
Student Workbook (ROLE)

OCP 4.14 DO280

Red Hat OpenShift Administration II:

Configuring a Production Cluster
Edition 1

DO280-OCP4.14-en-1-20240215 Copyright ©2024 Red Hat, Inc.

DO280-OCP4.14-en-1-20240215 Copyright ©2024 Red Hat, Inc.

Red Hat OpenShift
Administration
II: Configuring a
Production Cluster

OCP 4.14 DO280

Red Hat OpenShift Administration II: Configuring a Production

Cluster

Edition 1 20240215

Publication date 20240215

Authors: Alejandro Serna-Borja, Alex Corcoles, Andrés Hernández,
Austin Garrigus, Bernardo Gargallo Jaquotot, Tayler Geiger,
Manna Kong, Michael Jarrett, Maria Ordonez, Harpal Singh,
Randy Thomas

Course Architect: Fernando Lozano
DevOps Engineer: Benjamin Chardi Marco
Editor: Julian Cable

© 2024 Red Hat, Inc.

The contents of this course and all its modules and related materials, including handouts to audience members, are ©

2024 Red Hat, Inc.

No part of this publication may be stored in a retrieval system, transmitted or reproduced in any way, including, but

not limited to, photocopy, photograph, magnetic, electronic or other record, without the prior written permission of

Red Hat, Inc.

This instructional program, including all material provided herein, is supplied without any guarantees from Red Hat,

Inc. Red Hat, Inc. assumes no liability for damages or legal action arising from the use or misuse of contents or details

contained herein.

If you believe Red Hat training materials are being used, copied, or otherwise improperly distributed, please send

email to training@redhat.com [mailto:training@redhat.com] or phone toll-free (USA) +1 (866) 626-2994 or +1 (919)

754-3700.

Red Hat, Red Hat Enterprise Linux, the Red Hat logo, JBoss, OpenShift, Fedora, Hibernate, Ansible, RHCA, RHCE,

RHCSA, Ceph, and Gluster are trademarks or registered trademarks of Red Hat, Inc. or its subsidiaries in the United

States and other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.

Java® is a registered trademark of Oracle American, Inc. and/or its affiliates.

XFS® is a registered trademark of Hewlett Packard Enterprise Development LP or its subsidiaries in the United

States and/or other countries.

MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other countries.

Node.js® is a trademark of Joyent. Red Hat is not formally related to or endorsed by the official Joyent Node.js open

source or commercial project.

The OpenStack word mark and the Square O Design, together or apart, are trademarks or registered trademarks

of OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation's

permission. Red Hat, Inc. is not affiliated with, endorsed by, or sponsored by the OpenStack Foundation or the

OpenStack community.

All other trademarks are the property of their respective owners.

Contributors: Jordi Sola, Nikki Lucas, Natalie Watkins

mailto:training@redhat.com
mailto:training@redhat.com

Document Conventions ix

Admonitions .. ix

Inclusive Language .. x

Introduction xi

Red Hat OpenShift Administration II: Configuring a Production Cluster xi

Orientation to the Classroom Environment .. xii

Performing Lab Exercises ... xx

1. Declarative Resource Management 1

Resource Manifests .. 2

Guided Exercise: Resource Manifests .. 11

Kustomize Overlays ... 19

Guided Exercise: Kustomize Overlays ... 31

Lab: Declarative Resource Management ... 41

Summary ... 51

2. Deploy Packaged Applications 53

OpenShift Templates ... 54

Guided Exercise: OpenShift Templates ... 61

Helm Charts .. 66

Guided Exercise: Helm Charts .. 72

Lab: Deploy Packaged Applications ... 78

Summary .. 89

3. Authentication and Authorization 91

Configure Identity Providers .. 92

Guided Exercise: Configure Identity Providers .. 99

Define and Apply Permissions with RBAC .. 110

Guided Exercise: Define and Apply Permissions with RBAC ... 114

Lab: Authentication and Authorization .. 120

Summary ... 129

4. Network Security 131

Protect External Traffic with TLS ... 132

Guided Exercise: Protect External Traffic with TLS ... 136

Configure Network Policies .. 148

Guided Exercise: Configure Network Policies ... 153

Protect Internal Traffic with TLS .. 162

Guided Exercise: Protect Internal Traffic with TLS .. 168

Lab: Network Security .. 174

Summary ... 186

5. Expose non-HTTP/SNI Applications 187

Load Balancer Services ... 188

Guided Exercise: Load Balancer Services ... 191

Multus Secondary Networks ... 198

Guided Exercise: Multus Secondary Networks .. 203

Lab: Expose non-HTTP/SNI Applications .. 212

Summary ... 221

6. Enable Developer Self-Service 223

Project and Cluster Quotas ... 224

Guided Exercise: Project and Cluster Quotas .. 233

Per-Project Resource Constraints: Limit Ranges ... 240

Guided Exercise: Per-Project Resource Constraints: Limit Ranges 245

The Project Template and the Self-Provisioner Role .. 257

Guided Exercise: The Project Template and the Self-Provisioner Role 264

DO280-OCP4.14-en-1-20240215 vii

Lab: Enable Developer Self-Service .. 273

Summary .. 282

7. Manage Kubernetes Operators 283

Kubernetes Operators and the Operator Lifecycle Manager 284

Quiz: Kubernetes Operators and the Operator Lifecycle Manager 288

Install Operators with the Web Console ... 290

Guided Exercise: Install Operators with the Web Console .. 295

Install Operators with the CLI .. 306

Guided Exercise: Install Operators with the CLI .. 313

Lab: Manage Kubernetes Operators .. 322

Summary .. 330

8. Application Security 331

Control Application Permissions with Security Context Constraints 332

Guided Exercise: Control Application Permissions with Security Context Constraints 335

Allow Application Access to Kubernetes APIs ... 339

Guided Exercise: Allow Application Access to Kubernetes APIs 344

Cluster and Node Maintenance with Kubernetes Cron Jobs 350

Guided Exercise: Cluster and Node Maintenance with Kubernetes Cron Jobs 357

Lab: Application Security ... 364

Summary .. 372

9. OpenShift Updates 373

The Cluster Update Process .. 374

Quiz: The Cluster Update Process ... 385

Detect Deprecated Kubernetes API Usage .. 387

Quiz: Detect Deprecated Kubernetes API Usage ... 393

Update Operators with the OLM .. 395

Quiz: Update Operators with the OLM .. 400

Quiz: OpenShift Updates ... 402

Summary .. 406

10. Comprehensive Review 407

Comprehensive Review .. 408

Lab: Cluster Self-service Setup ... 410

Lab: Secure Applications ... 426

Lab: Deploy Packaged Applications ... 441

viii DO280-OCP4.14-en-1-20240215

Document Conventions

This section describes various conventions and practices that are used
throughout all Red Hat Training courses.

Admonitions
Red Hat Training courses use the following admonitions:

References

These describe where to find external documentation that is relevant to
a subject.

Note

Notes are tips, shortcuts, or alternative approaches to the task at hand.
Ignoring a note should have no negative consequences, but you might
miss out on something that makes your life easier.

Important

Important sections provide details of information that is easily missed:
configuration changes that apply only to the current session, or
services that need restarting before an update applies. Ignoring these
admonitions will not cause data loss, but might cause irritation and
frustration.

Warning

Do not ignore warnings. Ignoring these admonitions will most likely
cause data loss.

DO280-OCP4.14-en-1-20240215 ix

Inclusive Language

Red Hat Training is currently reviewing its use of language in various areas to help remove any

potentially offensive terms. This is an ongoing process and requires alignment with the products

and services that are covered in Red Hat Training courses. Red Hat appreciates your patience

during this process.

x DO280-OCP4.14-en-1-20240215

Introduction

Red Hat OpenShift Administration II: Configuring a
Production Cluster
This course prepares a senior OpenShift Cluster Administrator to perform
daily administration tasks on clusters that host applications that internal
teams and external vendors provide; enable self-service for cluster users with
different roles; and deploy applications that require special permissions, such
as CI/CD tooling, performance monitoring, and security scanners.

DO280 focuses on configuring multi-tenancy and security features of
OpenShift. DO280 also teaches how to manage OpenShift add-ons based
on operators. This course is based on Red Hat® OpenShift® Container
Platform 4.14.

Course Objectives

• Configure and manage OpenShift clusters to maintain security and
reliability across multiple applications and development teams.

• Configure authentication, authorization, and resource quotas.

• Protect network traffic with network policies and TLS security (HTTPS).

• Expose applications by using protocols other than HTTP and TLS, and
attach applications to multi-homed networks.

• Manage OpenShift cluster updates and Kubernetes operator updates.

• This course, together with the Red Hat OpenShift I: Containers &
Kubernetes (DO180) course, prepares the student to take the Red Hat
Certified Specialist in OpenShift Administration exam (EX280).

Audience

• System Administrators interested in the ongoing management of
OpenShift clusters, applications, users, and add-ons.

• Site Reliability Engineers interested in the ongoing maintenance and
troubleshooting of Kubernetes clusters.

• System and Software Architects interested in understanding the security
of an OpenShift cluster.

Prerequisites

• Red Hat System Administration I (RH124), or equivalent skills in managing
Linux systems and servers from the Bash shell.

• Red Hat OpenShift I: Containers & Kubernetes (DO180 v4.14), or
equivalent skills in deploying and managing Kubernetes applications by
using the OpenShift web console and command-line interfaces.

DO280-OCP4.14-en-1-20240215 xi

Introduction

Orientation to the Classroom
Environment

In this course, the main computer system that is used for hands-on learning activities is

workstation. The systems called bastion and classroom must always be running for proper

use of the lab environment.

These three systems are in the lab.example.com DNS domain.

A Red Hat OpenShift Container Platform (RHOCP) 4.12 single-node (SNO) bare metal UPI

installation is used in this classroom. Infrastructure systems for the RHOCP cluster are in the

ocp4.example.com DNS domain.

All student computer systems have a standard user account, student, which has the student
password. The root password on all student systems is redhat.

Figure 0.1: Classroom environment

Classroom Machines

Machine name IP addresses Role

bastion.lab.example.com 172.25.250.254 Router that links VMs to central servers

classroom.lab.example.com 172.25.252.254 Server that hosts the required classroom

materials

idm.ocp4.example.com 192.168.50.40 Identity management server for cluster

authentication and authorization

support

master01.ocp4.example.com 192.168.50.10 An RHOCP single-node (SNO) cluster

xii DO280-OCP4.14-en-1-20240215

Introduction

Machine name IP addresses Role

registry.ocp4.example.com 192.168.50.50 Registry server to provide a private

registry and GitLab services to the

cluster

utility.lab.example.com 192.168.50.254 Server that provides supporting services

that the RHOCP cluster requires,

including DHCP, NFS, and routing to the

cluster network

workstation.lab.example.com 172.25.250.9 Graphical workstation that students use

The primary function of bastion is to act as a router between the network that connects the

student machines and the classroom network. If bastion is down, then other student machines

do not function properly, or might even hang during boot.

The utility system acts as a router between the network that connects the RHOCP cluster

machines and the student network. If utility is down, then the RHOCP cluster does not

function properly, or might even hang during boot.

For some exercises, the classroom contains an isolated network. Only the utility system and

the cluster are connected to this network.

Several systems in the classroom provide supporting services. The classroom server hosts

software and lab materials for the hands-on activities. The registry server is a private Red Hat

Quay container registry that hosts the container images for the hands-on activities. Information

about how to use these servers is provided in the instructions for those activities.

The master01 system serves as the control plane and compute node for the RHOCP cluster.

The cluster uses the registry system as its own private container image registry and GitLab

server. The idm system provides LDAP services to the RHOCP cluster for authentication and

authorization support.

Students use the workstation machine to access a dedicated RHOCP cluster, for which they

have cluster administrator privileges.

RHOCP Access Methods

Access method Endpoint

Web console https://console-openshift-console.apps.ocp4.example.com

API https://api.ocp4.example.com:6443

The RHOCP cluster has a standard user account, developer, which has the developer
password. The administrative account, admin, has the redhatocp password.

Classroom Registry
The DO280 course uses a private Red Hat Quay container image registry that is accessible only

within the classroom environment. The container image registry hosts the container images that

students use in the hands-on activities. By using a private container image registry, the classroom

environment is self-contained to not require internet access.

DO280-OCP4.14-en-1-20240215 xiii

Introduction

The registry server provides the https://registry.ocp4.example.com:8443/ container

image registry to the classroom environment. The registry is configured with a user account,

developer, which has the developer password.

The following table provides the container image repositories that are used in this course and their

public repositories.

Classroom Container Image Repositories and Public Sources

Public Source Repository Classroom Registry Repository

quay.io/jkube/jkube-java-
binary-s2i:0.0.9

registry.ocp4.example.com:8443/jkube/
jkube-java-binary-s2i:0.0.9

quay.io/openshift/origin-
cli:4.12

registry.ocp4.example.com:8443/
openshift/origin-cli:4.12

quay.io/redhattraining/
books:v1.4

registry.ocp4.example.com:8443/
redhattraining/books:v1.4

quay.io/redhattraining/builds-
for-managers

registry.ocp4.example.com:8443/
redhattraining/builds-for-managers

quay.io/redhattraining/do280-
beeper-api:1.0

registry.ocp4.example.com:8443/
redhattraining/do280-beeper-api:1.0

quay.io/redhattraining/do280-
payroll-api:1.0

registry.ocp4.example.com:8443/
redhattraining/do280-payroll-api:1.0

quay.io/redhattraining/do280-
product:1.0

registry.ocp4.example.com:8443/
redhattraining/do280-product:1.0

quay.io/redhattraining/do280-
product-stock:1.0

registry.ocp4.example.com:8443/
redhattraining/do280-product-
stock:1.0

quay.io/redhattraining/do280-
project-cleaner:v1.0

registry.ocp4.example.com:8443/
redhattraining/do280-project-
cleaner:v1.0

quay.io/redhattraining/do280-
project-cleaner:v1.1

registry.ocp4.example.com:8443/
redhattraining/do280-project-
cleaner:v1.1

quay.io/redhattraining/do280-
show-config-app:1.0

registry.ocp4.example.com:8443/
redhattraining/do280-show-config-
app:1.0

quay.io/redhattraining/do280-
stakater-reloader:v0.0.125

registry.ocp4.example.com:8443/
redhattraining/do280-stakater-
reloader:v0.0.125

quay.io/redhattraining/
exoplanets:v1.0

registry.ocp4.example.com:8443/
redhattraining/exoplanets:v1.0

xiv DO280-OCP4.14-en-1-20240215

Introduction

Public Source Repository Classroom Registry Repository

quay.io/redhattraining/famous-
quotes:2.1

registry.ocp4.example.com:8443/
redhattraining/famous-quotes:2.1

quay.io/redhattraining/famous-
quotes:latest

registry.ocp4.example.com:8443/
redhattraining/famous-quotes:latest

quay.io/redhattraining/gitlab-
ce:8.4.3-ce.0

registry.ocp4.example.com:8443/
redhattraining/gitlab-ce:8.4.3-ce.0

quay.io/redhattraining/hello-
world-nginx:latest

registry.ocp4.example.com:8443/
redhattraining/hello-world-
nginx:latest

quay.io/redhattraining/hello-
world-nginx:v1.0

registry.ocp4.example.com:8443/
redhattraining/hello-world-nginx:v1.0

quay.io/redhattraining/
loadtest:v1.0

registry.ocp4.example.com:8443/
redhattraining/loadtest:v1.0

quay.io/redhattraining/php-
hello-dockerfile

registry.ocp4.example.com:8443/
redhattraining/php-hello-dockerfile

quay.io/redhattraining/php-
ssl:v1.0

registry.ocp4.example.com:8443/
redhattraining/php-ssl:v1.0

quay.io/redhattraining/php-
ssl:v1.1

registry.ocp4.example.com:8443/
redhattraining/php-ssl:v1.1

quay.io/redhattraining/
scaling:v1.0

registry.ocp4.example.com:8443/
redhattraining/scaling:v1.0

quay.io/redhattraining/todo-
angular:v1.1

registry.ocp4.example.com:8443/
redhattraining/todo-angular:v1.1

quay.io/redhattraining/todo-
angular:v1.2

registry.ocp4.example.com:8443/
redhattraining/todo-angular:v1.2

quay.io/redhattraining/todo-
backend:release-46

registry.ocp4.example.com:8443/
redhattraining/todo-
backend:release-46

quay.io/redhattraining/do280-
roster:v1

registry.ocp4.example.com:8443/
redhattraining/do280-roster:v1

quay.io/redhattraining/do280-
roster:v2

registry.ocp4.example.com:8443/
redhattraining/do280-roster:v2

quay.io/redhattraining/
wordpress:5.7-php7.4-apache

registry.ocp4.example.com:8443/
redhattraining/wordpress:5.7-php7.4-
apache

registry.access.redhat.com/
rhscl/httpd-24-rhel7:latest

registry.ocp4.example.com:8443/rhscl/
httpd-24-rhel7:latest

DO280-OCP4.14-en-1-20240215 xv

Introduction

Public Source Repository Classroom Registry Repository

registry.access.redhat.com/
rhscl/mysql-57-rhel7:latest

registry.ocp4.example.com:8443/rhscl/
mysql-57-rhel7:latest

registry.access.redhat.com/
rhscl/nginx-18-rhel7:latest

registry.ocp4.example.com:8443/rhscl/
nginx-18-rhel7:latest

registry.access.redhat.com/
rhscl/nodejs-6-rhel7:latest

registry.ocp4.example.com:8443/rhscl/
nodejs-6-rhel7:latest

registry.access.redhat.com/
rhscl/php-72-rhel7:latest

registry.ocp4.example.com:8443/rhscl/
php-72-rhel7:latest

registry.access.redhat.com/
ubi7/nginx-118:latest

registry.ocp4.example.com:8443/ubi7/
nginx-118:latest

registry.access.redhat.com/
ubi8/httpd-24:latest

registry.ocp4.example.com:8443/ubi8/
httpd-24:latest

registry.access.redhat.com/
ubi8:latest/

registry.ocp4.example.com:8443/
ubi8:latest/

registry.access.redhat.com/
ubi8/nginx-118:latest

registry.ocp4.example.com:8443/ubi8/
nginx-118:latest

registry.access.redhat.com/
ubi8/nodejs-10:latest

registry.ocp4.example.com:8443/ubi8/
nodejs-10:latest

registry.access.redhat.com/
ubi8/nodejs-16:latest

registry.ocp4.example.com:8443/ubi8/
nodejs-16:latest

registry.access.redhat.com/
ubi8/php-72:latest

registry.ocp4.example.com:8443/ubi8/
php-72:latest

registry.access.redhat.com/
ubi8/php-73:latest

registry.ocp4.example.com:8443/ubi8/
php-73:latest

registry.access.redhat.com/
ubi8/ubi:8.0

registry.ocp4.example.com:8443/ubi8/
ubi:8.0

registry.access.redhat.com/
ubi8/ubi:8.4

registry.ocp4.example.com:8443/ubi8/
ubi:8.4

registry.access.redhat.com/
ubi8/ubi:latest

registry.ocp4.example.com:8443/ubi8/
ubi:latest

registry.access.redhat.com/
ubi9/httpd-24:latest

registry.ocp4.example.com:8443/ubi9/
httpd-24:latest

registry.access.redhat.com/
ubi9/nginx-120:latest

registry.ocp4.example.com:8443/ubi9/
nginx-120:latest

registry.access.redhat.com/
ubi9/ubi:latest

registry.ocp4.example.com:8443/ubi9/
ubi:latest

xvi DO280-OCP4.14-en-1-20240215

Introduction

Public Source Repository Classroom Registry Repository

registry.redhat.io/redhat-
openjdk-18/openjdk18-
openshift:1.8

registry.ocp4.example.com:8443/
redhat-openjdk-18/openjdk18-
openshift:1.8

registry.redhat.io/redhat-
openjdk-18/openjdk18-
openshift:latest

registry.ocp4.example.com:8443/
redhat-openjdk-18/openjdk18-
openshift:latest

registry.redhat.io/rhel8/
mysql-80:1-211.1664898586

registry.ocp4.example.com:8443/rhel8/
mysql-80:1-211.1664898586

registry.redhat.io/rhel8/
mysql-80:latest

registry.ocp4.example.com:8443/rhel8/
mysql-80:latest

registry.redhat.io/rhel8/
postgresql-13:1-7

registry.ocp4.example.com:8443/rhel8/
postgresql-13:1-7

registry.redhat.io/rhel8/
postgresql-13:latest

registry.ocp4.example.com:8443/rhel8/
postgresql-13:latest

registry.redhat.io/ubi8/
ubi:8.6-943

registry.ocp4.example.com:8443/ubi8/
ubi:8.6-943

Controlling Your Systems
You are assigned remote computers in a Red Hat Online Learning (ROLE) classroom. Self-

paced courses are accessed through a web application that is hosted at rol.redhat.com [http://

rol.redhat.com]. Log in to this site with your Red Hat Customer Portal user credentials.

