop
+ networkpolicy/workshop

Redirect the output to append to the project-template.yaml file.

[student@workstation compreview-review]$ oc get resourcequota/workshop \
limitrange/workshop \
networkpolicy/workshop \
-0 yaml >> project-template.yaml

10.3. Editthe project-template.yaml file to perform the following operations:

+ Cut the contents of the items stanza and paste them immediately before the
parameters stanza. Keep the original indentation, because every YAML item of the
list must appear at the beginning of the line.

+ Remove any left-over content after the parameters block.

+ Remove the following keys from the limit range and quota definitions:
creationTimestamp

resourceversion

- uid

- status

generation

+ Replace the template-test text with the ${PROJECT_NAME} text.

+ Add the workshop=${PROJECT_NAME} label.

+ Rename the admin role binding with the workshop name.

Use the search-and-replace editor function to replace the template-test string

with the ${PROJECT_NAME} template parameter. Optionally, you can use the sed
command if it is available.

Chapter 10 | Comprehensive Review

The solution file is in the ~/D0280/solutions/compreview-review/project-
template.yaml path.

[student@workstation compreview-review]$ sed -i \
's/template-test/${PROJECT _NAME}/g' project-template.yaml

Then, move the resource list to the objects key. The project-template.yaml file
has the following expected content.

apiVersion: template.openshift.io/v1
kind: Template
metadata:
name: project-request
objects:
- apiVersion: project.openshift.io/v1
kind: Project
metadata:
annotations:
openshift.io/description: ${PROJECT_DESCRIPTION}
openshift.io/display-name: ${PROJECT_DISPLAYNAME}
openshift.io/requester: ${PROJECT_REQUESTING_USER}
name: ${PROJECT_NAME}
labels:
workshop: ${PROJECT_NAME}
spec: {}
- apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
name: workshop
namespace: ${PROJECT_NAME}
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: admin
subjects:
- apiGroup: rbac.authorization.k8s.io
kind: User
name: ${PROJECT_ADMIN_USER}
- apiversion: vi
kind: ResourceQuota
metadata:
annotations:
name: workshop
namespace: ${PROJECT_NAME}
spec:
hard:
limits.cpu: "2"
limits.memory: 1Gi
requests.cpu: 1500m
requests.memory: 750Mi
- apiVersion: vi
kind: LimitRange
metadata:
annotations:

Chapter 10 | Comprehensive Review

name: workshop
namespace: ${PROJECT_NAME}

spec:
limits:
- default:
cpu: 500m
memory: 500Mi
defaultRequest:
cpu: 100m
memory: 250Mi
max:
cpu: 750m

memory: 750Mi
type: Container
- apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
annotations:
name: workshop
namespace: ${PROJECT_NAME}
spec:
ingress:
- from:
- namespaceSelector:
matchLabels:
workshop: ${PROJECT_NAME}
- namespaceSelector:
matchLabels:
policy-group.network.openshift.io/ingress: ""
podSelector: {}
policyTypes:
- Ingress
parameters:
- name: PROJECT_NAME
- name: PROJECT_DISPLAYNAME
- name: PROJECT_DESCRIPTION
- name: PROJECT_ADMIN_USER
- name: PROJECT_REQUESTING_USER

10.4. Create the project template in the project-template.yaml file by using the oc
create command in the openshift-config namespace.

[student@workstation compreview-review]$ oc create -f project-template.yaml \

-n openshift-config
template.template.openshift.io/project-request created

10.5. Use the oc edit command to change the cluster project configuration.

[student@workstation compreview-review]$ oc edit \
projects.config.openshift.io cluster

Edit the resource to match the following content:

Chapter 10 | Comprehensive Review

apiVersion: config.openshift.io/v1
kind: Project
metadata:
...output omitted...

name: cluster
...output omitted...
spec:

projectRequestTemplate:

name: project-request

To edit the file, you use the default vi editor.

10.6. Use the watch command to view the APl server pods.

[student@workstation compreview-review]$ watch oc get \
pod -n openshift-apiserver

Wait until new pods are created. Press Ctr 1+C to exit the watch command.
M. Asthe do280-presenter, create the do280 workshop project.

.1, Loginasthe do280-presenter user with the redhat password.

[student@workstation compreview-review]$ oc login -u do280-presenter -p redhat
Login successful.
...output omitted. ..

1.2. Use the oc new-project command to create the do280 project.

[student@workstation compreview-review]$ oc new-project do280
Now using project "do280" on server ...
...output omitted. ..

1.3. Verify that the oc new-project command creates the following resources from the
template:

+ Quota
+ Limitrange
+ Network policy

[student@workstation compreview-review]$ oc get resourcequota/workshop \
limitrange/workshop \
networkpolicy/workshop

NAME AGE REQUEST LIMIT
resourcequota/workshop 95s requests.cpu: 0/1500m ... limits.cpu: 0/2 ...
NAME CREATED AT

limitrange/workshop 2023-03-03T10:37:28Z

NAME POD-SELECTOR AGE
networkpolicy.networking.k8s.io/workshop <none> 95s

1.4. Verify that the do280 project definition has the workshop=do280 label.

Chapter 10 | Comprehensive Review

[student@workstation compreview-review]$ oc get project do280 -o yaml
apiVersion: project.openshift.io/v1l
kind: Project
metadata:
...output omitted...

labels:

workshop: do286

...output omitted...

name: do280

resourceVersion: "1293438"

..output omitted. ..