Controlling the Virtual Machines

The virtual machines in your classroom environment are controlled through web page interface

controls. The state of each classroom virtual machine is displayed on the Lab Environment tab.

Figure 0.2: An example course Lab Environment management page

DO280-OCP4.14-en-1-20240215 xvii

http://rol.redhat.com
http://rol.redhat.com
http://rol.redhat.com

Introduction

Machine States

Virtual machine

state

Description

building The virtual machine is being created.

active The virtual machine is running and available. If it just started, it still

might be starting services.

stopped The virtual machine is shut down. On starting, the virtual machine

boots into the same state that it was in before shutdown. The disk

state is preserved.

Classroom Actions

Button or action Description

CREATE Create the ROLE classroom. Creates and starts all the virtual

machines that are needed for this classroom.

CREATING The ROLE classroom virtual machines are being created. Creation can

take several minutes to complete.

DELETE Delete the ROLE classroom. Destroys all virtual machines in the

classroom. All saved work on those systems' disks is lost.

START Start all virtual machines in the classroom.

STARTING All virtual machines in the classroom are starting.

STOP Stop all virtual machines in the classroom.

Machine Actions

Button or action Description

OPEN CONSOLE Connect to the system console of the virtual machine in a new

browser tab. You can log in directly to the virtual machine and run

commands, when required. Normally, log in to the workstation
virtual machine only, and from there, use ssh to connect to the other

virtual machines.

ACTION > Start Start (power on) the virtual machine.

ACTION >

Shutdown
Gracefully shut down the virtual machine, preserving disk contents.

ACTION > Power
Off

Forcefully shut down the virtual machine, while still preserving disk

contents. This action is equivalent to removing the power from a

physical machine.

ACTION > Reset Forcefully shut down the virtual machine and reset associated storage

to its initial state. All saved work on that system's disks is lost.

xviii DO280-OCP4.14-en-1-20240215

Introduction

At the start of an exercise, if instructed to reset a single virtual machine node, click ACTION >

Reset for only that specific virtual machine.

At the start of an exercise, if instructed to reset all virtual machines, click ACTION > Reset on

every virtual machine in the list.

If you want to return the classroom environment to its original state at the start of the course,

then click DELETE to remove the entire classroom environment. After the lab is deleted, then click

CREATE to provision a new set of classroom systems.

Warning

The DELETE operation cannot be undone. All completed work in the classroom

environment is lost.

The Auto-stop and Auto-destroy Timers

The Red Hat Online Learning enrollment entitles you to a set allotment of computer time. To help

to conserve your allotted time, the ROLE classroom uses timers, which shut down or delete the

classroom environment when the appropriate timer expires.

To adjust the timers, locate the two + buttons at the bottom of the course management page.

Click the auto-stop + button to add another hour to the auto-stop timer. Click the auto-destroy +
button to add another day to the auto-destroy timer. Auto-stop has a maximum of 11 hours,

and auto-destroy has a maximum of 14 days. Be careful to keep the timers set while you are

working, so that your environment is not unexpectedly shut down. Be careful not to set the timers

unnecessarily high, which could waste your subscription time allotment.

DO280-OCP4.14-en-1-20240215 xix

Introduction

Performing Lab Exercises

You might see the following lab activity types in this course:

• A guided exercise is a hands-on practice exercise that follows a presentation section. It walks

you through a procedure to perform, step by step.

• A quiz is typically used when checking knowledge-based learning, or when a hands-on activity is

impractical for some other reason.

• An end-of-chapter lab is a gradable hands-on activity to help you to check your learning. You

work through a set of high-level steps, based on the guided exercises in that chapter, but the

steps do not walk you through every command. A solution is provided with a step-by-step walk-

through.

• A comprehensive review lab is used at the end of the course. It is also a gradable hands-on

activity, and might cover content from the entire course. You work through a specification of

what to do in the activity, without receiving the specific steps to do so. Again, a solution is

provided with a step-by-step walk-through that meets the specification.

To prepare your lab environment at the start of each hands-on activity, run the lab start
command with a specified activity name from the activity's instructions. Likewise, at the end of

each hands-on activity, run the lab finish command with that same activity name to clean up

after the activity. Each hands-on activity has a unique name within a course.

The syntax for running an exercise script is as follows:

[student@workstation ~]$ lab action exercise

The action is a choice of start, grade, or finish. All exercises support start and finish.

Only end-of-chapter labs and comprehensive review labs support grade.

start
The start action verifies the required resources to begin an exercise. It might include

configuring settings, creating resources, confirming prerequisite services, and verifying

necessary outcomes from previous exercises. You can perform an exercise at any time, even

without performing preceding exercises.

grade
For gradable activities, the grade action directs the lab command to evaluate your work, and

shows a list of grading criteria with a PASS or FAIL status for each. To achieve a PASS status

for all criteria, fix the failures and rerun the grade action.

finish
The finish action cleans up resources that were configured during the exercise. You can

perform an exercise as many times as you want.

The lab command supports tab completion. For example, to list all exercises that you can start,

enter lab start and then press the Tab key twice.

xx DO280-OCP4.14-en-1-20240215

Introduction

Lab Directory Considerations
The DO280 course uses a Python-based lab script that configures the directory structure

for each guided exercise and lab activity. The workspace directory for this course is /home/
student/DO280.

The lab script copies the necessary files for each course activity to the workspace directory.

For example, the lab start updates-rollout command does the following tasks:

• Creates an updates-rollout directory in the workspace: /home/student/DO280/labs/
updates-rollout workspace.

• Copies the files for the activity to the /home/student/DO280/labs/updates-rollout
directory.

Troubleshooting Lab Scripts
If an error occurs while running the lab command, then you might want to review the following

files:

• /tmp/log/labs: This directory contains log files. The lab script creates a unique log file for

each activity. For example, the log file for the lab start updates-rollout command is /
tmp/log/labs/updates-rollout.

• /home/student/.grading/config.yaml: This file contains the course-specific

configuration. Do not modify this file.

The lab start commands usually verify whether the Red Hat OpenShift Container Platform

(RHOCP) cluster is ready and reachable. If you run the lab start command right after creating

the classroom environment, then you might get errors when the command verifies the cluster API

or the credentials. These errors occur because the RHOCP cluster might take up to 15 minutes

to become available. A convenient solution is to run the lab finish command to clean up the

scenario, wait a few minutes, and then rerun the lab start command.

Important

In this course, the lab start scripts normally create a specific RHOCP project

for each exercise. The lab finish scripts remove the exercise-specific RHOCP

project.

If you are retrying an exercise, then you might need to wait before running the lab
start command again. The project removal process might take up to 10 minutes to

be fully effective.

DO280-OCP4.14-en-1-20240215 xxi

xxii DO280-OCP4.14-en-1-20240215

Chapter 1

Declarative Resource
Management

Goal Deploy and update applications from resource
manifests that are parameterized for different
target environments.

Objectives • Deploy and update applications from resource
manifests that are stored as YAML files.

• Deploy and update applications from resource
manifests that are augmented by Kustomize.

Sections • Resource Manifests (and Guided Exercise)

• Kustomize Overlays (and Guided Exercise)

Lab • Declarative Resource Management

DO280-OCP4.14-en-1-20240215 1

Chapter 1 | Declarative Resource Management

Resource Manifests

Objectives
• Deploy and update applications from resource manifests that are stored as YAML files.

An application in a Kubernetes cluster often consists of multiple resources that work together.

Each resource has a definition and a configuration. Many of the resource configurations share

common attributes that must match to operate correctly. Imperative commands configure each

resource, one at time. However, using imperative commands has some issues:

• Impaired reproducibility

• Lacking version control

• Lacking support for GitOps

Rather than imperative commands, declarative commands are instead the preferred way to

manage resources, by using resource manifests. A resource manifest is a file, in JSON or YAML

format, with resource definition and configuration information. Resource manifests simplify the

management of Kubernetes resources, by encapsulating all the attributes of an application in a file

or a set of related files. Kubernetes uses declarative commands to read the resource manifests and

to apply changes to the cluster to meet the state that the resource manifest defines.

The resource manifests are in YAML or JSON format, and thus can be version-controlled. Version

control of resource manifests enables tracing of configuration changes. As such, adverse changes

can be rolled back to an earlier version to support recoverability.

Resource manifests ensure that applications can be precisely reproduced, typically with a single

command to deploy many resources. The reproducibility from resource manifests supports the

automation of the GitOps practices of continuous integration and continuous delivery (CI/CD).

Imperative Versus Declarative Workflows

The Kubernetes CLI uses both imperative and declarative commands. Imperative commands

perform an action that is based on a command, and use command names that closely reflect the

action. In contrast, declarative commands use a resource manifest file to declare the intended

state of a resource.

A Kubernetes manifest is a YAML- or JSON-formatted file with declaration statements for

Kubernetes resources such as deployments, pods, or services. Instead of using imperative

commands to create Kubernetes resources, manifest files provide all the details for the resource in

a single file. Working with manifest files enables the use of more reproducible processes. Instead

of reproducing sequences of imperative commands, manifest files contain the entire definition of

resources and can be applied in a single step. Using manifest files is also useful for tracking system

configuration changes in a source code management system.

Given a new or updated resource manifest, Kubernetes provides commands that compare the

intended state that is specified in the resource manifest to the current state of the resource.

These commands then apply transformations to the current state to match the intended state.

2 DO280-OCP4.14-en-1-20240215

Chapter 1 | Declarative Resource Management

Imperative Workflow

An imperative workflow is useful for developing and testing. The following example uses the

kubectl create deployment imperative command, to create a deployment for a MYSQL

database.

[user@host ~]$ kubectl create deployment db-pod --port 3306 \
 --image registry.ocp4.example.com:8443/rhel8/mysql-80
deployment.apps/db-pod created

In addition to using verbs that reflect the action of the command, imperative commands use

options to provide the details. The example command uses the --port and the --image options

to provide the required details to create the deployment.

The use of imperative commands affects applying changes to live resources. For example, the

pod from the previous deployment would fail to start due to missing environment variables. The

following kubectl set env deployment imperative command resolves the problem by adding

the required environment variables to the deployment:

[user@host ~]$ kubectl set env deployment/db-pod \
 MYSQL_USER='user1' \
 MYSQL_PASSWORD='mypa55w0rd' \
 MYSQL_DATABASE='items'
deployment.apps/db-pod updated

Executing this kubectl set env deployment command changes the deployment resource

named db-pod, and provides the extra needed variables to start the container. A developer

can continue building out the application, by using imperative commands to add components,

such as services, routes, volume mounts, and persistent volume claims. With the addition of each

component, the developer can run tests to ensure that the component correctly executes the

intended function.

Imperative commands are useful for developing and experimenting. With imperative commands,

a developer can build up an application one component at a time. When a component is added,

the Kubernetes cluster provides error messages that are specific to the component. The process is

analogous to using a debugger to step through code execution one line at a time. Using imperative

commands usually provides clearer error messages, because an error occurs after adding a

specific component.

However, long command lines and a fragmented application deployment are not ideal for

deploying an application in production. With imperative commands, changes are a sequence of

commands that must be maintained to reflect the intended state of the resources. The sequence

of commands must be tracked and kept up to date.

Using Declarative Commands

Instead of tracking a sequence of commands, a manifest file captures the intended state of the

sequence. In contrast to using imperative commands, declarative commands use a manifest file,

or a set of manifest files, to combine all the details for creating those components into YAML

files that can be applied in a single command. Future changes to the manifest files require only

reapplying the manifests. Instead of tracking a sequence of complex commands, version control

systems can track changes to the manifest file.

Although manifest files can also use the JSON syntax, YAML is generally preferred and is more

popular. To continue the debugging analogy, debugging an application that is deployed from

DO280-OCP4.14-en-1-20240215 3

Chapter 1 | Declarative Resource Management

manifests is similar to trying to debug a full, completed running application. It can take more effort

to find the source of the error, especially when the error is not a result of manifest errors.

Creating Kubernetes Manifests

Creating manifest files from scratch can take time. You can use the following techniques to

provide a starting point for your manifest files:

• Use the YAML view of a resource from the web console.

• Use imperative commands with the --dry-run=client option to generate manifests that

correspond to the imperative command.

The kubectl explain command provides the details for any field in the manifest. For example,

use the kubectl explain deployment.spec.template.spec command to view field

descriptions that specify a pod object within a deployment manifest.

To create a starter deployment manifest, use the kubectl create deployment command to

generate a manifest by using the --dry-run=client option:

[user@host ~]$ kubectl create deployment hello-openshift -o yaml \
 --image registry.ocp4.example.com:8443/redhattraining/hello-world-nginx:v1.0 \
 --save-config \
 --dry-run=client \
 > ~/my-app/example-deployment.yaml

The --save-config option adds configuration attributes that declarative commands

use. For deployments resources, this option saves the resource configuration in an

kubectl.kubernetes.io/last-applied-configuration annotation.

The --dry-run=client option prevents the command from creating resources in the

cluster.

The following example shows a minimal deployment manifest file, not production-ready, for the

hello-openshift deployment:

apiVersion: apps/v1
kind: Deployment
metadata:
 annotations:
 ...output omitted...
 creationTimestamp: null
 labels:
 app: hello-openshift
 name: hello-openshift
spec:
 replicas: 1
 selector:
 matchLabels:
 app: hello-openshift
 strategy: {}
 template:
 metadata:
 creationTimestamp: null
 labels:

4 DO280-OCP4.14-en-1-20240215

Chapter 1 | Declarative Resource Management

 app: hello-openshift
 spec:
 containers:
 - image: quay.io/redhattraining/hello-world-nginx:v1.0
 name: hello-world-nginx
 resources: {}
status: {}

When using imperative commands to create manifests, the resulting manifests might contain fields

that are not necessary for creating a resource. For example, the following example changes the

manifest by removing the empty and null fields. Removing unnecessary fields can significantly

reduce the length of the manifests, and in turn reduce the overhead to work with them.

Additionally, you might need to further customize the manifests. For example, in a deployment,

you might customize the number of replicas, or declare the ports that the deployment provides.

The following notes explain the additional changes:

apiVersion: apps/v1
kind: Deployment
metadata:
 namespace: resource-manifests
 labels:
 app: hello-openshift
 name: hello-openshift
spec:
 replicas: 2
 selector:
 matchLabels:
 app: hello-openshift
 template:
 metadata:
 labels:
 app: hello-openshift
 spec:
 containers:
 - image: quay.io/redhattraining/hello-world-nginx:v1.0
 name: hello-world-nginx
 ports:
 - containerPort: 8080
 protocol: TCP

Add a namespace attribute to prevent deployment to the wrong project.

Requires two replicas instead of one.

Specifies the container port for the service to use.

You can create a manifest file for each resource that you manage. Alternatively, add each of the

manifests to a single multi-part YAML file, and use a --- line to separate the manifests.

apiVersion: apps/v1
kind: Deployment
metadata:

DO280-OCP4.14-en-1-20240215 5

Chapter 1 | Declarative Resource Management

 namespace: resource-manifests
 annotations:
 ...output omitted...

apiVersion: v1
kind: Service
metadata:
 namespace: resource-manifests
 labels:
 app: hello-openshift
 name: hello-openshift
spec:
 ...output omitted...

Using a single file with multiple manifests versus using manifests that are defined in multiple

manifest files is a matter of organizational preference. The single file approach has the advantage

of keeping together related manifests. With the single file approach, it can be more convenient to

change a resource that must be reflected across multiple manifests. In contrast, keeping manifests

in multiple files can be more convenient for sharing resource definitions with others.

After creating manifests, you can test them in a non-production environment, or proceed to

deploy the manifests. Validate the resource manifests before deploying applications in the

production environment.

Declarative Workflows

Declarative commands use a resource manifest instead of adding the details to many options

on the command line. To create a resource, use the kubectl create -f resource.yaml
command. Instead of a file name, you can pass a directory to the command to process all the

resource files in a directory. Add the --recursive=true or -R option to recursively process

resource files that are provided in multiple subdirectories.

The following example creates the resources from the manifests in the my-app directory. In this

example, the my-app directory contains the example-deployment.yaml and service/
example-service.yaml files from previously.

[user@host ~]$ tree my-app
my-app
├── example_deployment.yaml
└── service
 └── example_service.yaml

[user@host ~]$ kubectl create -R -f ~/my-app
deployment.apps/hello-openshift created
service/hello-openshift created

The command also accepts a URL:

[user@host ~]$ kubectl create -f \
 https://example.com/example-apps/deployment.yaml
deployment.apps/hello-openshift created

6 DO280-OCP4.14-en-1-20240215

Chapter 1 | Declarative Resource Management

Updating Resources

The kubectl apply command can also create resources with the same -f option that is

illustrated with the kubectl create command. However, the kubectl apply command can

also update a resource.

Updating resources is more complex than creating resources. The kubectl apply command

implements several techniques to apply the updates without causing issues.

The kubectl apply command writes the contents of the configuration file to the

kubectl.kubernetes.io/last-applied-configuration annotation. The kubectl
create command can also generate this annotation by using the --save-config option.

The kubectl apply command uses the last-applied-configuration annotation to

identify fields that are removed from the configuration file and that must be cleared from the live

configuration.

Although the kubectl create -f command can create resources from a manifest, the

command is imperative and thus does not account for the current state of a live resource.

Executing kubectl create -f against a manifest for a live resource gives an error. In contrast,

the kubectl apply -f command is declarative, and considers the difference between the

current resource state in the cluster and the intended resource state that is expressed in the

manifest.

For example, to update the container's image from version v1.0 to latest, first update the

YAML resource manifest to specify the new tag on the image. Then, use the kubectl apply
command to instruct Kubernetes to create a version of the deployment resource by using the

updated image version that is specified in the manifest.

YAML Validation

Before applying the changes to the resource, use the --dry-run=server and the --
validate=true flags to inspect the file for errors.

• The --dry-run=server option submits a server-side request without persisting the resource.

• The --validate=true option uses a schema to validate the input and fails the request if it is

invalid.

Any syntax errors in the YAML are included in the output. Most importantly, the --dry-
run=server option prevents applying any changes to the Kubernetes runtime.

[user@host ~]$ kubectl apply -f ~/my-app/example-deployment.yaml \
 --dry-run=server --validate=true
deployment.apps/hello-openshift created (server dry-run)

The output line that ends in (server dry-run) provides the action that the resource file

would perform if applied.

Note

The --dry-run=client option prints only the object that would be sent to the

server. The cluster resource controllers can refuse a manifest even if the syntax is

valid YAML. In contrast, the --dry-run=server option sends the request to the

server to confirm that the manifest conforms to current server policies, without

creating resources on the server.

DO280-OCP4.14-en-1-20240215 7

Chapter 1 | Declarative Resource Management

Comparing Resources

Use the kubectl diff command to review differences between live objects and manifests.

When updating resource manifests, you can track differences in the changed files. However, many

manifest changes, when applied, do not change the state of the cluster resources. A text-based

diff tool would show all such differences, and result in a noisy output.

In contrast, using the kubectl diff command might be more convenient to preview changes.

The kubectl diff command emphasizes the significant changes for the Kubernetes cluster.

Review the differences to validate that manifest changes have the intended effect.