12. Asthe do280-support user, create the do280-attendees group. Then, assign the edit
cluster role to the do280-attendees group, and add the do280-attendee user to the

group.

121. Loginas the do280-support user with the redhat password.

[student@workstation compreview-review]$ oc login -u do280-support -p redhat
Login successful.
...output omitted...

12.2. Create the do280-attendees group.

[student@workstation compreview-review]$ oc adm groups new do280-attendees
group.user.openshift.io/do280-attendees created

12.3. Assign the edit role to the do280-attendees group in the do280-workshop
project.

Add the edit cluster role to the do280-attendees group in the do280 project.

[student@workstation compreview-review]$ oc adm policy \
add-role-to-group edit do280-attendees -n do280
clusterrole.rbac.authorization.k8s.io/edit added: "do280-attendees"

12.4. As the do280-attendee user, verify that you cannot access the do280 project.
Login as the do280-attendee user with the redhat password.

[student@workstation compreview-review]$ oc login -u do280-attendee -p redhat
Login successful.
You don't have any projects.

12.5. As the do280-support user, add the do280-attendee user to the do280-
attendees group.

Login as the do280-support user with the redhat password.

[student@workstation compreview-review]$ oc login -u do280-support -p redhat
Login successful.
...output omitted. ..

Chapter 10 | Comprehensive Review

Use the oc adm groups command to add the do280-attendee user to the
workshop-do280-attendees group.

[student@workstation compreview-review]$ oc adm groups add-users \
do280-attendees do280-attendee
group.user.openshift.io/do280-attendees added: "do280-attendee"

12.6. As the do280-attendee user, verify that you can create workloads in the do280
project.

Login as the do280-attendee user with the redhat password.

[student@workstation compreview-review]$ oc login -u do280-attendee -p redhat
Login successful.

You have one project on this server: "do280"

Using project "do280".

Use the oc create deployment command to create a deployment without resource
specifications.

[student@workstation compreview-review]$ oc create deployment \
attendee-workload \
--image registry.ocp4.example.com:8443/redhattraining/hello-world-nginx:v1.0
deployment.apps/attendee-workload created

13. Change to the home directory to prepare for the next exercise.
[student@workstation appsec-review]$ cd

Evaluation

As the student user on the workstation machine, use the lab command to grade your work.
Correct any reported failures and rerun the command until successful.

[student@workstation ~]$ lab grade compreview-review
Finish
As the student user on the workstation machine, use the Tab command to complete this

exercise. This step is important to ensure that resources from previous exercises do not impact
upcoming exercises.

[student@workstation ~]$ lab finish compreview-review

Chapter 10 | Comprehensive Review

» Lab

Secure Applications

Configure a project that requires custom settings.
Secure applications by encrypting and restricting network traffic.

Automate cluster maintenance tasks.

Outcomes

+ Create a project quota.

+ Create a limit range.

+ Use role-based access control to grant permissions to service accounts and groups.
+ Encrypt the traffic end-to-end with TLS by using a signed certificate.

+ Restrict cluster internal traffic to pods by using network policies.

+ Grant application access to Kubernetes APlIs.

+ Configure a cluster maintenance application to run periodically.

Before You Begin

As the student user on the workstation machine, use the lab command to prepare your
system for this exercise.

[student@workstation ~]$ lab start compreview-apps

The lab command copies the exercise files into the ~/D0280/ Llabs/compreview-apps
directory and creates the workshop - support group with the do280-support user. The
lab command also restores the project template configuration from the previous exercise.

The goal, as a cluster administrator, is to prepare the workshop-support namespace

for the support team. Create a namespace instead of a project to avoid using the project
template. The project template applies a default configuration for workshop projects,

and does not apply the configuration to the workshop-support namespace. Then, as a
support team member, you configure and deploy the applications that maintain the cluster
and support the workshop experience.

You must set up an application that automatically deletes completed workshops, and set up
a social media API that attendees from all workshops use.

Specifications

+ Create the workshop-support namespace with the category: support label.
+ Grant to the workshop-support group the admin role in the cluster.

+ Workloads from the workshop-support namespace must enforce the following constraints:

Chapter 10 | Comprehensive Review

The project uses up to 4 CPUs.

- The project uses up to 4 Gi of RAM.

- The project requests up to 3.5 CPUs.
The project requests up to 3 Gi of RAM.

+ Define the default resource specification for workloads:
- Adefault limit of 300m CPUs.
- Adefault limit of 400 Mi of RAM.
- Adefault request of 100m CPUs.
- A default request of 250 Mi of RAM.

+ Any quota or limit range must have the workshop-support name for grading purposes.

+ As the do280-support user, deploy the project-cleaner application from the project-
cleaner/example-pod.yaml file to the workshop-support namespace by using a
project-cleaner cron job that runs every minute.

The project cleaner deletes projects with the workshop label that exist for more than 10
seconds. This short expiration time is deliberate for this lab.

+ You must create a project-cleaner -sa service account to use in the project cleaner
application.

+ The role that the project cleaner needs is defined in the project-cleaner/cluster -
role.yaml file.

+ Deploy the beeper -db database in the beeper-api/beeper-db.yaml file to the
workshop-support namespace.

+ Deploy the beeper -api application in the beeper-api/deployment.yaml file to the
workshop-support namespace.