[user@host ~]$ kubectl diff -f example-deployment.yaml
...output omitted...
diff -u -N /tmp/LIVE-2647853521/apps.v1.Deployment.resource...
--- /tmp/LIVE-2647853521/apps.v1.Deployment.resource-manife...
+++ /tmp/MERGED-2640652736/apps.v1.Deployment.resource-mani...
@@ -6,7 +6,7 @@
 kubectl.kubernetes.io/last-applied-configuration: |
 ...output omitted...
 creationTimestamp: "2023-04-27T16:07:47Z"
- generation: 1
+ generation: 2
 labels:
 app: hello-openshift
 name: hello-openshift
@@ -32,7 +32,7 @@
 app: hello-openshift
 spec:
 containers:
- - image: registry.ocp4.example.com:8443/.../hello-world-nginx:v1.0
+ - image: registry.ocp4.example.com:8443/.../hello-world-nginx:latest
 imagePullPolicy: IfNotPresent
 name: hello-openshift
 ports:

The line that starts with the - character shows that the current deployment is on generation 1.

The following line, which starts with the + character, shows that the generation changes to 2

when the manifest file is applied.

The image line, which starts with the - character, shows that the current image uses the

v1.0 version. The following line, which starts with the + character, shows a version change to

latest when the manifest file is applied.

Kubernetes resource controllers automatically add annotations and attributes to the live resource

that make the output of other text-based diff tools misleading, by reporting many differences

that have no impact on the resource configuration. Extracting manifests from live resources

and making comparisons with tools such as the diff command reports many differences of no

value. Using the kubectl diff command confirms that a live resource matches a resource

configuration that a manifest provides. GitOps tools depend on the kubectl diff command to

determine whether anyone changed resources outside the GitOps workflow. Because the tools

themselves cannot know all details about how any controllers might change a resource, the tools

defer to the cluster to determine whether a change is meaningful.

8 DO280-OCP4.14-en-1-20240215

Chapter 1 | Declarative Resource Management

Update Considerations

When using the oc diff command, recognize when applying a manifest change does not

generate new pods. For example, if an updated manifest changes only values in secret or a

configuration map, then applying the updated manifest does not generate new pods that

use those values. Because pods read secret and configuration maps at startup, in this case

applying the updated manifest leaves the pods in a vulnerable state, with stale values that are not

synchronized with the updated secret or with the configuration map.

As a solution, use the oc rollout restart deployment deployment-name command to

force a restart of the pods that are associated with the deployment. The forced restart generates

pods that use the new values from the updated secret or configuration map.

In deployments with a single replica, you can also resolve the problem by deleting the pod.

Kubernetes responds by automatically creating a pod to replace the deleted pod. However, for

multiple replicas, using the oc rollout command to restart the pods is preferred, because the

pods are stopped and replaced in a smart manner that minimizes downtime.

This course covers other resource management mechanisms that can automate or eliminate some

of these challenges.

Applying Changes

The kubectl create command attempts to create the specified resources in the manifest

file. Using the kubectl create command generates an error if the targeted resources are

already live in the cluster. In contrast, the kubectl apply command compares three sources to

determine how to process the request and to apply changes.

1. The manifest file

2. The live configuration of the resource in the cluster

3. The configuration that is stored in the last-applied-configuration annotation

If the specified resource in the manifest file does not exist, then the kubectl apply command

creates the resource. If any fields in the last-applied-configuration annotation of the

live resource are not present in the manifest, then the command removes those fields from the

live configuration. After applying changes to the live resource, the kubectl apply command

updates the last-applied-configuration annotation of the live resource to account for the

change.

When creating a resource, the --save-config option of the kubectl create command

produces the required annotations for future kubectl apply commands to operate.

DO280-OCP4.14-en-1-20240215 9

Chapter 1 | Declarative Resource Management

References

For more information, refer to the OpenShift CLI Developer Command Reference

section in the OpenShift CLI (oc) chapter in the Red Hat OpenShift Container

Platform 4.14 CLI Tools documentation at

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.14/html-single/cli_tools/index#cli-developer-

commands

For more information, refer to the Using Deployment Strategies section in the

Deployments chapter in the Red Hat OpenShift Container Platform 4.14 Building

Applications documentation at

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.14/html-single/building_applications/

index#deployment-strategies

Kubernetes Documentation - Replicaset

https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/

Kubernetes Documentation - Deployment Strategy

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#strategy

Kubernetes Documentation - Deployment

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

10 DO280-OCP4.14-en-1-20240215

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/cli_tools/index#cli-developer-commands
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/cli_tools/index#cli-developer-commands
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/cli_tools/index#cli-developer-commands
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/building_applications/index#deployment-strategies
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/building_applications/index#deployment-strategies
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/building_applications/index#deployment-strategies
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#strategy
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

Chapter 1 | Declarative Resource Management

Guided Exercise

Resource Manifests

Deploy and update an application from resource manifests from YAML files that are stored in

a Git server.

Outcomes
• Deploy applications from resource manifests from YAML files that are stored in a GitLab

repository.

• Inspect new manifests for potential update issues.

• Update application deployments from new YAML manifests.

• Force the redeployment of pods when necessary.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your

system for this exercise.

[student@workstation ~]$ lab start declarative-manifests

Instructions

 1. Log in to the OpenShift cluster and create the declarative-manifests project.

1.1. Log in to the cluster as the developer user.

[student@workstation ~]$ oc login -u developer -p developer \
 https://api.ocp4.example.com:6443
Login successful.

...output omitted...

1.2. Create the declarative-manifests project.

[student@workstation ~]$ oc new-project declarative-manifests
Now using project "declarative-manifests" on server ...
...output omitted...

 2. Clone the declarative-manifest project from the Git repository.

2.1. Change your directory to the project labs directory.

[student@workstation ~]$ cd ~/DO280/labs

DO280-OCP4.14-en-1-20240215 11

Chapter 1 | Declarative Resource Management

2.2. Clone the Git repository from https://git.ocp4.example.com/developer/
declarative-manifests.git. Use developer for both the username and for

the password.

[student@workstation lab]$ git clone \
 https://git.ocp4.example.com/developer/declarative-manifests.git
Cloning into 'declarative-manifests'...
remote: Enumerating objects: 24, done.
remote: Counting objects: 100% (24/24), done.
remote: Compressing objects: 100% (21/21), done.
remote: Total 24 (delta 8), reused 0 (delta 0), pack-reused 0
Receiving objects: 100% (24/24), done.
Resolving deltas: 100% (8/8), done.

2.3. Go to the declarative-manifest directory.

[student@workstation lab]$ cd declarative-manifests
[student@workstation declarative-manifests]$

 3. Inspect the contents of the Git repository.

3.1. List the contents of the declarative-manifests directory.

[student@workstation declarative-manifests]$ ls -lA
total 12
-rw-rw-r--. 1 student student 3443 Jun 21 16:39 database.yaml
-rw-rw-r--. 1 student student 2278 Jun 21 16:39 exoplanets.yaml
drwxrwxr-x. 8 student student 163 Jun 21 16:39 .git
-rw-rw-r--. 1 student student 0 Jun 21 16:39 .gitkeep
-rw-rw-r--. 1 student student 11 Jun 21 16:39 README.md

3.2. List the commits, branches, and tags on the Git repository.

[student@workstation declarative-manifests]$ git log --oneline
4045336 (HEAD -> main, tag: third, origin/v1.1.1, origin/main, origin/HEAD)
 Exoplanets v1.1.1
ad455b2 Database v1.1.1
821420c (tag: second, origin/v1.1.0) Exoplanets v1.1.0
d9abeb0 (tag: first, origin/v1.0) Exoplanets v1.0
a11396e Database v1.0
e868a90 README
18ddf3c Initial commit

The v1.1.1 branch points to the third version of the application.

The v1.1.0 branch points to the second version of the application.

The v1.0 branch points to the first version of the application.

 4. Deploy the resource manifests of the first application version.

4.1. Switch to the v1.0 branch, which contains the YAML manifests for the first version of

the application.

12 DO280-OCP4.14-en-1-20240215

Chapter 1 | Declarative Resource Management

[student@workstation declarative-manifests]$ git checkout v1.0
branch 'v1.0' set up to track 'origin/v1.0'.
Switched to a new branch 'v1.0'

4.2. Validate the YAML resource manifest for the application.

[student@workstation declarative-manifests]$ oc apply -f . \
 --validate=true --dry-run=server
configmap/database created (server dry run)
secret/database created (server dry run)
deployment.apps/database created (server dry run)
service/database created (server dry run)
configmap/exoplanets created (server dry run)
secret/exoplanets created (server dry run)
deployment.apps/exoplanets created (server dry run)
service/exoplanets created (server dry run)
route.route.openshift.io/exoplanets created (server dry run)

4.3. Deploy the exoplanets application.

[student@workstation declarative-manifests]$ oc apply -f .
configmap/database created
secret/database created
deployment.apps/database created
service/database created
configmap/exoplanets created
secret/exoplanets created
deployment.apps/exoplanets created
service/exoplanets created
route.route.openshift.io/exoplanets created

4.4. List the deployments and pods. The exoplanets pod can go into a temporary crash

loop backoff state if it attempts to access the database before it becomes available.

Wait for the pods to be ready. Press Ctrl+C to exit the watch command.

[student@workstation declarative-manifests]$ watch oc get deployments,pods

Every 2.0s: oc get deployments,pods ...

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/database 1/1 1 1 32s
deployment.apps/exoplanets 1/1 1 1 32s

NAME READY STATUS RESTARTS AGE
pod/database-6fddbbf94f-2pghj 1/1 Running 0 32s
pod/exoplanets-64c87f5796-bw8tm 1/1 Running 0 32s

4.5. List the route for the exoplanets application.

DO280-OCP4.14-en-1-20240215 13

Chapter 1 | Declarative Resource Management

[student@workstation declarative-manifests]$ oc get routes -l app=exoplanets
NAME HOST/PORT ...
exoplanets exoplanets-declarative-manifests.apps.ocp4.example.com ...

4.6. Open the route URL in the web browser. The application version is v1.0.

http://exoplanets-declarative-manifests.apps.ocp4.example.com/

 5. Deploy the second version of the exoplanets application.

5.1. Switch to the v1.1.0 branch of the Git repository.

[student@workstation declarative-manifests]$ git checkout v1.1.0
branch 'v1.1.0' set up to track 'origin/v1.1.0'.
Switched to a new branch 'v1.1.0'

5.2. Inspect the changes from the new manifests.

[student@workstation declarative-manifests]$ oc diff -f .
...output omitted...
 - secretRef:
 name: exoplanets
- image: registry.ocp4.example.com:8443/redhattraining/exoplanets:v1.0
+ image: registry.ocp4.example.com:8443/redhattraining/exoplanets:v1.1.0
 imagePullPolicy: Always
 livenessProbe:
 failureThreshold: 3

The new version changes the image that is deployed to the cluster. Because

the change is in the deployment, the new manifest produces new pods for the

application.

5.3. Apply the changes from the new manifests.

14 DO280-OCP4.14-en-1-20240215

Chapter 1 | Declarative Resource Management

[student@workstation declarative-manifests]$ oc apply -f .
configmap/database unchanged
secret/database configured
deployment.apps/database configured
service/database configured
configmap/exoplanets unchanged
secret/exoplanets configured
deployment.apps/exoplanets configured
service/exoplanets unchanged
route.route.openshift.io/exoplanets configured

5.4. List the deployments and pods. Wait for the application pod to be ready. Press

Ctrl+C to exit the watch command.

[student@workstation declarative-manifests]$ watch oc get deployments,pods
Every 2.0s: oc get deployments,pods ...

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/database 1/1 1 1 6m32s
deployment.apps/exoplanets 1/1 1 1 6m33s

NAME READY STATUS RESTARTS AGE
pod/database-6fddbbf94f-2pghj 1/1 Running 0 6m33s
pod/exoplanets-74c85f5796-tw8tf 1/1 Running 0 32s

5.5. List the route for the exoplanets application.

[student@workstation declarative-manifests]$ oc get routes -l app=exoplanets
NAME HOST/PORT ...
exoplanets exoplanets-declarative-manifests.apps.ocp4.example.com ...

5.6. Open the route URL in the web browser. The application version is v1.1.0.

http://exoplanets-declarative-manifests.apps.ocp4.example.com/

 6. Deploy the third version of the exoplanets application.

DO280-OCP4.14-en-1-20240215 15

Chapter 1 | Declarative Resource Management

6.1. Switch to the v1.1.1 branch of the Git repository.

[student@workstation declarative-manifests]$ git checkout v1.1.1
branch 'v1.1.1' set up to track 'origin/v1.1.1'.
Switched to a new branch 'v1.1.1'

6.2. View the differences between the currently deployed version of the application and

the updated resource manifests.

[student@workstation declarative-manifests]$ oc diff -f .
...output omitted...
 kind: Secret
 metadata:
 annotations:
...output omitted...
- DB_USER: '*** (before)'
+ DB_USER: '*** (after)'
 kind: Secret
 metadata:
 annotations:

The secret resource is changed.

The DB_USER field of the secret resource is changed.

6.3. Inspect the current application pods.

[student@workstation declarative-manifests]$ oc get pods
NAME READY STATUS RESTARTS AGE
database-6fddbbf94f-brlj6 1/1 Running 0 44m
exoplanets-674cc57b5d-mv8kd 1/1 Running 0 18m

6.4. Deploy the new version of the application.

[student@workstation declarative-manifests]$ oc apply -f .
configmap/database unchanged
secret/database configured
deployment.apps/database configured
service/database configured
configmap/exoplanets unchanged
secret/exoplanets configured
deployment.apps/exoplanets unchanged
service/exoplanets unchanged
route.route.openshift.io/exoplanets configured

6.5. Inspect the current application pods again

[student@workstation declarative-manifests]$ oc get pods
NAME READY STATUS RESTARTS AGE
database-6fddbbf94f-brlj6 1/1 Running 0 10m
exoplanets-674cc57b5d-mv8kd 0/1 CrashLoopBackOff 4 (14s ago) 2m

16 DO280-OCP4.14-en-1-20240215

Chapter 1 | Declarative Resource Management

Although the secret is updated, the deployed application pods are not changed.

These non-updated pods are a problem, because the pods load secrets and

configuration maps at startup. Currently, the pods have stale values from the previous

configuration, and therefore could crash.

 7. Force the exoplanets application to restart, to flush out any stale configuration data.

7.1. Use the oc get deployments command to confirm the deployments.

[student@workstation declarative-manifests]$ oc get deployments
NAME READY UP-TO-DATE AVAILABLE AGE
database 1/1 1 1 32m
exoplanets 0/1 1 0 32m

7.2. Use the oc rollout command to restart the database deployment.

[student@workstation declarative-manifests]$ oc rollout restart \
 deployment/database
deployment.apps/database restarted

7.3. Use the oc rollout command to restart the exoplanets deployment.

[student@workstation declarative-manifests]$ oc rollout restart \
 deployment/exoplanets
deployment.apps/exoplanets restarted

7.4. List the pods. The exoplanets pod can go into a temporary crash loop backoff

state if it attempts to access the database before it becomes available. Wait for the

application pod to be ready. Press Ctrl+C to exit the watch command.

[student@workstation declarative-manifests]$ watch oc get pods
Every 2.0s: oc get deployments,pods ...

NAME READY STATUS RESTARTS AGEE
database-7c767c4bd7-m72nk 1/1 Running 0 32s
exoplanets-64c87f5796-bw8tm 1/1 Running 0 32s

7.5. Use the oc get deployment command with the -o yaml option to view the

last-applied-configuration annotation.

[student@workstation declarative-manifests]$ oc get deployment \
 exoplanets -o yaml
apiVersion: apps/v1
kind: Deployment
metadata:
 annotations:
 deployment.kubernetes.io/revision: "3"
 description: Defines how to deploy the application server
 kubectl.kubernetes.io/last-applied-configuration: |
 {"apiVersion":"apps/v1","kind":"Deployment","metadata":{"annotations":...
 template.alpha.openshift.io/wait-for-ready: "true"
...output omitted...

DO280-OCP4.14-en-1-20240215 17

Chapter 1 | Declarative Resource Management

7.6. Open the route URL in the web browser. The application version is v1.1.1.

http://exoplanets-declarative-manifests.apps.ocp4.example.com/

 8. Clean up the resources.

8.1. Delete the application resources.

[student@workstation declarative-manifests]$ oc delete -f .
configmap "database" deleted
secret "database" deleted
deployment.apps "database" deleted
service "database" deleted
configmap "exoplanets" deleted
secret "exoplanets" deleted
deployment.apps "exoplanets" deleted
service "exoplanets" deleted
route.route.openshift.io "exoplanets" deleted

8.2. Change to the student HOME directory.

[student@workstation declarative-manifests]$ cd
[student@workstation ~]

Finish

On the workstation machine, use the lab command to complete this exercise. This step is

important to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab finish declarative-manifests

18 DO280-OCP4.14-en-1-20240215

Chapter 1 | Declarative Resource Management

Kustomize Overlays

Objectives
• Deploy and update applications from resource manifests that are augmented by Kustomize.

Kustomize
When using Kubernetes, multiple teams use multiple environments, such as development, staging,

testing, and production, to deploy applications. These environments use applications with minor

configuration changes.

Many organizations deploy a single application to multiple data centers for multiple teams and

regions. Depending on the load, the organization needs a different number of replicas for every

region. The organization might need various configurations that are specific to a data center or

team.

All these use cases require a single set of manifests with multiple customizations at multiple levels.

Kustomize can support such use cases.

Kustomize is a configuration management tool to make declarative changes to application

configurations and components and preserve the original base YAML files. You group in a

directory the Kubernetes resources that constitute your application, and then use Kustomize to

copy and adapt these resource files to your environments and clusters. The kubectl command

integrates the kustomization tool.

Kustomize File Structure
Kustomize works on directories that contain a kustomization.yaml file at the root. Kustomize

supports compositions and customization of different resources such as deployment, service,

and secret. You can use patches to apply customization to different resources. Kustomize has a

concept of base and overlays.

Base

A base directory contains a kustomization.yaml file. The kustomization.yaml file has a list

resource field to include all resource files. As the name implies, all resources in the base directory

are a common resource set. You can create a base application by composing all common resources

from the base directory.

The following diagram shows the structure of a base directory:

base
├── configmap.yaml
├── deployment.yaml
├── secret.yaml
├── service.yaml
├── route.yaml
└── kustomization.yaml

DO280-OCP4.14-en-1-20240215 19

Chapter 1 | Declarative Resource Management

The base directory has YAML files to create configuration map, deployment, service, secret, and

route resources. The base directory also has a kustomization.yaml file, such as the following

example:

apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization
resources:
- configmap.yaml
- deployment.yaml
- secret.yaml
- service.yaml
- route.yaml

The kustomization.yaml file lists all resource files.

Overlays

Kustomize overlays declarative YAML artifacts, or patches, that override the general settings

without modifying the original files. The overlay directory contains a kustomization.yaml file.

The kustomization.yaml file can refer to one or more directories as bases. Multiple overlays

can use a common base kustomization directory.

The following diagram shows the structure of all Kustomize directories:

Figure 1.4: Kustomize file structure

The following example shows the directory structure of the frontend-app directory containing

the base and overlay directories:

[user@host frontend-app]$ tree
base
├── configmap.yaml
├── deployment.yaml
├── secret.yaml
├── service.yaml
├── route.yaml
└── kustomization.yaml
overlay

20 DO280-OCP4.14-en-1-20240215

Chapter 1 | Declarative Resource Management

└── development
 └── kustomization.yaml
└── testing
 └── kustomization.yaml
└── production
 ├── kustomization.yaml
 └── patch.yaml

The following example shows a kustomization.yaml file in the overlays/development
directory:

apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization
namespace: dev-env
resources:
- ../../base

The frontend-app/overlay/development/kustomization.yaml file uses the base

kustomization file at ../../base to create all the application resources in the dev-env
namespace.

Kustomize provides fields to set values for all resources in the kustomization file:

Field Description

namespace Set a specific namespace for all resources.

namePrefix Add a prefix to the name of all resources.

nameSuffix Add a suffix to the name of all resources.

commonLabels Add labels to all resources and selectors.

commonAnnotations Add annotations to all resources and selectors.

You can customize for multiple environments by using overlays and patching. The patches
mechanism has two elements: patch and target.

Previously, Kustomize used the PatchesJson6902 and PatchesStrategicMerge keys to add

resource patches. These keys are deprecated in Kustomize version 5 and are replaced with a single

key. However, the content of the patches key continues to use the same patch formats.

You can use JSON Patch and strategic merge patches. See the references section for further

information about both patch formats.

The following is an example of a kustomization.yaml file in the overlays/testing
directory:

apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization
namespace: test-env
patches:
- patch: |-
 - op: replace
 path: /metadata/name

DO280-OCP4.14-en-1-20240215 21

Chapter 1 | Declarative Resource Management

 value: frontend-test
 target:
 kind: Deployment
 name: frontend
- patch: |-
 - op: replace
 path: /spec/replicas
 value: 15
 target:
 kind: Deployment
 name: frontend
resources:
- ../../base
commonLabels:
 env: test

The patches field contains a list of patches.

The patch field defines operation, path, and value keys. In this example, the name changes

to frontend-test.

The target field specifies the kind and name of the resource to apply the patch. In this

example, you are changing the frontend deployment name to frontend-test.

This patch updates the number of replicas of the frontend deployment.

The frontend-app/overlay/testing/kustomization.yaml file uses the base

kustomization file at ../../base to create an application.

The commonLabels field adds the env: test label to all resources.

The patches mechanism also provides an option to include patches from a separate YAML file by

using the path key.

The following example shows a kustomization.yaml file that uses a patch.yaml file:

apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization
namespace: prod-env
patches:
- path: patch.yaml
 target:
 kind: Deployment
 name: frontend
 options:
 allowNameChange: true
resources:
- ../../base
commonLabels:
 env: prod

The patches field lists the patches that are applied by using a production kustomization file.

The path field specifies the name of the patching YAML file.

22 DO280-OCP4.14-en-1-20240215

Chapter 1 | Declarative Resource Management

The target field specifies the kind and name of the resource to apply the patch. In this

example, you are targeting the frontend deployment.

The allowNameChange field enables kustomization to update the name by using a patch

YAML file.

The frontend-app/overlay/production/kustomization.yaml file uses the base

kustomization file at ../../base to create an application.

The commonLabels field adds an env: prod label to all resources.

The patch.yaml file has the following content:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: frontend-prod
spec:
 replicas: 5

The metadata.name field in the patch file updates the frontend deployment name to

frontend-prod if the allowNameChange field is set to true in the kustomization YAML

file.

The spec/replicas field in the patch file updates the number of replicas of the

frontend-prod deployment.

View and Deploy Resources by Using Kustomize
Run the kubectl kustomize kustomization-directory command to render the manifests

without applying them to the cluster.

[user@host frontend-app]$ kubectl kustomize overlay/production
...output omitted...
kind: Deployment
metadata:
 labels:
 app: frontend
 env: prod
 name: frontend-prod
...output omitted...
spec:
 replicas: 5
 selector:
 matchLabels:
 app: frontend
 env: prod
...output omitted...

The kubectl apply command applies configurations to the resources in the cluster. If resources

are not available, then the kubectl apply command creates resources. The kubectl apply
command applies a kustomization with the -k flag.

DO280-OCP4.14-en-1-20240215 23

Chapter 1 | Declarative Resource Management

[user@host frontend-app]$ kubectl apply -k overlay/production
deployment.apps/frontend-prod created
...output omitted...

Delete Resources by Using Kustomize
Run the oc delete -k kustomization-directory command to delete the resources that

were deployed by using Kustomize.

[user@host frontend-app]$ oc delete -k overlay/production
configmap "database" deleted
secret "database" deleted
service "database" deleted
deployment.apps "database" deleted

Kustomize Generators
Configuration maps hold non-confidential data by using a key-value pair. Secrets are similar

to configuration maps, but secrets hold confidential information such as usernames and

passwords. Kustomize has configMapGenerator and secretGenerator fields that generate

configuration map and secret resources.

The configuration map and secret generators can include content from external files in the

generated resources. By keeping the content of the generated resources outside the resource

definitions, you can use files that other tools generated, or that are stored in different systems.

Generators help to manage the content of configuration maps and secrets, by taking care of

encoding and including content from other sources.

Configuration Map Generator

Kustomize provides a configMapGenerator field to create a configuration map. The

configuration map that a configMapGenerator field creates behaves differently. In this method,

Kustomize appends a hash to the name, and any change in the configuration map triggers a rolling

update.

The following example adds a configuration map by using the configMapGenerator field in the

staging kustomization file. The hello application deployment has two environment variables to

refer to the hello-app-configmap configuration map.

The kustomization.yaml file has the following content:

apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization
namespace: hello-stage
resources:
- ../../base
configMapGenerator:
- name: hello-app-configmap
 literals:
 - msg="Welcome!"
 - enable="true"

The deployment.yaml file has the following content:

24 DO280-OCP4.14-en-1-20240215

Chapter 1 | Declarative Resource Management

apiVersion: apps/v1
kind: Deployment
metadata:
 name: hello
 labels:
 app: hello
 name: hello
spec:
...output omitted...
 spec:
 containers:
 - name: hello
 image: quay.io/hello-app:v1.0
 env:
 - name: MY_MESSAGE
 valueFrom:
 configMapKeyRef:
 name: hello-app-configmap
 key: msg
 - name: MSG_ENABLE
 valueFrom:
 configMapKeyRef:
 name: hello-app-configmap
 key: enable

You can view and deploy all resources and customizations that the kustomization YAML file

defines, in the development directory.

[user@host hello-app]$ kubectl kustomize overlays/staging
apiVersion: v1
data:
 enable: "true"
 msg: Welcome!
kind: ConfigMap
metadata:
 name: hello-app-configmap-9tcmf95d77
 namespace: hello-stage

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 app: hello
 name: hello
 name: hello
 namespace: hello-stage
spec:
...output omitted...
 spec:
 containers:
 - env:
 - name: MY_MESSAGE
 valueFrom:

DO280-OCP4.14-en-1-20240215 25

Chapter 1 | Declarative Resource Management

 configMapKeyRef:
 key: msg
 name: hello-app-configmap-9tcmf95d77
 - name: MSG_ENABLE
 valueFrom:
 configMapKeyRef:
 key: enable
 name: hello-app-configmap-9tcmf95d77
...output omitted...

[user@host hello-app]$ kubectl apply -k overlays/staging
configmap/hello-app-configmap-9tcmf95d77 created
deployment.apps/hello created

[user@host hello-app]$ oc get all
NAME READY STATUS RESTARTS AGE
pod/hello-75dc9cfc87-jh62k 1/1 Running 0 97s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/hello 1/1 1 1 97s

NAME DESIRED CURRENT READY AGE
replicaset.apps/hello-75dc9cfc87 1 1 1 97s

The kubectl apply -k command creates a hello-app-configmap-9tcmf95d77
configuration map and a hello deployment. Update the kustomization.yaml file with the

configuration map values.

apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization
namespace: hello-stage
resources:
- ../../base
configMapGenerator:
- name: hello-app-configmap
 literals:
 - msg="Welcome Back!"
 - enable="true"

Then, apply the overlay with the kubectl apply command.

[user@host hello-app]$ kubectl apply -k overlays/staging
configmap/hello-app-configmap-696dm8h728 created
deployment.apps/hello configured

[user@host hello-app]$ oc get all
NAME READY STATUS RESTARTS AGE
pod/hello-55bc55ff9-hrszh 1/1 Running 0 3s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/hello 1/1 1 1 5m5s

26 DO280-OCP4.14-en-1-20240215

Chapter 1 | Declarative Resource Management

NAME DESIRED CURRENT READY AGE
replicaset.apps/hello-55bc55ff9 1 1 1 3s
replicaset.apps/hello-75dc9cfc87 0 0 0 5m5s

The kubectl apply -k command applies kustomization. Kustomize appends a new hash to the

configuration map name, which creates a hello-app-configmap-696dm8h728 configuration

map. The new configuration map triggers the generation of a new hello-55bc55ff9-hrszh
pod.

You can generate a configuration map by using the files key from the .properties file or

from the .env file by using the envs key with the file name as the value. You can also create a

configuration map from a literal key-value pair by using the literals key.

The following example shows a kustomization.yaml file with the configMapGenerator field.

...output omitted...
configMapGenerator:
- name: configmap-1
 files:
 - application.properties
- name: configmap-2
 envs:
 - configmap-2.env
- name: configmap-3
 literals:
 - name="configmap-3"
 - description="literal key-value pair"

The configmap-1 key is using the application.properties file.

The configmap-2 key is using the configmap-2.env file.

The configmap-3 key is using a literal key-value pair.

The following example shows the application.properties file that is referenced in the

configmap-1 key.

Day=Monday
Enable=True

The following example shows the configmap-2.env file that is referenced in the configmap-2
key.

Greet=Welcome
Enable=True

Run the kubectl kustomize command to view details of resources and customizations that the

kustomization YAML file defines:

[user@host base]$ kubectl kustomize .
apiVersion: v1
data:
 application.properties: |

DO280-OCP4.14-en-1-20240215 27

Chapter 1 | Declarative Resource Management

 Day=Monday
 Enable=True
kind: ConfigMap
metadata:
 name: configmap-1-5g2mh569b5

apiVersion: v1
data:
 Enable: "True"
 Greet: Welcome
kind: ConfigMap
metadata:
 name: configmap-2-92m84tg9kt

apiVersion: v1
data:
 description: literal key-value pair
 name: configmap-3
kind: ConfigMap
metadata:
 name: configmap-3-k7g7d5bffd

...output omitted...

The configMapGenerator field appends a hash to all ConfigMap resources.

The configmap-1-5g2mh569b5 configuration map is generated from the

application.properties file, and the data field has a single key with the

application.properties value.

The configmap-2-92m84tg9kt configuration map is generated from the

configmap-2.env file, and the data field has separate keys for each listed variable in the

configmap-2.env file.

The configmap-3-k7g7d5bffd configuration map is generated from a literal key-value

pair.

Secret Generator

A secret resource has sensitive data such as a username and a password. You can generate the

secret by using the secretGenerator field. The secretGenerator field works similarly to the

configMapGenerator field. However, the secretGenerator field also performs the base64

encoding that secret resources require.

The following example shows a kustomization.yaml file with the secretGenerator field:

...output omitted...
secretGenerator:
- name: secret-1
 files:
 - password.txt
- name: secret-2
 envs:
 - secret-mysql.env
- name: secret-3

28 DO280-OCP4.14-en-1-20240215

Chapter 1 | Declarative Resource Management

 literals:
 - MYSQL_DB=mysql
 - MYSQL_PASS=root

The secret-1 key is using the password.txt file.

The secret-2 key is using the secret-mysql.env file.

The secret-3 key is using literal key-value pairs.

Generator Options

Kustomize provides a generatorOptions field to alter the default behavior of Kustomize

generators. The configMapGenerator and secretGenerator fields append a hash suffix to

the name of the generated resources.

Workload resources such as deployments do not detect any content changes to configuration

maps and secrets. Any changes to a configuration map or secret do not apply automatically.

Because the generators append a hash, when you update the configuration map or secret, the

resource name changes. This change triggers a rollout.

In some cases, the hash is not needed. Some operators observe the contents of the configuration

maps and secrets that they use, and apply changes immediately. For example, the OpenShift

OAuth operator applies changes to htpasswd secrets automatically. You can disable this feature

with the generatorOptions field.

You can also add labels and annotations to the generated resources by using the

generatorOptions field.

The following example shows the use of the generatorOptions field.

...output omitted...
configMapGenerator:
- name: my-configmap
 literals:
 - name="configmap-3"
 - description="literal key-value pair"
generatorOptions:
 disableNameSuffixHash: true
 labels:
 type: generated-disabled-suffix
 annotations:
 note: generated-disabled-suffix

You can use the kubectl kustomize command to render the changes to verify their effect.

[user@host base]$ kubectl kustomize .
apiVersion: v1
data:
 description: literal key-value pair
 name: configmap-3
kind: ConfigMap
metadata:
 annotations:

DO280-OCP4.14-en-1-20240215 29

Chapter 1 | Declarative Resource Management

 note: generated-disabled-suffix
 labels:
 type: generated-disabled-suffix
 name: my-configmap

The my-configmap configuration map is without a hash suffix, and has a label and annotations

that are defined in the kustomization file.

References

Declarative Management of Kubernetes Objects Using Kustomize

https://kubernetes.io/docs/tasks/manage-kubernetes-objects/kustomization/

Your Guide to Continuous Delivery with OpenShift GitOps and Kustomize

https://cloud.redhat.com/blog/your-guide-to-continuous-delivery-with-openshift-

gitops-and-kustomize

Customization of Kubernetes YAML Configurations

https://github.com/kubernetes-sigs/kustomize/blob/master/api/types/

kustomization.go

JavaScript Object Notation (JSON) Patch

https://www.rfc-editor.org/rfc/rfc6902

Notes on the Strategic Merge Patch

https://kubernetes.io/docs/tasks/manage-kubernetes-objects/update-api-object-

kubectl-patch/#notes-on-the-strategic-merge-patch

30 DO280-OCP4.14-en-1-20240215

https://kubernetes.io/docs/tasks/manage-kubernetes-objects/kustomization/
https://cloud.redhat.com/blog/your-guide-to-continuous-delivery-with-openshift-gitops-and-kustomize
https://cloud.redhat.com/blog/your-guide-to-continuous-delivery-with-openshift-gitops-and-kustomize
https://github.com/kubernetes-sigs/kustomize/blob/master/api/types/kustomization.go
https://github.com/kubernetes-sigs/kustomize/blob/master/api/types/kustomization.go
https://www.rfc-editor.org/rfc/rfc6902
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/update-api-object-kubectl-patch/#notes-on-the-strategic-merge-patch
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/update-api-object-kubectl-patch/#notes-on-the-strategic-merge-patch

Chapter 1 | Declarative Resource Management

Guided Exercise

Kustomize Overlays

Deploy and update an application by applying different Kustomize overlays that are stored in

a Git server.

Outcomes
• Deploy an application by using Kustomize from provided files.

• Apply an application update that changes a deployment.

• Deploy an overlay of the application that increases the number of replicas.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your

system for this exercise.

This command ensures that the cluster API is reachable.

[student@workstation ~]$ lab start declarative-kustomize

Instructions

 1. Clone the v1.1.0 version of the application. Because this repository uses Git branches to

represent application versions, you must use the v1.1.0 branch.

Clone the repository from the following URL:

https://git.ocp4.example.com/developer/declarative-kustomize.git

1.1. Change to the ~/DO280/labs/declarative-kustomize directory.

[student@workstation ~]$ cd DO280/labs/declarative-kustomize
[student@workstation declarative-kustomize]$

1.2. Clone the initial version of the application.

[student@workstation declarative-kustomize]$ git clone \
 https://git.ocp4.example.com/developer/declarative-kustomize.git --branch v1.1.0
Cloning into 'declarative-kustomize'...
...output omitted...

1.3. Change to the repository directory.

[student@workstation declarative-kustomize]$ cd declarative-kustomize

 2. Examine the first version of the application.

DO280-OCP4.14-en-1-20240215 31

Chapter 1 | Declarative Resource Management

2.1. Use the tree command to review the structure of the repository.

[student@workstation declarative-kustomize]$ tree
.
├── base
│ ├── database
│ │ ├── configmap.yaml
│ │ ├── deployment.yaml
│ │ ├── kustomization.yaml
│ │ └── service.yaml
│ ├── exoplanets
│ │ ├── deployment.yaml
│ │ ├── kustomization.yaml
│ │ ├── route.yaml
│ │ └── service.yaml
│ └── kustomization.yaml
└── README.md

3 directories, 10 files

The database base defines resources to deploy a database.

The exoplanets base defines resources to deploy an application that uses the

database.

The repository has a kustomization.yaml file at the root, which uses two

other bases.

2.2. Examine the base/kustomization.yaml file.

[student@workstation declarative-kustomize]$ cat base/kustomization.yaml
kind: Kustomization
resources:
- database
- exoplanets
secretGenerator:
- name: db-secrets
 literals:
 - DB_ADMIN_PASSWORD=postgres
 - DB_NAME=database
 - DB_PASSWORD=password
 - DB_USER=user
configMapGenerator:
- name: db-config
 literals:
 - DB_HOST=database
 - DB_PORT=5432

The base/kustomization.yaml file uses the other two bases.

The base also uses generators to provide configuration for the two deployments

in the application.

32 DO280-OCP4.14-en-1-20240215

Chapter 1 | Declarative Resource Management

 3. Deploy the base directory of the repository to a new declarative-kustomize project.

Verify that the v1.1.0 version of the application is available at http://exoplanets-
declarative-kustomize.apps.ocp4.example.com.

3.1. Log in to the OpenShift cluster as the developer user with the developer
password.

[student@workstation declarative-kustomize]$ oc login -u developer -p developer \
 https://api.ocp4.example.com:6443
Login successful.

...output omitted...

3.2. Create the declarative-kustomize project.

[student@workstation declarative-kustomize]$ oc new-project declarative-kustomize
...output omitted...

3.3. Use the oc apply -k command to deploy the application with Kustomize.

[student@workstation declarative-kustomize]$ oc apply -k base
configmap/database created
configmap/db-config-2d7thbcgkc created
secret/db-secrets-55cbgc8c6m created
service/database created
service/exoplanets created
deployment.apps/database created
deployment.apps/exoplanets created
route.route.openshift.io/exoplanets created

3.4. Use the watch command to wait until the workloads are running.

[student@workstation declarative-kustomize]$ watch oc get all
NAME READY STATUS RESTARTS AGE
pod/database-55d6c77787-47649 1/1 Running 0 57s
pod/exoplanets-d6f57869d-jhkhc 1/1 Running 2 (54s ago) 57s

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/database ClusterIP 172.30.236.123 <none> 5432/TCP 57s
service/exoplanets ClusterIP 172.30.248.130 <none> 8080/TCP 57s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/database 1/1 1 1 57s
deployment.apps/exoplanets 1/1 1 1 57s

NAME DESIRED CURRENT READY AGE
replicaset.apps/database-55d6c77787 1 1 1 57s
replicaset.apps/exoplanets-d6f57869d 1 1 1 57s

NAME
 HOST/PORT ...
route.route.openshift.io/exoplanets
 exoplanets-declarative-kustomize.apps.ocp4.example.com ...

DO280-OCP4.14-en-1-20240215 33

Chapter 1 | Declarative Resource Management

Press Ctrl+C to exit the watch command.

3.5. Open a web browser and navigate to http://exoplanets-declarative-
kustomize.apps.ocp4.example.com.

The browser displays the v1.1.0 version of the application.

 4. Change to the v1.1.1 version of the application and examine the changes.

4.1. Change to the v1.1.1 branch.

[student@workstation declarative-kustomize]$ git checkout v1.1.1
branch 'v1.1.1' set up to track 'origin/v1.1.1'.
Switched to a new branch 'v1.1.1'

4.2. Use the git show command to display the last commit.

[student@workstation declarative-kustomize]$ git show
...output omitted...
diff --git a/base/exoplanets/deployment.yaml b/base/exoplanets/deployment.yaml
index 8bc4cf9..8389b69 100644
--- a/base/exoplanets/deployment.yaml
+++ b/base/exoplanets/deployment.yaml
@@ -23,7 +23,7 @@ spec:
 name: exoplanets
 - secretRef:
 name: exoplanets
- image: registry.ocp4.example.com:8443/redhattraining/exoplanets:v1.1.0
+ image: registry.ocp4.example.com:8443/redhattraining/exoplanets:v1.1.1
 imagePullPolicy: Always
 livenessProbe:
 httpGet:

The v1.1.1 version updates the application to the v1.1.1 image.

 5. Deploy the updated application and verify that the URL now displays the v1.1.1 version.

5.1. Use the oc apply -k command to execute the changes.

34 DO280-OCP4.14-en-1-20240215

Chapter 1 | Declarative Resource Management

[student@workstation declarative-kustomize]$ oc apply -k base
...output omitted...

5.2. Use the watch command to wait until the application redeploys.

[student@workstation declarative-kustomize]$ watch oc get all
NAME READY STATUS RESTARTS AGE
pod/database-55d6c77787-47649 1/1 Running 0 57s
pod/exoplanets-d6f57869d-jhkhc 1/1 Running 2 (54s ago) 57s

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/database ClusterIP 172.30.236.123 <none> 5432/TCP 57s
service/exoplanets ClusterIP 172.30.248.130 <none> 8080/TCP 57s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/database 1/1 1 1 57s
deployment.apps/exoplanets 1/1 1 1 57s

NAME DESIRED CURRENT READY AGE
replicaset.apps/database-55d6c77787 1 1 1 57s
replicaset.apps/exoplanets-d6f57869d 1 1 1 57s

NAME
 HOST/PORT ...
route.route.openshift.io/exoplanets
 exoplanets-declarative-kustomize.apps.ocp4.example.com ...