+ You must configure this application to use TLS end-to-end by using the following specification:
- Use the beeper-api.pem certificate and the beeper-api.key in the certs directory.
- Configure the /etc/pki/beeper-api/ path as the mount point for the certificate and key.
- Set the TLS_ENABLED environment variable to the true value.

+ Update the startup, readiness, and liveness probes to use TLS.
+ Create a passthrough route with the beeper-api.apps.ocp4.example.comhostname.

+ The database pods, which are pods in the workshop-support namespace with the
app=beeper -db label, must accept only TCP traffic from the beeper-api podsin the
workshop-support namespace on the 5432 port. You can use the category=support label
to identify the pods that belong to the workshop-support namespace.

+ Configure the cluster network so that the workshop - support namespace accepts only
external ingress traffic to pods that listen on the 8080 port, and blocks traffic from other
projects.

Evaluation

As the student user on the workstation machine, use the lab command to grade your work.
Correct any reported failures and rerun the command until successful.

[student@workstation ~]$ lab grade compreview-apps

Chapter 10 | Comprehensive Review

Finish
As the student user on the workstation machine, use the Tab command to complete this

exercise. This step is important to ensure that resources from previous exercises do not impact
upcoming exercises.

[student@workstation ~]$ lab finish compreview-apps

W D0O280-0OCP4.14-en-1-20240215

Chapter 10 | Comprehensive Review

» Solution

Secure Applications

Configure a project that requires custom settings.

Secure applications by encrypting and restricting network traffic.
Automate cluster maintenance tasks.

Outcomes

+ Create a project quota.

+ Create a limit range.

+ Use role-based access control to grant permissions to service accounts and groups.
+ Encrypt the traffic end-to-end with TLS by using a signed certificate.
+ Restrict cluster internal traffic to pods by using network policies.

+ Grant application access to Kubernetes APlIs.

+ Configure a cluster maintenance application to run periodically.

Before You Begin

As the student user on the workstation machine, use the lab command to prepare your
system for this exercise.

[student@workstation ~]$ lab start compreview-apps

The lab command copies the exercise files into the ~/D0280/ labs/compreview-apps
directory and creates the workshop - support group with the do280-support user. The
lab command also restores the project template configuration from the previous exercise.

The goal, as a cluster administrator, is to prepare the workshop-support namespace
for the support team. Create a namespace instead of a project to avoid using the project
template. The project template applies a default configuration for workshop projects,

and does not apply the configuration to the workshop-support namespace. Then, as a
support team member, you configure and deploy the applications that maintain the cluster
and support the workshop experience.

You must set up an application that automatically deletes completed workshops, and set up
a social media API that attendees from all workshops use.

1. Change to the ~/D0280/ labs/compreview-apps directory and log in to the cluster as the
admin user.

11. Open a terminal window and change to the lab directory.

[student@workstation ~]$ cd ~/D0280/1labs/compreview-apps

Chapter 10 | Comprehensive Review
1.2. Login as the admin user with the redhatocp password.

[student@workstation compreview-apps]$ oc login -u admin -p redhatocp \
https://api.ocp4.example.com: 6443

Login successful.

...output omitted...

2. Create and prepare the workshop-support namespace with the following actions:

+ Add the category=support label.
+ Grant the admin cluster role to the workshop-support group.

2.1. Create the workshop-support namespace.

[student@workstation compreview-apps]$ oc create namespace workshop-support
namespace/workshop-support created

2.2. Usethe oc label command to add the category=support label to the
workshop-support namespace.

[student@workstation beeper-api]$ oc label namespace \
workshop-support category=support
namespace/workshop-support labeled

2.3. Change to the workshop-support namespace by using the oc project command.

[student@workstation beeper-api]$ oc project workshop-support
Now using project "workshop-support" on server...

2.4. Create a cluster role binding to assign the admin cluster role to the workshop-
support group.

[student@workstation compreview-apps]$ oc adm policy \
add-cluster-role-to-group admin workshop-support
clusterrole.rbac.authorization.k8s.io/admin added: "workshop-support"

3. Create the resource quota for the workshop-support namespace with the following
specification.

Quota Value
limits.cpu 4
limits.memory 4Gi
requests.cpu 3500m
requests.memory 3G1

3.1 Runtheoc create quotacommand to create the quota.

Chapter 10 | Comprehensive Review

[student@workstation compreview-apps]$ oc create quota workshop-support \
--hard=1limits.cpu=4, limits.memory=46Gi, requests.cpu=3500m, requests.memory=3Gi
resourcequota/workshop-support created

4, Create the workshop limit range with the following specification.

Limit type Value
default.cpu 300m
default.memory 400Mi
defaulRequest.cpu 100m
defaulRequest.memory 250Mi

4]. Editthe limitrange.yaml file and replace the CHANGE_ME label to match the
following definition.

apiVersion: vi
kind: LimitRange
metadata:
name: workshop-support
namespace: workshop-support
spec:
limits:
- default:
cpu: 300m
memory: 400Mi
defaultRequest:
cpu: 100m
memory: 250Mi
type: Container

4.2. Usethe oc apply command to create the limit range in the workshop-support
project.

[student@workstation compreview-apps]$ oc apply -f limitrange.yaml
limitrange/workshop-support created

5. Create the project-cleaner-sa service accountin the workshop-support namespace.
Then, assign the role from the project-cleaner/cluster-role.yaml file to the
project-cleaner-sa service account.