Press Ctrl+C to exit the watch command.

5.3. Open a web browser and navigate to http://exoplanets-declarative-
kustomize.apps.ocp4.example.com.

The browser displays the v1.1.1 version of the application.

 6. Change to the v1.1.2 version of the application and examine the changes.

6.1. Change to the v1.1.2 branch.

DO280-OCP4.14-en-1-20240215 35

Chapter 1 | Declarative Resource Management

[student@workstation declarative-kustomize]$ git checkout v1.1.2
branch 'v1.1.2' set up to track 'origin/v1.1.2'.
Switched to a new branch 'v1.1.2'

6.2. Use the git show command to display the last commit.

[student@workstation declarative-kustomize]$ git show
...output omitted...
diff --git a/base/kustomization.yaml b/base/kustomization.yaml
index fdf129a..8de16e8 100644
--- a/base/kustomization.yaml
+++ b/base/kustomization.yaml
@@ -7,7 +7,7 @@ secretGenerator:
 literals:
 - DB_ADMIN_PASSWORD=postgres
 - DB_NAME=database
- - DB_PASSWORD=password
+ - DB_PASSWORD=newpassword
 - DB_USER=user
 configMapGenerator:
 - name: db-config

The v1.1.2 version updates the base kustomization. This update changes the

password that the database uses. This change is possible because the sample

application re-creates the database on startup.

6.3. List the secrets in the namespace.

[student@workstation declarative-kustomize]$ oc get secret
NAME TYPE DATA AGE
builder-dockercfg-qwn4v kubernetes.io/dockercfg 1 4m31s
builder-token-z754n kubernetes.io/service-account-token 4 4m31s
db-secrets-55cbgc8c6m Opaque 4 4m28s
default-dockercfg-w4v89 kubernetes.io/dockercfg 1 4m31s
default-token-zw89c kubernetes.io/service-account-token 4 4m31s
deployer-dockercfg-l8sct kubernetes.io/dockercfg 1 4m31s
deployer-token-knvhb kubernetes.io/service-account-token 4 4m31s

When creating a secret, Kustomize appends a hash to the secret name.

6.4. Extract the contents of the secret. The name of the secret can change in your

environment. Use the output from a previous step to learn the name of the secret.

[student@workstation declarative-kustomize]$ oc extract \
 secret/db-secrets-55cbgc8c6m --to=-
DB_PASSWORD
password
DB_USER
user
DB_ADMIN_PASSWORD
postgres
DB_NAME
database

36 DO280-OCP4.14-en-1-20240215

Chapter 1 | Declarative Resource Management

 7. Deploy the updated application.

7.1. Use the oc apply -k command to execute the changes.

[student@workstation declarative-kustomize]$ oc apply -k base
configmap/database unchanged
configmap/db-config-2d7thbcgkc unchanged
secret/db-secrets-6h668tk789 created
service/database unchanged
service/exoplanets unchanged
deployment.apps/database configured
deployment.apps/exoplanets configured
route.route.openshift.io/exoplanets configured

Because the password is different, Kustomize creates another secret. Kustomize also

updates the two deployments that use the secret to use the new secret.

7.2. Use the watch command to wait until the application redeploys.

[student@workstation declarative-kustomize]$ watch oc get all
NAME READY STATUS RESTARTS AGE
pod/database-55d6c77787-47649 1/1 Running 0 57s
pod/exoplanets-d6f57869d-jhkhc 1/1 Running 2 (54s ago) 57s

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/database ClusterIP 172.30.236.123 <none> 5432/TCP 57s
service/exoplanets ClusterIP 172.30.248.130 <none> 8080/TCP 57s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/database 1/1 1 1 57s
deployment.apps/exoplanets 1/1 1 1 57s

NAME DESIRED CURRENT READY AGE
replicaset.apps/database-55d6c77787 1 1 1 57s
replicaset.apps/exoplanets-d6f57869d 1 1 1 57s

NAME
 HOST/PORT ...
route.route.openshift.io/exoplanets
 exoplanets-declarative-kustomize.apps.ocp4.example.com ...

Press Ctrl+C to exit the watch command.

7.3. Open a web browser and navigate to http://exoplanets-declarative-
kustomize.apps.ocp4.example.com.

DO280-OCP4.14-en-1-20240215 37

Chapter 1 | Declarative Resource Management

The browser continues showing the v1.1.1 version of the application.

7.4. Examine the deployment.

[student@workstation declarative-kustomize]$ oc get deployment exoplanets \
 -o jsonpath='{.spec.template.spec.containers[0].envFrom}{"\n"}'
[{"configMapRef":{"name":"db-config-2d7thbcgkc"}},{"secretRef":{"name":"db-
secrets-6h668tk789"}}]

The deployment uses the new secret.

7.5. Examine the secret. Use the name of the secret from a previous step.

[student@workstation declarative-kustomize]$ oc extract \
 secret/db-secrets-6h668tk789 --to=-
DB_ADMIN_PASSWORD
postgres
DB_NAME
database
DB_PASSWORD
newpassword
DB_USER
user

The deployment uses the changed password.

 8. Change to the v1.1.3 version of the application and examine the changes.

8.1. Change to the v1.1.3 branch.

[student@workstation declarative-kustomize]$ git checkout v1.1.3
branch 'v1.1.3' set up to track 'origin/v1.1.3'.
Switched to a new branch 'v1.1.3'

8.2. Use the git show command to display the last commit.

38 DO280-OCP4.14-en-1-20240215

Chapter 1 | Declarative Resource Management

[student@workstation declarative-kustomize]$ git show
...output omitted...
diff --git a/overlays/production/kustomization.yaml b/overlays/production/
kustomization.yaml
new file mode 100644
index 0000000..73bb7fe
--- /dev/null
+++ b/overlays/production/kustomization.yaml
@@ -0,0 +1,8 @@
+kind: Kustomization
+resources:
+- ../../base/
+patches:
+- path: patch-replicas.yaml
+ target:
+ kind: Deployment
+ name: exoplanets
diff --git a/overlays/production/patch-replicas.yaml b/overlays/production/patch-
replicas.yaml
new file mode 100644
index 0000000..a025aa0
--- /dev/null
+++ b/overlays/production/patch-replicas.yaml
@@ -0,0 +1,6 @@
+apiVersion: apps/v1
+kind: Deployment
+metadata:
+ name: exoplanets
+spec:
+ replicas: 2

The v1.1.3 version adds a production overlay that increases the number of

replicas.

 9. Deploy the updated application and verify the number of replicas.

9.1. Use the oc apply -k command to execute the changes.

[student@workstation declarative-kustomize]$ oc apply -k overlays/production
...output omitted...

9.2. Use the watch command to wait until the application redeploys.

[student@workstation declarative-kustomize]$ watch oc get all
NAME READY STATUS RESTARTS AGE
pod/database-7dfb559cf7-rvxhx 1/1 Running 0 11m
pod/exoplanets-957bb5b48-5xl2d 1/1 Running 2 (11m ago) 11m
pod/exoplanets-957bb5b48-mgbrx 1/1 Running 0 19s

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/database ClusterIP 172.30.87.214 <none> 5432/TCP 19m
service/exoplanets ClusterIP 172.30.25.65 <none> 8080/TCP 19m

DO280-OCP4.14-en-1-20240215 39

Chapter 1 | Declarative Resource Management

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/database 1/1 1 1 19m
deployment.apps/exoplanets 2/2 2 2 19m

NAME DESIRED CURRENT READY AGE
replicaset.apps/database-7dfb559cf7 1 1 1 11m
replicaset.apps/database-d4cd8dcc 0 0 0 19m
replicaset.apps/exoplanets-6c7b4bb44c 0 0 0 19m
replicaset.apps/exoplanets-7ccb754c8b 0 0 0 18m
replicaset.apps/exoplanets-957bb5b48 2 2 2 11m

NAME
 HOST/PORT ...
route.route.openshift.io/exoplanets
 exoplanets-declarative-kustomize.apps.ocp4.example.com ...

Press Ctrl+C to exit the watch command. After you run the command, the

application has two replicas.

 10. Delete the application.

10.1. Use the oc delete -k command to delete the resources that Kustomize manages.

[student@workstation declarative-kustomize]$ oc delete -k base
Warning: 'bases' is deprecated. Please use 'resources' instead. Run 'kustomize
 edit fix' to update your Kustomization automatically.
configmap "database" deleted
configmap "db-config-2d7thbcgkc" deleted
secret "db-secrets-h9hdmt2g79" deleted
service "database" deleted
service "exoplanets" deleted
deployment.apps "database" deleted
deployment.apps "exoplanets" deleted
route.route.openshift.io "exoplanets" deleted

10.2. Change to the home directory.

[student@workstation declarative-kustomize]$ cd
[student@workstation ~]$

Finish

On the workstation machine, use the lab command to complete this exercise. This step is

important to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab finish declarative-kustomize

40 DO280-OCP4.14-en-1-20240215

Chapter 1 | Declarative Resource Management

Lab

Declarative Resource Management

Deploy and update applications from resource manifests that are parameterized for different

target environments.

Outcomes
• Deploy an application by using Kustomize from provided files.

• Apply an application update that changes a deployment.

• Deploy an overlay of the application that increases the number of replicas.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your

system for this exercise.

This command ensures that the cluster API is reachable.

[student@workstation ~]$ lab start declarative-review

Instructions

1. Clone the v1.1.0 version of the application from the https://
git.ocp4.example.com/developer/declarative-review.git URL. Because this

repository uses Git branches to represent application versions, you must use the v1.1.0
branch.

2. Examine the first version of the application.

3. Log in to the OpenShift cluster as the developer user with the developer password.

Deploy the base directory of the repository to a new declarative-review project.

Verify that the v1.1.0 version of the application is available at http://exoplanets-
declarative-review.apps.ocp4.example.com.

4. Change to the v1.1.1 version of the application and examine the changes.

5. Deploy the updated application and verify that the URL now displays the v1.1.1 version.

6. Examine the overlay in the overlays/production path.

7. Deploy the production overlay to a new declarative-review-production project.

Verify that the v1.1.1 version of the application is available at http://exoplanets-
declarative-review-production.apps.ocp4.example.com with two replicas.

Evaluation

As the student user on the workstation machine, use the lab command to grade your work.

Correct any reported failures and rerun the command until successful.

[student@workstation ~]$ lab grade declarative-review

DO280-OCP4.14-en-1-20240215 41

Chapter 1 | Declarative Resource Management

Finish

As the student user on the workstation machine, use the lab command to complete this

exercise. This step is important to ensure that resources from previous exercises do not impact

upcoming exercises.

[student@workstation ~]$ lab finish declarative-review

42 DO280-OCP4.14-en-1-20240215

Chapter 1 | Declarative Resource Management

Solution

Declarative Resource Management

Deploy and update applications from resource manifests that are parameterized for different

target environments.

Outcomes
• Deploy an application by using Kustomize from provided files.

• Apply an application update that changes a deployment.

• Deploy an overlay of the application that increases the number of replicas.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your

system for this exercise.

This command ensures that the cluster API is reachable.

[student@workstation ~]$ lab start declarative-review

Instructions

1. Clone the v1.1.0 version of the application from the https://
git.ocp4.example.com/developer/declarative-review.git URL. Because this

repository uses Git branches to represent application versions, you must use the v1.1.0
branch.

1.1. Change to the ~/DO280/labs/declarative-review directory.

[student@workstation ~]$ cd DO280/labs/declarative-review
[student@workstation declarative-review]$

1.2. Clone the initial version of the application.

[student@workstation declarative-review]$ git clone \
 https://git.ocp4.example.com/developer/declarative-review.git --branch v1.1.0
Cloning into 'declarative-review'...
...output omitted...

1.3. Change to the repository directory.

[student@workstation declarative-review]$ cd declarative-review

2. Examine the first version of the application.

2.1. Use the tree command to review the structure of the repository.

DO280-OCP4.14-en-1-20240215 43

Chapter 1 | Declarative Resource Management

[student@workstation declarative-review]$ tree
.
├── base
│ ├── database
│ │ ├── configmap.yaml
│ │ ├── deployment.yaml
│ │ ├── kustomization.yaml
│ │ ├── secret.yaml
│ │ └── service.yaml
│ ├── exoplanets
│ │ ├── configmap.yaml
│ │ ├── deployment.yaml
│ │ ├── kustomization.yaml
│ │ ├── route.yaml
│ │ ├── secret.yaml
│ │ └── service.yaml
│ └── kustomization.yaml
├── overlays
│ └── production
│ ├── kustomization.yaml
│ └── patch-replicas.yaml
└── README.md

5 directories, 15 files

The database base defines resources to deploy a database.

The exoplanets base defines resources to deploy an application that uses the

database.

The repository has a kustomization.yaml file at the root, which uses two other

bases.

The repository also has a production overlay.

2.2. Examine the base/kustomization.yaml file.

[student@workstation declarative-review]$ cat base/kustomization.yaml
kind: Kustomization
resources:
- database
- exoplanets

The base/kustomization.yaml file uses the other two bases.

3. Log in to the OpenShift cluster as the developer user with the developer password.

Deploy the base directory of the repository to a new declarative-review project.

Verify that the v1.1.0 version of the application is available at http://exoplanets-
declarative-review.apps.ocp4.example.com.

3.1. Log in to the OpenShift cluster as the developer user with the developer password.

44 DO280-OCP4.14-en-1-20240215

Chapter 1 | Declarative Resource Management

[student@workstation declarative-review]$ oc login -u developer -p developer \
 https://api.ocp4.example.com:6443
Login successful.

...output omitted...

3.2. Create the declarative-review project.

[student@workstation declarative-review]$ oc new-project declarative-review
...output omitted...

3.3. Use the oc apply -k command to deploy the application with Kustomize.

[student@workstation declarative-review]$ oc apply -k base
configmap/database created
configmap/exoplanets created
secret/database created
secret/exoplanets created
service/database created
service/exoplanets created
deployment.apps/database created
deployment.apps/exoplanets created
route.route.openshift.io/exoplanets created

3.4. Use the watch command to wait until the workloads are running.

[student@workstation declarative-review]$ watch oc get all
NAME READY STATUS RESTARTS AGE
pod/database-55d6c77787-47649 1/1 Running 0 57s
pod/exoplanets-d6f57869d-jhkhc 1/1 Running 2 (54s ago) 57s

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/database ClusterIP 172.30.236.123 <none> 5432/TCP 57s
service/exoplanets ClusterIP 172.30.248.130 <none> 8080/TCP 57s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/database 1/1 1 1 57s
deployment.apps/exoplanets 1/1 1 1 57s

NAME DESIRED CURRENT READY AGE
replicaset.apps/database-55d6c77787 1 1 1 57s
replicaset.apps/exoplanets-d6f57869d 1 1 1 57s

NAME HOST/PORT ...
route.../exoplanets exoplanets-declarative-review.apps.ocp4.example.com ...

Press Ctrl+C to exit the watch command.

3.5. Open a web browser and navigate to http://exoplanets-declarative-
review.apps.ocp4.example.com.

DO280-OCP4.14-en-1-20240215 45

Chapter 1 | Declarative Resource Management

The browser displays version v1.1.0 of the application.

4. Change to the v1.1.1 version of the application and examine the changes.

4.1. Change to the v1.1.1 branch.

[student@workstation declarative-review]$ git checkout v1.1.1
branch 'v1.1.1' set up to track 'origin/v1.1.1'.
Switched to a new branch 'v1.1.1'

4.2. Use the git show command to display the last commit.

[student@workstation declarative-review]$ git show
...output omitted...
diff --git a/base/exoplanets/deployment.yaml b/base/exoplanets/deployment.yaml
index 8bc4cf9..8389b69 100644
--- a/base/exoplanets/deployment.yaml
+++ b/base/exoplanets/deployment.yaml
@@ -23,7 +23,7 @@ spec:
 name: exoplanets
 - secretRef:
 name: exoplanets
- image: registry.ocp4.example.com:8443/redhattraining/exoplanets:v1.1.0
+ image: registry.ocp4.example.com:8443/redhattraining/exoplanets:v1.1.1
 imagePullPolicy: Always
 livenessProbe:
 httpGet:

The v1.1.1 version updates the application to the v1.1.1 image.

5. Deploy the updated application and verify that the URL now displays the v1.1.1 version.

5.1. Use the oc apply -k command to execute the changes.

[student@workstation declarative-review]$ oc apply -k base
...output omitted...

46 DO280-OCP4.14-en-1-20240215

Chapter 1 | Declarative Resource Management

5.2. Use the watch command to wait until the application redeploys.

[student@workstation declarative-review]$ watch oc get all
NAME READY STATUS RESTARTS AGE
pod/database-55d6c77787-47649 1/1 Running 0 57s
pod/exoplanets-d6f57869d-jhkhc 1/1 Running 2 (54s ago) 57s

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/database ClusterIP 172.30.236.123 <none> 5432/TCP 57s
service/exoplanets ClusterIP 172.30.248.130 <none> 8080/TCP 57s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/database 1/1 1 1 57s
deployment.apps/exoplanets 1/1 1 1 57s

NAME DESIRED CURRENT READY AGE
replicaset.apps/database-55d6c77787 1 1 1 57s
replicaset.apps/exoplanets-d6f57869d 1 1 1 57s

NAME HOST/PORT ...
route.../exoplanets exoplanets-declarative-review.apps.ocp4.example.com ...

Press Ctrl+C to exit the watch command.

5.3. Open a web browser and navigate to http://exoplanets-declarative-
review.apps.ocp4.example.com.

The browser displays version v1.1.1 of the application.

6. Examine the overlay in the overlays/production path.

6.1. Examine the overlays/production/kustomization.yaml file.

[student@workstation declarative-review]$ cat \
 overlays/production/kustomization.yaml
kind: Kustomization
resources:

DO280-OCP4.14-en-1-20240215 47

Chapter 1 | Declarative Resource Management

- ../../base/
patches:
- path: patch-replicas.yaml
 target:
 kind: Deployment
 name: exoplanets

This overlay applies a patch over the base.

6.2. Examine the overlays/production/patch-replicas.yaml file.

[student@workstation declarative-review]$ cat \
 overlays/production/patch-replicas.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
 name: exoplanets
spec:
 replicas: 2

This patch increases the number of replicas of the deployment, so that the production

deployment can handle more users.

7. Deploy the production overlay to a new declarative-review-production project.

Verify that the v1.1.1 version of the application is available at http://exoplanets-
declarative-review-production.apps.ocp4.example.com with two replicas.

7.1. Create the declarative-review-production project.

[student@workstation declarative-review]$ oc new-project
 declarative-review-production
Now using project "declarative-review-production" on server "https://
api.ocp4.example.com:6443".
...output omitted...

7.2. Use the oc apply -k command to deploy the overlay.

[student@workstation declarative-review]$ oc apply -k overlays/production
configmap/database created
configmap/exoplanets created
secret/database created
secret/exoplanets created
service/database created
service/exoplanets created
deployment.apps/database created
deployment.apps/exoplanets created
route.route.openshift.io/exoplanets created

7.3. Use the watch command to wait until the workloads are running.

[student@workstation declarative-review]$ watch oc get all
NAME READY STATUS RESTARTS AGE
pod/database-55d6c77787-b5x4n 1/1 Running 0 5m11s
pod/exoplanets-55666f556f-ndwkz 1/1 Running 2 (5m8s ago) 5m11s

48 DO280-OCP4.14-en-1-20240215

Chapter 1 | Declarative Resource Management

pod/exoplanets-55666f556f-q7s7j 1/1 Running 2 (5m7s ago) 5m11s

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/database ClusterIP 172.30.24.165 <none> 5432/TCP 5m11s
service/exoplanets ClusterIP 172.30.90.176 <none> 8080/TCP 5m11s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/database 1/1 1 1 5m11s
deployment.apps/exoplanets 2/2 2 2 5m11s

NAME DESIRED CURRENT READY AGE
replicaset.apps/database-55d6c77787 1 1 1 5m11s
replicaset.apps/exoplanets-55666f556f 2 2 2 5m11s

NAME HOST/PORT
route.../exoplanets exoplanets-declarative-review-production.apps.ocp4.example.com

The exoplanets deployment has two replicas.