5.1. Create the project-cleaner -sa service account.

[student@workstation compreview-apps]$ oc create sa project-cleaner-sa
serviceaccount/project-cleaner-sa created

5.2. Change to the ~/D0280/ labs/compreview-apps/project-cleaner directory to
access the application files.

Chapter 10 | Comprehensive Review

[student@workstation compreview-apps]$ cd \
~/D0280/labs/compreview-apps/project-cleaner

5.3. Create the project-cleaner cluster role by applying the cluster-role.yaml
manifest file.

[student@workstation project-cleaner]$ oc apply -f cluster-role.yaml
clusterrole.rbac.authorization.k8s.io/project-cleaner created

5.4. Usetheoc adm policy add-cluster-role-to-user command to add the
project-cleaner role to the project-cleaner -sa service account.

[student@workstation project-cleaner]$ oc adm policy add-cluster-role-to-user \
project-cleaner -z project-cleaner-sa
clusterrole.rbac.authorization.k8s.io/project-cleaner added: "project-cleaner-sa"

6. Asthe do280-support user, create the project-cleaner cron job by editing the
cron-job.yaml file and by using the example-pod.yaml pod manifest as the job
template. Configure the cron job to run every minute.

6.]. Loginasthe do280-support user with the redhat password.

[student@workstation project-cleaner]$ oc login -u do280-support -p redhat
Login successful.
...output omitted. ..

6.2. Editthecron-job.yaml file:

+ Replace the CHANGE_ME label with the "*/1 * * * *" schedule to execute the job
every minute.

+ Replace the CHANGE_ME label in the jobTemplate definition with the spec
definition from the example-pod.yaml pod manifest.

+ Replace the CHANGE_ME label in the serviceAccountName key with the project-
cleaner -sa service account.

Although the long image name might show across two lines, you must add it as one
line.

A solution file is in the ~/D0280/solutions/compreview-apps/project-
cleaner/cron-job.yaml path.

apiVersion: batch/vi

kind: CronJob

metadata:
name: project-cleaner
namespace: workshop-support

spec:
schedule: "*/1 * * * *u
concurrencyPolicy: Forbid
jobTemplate:

Chapter 10 | Comprehensive Review

spec:
template:
spec:
restartPolicy: Never
serviceAccountName: project-cleaner-sa
containers:
- name: project-cleaner
image: registry.ocp4.example.com:8443/redhattraining/do280-project-
cleaner:vi.1
imagePullPolicy: Always
env:
- name: "PROJECT_TAG"
value: "workshop"
- name: "EXPIRATION_SECONDS"

value: "10"
resources:
limits:

cpu: 100m

memory: 200Mi

6.3. Create the cron job.

[student@workstation project-cleaner]$ oc apply -f cron-job.yaml
cronjob.batch/project-cleaner created

i ; Note
It is safe to ignore pod security warnings for exercises in this course. OpenShift uses
the Security Context Constraints controller to provide safe defaults for pod security.

6.4. Verify that the project cleaner application is deployed correctly, by creating a
clean-test project.

[student@workstation project-cleaner]$ oc new-project clean-test
Now using project "clean-test" on server...
...output omitted...

Change to the workshop-support namespace.

[student@workstation project-cleaner]$ oc project workshop-support
Now using project "workshop-support" on server...

Wait for a successful job run. Then, get the pod name from the last job run.

[student@workstation project-cleaner]$ oc get jobs,pods

NAME COMPLETIONS DURATION AGE
job.batch/project-cleaner-27949859 1/1 7s 2m40s
job.batch/project-cleaner-27949860 1/1 7s 100s
job.batch/project-cleaner-27949861 1/1 6s 40s

NAME READY STATUS RESTARTS AGE

Chapter 10 | Comprehensive Review

pod/project-cleaner-27949859-f98vj 0/1 Completed 0 2m40s
pod/project-cleaner-27949860-j8td5 0/1 Completed 0 100s
pod/project-cleaner-27949861-p262t 0/1 Completed 0 40s

Read the logs of the pod that completed the job.

[student@workstation project-cleaner]$ oc logs \
pod/project-cleaner-27949861-p262t
Listing namespaces with label workshop:
- namespace: clean-test, created 55.327453 seconds ago...
Deleting namespaces: clean-test
Namespace 'clean-test' deleted

i ; Note
You might see deleted projects from other exercises in the course.

6.5. Verify that the cron job deletes the clean-test project, by using the oc get
project command.

[student@workstation project-cleaner]$ oc get project clean-test
Error from server (NotFound): namespaces "clean-test" not found

7. Create the beeper database by applying the beeper-api/beeper-db.yaml file.

71. Change to the ~/D0280/labs/compreview/beeper -api directory to access the
application files.

[student@workstation project-cleaner]$ cd ~/D0280/labs/compreview-apps/beeper-api

7.2. Use the oc apply command to create the database in the workshop-support
namespace.

[student@workstation beeper-api]$ oc apply -f beeper-db.yaml
secret/beeper-db created

service/beeper-db created

persistentvolumeclaim/beeper-db created
deployment.apps/beeper-db created

7.3. Verify that the database pod is running by using the oc get pod command to get the
pods with the app=beeper -db label.