7.4. Open a web browser and navigate to http://exoplanets-declarative-review-
production.apps.ocp4.example.com.

The browser displays version v1.1.1 of the application.

7.5. Change to the home directory.

[student@workstation declarative-review]$ cd
[student@workstation ~]$

Evaluation

As the student user on the workstation machine, use the lab command to grade your work.

Correct any reported failures and rerun the command until successful.

[student@workstation ~]$ lab grade declarative-review

DO280-OCP4.14-en-1-20240215 49

Chapter 1 | Declarative Resource Management

Finish

As the student user on the workstation machine, use the lab command to complete this

exercise. This step is important to ensure that resources from previous exercises do not impact

upcoming exercises.

[student@workstation ~]$ lab finish declarative-review

50 DO280-OCP4.14-en-1-20240215

Chapter 1 | Declarative Resource Management

Summary

• Imperative commands perform actions, such as creating a deployment, by specifying all

necessary parameters as command-line arguments.

• In the declarative workflow, you create manifests that describe resources in the YAML or JSON

formats, and use commands such as kubectl apply to deploy the resources to a cluster.

• Kubernetes provides tools, such as the kubectl diff command, to review your changes

before applying them.

• You can use Kustomize to create multiple deployments from a single base code with different

customizations.

• The kubectl command integrates Kustomize into the apply subcommand and others.

• Kustomize organizes content around bases and overlays.

• Bases and overlays can create and modify existing resources from other bases and overlays.

DO280-OCP4.14-en-1-20240215 51

52 DO280-OCP4.14-en-1-20240215

Chapter 2

Deploy Packaged Applications

Goal Deploy and update applications from resource
manifests that are packaged for sharing and
distribution.

Objectives • Deploy an application and its dependencies
from resource manifests that are stored in an
OpenShift template.

• Deploy and update applications from resource
manifests that are packaged as Helm charts.

Sections • OpenShift Templates (and Guided Exercise)

• Helm Charts (and Guided Exercise)

Lab • Deploy Packaged Applications

DO280-OCP4.14-en-1-20240215 53

Chapter 2 | Deploy Packaged Applications

OpenShift Templates

Objectives
• Deploy and update applications from resource manifests that are packaged as OpenShift

templates.

OpenShift Templates
A template is a Kubernetes custom resource that describes a set of Kubernetes resource

configurations. Templates can have parameters. You can create a set of related Kubernetes

resources from a template by processing the template, and providing values for the parameters.

Templates have varied use cases, and can create any Kubernetes resource. You can create a list of

resources from a template by using the CLI or, if a template is uploaded to your project or to the

global template library, by using the web console.

The template resource is a Kubernetes extension that Red Hat for OpenShift provides. The Cluster

Samples Operator populates templates (and image streams) in the openshift namespace. You

can opt out of adding templates during installation, and you can restrict the list of templates that

the operator populates.

You can also create templates from scratch, or copy and customize a template to suit the needs of

your project.

Discovering Templates

The templates that the Cluster Samples Operator provides are in the openshift namespace.

Use the following oc get command to view a list of these templates:

[user@host ~]$ oc get templates -n openshift
NAME DESCRIPTION PARAMETERS OBJECTS
cache-service Red Hat Data Grid... 8 (1 blank) 4
cakephp-mysql-example An example CakePHP... 21 (4 blank) 8
cakephp-mysql-persistent An example CakePHP... 22 (4 blank) 9
...output omitted...

To evaluate any template, use the oc describe template template-name -n openshift
command to view more details about the template, including the description, the labels that the

template uses, the template parameters, and the resources that the template generates.

The following example shows the details of the cache-service template:

[user@host ~]$ oc describe template cache-service -n openshift
Name: cache-service
Namespace: openshift
Created: 2 months ago
Labels: samples.operator.openshift.io/managed=true
template=cache-service
Description: Red Hat Data Grid is an in-memory, distributed key/value store.
Annotations: iconClass=icon-datagrid

54 DO280-OCP4.14-en-1-20240215

Chapter 2 | Deploy Packaged Applications

...output omitted...

Parameters:
 Name: APPLICATION_NAME
 Display Name: Application Name
 Description: Specifies a name for the application.
 Required: true
 Value: cache-service

 ...output omitted...

 Name: APPLICATION_PASSWORD
 Display Name: Client Password
 Description: Sets a password to authenticate client applications.
 Required: false
 Generated: expression
 From: [a-zA-Z0-9]{16}

Object Labels: template=cache-service

Message: <none>

Objects:
 Secret ${APPLICATION_NAME}
 Service ${APPLICATION_NAME}-ping
 Service ${APPLICATION_NAME}
 StatefulSet.apps ${APPLICATION_NAME}

Use the description to determine the purpose of the template.

The parameters provide deployment flexibility.

The value field provides a default value that you can override.

The Generated and From fields also generate default values.

The object labels are applied to all resources that the template creates.

The objects section lists the resources that the template creates.

In addition to using the oc describe command to view information about a template, the

oc process command provides a --parameters option to view only the parameters that a

template uses. For example, use the following command to view the parameters that the cache-
service template uses:

[user@host ~]$ oc process --parameters cache-service -n openshift
NAME ... GENERATOR VALUE
APPLICATION_NAME ... cache-service
IMAGE ... registry.redhat.io/jboss-datagrid-7/...
NUMBER_OF_INSTANCES ... 1
REPLICATION_FACTOR ... 1
EVICTION_POLICY ... evict
TOTAL_CONTAINER_MEM ... 512
APPLICATION_USER ...
APPLICATION_PASSWORD ... expression [a-zA-Z0-9]{16}

DO280-OCP4.14-en-1-20240215 55

Chapter 2 | Deploy Packaged Applications

Use the -f option to view the parameters of a template that are defined in a file:

[user@host ~]$ oc process --parameters -f my-cache-service.yaml

Use the oc get template template-name -o yaml -n namespace command to view the

manifest for the template. The following example retrieves the template manifest for the cache-
service template:

[user@host ~]$ oc get template cache-service -o yaml -n openshift
apiVersion: template.openshift.io/v1
kind: Template
labels:
 template: cache-service
metadata:
 ...output omitted...
- apiVersion: v1
 kind: Secret
 metadata:
 ...output omitted...
- apiVersion: v1
 kind: Service
 metadata:
 ...output omitted...
- apiVersion: v1
 kind: Service
 metadata:
 ...output omitted...
- apiVersion: apps/v1
 kind: StatefulSet
 metadata:
 ...output omitted...
parameters:
- description: Specifies a name for the application.
 displayName: Application Name
 name: APPLICATION_NAME
 required: true
 value: cache-service
- description: Sets an image to bootstrap the service.
 name: IMAGE
 ...output omitted...

In the template manifest, examine how the template creates resources. The manifest is also a

good resource for learning how to create your own templates.

Using Templates

The oc new-app command has a --template option that can deploy the template resources

directly from the openshift project. The following example deploys the resources that are

defined in the cache-service template from the openshift project:

[user@host ~]$ oc new-app --template=cache-service -p APPLICATION_USER=my-user

56 DO280-OCP4.14-en-1-20240215

Chapter 2 | Deploy Packaged Applications

Using the oc new-app command to deploy the template resources is convenient for

development and testing. However, for production usage, consume templates in a manner that

helps resource and configuration tracking. For example, the oc new-app command can only

create new resources, not update existing resources.

You can use the oc process command to apply parameters to a template, to produce manifests

to deploy the templates with a set of parameters. The oc process command can process both

templates that are stored in files locally, and templates that are stored in the cluster. However, to

process templates in a namespace, you must have write permissions on the template namespace.

For example, to run oc process on the templates in the openshift namespace, you must have

write permissions on this namespace.

Note

Unprivileged users can read the templates in the openshift namespace by

default. Those users can extract the template from the openshift namespace and

create a copy in a project where they have wider permissions. By copying a template

to a project, they can use the oc process command on the template.

Deploying Applications from Templates

The oc process command uses parameter values to transform a template into a set of related

Kubernetes resource manifests. For example, the following command creates a set of resource

manifests for the my-cache-service template. When you use the -o yaml option, the

resulting manifests are in the YAML format. The example writes the manifests to a my-cache-
service-manifest.yaml file:

[user@host ~]$ oc process my-cache-service \
 -p APPLICATION_USER=user1 -o yaml > my-cache-service-manifest.yaml

The previous example uses the -p option to provide a parameter value to the only required

parameter without a default value.

Use the -f option with the oc process command to process a template that is defined in a file:

[user@host ~]$ oc process -f my-cache-service.yaml \
 -p APPLICATION_USER=user1 -o yaml > my-cache-service-manifest.yaml

Use the -p option with key=value pairs with the oc process command to use parameter

values that override the default values. The following example passes three parameter values to

the my-cache-service template, and overrides the default values of the specified parameters:

[user@host ~]$ oc process my-cache-service -o yaml \
 -p TOTAL_CONTAINER_MEM=1024 \
 -p APPLICATION_USER='cache-user' \
 -p APPLICATION_PASSWORD='my-secret-password' \
 > my-cache-service-manifest.yaml

Instead of specifying parameters on the command line, place the parameters in a file. This option

cleans up the command line when many parameter values are required. Save the parameters

file in a version control system to keep records of the parameters that are used in production

deployments.

DO280-OCP4.14-en-1-20240215 57

Chapter 2 | Deploy Packaged Applications

For example, instead of using the command-line options in the previous examples, place the key-

value pairs in a my-cache-service-params.env file. Add the key-value pairs to the file, with

each pair on a separate line:

TOTAL_CONTAINER_MEM=1024
APPLICATION_USER='cache-user'
APPLICATION_PASSWORD='my-secret-password'

The corresponding oc process command uses the --param-file option to pass the

parameters as follows:

[user@host ~]$ oc process my-cache-service -o yaml \
 --param-file=my-cache-service-params.env > my-cache-service-manifest.yaml

Generating a manifest file is not required to use templates. Instead, pipe the output of the oc
process command directly to the input for the oc apply -f - command. The oc apply
command creates live resources on the Kubernetes cluster.

[user@host ~]$ oc process my-cache-service \
 --param-file=my-cache-service-params.env | oc apply -f -

Because templates are flexible, you can use the same template to create different resources by

changing the input parameters.

Updating Apps from Templates

Because you use the oc apply command, after deploying a set of manifests from a template,

you can process the template again and use oc apply for updates. This procedure can make

simple changes to deployed templates, such as changing a parameter. However, many workload

updates are not possible with this mechanism. To manage more complex applications, consider

using other mechanisms such as Helm charts, which are described elsewhere in this course.

To compare the results of applying a different parameters file to a template against the live

resources, pipe the manifest to the oc diff -f - command. For example, given a second

parameter file named my-cache-service-params-2.env, use the following command:

[user@host ~]$ oc process my-cache-service -o yaml \
 --param-file=my-cache-service-params-2.env | oc diff -f -
 ...output omitted...
- generation: 1
+ generation: 2
 labels:
 application: cache-service
 template: cache-service
@@ -86,10 +86,10 @@
 timeoutSeconds: 10
 resources:
 limits:
- memory: 1Gi
+ memory: 2Gi
 requests:
 cpu: 500m
- memory: 1Gi

58 DO280-OCP4.14-en-1-20240215

Chapter 2 | Deploy Packaged Applications

+ memory: 2Gi
 terminationMessagePath: /dev/termination-log
 terminationMessagePolicy: File
 volumeMounts:

In this case, the configuration change increases the memory usage of the application. The output

shows that the second generation uses 2Gi of memory instead of 1Gi.

After verifying that the changes are what you intend, you can pipe the output of the oc process
to the oc apply -f - command.

Managing Templates

For production usage, make a customized copy of the template, to change the default values of

the template to suitable values for the target project. To copy a template into your project, use the

oc get template command with the -o yaml option to copy the template YAML to a file.

The following example copies the cache-service template from the openshift project to a

YAML file named my-cache-service.yaml:

[user@host ~]$ oc get template cache-service -o yaml \
 -n openshift > my-cache-service.yaml

After creating a YAML file for a template, consider making the following changes to the template:

• Give the template a new name that is specific to the target use of the template resources.

• Apply appropriate changes to the parameter default values at the end of the file.

• Remove the namespace field of the template resource.

You can process templates in other namespaces, if you can create the processed template

resource in those namespaces. Processing the template in a different project without changing

the template namespace to match the target namespace gives an error. Optionally, you can also

delete the namespace field from the metadata field of the template resource.

After you have a YAML file for a template, use the oc create -f command to upload the

template to the current project. In this case, the oc create command is not creating the

resources that the template defines. Instead, the command is creating a template resource in

the project. Using a template that is uploaded to a project clarifies which template provides the

resource definitions of a project. After uploading, the template is available to anyone with access

to the project.

The following example uploads a customized template that is defined in the my-cache-
service.yaml file to the current project:

[user@host ~]$ oc create -f my-cache-service.yaml

Use the -n namespace option to upload the template to a different project. The following

example uploads the template that is defined in the my-cache-service.yaml file to the

shared-templates project:

[user@host ~]$ oc create -f my-cache-service.yaml -n shared-templates

Use the oc get templates command to view a list of available templates in the project:

DO280-OCP4.14-en-1-20240215 59

Chapter 2 | Deploy Packaged Applications

[user@host ~]$ oc get templates -n shared-templates
NAME DESCRIPTION PARAMETERS OBJECTS
my-cache-service Red Hat Data Grid... 8 (1 blank) 4

References

For more information, refer to the Understanding Templates section in the Using

Templates chapter in the Red Hat OpenShift Container Platform 4.14 Images

documentation at

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.14/html-single/images/index#templates-

overview_using-templates

For more information, refer to the OpenShift CLI Developer Command Reference

section in the OpenShift CLI (oc) chapter in the Red Hat OpenShift Container

Platform 4.14 CLI Tools documentation at

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.14/html-single/cli_tools/index#cli-developer-

commands

Kubernetes Documentation - kubectl Commands

https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands

60 DO280-OCP4.14-en-1-20240215

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/images/index#templates-overview_using-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/images/index#templates-overview_using-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/images/index#templates-overview_using-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/cli_tools/index#cli-developer-commands
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/cli_tools/index#cli-developer-commands
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/cli_tools/index#cli-developer-commands
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands

Chapter 2 | Deploy Packaged Applications

Guided Exercise

OpenShift Templates

Deploy and update an application from a template that is stored in another project.

Outcomes
• Deploy and update an application from a template.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your

system for this exercise.

This command ensures that all resources are available for this exercise.

[student@workstation ~]$ lab start packaged-templates

Instructions

 1. Log in to the OpenShift cluster as the developer user with the developer password.

1.1. Log in to the OpenShift cluster.

[student@workstation ~]$ oc login -u developer -p developer \
 https://api.ocp4.example.com:6443
Login successful.
...output omitted...

 2. Examine the available templates in the cluster, in the openshift project. Identify an

appropriate template to deploy a MySQL database.

2.1. Use the get command to retrieve a list of templates in the cluster, in the openshift
project.

[student@workstation ~]$ oc get templates -n openshift
NAME DESCRIPTION PARAMETERS OBJECTS
...output omitted...
mysql-ephemeral MySQL database... 8 (3 generated) 3
mysql-persistent MySQL database... 9 (3 generated) 4
...output omitted...

2.2. Use the oc process --parameters command to view the parameters of the

mysql-persistent template.

[student@workstation ~]$ oc process --parameters mysql-persistent \
 -n openshift
NAME DESCRIPTION GENERATOR VALUE
MEMORY_LIMIT ... 512Mi

DO280-OCP4.14-en-1-20240215 61

Chapter 2 | Deploy Packaged Applications

NAMESPACE ... openshift
DATABASE_SERVICE_NAME ... mysql
MYSQL_USER ... expression user[A-Z0-9]{3}
MYSQL_PASSWORD ... expression [a-zA-Z0-9]{16}
MYSQL_ROOT_PASSWORD ... expression [a-zA-Z0-9]{16}
MYSQL_DATABASE ... sampledb
VOLUME_CAPACITY ... 1Gi
MYSQL_VERSION ... 8.0-el8

All the required parameters have either default values or generated values.

 3. Use the mysql-persistent template to deploy a database by processing the template.

3.1. Create the packaged-templates project.

[student@workstation ~]$ oc new-project packaged-templates
Now using project "packaged-templates" on server ...
...output omitted...

3.2. Use the oc new-app command to deploy the application.

[student@workstation ~]$ oc new-app --template=mysql-persistent \
 -p MYSQL_USER=user1 \
 -p MYSQL_PASSWORD=mypasswd
--> Deploying template "packaged-templates/mysql-persistent" to project packaged-
templates
...output omitted...
--> Success
 Application is not exposed. You can expose services to the outside world by
 executing one or more of the commands below:
 'oc expose service/mysql'
 Run 'oc status' to view your app.

3.3. Use the watch command to verify that the pods are running. Wait for the mysql-1-
deploy pod to show a Completed status. Press Ctrl+C to exit the watch
command.

[student@workstation ~]$ watch oc get pods
NAME READY STATUS RESTARTS AGE
mysql-1-5t8h8 1/1 Running 0 83s
mysql-1-deploy 0/1 Completed 0 84s

3.4. Connect to the database to verify that it is working.

[student@workstation ~]$ oc run query-db -it --rm \
 --image registry.ocp4.example.com:8443/rhel8/mysql-80 \
 --restart Never --command -- \
 /bin/bash -c \
 "mysql -uuser1 -pmypasswd --protocol tcp \
 -h mysql -P3306 sampledb -e 'SHOW DATABASES;'"
mysql: [Warning] Using a password on the command line interface can be insecure.
+--------------------+
| Database |

62 DO280-OCP4.14-en-1-20240215

Chapter 2 | Deploy Packaged Applications

+--------------------+
| information_schema |
| performance_schema |
| sampledb |
+--------------------+
pod "query-db" deleted

The query-db pod uses the mysql command from the mysql-80 image to send

the SHOW DATABASES; query. The --rm option deletes the pod after execution

terminates.

 4. Deploy the application from the custom template, in the ~/DO280/labs/packaged-
templates/custom-template/roster-template.yaml file, to the project. The

application initializes and uses the database that the mysql-persistent template

deployed.

4.1. Upload the custom template to the project.

[student@workstation ~]$ oc create -f \
 ~/DO280/labs/packaged-templates/custom-template/roster-template.yaml
template.template.openshift.io/roster-template created

4.2. Use oc get templates to view the available templates in the packaged-
templates project.

[student@workstation ~]$ oc get templates
NAME DESCRIPTION PARAMETERS OBJECTS
roster-template Example application for DO280... 8 (2 blank) 4

4.3. Use the oc process --parameters command to view the parameter of the

roster-template template.

[student@workstation ~]$ oc process --parameters roster-template
NAME DESCRIPTION GENERATOR VALUE
IMAGE ... registry.../do280-roster:v1
APPNAME ... do280-roster
NAMESPACE ... packaged-templates
DATABASE_SERVICE_NAME ... mysql
MYSQL_USER ...
MYSQL_PASSWORD ...
MYSQL_DATABASE ... sampledb
INIT_DB ... False

4.4. Use the oc process command to generate the manifests for the roster-
template application resources, and use the oc apply command to create the

resources in the Kubernetes cluster.

You must use the same database credentials that you used in an earlier step to

configure the database, so that the application can access the database.

DO280-OCP4.14-en-1-20240215 63

Chapter 2 | Deploy Packaged Applications

[student@workstation ~]$ oc process roster-template \
 -p MYSQL_USER=user1 -p MYSQL_PASSWORD=mypasswd -p INIT_DB=true | oc apply -f -
...output omitted...
secret/mysql configured
deployment.apps/do280-roster created
service/do280-roster created
route.route.openshift.io/do280-roster created

4.5. Use the oc get pods command to confirm that the application is running.

[student@workstation ~]$ oc get pods
NAME READY STATUS RESTARTS AGE
do280-roster-c7f596dd8-pqvlv 1/1 Running 0 60s
mysql-1-bl97v 1/1 Running 0 33m
mysql-1-deploy 0/1 Completed 0 33m

4.6. Use the oc get routes command to view the routes.

[student@workstation ~]$ oc get routes
NAME HOST/PORT ...
do280-roster do280-roster-packaged-templates.apps.ocp4.example.com ...