[student@workstation beeper-api]$ oc get pod -1 app=beeper-db
NAME READY STATUS RESTARTS AGE

beeper-db-688756744f-rgxpg 1/1 Running 0 3m51s

8. Configure TLS on the beeper -api deployment by using a signed certificate by a corporate
CA to accept TLS connections from outside the cluster.

You have the CA certificate and the signed certificate for the beeper -
api.apps.ocp4.example.comdomainin the beeper-api/certs directory of the lab.

Chapter 10 | Comprehensive Review

Use the following settings in the deployment to configure TLS:

+ Set the path for the certificate and key to /etc/pki/beeper-api/
+ Set the TLS_ENABLED environment variable to the true value.
+ Update the startup, readiness, and liveness probes to use TLS.

8.1. Create the beeper-api-cert secret by using the beeper-api.pem certificate and
the beeper-api.key key from the lab directory.

[student@workstation beeper-api]$ oc create secret tls beeper-api-cert \
--cert certs/beeper-api.pem --key certs/beeper-api.key
secret/beeper-api-cert created

8.2. Editthe beeper-api deploymentin the deployment.yaml file to mount the
beeper-api-cert secretonthe /etc/pki/beeper-api/ path.

apiVersion: apps/vi
kind: Deployment
metadata:
name: beeper-api
namespace: workshop-support
spec:
...output omitted...
spec:
containers:
- name: beeper-api
...output omitted...
env.:
- name: TLS_ENABLED
value: "false"
volumeMounts:
- name: beeper-api-cert
mountPath: /etc/pki/beeper-api/
volumes:
- name: beeper-api-cert
secret:
defaultMode: 420
secretName: beeper-api-cert

8.3. Edit the beeper-api deploymentin the deployment.yaml file to configure TLS for
the application and for the startup, readiness, and liveness probes.

apiVersion: apps/vi
kind: Deployment
metadata:
name: beeper-api
namespace: workshop-support
spec:
...output omitted...
spec:
containers:
- name: beeper-api
...output omitted...

Chapter 10 | Comprehensive Review

ports:
- containerPort: 8080
readinessProbe:
httpGet:
port: 8080
path: /readyz
scheme: HTTPS
livenessProbe:
httpGet:
port: 8080
path: /livez
scheme: HTTPS
startupProbe:
httpGet:
path: /readyz
port: 8080
scheme: HTTPS
failureThreshold: 30
periodSeconds: 3
env:
- name: TLS_ENABLED
value: "true"
...output omitted...

8.4. Use the oc apply command to create the beeper-api deployment.

[student@workstation beeper-api]$ oc apply -f deployment.yaml
deployment.apps/beeper-api created

8.5. Editthe service.yaml file to configure the beeper -ap1i service to listen on
the standard HTTPS 443 port and to forward connections to pods with the app:
beeper-api label on port 8080.

apiVersion: vi
kind: Service
metadata:
name: beeper-api
namespace: workshop-support

spec:
selector:
app: beeper-api
ports:

- port: 443
targetPort: 8080
name: https

8.6. Use the oc apply command to create the beeper-api service.

[student@workstation beeper-api]$ oc apply -f service.yaml
service/beeper-api created

9. Expose the beeper API to outer cluster access by using the FQDN in the signed certificate by
the corporate CA.

Chapter 10 | Comprehensive Review

9.1. Create a passthrough route for the beeper -api service by using the beeper -
api.apps.ocp4.example.comhostname.

[student@workstation beeper-api]$ oc create route \
passthrough beeper-api-https \
--service beeper-api \
--hostname beeper-api.apps.ocp4.example.com
route.route.openshift.io/beeper-api-https created

9.2. Use the curl command to the https://beeper-api.apps.ocp4.example.com/
api/beeps URL to verify that the beeper APl is accessible from outside the cluster.
Add the - -cacert option to accept the certs/ca.pem CA.

[student@workstation beeper-api]$ curl -s --cacert \
certs/ca.pem https://beeper-api.apps.ocp4.example.com/api/beeps; echo

[1

10. Optionally, open a web browser and verify that you can access the API by navigating to the
https://beeper-api.apps.ocp4d.example.com/swagger-ui.html URL. When you
see the warning about the security risk, click Advanced... and then click Accept the Risk and
Continue.

M. Configure network policies to allow only TCP ingress traffic on port 5432 to database pods
from the beeper-api pods.

1.1, Verify that you can access the beeper-db service from the workshop-support
namespace by testing TCP connectivity to the database service. Use the oc debug
command to create a pod with the nc command with the -z option to test TCP access.

[student@workstation beeper-api]$ oc debug --to-namespace="workshop-support" -- \
nc -z -v beeper-db.workshop-support.svc.cluster.local 5432

Starting pod/image-debug ...

Ncat: Version 7.70 (https://nmap.org/ncat)

Ncat: Connected to 172.30.219.94:5432.

Ncat: 0 bytes sent, 0 bytes received in 0.02 seconds.