4.7. Open the application URL in the web browser. The header confirms the use of

version 1 of the application.

http://do280-roster-packaged-templates.apps.ocp4.example.com

4.8. Enter your information in the form and save it to the database.

 5. Deploy an updated version of the do280/roster application from the custom template in

the roster-template template. Use version 2 of the application and do not overwrite the

data in the database.

5.1. Create a text file named roster-parameters.env with the following content:

MYSQL_USER=user1
MYSQL_PASSWORD=mypasswd
IMAGE=registry.ocp4.example.com:8443/redhattraining/do280-roster:v2

The option of using a parameter file helps version control software to track changes.

5.2. Use the oc process command and the oc diff command to view the changes in

the new manifests when compared to the live application.

[student@workstation ~]$ oc process roster-template \
 --param-file=roster-parameters.env | oc diff -f -
diff -u -N ...output omitted...
--- /tmp/LIVE-1948327112/apps.v1.Deployment.packaged-templates...
+++ /tmp/MERGED-2797490080/apps.v1.Deployment.packaged-templates...
...output omitted...
 key: database-service
 name: mysql
 - name: INIT_DB

64 DO280-OCP4.14-en-1-20240215

Chapter 2 | Deploy Packaged Applications

- value: "true"
- image: registry.ocp4.example.com:8443/redhattraining/do280-roster:v1
+ value: "False"
+ image: registry.ocp4.example.com:8443/redhattraining/do280-roster:v2
 imagePullPolicy: IfNotPresent
 name: do280-roster-image
 ports:

The INIT_DB environment variable determines whether the application

initializes the database. The default False value is used when the parameter

is omitted. In the first deployment, the INIT_DB variable was set to the

True value, so the database was initialized. In this second deployment, the

deployment does not have to initialize the database again.

The IMAGE parameter changes the image that the template uses.

5.3. Use the oc process command to generate the manifests for the roster-
template application objects, and use the oc apply command to create the

application objects. With the changes from a previous step, you use the IMAGE
variable to use a different image for the update and omit the INIT_DB variable.

[student@workstation ~]$ oc process roster-template \
 --param-file=roster-parameters.env | oc apply -f -
secret/mysql configured
deployment.apps/do280-roster configured
service/do280-roster unchanged
route.route.openshift.io/do280-roster unchanged

5.4. Use watch to verify that the pods are running. Wait for the mysql-1-deploy pod to

show a Completed status. Press Ctrl+C to exit the watch command.

[student@workstation ~]$ watch oc get pods
NAME READY STATUS RESTARTS AGE
do280-roster-c7f596dd8-ktlvl 1/1 Running 0 60s
mysql-1-bl97v 1/1 Running 0 53m
mysql-1-deploy 0/1 Completed 0 53m

5.5. Open the application URL in the web browser. The route is unchanged, so you can

refresh the previous browser page if the page is still open. The header confirms the

use of version 2 of the application. The data that is pulled from the database is

unchanged.

http://do280-roster-packaged-templates.apps.ocp4.example.com

Finish

On the workstation machine, use the lab command to complete this exercise. This step is

important to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab finish packaged-templates

DO280-OCP4.14-en-1-20240215 65

Chapter 2 | Deploy Packaged Applications

Helm Charts

Objectives
• Deploy and update applications from resource manifests that are packaged as Helm charts.

Helm
Helm is an open source application that helps to manage the lifecycle of Kubernetes applications.

Helm introduces the concept of charts. A chart is a package that describes a set of Kubernetes

resources that you can deploy. Helm charts define values that you can customize when deploying

an application. Helm includes functions to distribute charts and updates.

Many organizations distribute Helm charts to deploy applications. Often, Helm is the supported

mechanism to deploy a specific application.

However, Helm does not cover all needs to manage certain kinds of applications. Operators have a

more complete model that can handle the lifecycle of more complex applications. For more details

about operators, refer to Kubernetes Operators and the Operator Lifecycle Manager .

Helm Charts
A Helm chart defines Kubernetes resources that you can deploy. A chart is a collection of files

with a defined structure. These files include chart metadata (such as the chart name or version),

resource definitions, and supporting material.

Chart authors can use the template feature of the Go language for the resource definitions. For

example, instead of specifying the image for a deployment, charts can use user-provided values

for the image. By using values to choose an image, cluster administrators can replace a default

public image with an image from a private repository.

The following diagram shows the structure of a minimal Helm chart:

sample/
├── Chart.yaml
├── templates
| |── example.yaml
└── values.yaml

The Chart.yaml file contains chart metadata, such as the name and version of the chart.

The templates directory contains files that define application resources such as

deployments.

The values.yaml file contains default values for the chart.

Helm charts can contain hooks that Helm executes at different points during installations and

upgrades. Hooks can automate tasks for installations and upgrades. With hooks, Helm charts

can manage more complex applications than purely manifest-based processes. Review the chart

documentation to learn about the chart hooks and their implications.

66 DO280-OCP4.14-en-1-20240215

Chapter 2 | Deploy Packaged Applications

Using Helm Charts
Helm is a command-line application. The helm command interacts with the following entities:

Charts
Charts are the packaged applications that the helm command deploys.

Releases
A release is the result of deploying a chart. You can deploy a chart many times to the same

cluster. Each deployment is a different release.

Versions
A Helm chart can have many versions. Chart authors can release updates to charts, to adapt

to later application versions, introduce new features, or fix issues.

You can use and refer to charts in various ways. For example, if your local file system contains a

chart, then you can refer to that chart by using the path to the chart directory. You can also use a

path or a URL that contains a chart that is packaged in a tar archive with gzip compression.

Inspecting Helm Charts

Use the helm show command to display information about a chart. The show chart
subcommand displays general information, such as the maintainers, or the source URL.

[user@host ~]$ helm show chart chart-reference
apiVersion: v1
description: A Helm chart for Kubernetes
name: examplechart
version: 0.1.0
maintainers:
- email: dev@example.com
 name: Developer
sources:
- https://git.example.com/examplechart

The show values subcommand displays the default values for the chart. The output is in YAML

format and comes from the values.yaml file in the chart.

[user@host ~]$ helm show values chart-reference
image:
 repository: "sample"
 tag: "1.8.10"
 pullPolicy: IfNotPresent
...output omitted...

Chart resources use the values from the values.yaml file by default. You can override these

default values. You can use the output of the show values command to discover customizable

values.

Installing Helm Charts

After inspecting the chart, you can deploy the resources in the chart by using the helm install
command. In Helm, install refers to deploying the resources in a chart to create a release.

DO280-OCP4.14-en-1-20240215 67

Chapter 2 | Deploy Packaged Applications

Always refer to the documentation of the chart before installation to learn about prerequisites,

extra installation steps, and other information.

To install a chart, you must decide on the following parameters:

• The deployment target namespace

• The values to override

• The release name

Helm charts can contain Kubernetes resources of any kind. These resources can be namespaced

or non-namespaced. Like normal resource definitions, namespaced resources in charts can define

or omit a namespace declaration.

Most Helm charts that deploy applications do not create a namespace, and namespaced resources

in the chart omit a namespace declaration. Typically, when deploying a chart that follows this

structure, you create a namespace for the deployment, and Helm creates namespaced resources

in this namespace.

After deciding the target namespace, you can design the values to use. Inspect the

documentation and the output of the helm show values command to decide which values to

override.

You can define values by writing a YAML file that contains them. This file can follow the structure

from the output of the helm show values command, which contains the default values. Specify

only the values to override.

Consider the following output from the helm show values command for an example chart:

image:
 repository: "sample"
 tag: "1.8.10"
 pullPolicy: IfNotPresent

Create a values.yaml file without the image key if you do not want to override any image

parameters. Omit the pullPolicy key to override the tag key but not the pull policy. For

example, the following YAML file would override only the image tag:

image:
 tag: "1.8.10-patched"

Besides the YAML file, you can override specific values by using command-line arguments.

The final element to prepare a chart deployment is choosing a release name. You can deploy

a chart many times to a cluster. Each chart deployment must have a unique release name for

identification purposes. Many Helm charts use the release name to construct the name of the

created resources.

With the namespace, values, and release name, you can start the deployment process. The helm
install command creates a release in a namespace, with a set of values.

Rendering Manifests from a Chart

You can use the --dry-run option to preview the effects of installing a chart.

68 DO280-OCP4.14-en-1-20240215

Chapter 2 | Deploy Packaged Applications

[user@host ~]$ helm install release-name chart-reference --dry-run \
 --values values.yaml
NAME: release-name
LAST DEPLOYED: Tue May 30 13:14:57 2023
NAMESPACE: current-namespace
STATUS: pending-install
REVISION: 1
TEST SUITE: None
HOOKS:
MANIFEST:

Source: chart/templates/serviceaccount.yaml
apiVersion: v1
kind: ServiceAccount
metadata:
 name: my-release-sa
 labels:
...output omitted...

NOTES:
The application can be accessed via port 1234.
...output omitted...

General information about the new release

A list of the resources that the helm install command would create

Additional information

Note

You define values to use for the installation with the --values values.yaml
option. In this file, you override the default values from the chart that are defined in

the values.yaml file that the chart contains.

Often, chart resource names include the release name. In the example output of the helm
install command, the service account is a combination of the release name and the -sa text.

Chart authors can provide installation notes that use the chart values. In the same example, the

port number in the notes reflects a value from the values.yaml file.

If the preview looks correct, then you can run the same command without the --dry-run option

to deploy the resources and create the release.

Releases
When the helm install command runs successfully, besides creating the resources, Helm

creates a release. Helm stores information about the release as a secret of the helm.sh/
release.v1 type.

Inspecting Releases

Use the helm list command to inspect releases on a cluster.

DO280-OCP4.14-en-1-20240215 69

Chapter 2 | Deploy Packaged Applications

[user@host ~]$ helm list
NAME NAMESPACE REVISION ... STATUS CHART APP VERSION
my-release example 1 ... deployed example-4.12.1 1.8.10

Similarly to kubectl commands, many helm commands have the --all-namespaces and

--namespace options. The helm list command without options lists releases in the current

namespace. If you use the --all-namespaces option, then it lists releases in all namespaces. If

you use the --namespace option, then it lists releases in a single namespace.

Warning

Do not manipulate the release secret. If you remove the secret, then Helm cannot

operate with the release.

Upgrading Releases

The helm upgrade command can apply changes to existing releases, such as updating values or

the chart version.

Important

By default, this command automatically updates releases to use the latest version of

the chart.

The helm upgrade command uses similar arguments and options to the helm install
command. However, the helm upgrade command interacts with existing resources in the cluster

instead of creating resources from a blank state. Therefore, the helm upgrade command can

have more complex effects, such as conflicting changes. Always review the chart documentation

when using a later version of a chart, and when changing values. You can use the --dry-run
option to preview the manifests that the helm upgrade command uses, and compare them to

the running resources.

Rolling Back Helm Upgrades

Helm keeps a log of release upgrades, to review changes and roll back to previous releases.

You can review this log by using the helm history command:

[user@host ~]$ helm history release_name
REVISION UPDATED STATUS CHART APP VERSION DESCRIPTION
1 Wed May 31... superseded chart-0.0.6 latest Install complete
2 Wed May 31... deployed chart-0.0.7 latest Upgrade complete

You can use the helm rollback command to revert to an earlier revision:

[user@host ~]$ helm rollback release_name revision
Rollback was a success! Happy Helming!

Rolling back can have greater implications than upgrading, because upgrades might not be

reversible. If you keep a test environment with the same upgrades as a production environment,

then you can test rollbacks before performing them in the production environment to find

potential issues.

70 DO280-OCP4.14-en-1-20240215

Chapter 2 | Deploy Packaged Applications

Helm Repositories
Charts can be distributed as files, archives, or container images, or by using chart repositories.

The helm repo command provides the following subcommands to work with chart repositories.

Subcommand Description

add NAME REPOSITORY_URL Add a Helm chart repository.

list List Helm chart repositories.

update Update Helm chart repositories.

remove REPOSITORY1_NAME REPOSITORY2_NAME … Remove Helm chart repositories.

The following command adds a repository:

[user@host ~]$ helm repo add \
 openshift-helm-charts https://charts.openshift.io/
"openshift-helm-charts" has been added to your repositories

This command and other repository commands change only local configuration, and do not

affect any cluster resources. The helm repo add command updates the ~/.config/helm/
repositories.yaml configuration file, which keeps the list of configured repositories.

When repositories are configured, other commands can use the list of repositories to perform

actions. For example, the helm search repo command lists all available charts in the configured

repositories:

[user@host ~]$ helm search repo
NAME CHART VERSION APP VERSION DESCRIPTION
repo/chart 0.0.7 latest A sample chart
...output omitted...

By default, the helm search repo command shows only the latest version of a chart. Use

the --versions option to list all available versions. By default, the install and upgrade
commands use the latest version of the chart in the repository. You can use the --version
option to install specific versions.

References

Using Helm

https://helm.sh/docs/intro/using_helm/

Helm Charts

https://helm.sh/docs/topics/charts/

Helm Chart Repository Guide

https://helm.sh/docs/topics/chart_repository/

DO280-OCP4.14-en-1-20240215 71

https://helm.sh/docs/intro/using_helm/
https://helm.sh/docs/topics/charts/
https://helm.sh/docs/topics/chart_repository/

Chapter 2 | Deploy Packaged Applications

Guided Exercise

Helm Charts

Deploy and update an application from a chart that is stored in a catalog.

Outcomes
• Deploy an application and its dependencies from a Helm chart.

• Customize the deployment, including scaling and using a custom image.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your

system for this exercise.

This command ensures that the cluster API is reachable.

[student@workstation ~]$ lab start packaged-charts

Instructions

 1. Add the classroom Helm repository at the following URL and examine its contents.

http://helm.ocp4.example.com/charts

1.1. Use the helm repo list command to list the repositories that are configured for

the student user.

[student@workstation ~]$ helm repo list
Error: no repositories to show

If the do280-repo repository is present, then continue to the next step. Otherwise,

add the repository.

[student@workstation ~]$ helm repo add do280-repo \
 http://helm.ocp4.example.com/charts
"do280-repo" has been added to your repositories

1.2. Use the helm search command to list all the chart versions in the repository.

[student@workstation ~]$ helm search repo --versions
NAME CHART VERSION APP VERSION ...
do280-repo/etherpad 0.0.7 latest ...
do280-repo/etherpad 0.0.6 latest ...
...output omitted...

The etherpad chart has the 0.0.7 and 0.0.6 versions. This chart is a copy of a chart

from the https://github.com/redhat-cop/helm-charts repository.

72 DO280-OCP4.14-en-1-20240215

https://github.com/redhat-cop/helm-charts

Chapter 2 | Deploy Packaged Applications

 2. Install the 0.0.6 version of the etherpad chart to a new packaged-charts-
development project, with the example-app release name.

Use the registry.ocp4.example.com:8443/etherpad/etherpad:1.8.18 image

in the offline classroom registry. Expose the application at the https://development-
etherpad.apps.ocp4.example.com URL.

2.1. Examine the values of the chart.

[student@workstation ~]$ helm show values do280-repo/etherpad --version 0.0.6
Default values for etherpad.
replicaCount: 1

defaultTitle: "Labs Etherpad"
defaultText: "Assign yourself a user and share your ideas!"

image:
 repository: etherpad
 name:
 tag:
 pullPolicy: IfNotPresent
...output omitted...
route:
 enabled: true
 host: null
 targetPort: http
...output omitted...
resources: {}
...output omitted...

You can configure the image, the replica count, and other values. By default, the chart

creates a route. You can customize the route with the route.host key.

With the default configuration, the chart uses the docker.io/etherpad/
etherpad:latest image. The classroom environment is designed for offline use.

Use the registry.ocp4.example.com:8443/etherpad/etherpad:1.8.18
image from the local registry instead.

2.2. Create a values.yaml file with the following content:

image:
 repository: registry.ocp4.example.com:8443/etherpad
 name: etherpad
 tag: 1.8.18
route:
 host: development-etherpad.apps.ocp4.example.com

2.3. Log in to the cluster as the developer user with the developer password.

[student@workstation ~]$ oc login -u developer -p developer \
 https://api.ocp4.example.com:6443
...output omitted...

2.4. Create a packaged-charts-development project.

DO280-OCP4.14-en-1-20240215 73

Chapter 2 | Deploy Packaged Applications

[student@workstation ~]$ oc new-project packaged-charts-development
Now using project "packaged-charts-development" on server ...
...output omitted...

2.5. Install the etherpad chart to the packaged-charts-development project. Use

the values.yaml file that you created in a previous step. Use example-app as the

release name.

[student@workstation ~]$ helm install example-app do280-repo/etherpad \
 -f values.yaml --version 0.0.6
NAME: example-app
LAST DEPLOYED: Mon Jun 5 06:31:26 2023
NAMESPACE: packaged-charts-development
STATUS: deployed
REVISION: 1
TEST SUITE: None

2.6. Get the route to verify that you customized the route correctly.

[student@workstation ~]$ oc get route
NAME HOST/PORT ...
example-app-etherpad development-etherpad.apps.ocp4.example.com ...

2.7. Open a web browser and navigate to https://development-
etherpad.apps.ocp4.example.com. The application welcome page appears.

 3. Upgrade a Helm chart by installing the 0.0.7 version of the chart.

3.1. Use the helm list command to verify the installed version.

[student@workstation ~]$ helm list
NAME NAMESPACE REVISION ... STATUS CHART
example-app packaged-charts-development 1 ... deployed etherpad-0.0.6

3.2. Use the helm search command to verify that the repository contains a later

version.

[student@workstation ~]$ helm search repo --versions
NAME CHART VERSION APP VERSION ...
do280-repo/etherpad 0.0.7 latest ...
do280-repo/etherpad 0.0.6 latest ...
...output omitted...

3.3. Use the helm upgrade command to upgrade to the latest version of the chart.

74 DO280-OCP4.14-en-1-20240215

Chapter 2 | Deploy Packaged Applications

[student@workstation ~]$ helm upgrade example-app do280-repo/etherpad \
 -f values.yaml --version 0.0.7
Release "example-app" has been upgraded. Happy Helming!
NAME: example-app
LAST DEPLOYED: Mon Jun 5 06:41:00 2023
NAMESPACE: packaged-charts-development
STATUS: deployed
REVISION: 2
TEST SUITE: None

3.4. Use the helm list command to verify the installed version.

[student@workstation ~]$ helm list
NAME NAMESPACE REVISION ... STATUS CHART
example-app packaged-charts-development 2 ... deployed etherpad-0.0.7

3.5. Reload the application welcome page in the web browser.

The updates in the new version of the chart do not affect the deployment in this

exercise. When you reload the application, the browser displays the same application

welcome page.

 4. Create a second deployment of the chart to a new packaged-charts-production
project, with the example-app release name.

Expose the application at the https://etherpad.apps.ocp4.example.com URL, by

customizing the route.host key.

4.1. Create a packaged-charts-production project.

[student@workstation ~]$ oc new-project packaged-charts-production
Now using project "packaged-charts-production" on server ...
...output omitted...

4.2. Edit the values.yaml file to configure the host route to

etherpad.apps.ocp4.example.com.

image:
 repository: registry.ocp4.example.com:8443/etherpad
 name: etherpad
 tag: 1.8.18
route:
 host: etherpad.apps.ocp4.example.com

4.3. Install the 0.0.7 version of the etherpad chart to the packaged-review-
production project.

Use the values.yaml file that you edited in a previous step. Use production as

the release name.

[student@workstation ~]$ helm install example-app do280-repo/etherpad \
 -f values.yaml --version 0.0.7
...output omitted...

DO280-OCP4.14-en-1-20240215 75

Chapter 2 | Deploy Packaged Applications

4.4. Verify the deployment by opening a web browser and navigating to the application

URL. https://etherpad.apps.ocp4.example.com

This URL corresponds to the host that you specified in the values.yaml file. The

application welcome page appears in the production URL.

 5. Reconfigure the production deployment to sustain heavier use. Change the number of

replicas to 3.