Removing debug pod

1.2. Create an entry in the database by using the following curl command.

[student@workstation beeper-api]$ curl -s --cacert certs/ca.pem -X 'POST' \
'https://beeper-api.apps.ocp4.example.com/api/beep’' \
-H 'Content-Type: application/json' \
-d '{ "username": "user1", "content": "first message" }'

11.3. Editthe db-networkpolicy.yaml file so that only pods with the app: beeper-
api label can connect to database pods.

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:

name: database-policy

Chapter 10 | Comprehensive Review

namespace: workshop-support
spec:
podSelector:
matchLabels:
app: beeper-db
ingress:
- from:
- namespaceSelector:
matchLabels:
category: support
podSelector:
matchLabels:
app: beeper-api
ports:
- protocol: TCP
port: 5432

1.4. Create the network policy.

[student@workstation beeper-api]$ oc apply -f db-networkpolicy.yaml
networkpolicy.networking.k8s.io/beeper-api-ingresspolicy created

11.5. Verify that you cannot connect to the database, by running the previous nc command.

[student@workstation beeper-api]$ oc debug --to-namespace="workshop-support" -- \
nc -z -v beeper-db.workshop-support.svc.cluster.local 5432

Starting pod/image-debug ...

Ncat: Version 7.70 (https://nmap.org/ncat)

Ncat: Connection timed out.

Removing debug pod ...

1.6. Verify that the APl pods have access to the database pods, by running the curl
command to query the API by using the external route.

[student@workstation beeper-api]$ curl -s --cacert \
certs/ca.pem https://beeper-api.apps.ocp4.example.com/api/beeps; echo
[{"id":1, "username":"userl", "content":"first message", "votes":0}]

12. Configure network policies in the workshop-support namespace to accept only ingress
connections from the OpenShift router pods to port 8080.

12.1. Verify that you can access the APl service from the workshop-support namespace
by testing TCP connectivity. Use the oc debug command to create a pod with the nc
command with the -z option to test TCP access.

Chapter 10 | Comprehensive Review

[student@workstation beeper-api]$ oc debug --to-namespace="workshop-support" -- \
nc -z -v beeper-api.workshop-support.svc.cluster.local 443

Starting pod/image-debug ...

Ncat: Version 7.70 (https://nmap.org/ncat)

Ncat: Connected to 172.30.32.28:443.

Ncat: O bytes sent, 0 bytes received in 0.02 seconds.

Removing debug pod ...

12.2. Editthe beeper-api-ingresspolicy.yaml file to acceptingress
connections from router pods by adding a namespace selector with the policy-
group.network.openshift.io/ingress label.

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: beeper-api-ingresspolicy
namespace: workshop-support

spec:
podSelector: {}
ingress:
- from:
- namespaceSelector:
matchLabels:
policy-group.network.openshift.io/ingress: ""
ports:
- protocol: TCP
port: 8080

12.3. Create the network policy.

[student@workstation beeper-api]$ oc apply -f beeper-api-ingresspolicy.yaml
networkpolicy.networking.k8s.io/beeper-api created

12.4. Verify that you cannot access the API service from the workshop-support
namespace. Use the oc debug command to create a pod with the nc command with
the -z option to test TCP access.

[student@workstation beeper-api]$ oc debug --to-namespace="workshop-support" -- \
nc -z -v beeper-api.workshop-support.svc.cluster.local 443

Starting pod/image-debug ...

Ncat: Version 7.70 (https://nmap.org/ncat)

Ncat: Connection timed out.

Removing debug pod ...

12.5. Verify that the API pods are accessible from outside the cluster by running the curl
command to query the APl external route.

Chapter 10 | Comprehensive Review

[student@workstation beeper-api]$ curl -s --cacert \
certs/ca.pem https://beeper-api.apps.ocp4.example.com/livez; echo
{"status":"UP"}

13. Change to the home directory.
[student@workstation appsec-review]$ cd

Evaluation

As the student user on the workstation machine, use the lab command to grade your work.
Correct any reported failures and rerun the command until successful.

[student@workstation ~]$ lab grade compreview-apps
Finish
As the student user on the workstation machine, use the lab command to complete this

exercise. This step is important to ensure that resources from previous exercises do not impact
upcoming exercises.

[student@workstation ~]$ lab finish compreview-apps

Chapter 10 | Comprehensive Review

» Lab

Deploy Packaged Applications

Deploy a Helm chart
Deploy an application with Kustomize

Expose a service using MetalLB

Outcomes

+ Deploy an application from a chart.
+ Deploy an application from a Kustomize layer.

- Configure an application to connect to the MySQL database.

Before You Begin

If you did not previously reset your workstation and server machines, then save any
work that you want to keep from earlier exercises on those machines, and reset them now.

Use the lab command to prepare your system for this exercise.

This command ensures that the cluster APl is reachable and prepares the environment for
the exercise.

[student@workstation ~]$ lab start compreview-package

Specifications

Deploy an application that uses a database by using a Helm chart and Kustomization files. Access
the application by using a route.

+ Use the developer user with the developer password for this exercise.
+ Use a compreview-package project for all the resources.

+ Deploy a MySQL database by using the mysqgl-persistent Helm chartin the http://
helm.ocp4.example.com/charts repository. Use the latest version in the repository, and the
default resource names that the chart generates.

+ Use Kustomize in the /home/student/D0280/labs/compreview-package/roster/ path
to deploy the application. Add a new Kustomize production overlay that adds probes to the
application.

The /home/student/D0280/solutions/compreview-package/roster/overlays/
production/ directory contains the solution kustomization.yaml file and the patch-
roster-prod.yaml file.

+ Deploy the overlay.

+ Verify that the application creates a route, and that the application is available through the route
by using the TLS/SSL protocol (HTTPS).

Chapter 10 | Comprehensive Review

Evaluation

As the student user on the workstation machine, use the lab command to grade your work.
Correct any reported failures and rerun the command until successful.

[student@workstation ~]$ lab grade compreview-package
Finish
As the student user on the workstation machine, use the lab command to complete this

exercise. This step is important to ensure that resources from previous exercises do not impact
upcoming exercises.

[student@workstation ~]$ lab finish compreview-package

Chapter 10 | Comprehensive Review

» Solution

Deploy Packaged Applications

Deploy a Helm chart
Deploy an application with Kustomize

Expose a service using MetalLB

Outcomes

+ Deploy an application from a chart.
+ Deploy an application from a Kustomize layer.

+ Configure an application to connect to the MySQL database.

Before You Begin
If you did not previously reset your workstation and server machines, then save any
work that you want to keep from earlier exercises on those machines, and reset them now.

Use the lab command to prepare your system for this exercise.

This command ensures that the cluster APl is reachable and prepares the environment for
the exercise.

[student@workstation ~]$ lab start compreview-package

1. Add the classroom Helm repository at http://helm.ocp4.example.com/charts and
examine its contents.

11. Usethe helm repo list command to list the repositories that are configured for the
student user.

[student@workstation ~]$ helm repo list
Error: no repositories to show

If the d0280-repo repository is present, then continue to the next step. Otherwise,
add the repository.

[student@workstation ~]$ helm repo add \
do280-repo http://helm.ocp4.example.com/charts
"do280-repo" has been added to your repositories

1.2. Use the helm search command to list all the charts in the repository.

Chapter 10 | Comprehensive Review

[student@workstation ~]$ helm search repo
NAME CHART VERSION APP VERSION DESCRIPTION

do280-repo/mysql-persistent 0.0.2 0.0.2 This content is..
...output omitted...

The mysqgl-persistent chartisin the classroom repository. This chart is a copy of a
chart from the https://github.com/openshift-helm-charts/charts/ repository.

2. Create acompreview-package project.

21. Login to the cluster as the developer user with the developer password.

[student@workstation ~]$ oc login -u developer -p developer \
https://api.ocp4.example.com: 6443

Login successful.

...output omitted...

2.2. Create the compreview-package project.

[student@workstation ~]$ oc new-project compreview-package
Now using project "compreview-package" on server "https://
api.ocp4.example.com:6443".

...output omitted. ..

3. Deploy the do280-repo/mysql-persistent chart.

31, Usethehelm install command to create arelease of the do280-repo/mysql-
persistent chart.

[student@workstation ~]$ helm install roster-database do280-repo/mysql-persistent
...output omitted...

3.2. Use the watch command to verify that the pods are running. Wait for the mysql-1-
deploy pod to show a Completed status.

[student@workstation ~]$ watch oc get pods

NAME READY STATUS RESTARTS AGE
mysql-1-7w5bn 1/1 Running 0] 150m
mysql-1-deploy 0/1 Completed 0 150m

Press Ctr1+C to exit the watch command.

4. Examine the provided Kustomize configuration and the deployed chart, and verify that
the production overlay generates a deployment, service, route, configuration map, and
a secret. Verify that the patch-roster-prod.yaml patch file applies the liveness and
readiness probes to the roster deployment.

4. Change to the /home/student/D0280/labs/compreview-package/ directory.

[student@workstation ~]$ cd D0280/labs/compreview-package/

4.2. Use the tree command to examine the directory structure.

https://github.com/openshift-helm-charts/charts/

Chapter 10 | Comprehensive Review

[student@workstation compreview-package]$ tree

L— roster

I— base
| configmap.yaml
| kustomization.yaml
| roster-deployment.yaml
| roster-route.yaml
| roster-service.yaml
| secret.yaml
L— overlays
L— production

— kustomization.yaml

L— patch-roster-prod.yaml

[TTTTT

4 directories, 8 files

The Kustomization configuration includes a deployment, a route, and a service.

4.3. Examine the roster/base/roster-deployment.yaml file.

apivVersion: apps/vi
kind: Deployment
metadata:
...output omitted. ..
spec:
replicas: 1
selector:
matchLabels:
app: roster
template:
..output omitted. ..
spec:

containers:

- image: registry.ocp4.example.com:8443/redhattraining/do280-roster:vi
name: do280-roster
envFrom:

- configMapRef:
name: roster
- secretRef:
name: roster
..output omitted...

The deployment does not set any configuration to access the database. The
deployment extracts environment variables from a roster configuration map and a
roster secret.

4.4. Use the oc kustomize command to verify that the production overlay generates
a deployment, service, route, configuration map, and a secret, and configures the
liveness and readiness probes to the roster deployment.

[student@workstation compreview-package]$ oc kustomize roster/overlays/production/
apiVersion: vi
data:

Chapter 10 | Comprehensive Review

...output omitted. ..
kind: ConfigMap
...output omitted. ..
apiVersion: vi
kind: Secret
...output omitted...
apiVersion: vi
kind: Service
...output omitted...
apiVersion: apps/vi
kind: Deployment
metadata:
...output omitted...
spec:
...output omitted...
template:
...output omitted. ..
spec:
containers:
...output omitted...
livenessProbe:
initialDelaySeconds: 20
periodSeconds: 30
tcpSocket:
port: 9090
timeoutSeconds: 3
name: roster
ports:
- containerPort: 9090
protocol: TCP
readinessProbe:
initialDelaySeconds: 3
periodSeconds: 10
tcpSocket:
port: 9090
timeoutSeconds: 3
apiVersion: route.openshift.io/v1
kind: Route
...output omitted...

5. Deploy the Kustomize files.

51 Usetheoc apply -k command todeploy the production overlay.

[student@workstation compreview-package]$ oc apply -k roster/overlays/production/
configmap/roster created

secret/roster created

service/roster created

deployment.apps/roster created

route.route.openshift.io/roster unchanged

Chapter 10 | Comprehensive Review

5.2. Use the watch command to verify that the pods are running. Wait for the roster pod
to show the Running status.

[student@workstation compreview-package]$ watch oc get pods

NAME READY STATUS RESTARTS AGE
...output omitted...
roster-5d4888dc6f-4rp4n 1/1 Running 0 166m

Press Ctr1+C to exit the watch command.

5.3. Usetheoc get route command to obtain the application URL.

[student@workstation compreview-package]$ oc get route
NAME HOST/PORT
roster roster-compreview-package.apps.ocp4.example.com

5.4. Open aweb browser and navigate to https://roster-compreview-
package.apps.ocp4.example.com. Use the TLS/SSL protocol (HTTPS). The
application is displayed.

5.5. Change to the home directory.
[student@workstation compreview-package]$ cd

Evaluation

As the student user on the workstation machine, use the lab command to grade your work.
Correct any reported failures and rerun the command until successful.

[student@workstation ~]$ lab grade compreview-package
Finish
As the student user on the workstation machine, use the lab command to complete this

exercise. This step is important to ensure that resources from previous exercises do not impact
upcoming exercises.

[student@workstation ~]$ lab finish compreview-package

For use by srinivas godavarthy sriniva

-

=

cho

VAL
LA W..

rinivas.godavarthy@bupa.com.sa

Copyright © 2024 Red Hat, Inc.

DO280-0OCP4.14-en-1-20240215

448

	Red Hat OpenShift Administration II: Configuring a Production Cluster
	Table of Contents
	Document Conventions
	Admonitions
	Inclusive Language

	Introduction
	Red Hat OpenShift Administration II: Configuring a Production Cluster
	Orientation to the Classroom Environment
	Performing Lab Exercises

	Chapter 1. Declarative Resource Management
	Resource Manifests
	Guided Exercise: Resource Manifests
	Kustomize Overlays
	Guided Exercise: Kustomize Overlays
	Lab: Declarative Resource Management
	Summary

	Chapter 2. Deploy Packaged Applications
	OpenShift Templates
	Guided Exercise: OpenShift Templates
	Helm Charts
	Guided Exercise: Helm Charts
	Lab: Deploy Packaged Applications
	Summary

	Chapter 3. Authentication and Authorization
	Configure Identity Providers
	Guided Exercise: Configure Identity Providers
	Define and Apply Permissions with RBAC
	Guided Exercise: Define and Apply Permissions with RBAC
	Lab: Authentication and Authorization
	Summary

	Chapter 4. Network Security
	Protect External Traffic with TLS
	Guided Exercise: Protect External Traffic with TLS
	Configure Network Policies
	Guided Exercise: Configure Network Policies
	Protect Internal Traffic with TLS
	Guided Exercise: Protect Internal Traffic with TLS
	Lab: Network Security
	Summary

	Chapter 5. Expose non-HTTP/SNI Applications
	Load Balancer Services
	Guided Exercise: Load Balancer Services
	Multus Secondary Networks
	Guided Exercise: Multus Secondary Networks
	Lab: Expose non-HTTP/SNI Applications
	Summary

	Chapter 6. Enable Developer Self-Service
	Project and Cluster Quotas
	Guided Exercise: Project and Cluster Quotas
	Per-Project Resource Constraints: Limit Ranges
	Guided Exercise: Per-Project Resource Constraints: Limit Ranges
	The Project Template and the Self-Provisioner Role
	Guided Exercise: The Project Template and the Self-Provisioner Role
	Lab: Enable Developer Self-Service
	Summary

	Chapter 7. Manage Kubernetes Operators
	Kubernetes Operators and the Operator Lifecycle Manager
	Quiz: Kubernetes Operators and the Operator Lifecycle Manager
	Install Operators with the Web Console
	Guided Exercise: Install Operators with the Web Console
	Install Operators with the CLI
	Guided Exercise: Install Operators with the CLI
	Lab: Manage Kubernetes Operators
	Summary

	Chapter 8. Application Security
	Control Application Permissions with Security Context Constraints
	Guided Exercise: Control Application Permissions with Security Context Constraints
	Allow Application Access to Kubernetes APIs
	Guided Exercise: Allow Application Access to Kubernetes APIs
	Cluster and Node Maintenance with Kubernetes Cron Jobs
	Guided Exercise: Cluster and Node Maintenance with Kubernetes Cron Jobs
	Lab: Application Security
	Summary

	Chapter 9. OpenShift Updates
	The Cluster Update Process
	Quiz: The Cluster Update Process
	Detect Deprecated Kubernetes API Usage
	Quiz: Detect Deprecated Kubernetes API Usage
	Update Operators with the OLM
	Quiz: Update Operators with the OLM
	Quiz: OpenShift Updates
	Summary

	Chapter 10. Comprehensive Review
	Comprehensive Review
	Lab: Cluster Self-service Setup
	Lab: Secure Applications
	Lab: Deploy Packaged Applications