5.1. Verify that the application has a single pod.

[student@workstation ~]$ oc get pods
NAME READY STATUS RESTARTS AGE
example-app-etherpad-6b85b94975-qfpqm 1/1 Running 0 12s

5.2. Edit the values.yaml file. Add a replicaCount key with the 3 value.

image:
 repository: registry.ocp4.example.com:8443/etherpad
 name: etherpad
 tag: 1.8.18
route:
 host: etherpad.apps.ocp4.example.com
replicaCount: 3

5.3. Use the helm upgrade command to update the parameters.

[student@workstation ~]$ helm upgrade example-app do280-repo/etherpad \
 -f values.yaml
...output omitted...

5.4. Verify that the application has three pods.

[student@workstation ~]$ oc get pods
NAME READY STATUS RESTARTS AGE
example-app-etherpad-6b85b94975-h9qgz 1/1 Running 0 13s
example-app-etherpad-6b85b94975-lbr8h 1/1 Running 0 13s
example-app-etherpad-6b85b94975-qfpqm 1/1 Running 0 94s

5.5. Reload the application welcome page in the web browser.

The deployment continues working after adding replicas.

 6. Remove the values.yaml file.

[student@workstation ~]$ rm values.yaml

Finish

On the workstation machine, use the lab command to complete this exercise. This step is

important to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab finish packaged-charts

76 DO280-OCP4.14-en-1-20240215

Chapter 2 | Deploy Packaged Applications

DO280-OCP4.14-en-1-20240215 77

Chapter 2 | Deploy Packaged Applications

Lab

Deploy Packaged Applications

Deploy and update applications from resource manifests that are packaged for sharing and

distribution.

Outcomes
• Deploy an application and its dependencies from resource manifests that are packaged as

a Helm chart.

• Update the application to a later version by using the Helm chart.

• Use a container image in a private container registry instead of a public registry.

• Customize the deployment to add resource requests and limits.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your

system for this exercise.

This command ensures that the cluster API is reachable.

[student@workstation ~]$ lab start packaged-review

Instructions

1. Log in to the cluster as the developer user with the developer password. Create the

packaged-review and packaged-review-prod projects.

2. Add the classroom Helm repository at the http://helm.ocp4.example.com/charts
URL and examine its contents.

3. Install the 0.0.6 version of the etherpad chart on the packaged-review namespace,

with the test release name. Use the registry.ocp4.example.com:8443/etherpad/
etherpad:1.8.17 image in the offline classroom registry.

Create a values-test.yaml file with the image repository, name, and tag.

Field Value

image.repository registry.ocp4.example.com:8443/etherpad

image.name etherpad

image.tag 1.8.17

4. Upgrade the etherpad application in the packaged-review namespace to the 0.0.7

version of the chart. Set the image tag for the deployment in the values-test.yaml file.

78 DO280-OCP4.14-en-1-20240215

Chapter 2 | Deploy Packaged Applications

Field Value

image.tag 1.8.18

5. Using version 0.0.6, create a second deployment of the chart in the packaged-review-
prod namespace, with the prod release name. Copy the values-test.yaml file to the

values-prod.yaml file, and set the route host.

Field Value

route.host etherpad.apps.ocp4.example.com

Access the application in the route URL to verify that it is working correctly.

https://etherpad.apps.ocp4.example.com

6. Add limits to the etherpad instance in the packaged-review-prod namespace. The

chart values example contains comments that show the required format for this change. Set

limits and requests for the deployment in the values-prod.yaml file. Use version 0.0.7
of the chart.

Field Value

resources.limits.memory 256Mi

resources.requests.memory 128Mi

Evaluation

As the student user on the workstation machine, use the lab command to grade your work.

Correct any reported failures and rerun the command until successful.

[student@workstation ~]$ lab grade packaged-review

Finish

As the student user on the workstation machine, use the lab command to complete this

exercise. This step is important to ensure that resources from previous exercises do not impact

upcoming exercises.

[student@workstation ~]$ lab finish packaged-review

DO280-OCP4.14-en-1-20240215 79

Chapter 2 | Deploy Packaged Applications

Solution

Deploy Packaged Applications

Deploy and update applications from resource manifests that are packaged for sharing and

distribution.

Outcomes
• Deploy an application and its dependencies from resource manifests that are packaged as

a Helm chart.

• Update the application to a later version by using the Helm chart.

• Use a container image in a private container registry instead of a public registry.

• Customize the deployment to add resource requests and limits.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your

system for this exercise.

This command ensures that the cluster API is reachable.

[student@workstation ~]$ lab start packaged-review

Instructions

1. Log in to the cluster as the developer user with the developer password. Create the

packaged-review and packaged-review-prod projects.

1.1. Log in to the cluster as the developer user with the developer password.

[student@workstation ~]$ oc login -u developer -p developer \
 https://api.ocp4.example.com:6443

1.2. Create the packaged-review project.

[student@workstation ~]$ oc new-project packaged-review
Now using project "packaged-review" on server ...
...output omitted...

1.3. Create the packaged-review-prod project.

[student@workstation ~]$ oc new-project packaged-review-prod
Now using project "packaged-review-prod" on server ...
...output omitted...

2. Add the classroom Helm repository at the http://helm.ocp4.example.com/charts
URL and examine its contents.

80 DO280-OCP4.14-en-1-20240215

Chapter 2 | Deploy Packaged Applications

2.1. Use the helm repo list command to list the repositories that are configured for the

student user.

[student@workstation ~]$ helm repo list
NAME URL
do280-repo http://helm.ocp4.example.com/charts

If the do280-repo repository is present, then continue to the next step. Otherwise,

add the repository.

[student@workstation ~]$ helm repo add \
 do280-repo http://helm.ocp4.example.com/charts
"do280-repo" has been added to your repositories

2.2. Use the helm search command to list all the chart versions in the repository.

The etherpad chart has versions 0.0.6 and 0.0.7. This chart is a copy of a chart from

the https://github.com/redhat-cop/helm-charts repository.

[student@workstation ~]$ helm search repo --versions
NAME CHART VERSION APP VERSION DESCRIPTION
do280-repo/etherpad 0.0.7 latest ...
do280-repo/etherpad 0.0.6 latest ...
...output omitted...

3. Install the 0.0.6 version of the etherpad chart on the packaged-review namespace,

with the test release name. Use the registry.ocp4.example.com:8443/etherpad/
etherpad:1.8.17 image in the offline classroom registry.

Create a values-test.yaml file with the image repository, name, and tag.

Field Value

image.repository registry.ocp4.example.com:8443/etherpad

image.name etherpad

image.tag 1.8.17

3.1. Switch to the packaged-review project.

[student@workstation ~]$ oc project packaged-review
Now using project "packaged-review" on server ...

3.2. Examine the values of the chart.

You can configure the image, the deployment resources, and other values. By default,

the chart creates a route.

[student@workstation ~]$ helm show values do280-repo/etherpad --version 0.0.6
Default values for etherpad.
replicaCount: 1

defaultTitle: "Labs Etherpad"

DO280-OCP4.14-en-1-20240215 81

Chapter 2 | Deploy Packaged Applications

defaultText: "Assign yourself a user and share your ideas!"

image:
 repository: etherpad
 name:
 tag:
 pullPolicy: IfNotPresent

...output omitted...

route:
 enabled: true
 host: null
 targetPort: http

...output omitted...

resources: {}
...output omitted...

The registry with the container image.

Container image name.

Container image tag.

Hostname for the OpenShift route resource.

The resource requests and limits for this workload. This value is set by default to

{}, which indicates that it is an empty map.

3.3. With the default configuration, the chart uses the docker.io/etherpad/
etherpad:latest container image.

This image is not suitable for the classroom environment. Use the

registry.ocp4.example.com:8443/etherpad/etherpad:1.8.17 container

image instead.

Create a values-test.yaml file with the following content:

image:
 repository: registry.ocp4.example.com:8443/etherpad
 name: etherpad
 tag: 1.8.17

3.4. Install the etherpad chart in the packaged-review namespace.

• Use the values-test.yaml file that you created in the previous step.

• Use test as the release name.

82 DO280-OCP4.14-en-1-20240215

Chapter 2 | Deploy Packaged Applications

[student@workstation ~]$ helm install test do280-repo/etherpad \
 -f values-test.yaml --version 0.0.6
NAME: test
LAST DEPLOYED: Fri Jun 30 01:03:42 2023
NAMESPACE: packaged-review
STATUS: deployed
REVISION: 1
TEST SUITE: None

3.5. Use the helm list command to verify the installed version of the etherpad chart.

[student@workstation ~]$ helm list
NAME NAMESPACE REVISION ... STATUS CHART APP VERSION
test packaged-review 1 ... deployed etherpad-0.0.6 latest

3.6. Verify that the pod is running and that the deployment is ready.

[student@workstation ~]$ oc get deployments,pods
NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/test-etherpad 1/1 1 1 27s

NAME READY STATUS RESTARTS AGE
pod/test-etherpad-c6657b556-4jh8z 1/1 Running 0 27s

3.7. Verify that the pod executes the specified container image.

[student@workstation ~]$ oc describe pods -n packaged-review | \
 egrep '^Name:|Image:'
Name: test-etherpad-c6657b556-4jh8z
 Image: registry.ocp4.example.com:8443/etherpad/etherpad:1.8.17

3.8. Get the route to obtain the application URL.

[student@workstation ~]$ oc get routes
NAME HOST/PORT ...
test-etherpad test-etherpad-packaged-review.apps.ocp4.example.com ...

3.9. Open a web browser and navigate to the following URL to view the application page.

https://test-etherpad-packaged-review.apps.ocp4.example.com

4. Upgrade the etherpad application in the packaged-review namespace to the 0.0.7

version of the chart. Set the image tag for the deployment in the values-test.yaml file.

Field Value

image.tag 1.8.18

4.1. Edit the values-test.yaml file and update the image tag value:

DO280-OCP4.14-en-1-20240215 83

Chapter 2 | Deploy Packaged Applications

image:
 repository: registry.ocp4.example.com:8443/etherpad
 name: etherpad
 tag: 1.8.18

4.2. Use the helm search command to verify that the repository contains a more recent

version of the etherpad chart.

[student@workstation ~]$ helm search repo --versions etherpad
NAME CHART VERSION APP VERSION DESCRIPTION
do280-repo/etherpad 0.0.7 latest ...
do280-repo/etherpad 0.0.6 latest ...

4.3. Use the helm upgrade command to upgrade to the latest version of the chart.

[student@workstation ~]$ helm upgrade test do280-repo/etherpad \
 -f values-test.yaml --version 0.0.7
Release "test" has been upgraded. Happy Helming!
NAME: test
LAST DEPLOYED: Fri Jun 30 01:05:07 2023
NAMESPACE: packaged-review
STATUS: deployed
REVISION: 2
TEST SUITE: None

4.4. Use the helm list command to verify the installed version of the etherpad chart.

[student@workstation ~]$ helm list
NAME NAMESPACE REVISION ... STATUS CHART APP VERSION
test packaged-review 2 ... deployed etherpad-0.0.7 latest

4.5. Verify that the pod is running and that the deployment is ready.

[student@workstation ~]$ oc get deployments,pods
NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/test-etherpad 1/1 1 1 3m31s

NAME READY STATUS RESTARTS AGE
pod/test-etherpad-59d775b78f-ftmsz 1/1 Running 0 64s

4.6. Verify that the pod executes the updated container image.

[student@workstation ~]$ oc describe pods -n packaged-review | \
 egrep '^Name:|Image:'
Name: test-etherpad-59d775b78f-ftmsz
 Image: registry.ocp4.example.com:8443/etherpad/etherpad:1.8.18

4.7. Reload the test-etherpad application welcome page in the web browser.

84 DO280-OCP4.14-en-1-20240215

Chapter 2 | Deploy Packaged Applications

5. Using version 0.0.6, create a second deployment of the chart in the packaged-review-
prod namespace, with the prod release name. Copy the values-test.yaml file to the

values-prod.yaml file, and set the route host.

Field Value

route.host etherpad.apps.ocp4.example.com

Access the application in the route URL to verify that it is working correctly.

https://etherpad.apps.ocp4.example.com

5.1. Switch to the packaged-review-prod project.

[student@workstation ~]$ oc project packaged-review-prod
Now using project "packaged-review-prod" on server ...

5.2. Copy the values-test.yaml file to values-prod.yaml.

[student@workstation ~]$ cp values-test.yaml values-prod.yaml

5.3. Set the route host in the values-prod.yaml file.

image:
 repository: registry.ocp4.example.com:8443/etherpad
 name: etherpad
 tag: 1.8.18
route:
 host: etherpad.apps.ocp4.example.com

5.4. Install the 0.0.6 version of the etherpad chart on the packaged-review-prod
namespace.

Use the values-prod.yaml file that you edited in the previous step. Use prod as the

release name.

[student@workstation ~]$ helm install prod do280-repo/etherpad \
 -f values-prod.yaml --version 0.0.6
NAME: prod
LAST DEPLOYED: Fri Jun 30 01:07:29 2023
NAMESPACE: packaged-review-prod
STATUS: deployed
REVISION: 1
TEST SUITE: None

5.5. Use the helm list command to verify the installed version of the etherpad chart.

[student@workstation ~]$ helm list
NAME NAMESPACE REVISION ... STATUS CHART APP VERSION
prod packaged-review-prod 1 ... deployed etherpad-0.0.6 latest

5.6. Verify that the pod is running and that the deployment is ready.

DO280-OCP4.14-en-1-20240215 85

Chapter 2 | Deploy Packaged Applications

[student@workstation ~]$ oc get deployments,pods
NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/prod-etherpad 1/1 1 1 65s

NAME READY STATUS RESTARTS AGE
pod/prod-etherpad-5947dfb987-9dclr 1/1 Running 0 65s

5.7. Verify that the pod executes the specified container image.

[student@workstation ~]$ oc describe pods -n packaged-review-prod | \
 egrep '^Name:|Image:'
Name: pod/prod-etherpad-5947dfb987-9dclr
 Image: registry.ocp4.example.com:8443/etherpad/etherpad:1.8.18

5.8. Verify the deployment by opening a web browser and navigating to the application

URL. This URL corresponds to the host that you specified in the values-prod.yaml
file. The application welcome page appears in the production URL.

https://etherpad.apps.ocp4.example.com

6. Add limits to the etherpad instance in the packaged-review-prod namespace. The

chart values example contains comments that show the required format for this change. Set

limits and requests for the deployment in the values-prod.yaml file. Use version 0.0.7
of the chart.

Field Value

resources.limits.memory 256Mi

resources.requests.memory 128Mi

6.1. Edit the values-prod.yaml file. Configure the deployment to request 128 MiB of

RAM, and limit RAM usage to 128 MiB.

image:
 repository: registry.ocp4.example.com:8443/etherpad
 name: etherpad
 tag: 1.8.18
route:
 host: etherpad.apps.ocp4.example.com
resources:
 limits:
 memory: 256Mi
 requests:
 memory: 128Mi

6.2. Use the helm upgrade command to upgrade to the latest version of the chart.

86 DO280-OCP4.14-en-1-20240215

Chapter 2 | Deploy Packaged Applications

[student@workstation ~]$ helm upgrade prod do280-repo/etherpad \
 -f values-prod.yaml --version 0.0.7
Release "prod" has been upgraded. Happy Helming!
NAME: prod
LAST DEPLOYED: Fri Jun 30 01:09:04 2023
NAMESPACE: packaged-review-prod
STATUS: deployed
REVISION: 2
TEST SUITE: None

6.3. Verify that the pod is running and that the deployment is ready.

[student@workstation ~]$ oc get deployments,pods
NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/prod-etherpad 1/1 1 1 3m14s

NAME READY STATUS RESTARTS AGE
pod/prod-etherpad-6b7d9dffbc-f7cng 1/1 Running 0 36s

6.4. Examine the application pod from the production instance of the application to verify

the configuration change.

[student@workstation ~]$ oc describe pods -n packaged-review-prod | \
 egrep -A1 '^Name:|Limits|Requests'
Name: prod-etherpad-6b7d9dffbc-f7cng
Namespace: packaged-review-prod
--
 Limits:
 memory: 256Mi
 Requests:
 memory: 128Mi

6.5. Examine the pod of the test instance of the application in the packaged-review
namespace. This deployment uses the values from the values-test.yaml file

that did not specify resource limits or requests. The pod in the packaged-review
namespace does not have a custom resource allocation.

[student@workstation ~]$ oc describe pods -n packaged-review | \
 egrep -A1 '^Name:|Limits|Requests'
Name: test-etherpad-59d775b78f-ftmsz
Namespace: packaged-review

6.6. Use the helm list command to verify the installed version of the etherpad chart.

[student@workstation ~]$ helm list
NAME NAMESPACE REVISION ... STATUS CHART APP VERSION
prod packaged-review-prod 2 ... deployed etherpad-0.0.7 latest

6.7. Reload the application welcome page in the web browser. The deployment continues

working after you add the limits.

DO280-OCP4.14-en-1-20240215 87

Chapter 2 | Deploy Packaged Applications

6.8. Remove the values-test.yaml and values-prod.yaml files.

[student@workstation ~]$ rm values-test.yaml values-prod.yaml

Evaluation

As the student user on the workstation machine, use the lab command to grade your work.

Correct any reported failures and rerun the command until successful.

[student@workstation ~]$ lab grade packaged-review

Finish

As the student user on the workstation machine, use the lab command to complete this

exercise. This step is important to ensure that resources from previous exercises do not impact

upcoming exercises.

[student@workstation ~]$ lab finish packaged-review

88 DO280-OCP4.14-en-1-20240215

Chapter 2 | Deploy Packaged Applications

Summary

• Use templates to deploy workloads with parameterization.

• Use the oc create -f command to upload a template to a project.

• Use the oc process command and the oc apply -f - command to deploy template

resources to the Kubernetes cluster.

• Provide parameters to customize the template with the -p or --param-file arguments to the

oc command.

• View Helm charts with the helm show chart chart-reference and helm show values
chart-reference commands.

• Use the helm install release-name chart-reference command to create a release

for a chart.

• Inspect releases by using the helm list command.

• Use the helm history release-name command to view the history of a release.

• Use the helm repo add repo-name repo-url command to add a Helm repository to the

~/.config/helm/repositories.yaml configuration file.

• Use the helm search repo command to search repositories in the ~/.config/helm/
repositories.yaml configuration file.

DO280-OCP4.14-en-1-20240215 89

90 DO280-OCP4.14-en-1-20240215

Chapter 3

Authentication and
Authorization

Goal Configure authentication with the HTPasswd
identity provider and assign roles to users and
groups.

Objectives • Configure the HTPasswd identity provider for
OpenShift authentication.

• Define role-based access controls and apply
permissions to users.

Sections • Configure Identity Providers (and Guided
Exercise)

• Define and Apply Permissions with RBAC (and
Guided Exercise)

Lab • Authentication and Authorization

DO280-OCP4.14-en-1-20240215 91

Chapter 3 | Authentication and Authorization

Configure Identity Providers

Objectives
• Configure the HTPasswd identity provider for OpenShift authentication.

OpenShift Users and Groups
Several OpenShift resources relate to authentication and authorization. The following list shows

the primary resource types and their definitions:

User
In the OpenShift Container Platform architecture, users are entities that interact with the API

server. The user resource represents an actor within the system. Assign permissions by adding

roles to the user directly or to the groups that the user is a member of.

Identity
The identity resource keeps a record of successful authentication attempts from a specific

user and identity provider. Any data about the source of the authentication is stored on the

identity.

Service Account
In OpenShift, applications can communicate with the API independently when user credentials

cannot be acquired. To preserve the integrity of the credentials for a regular user, credentials

are not shared and service accounts are used instead. With service accounts, you can control

API access without the need to borrow a regular user's credentials.

Group
Groups represent a specific set of users. Users are assigned to groups. Authorization policies

use groups to assign permissions to multiple users at the same time. For example, to grant 20

users access to objects within a project, it is better to use a group instead of granting access

to each user individually. OpenShift Container Platform also provides system groups or virtual

groups that are provisioned automatically by the cluster.

Role
A role defines the API operations that a user has permissions to perform on specified resource

types. You grant permissions to users, groups, and service accounts by assigning roles to

them.

User and identity resources are usually not created in advance. OpenShift usually creates these

resources automatically after a successful interactive login with OAuth.

Authenticating API Requests
The authentication and authorization security layers enable user interaction with the cluster.

When a user makes a request to the API, the API associates the user with the request. The

authentication layer authenticates the user. On successful authentication, the authorization layer

either accepts or rejects the API request. The authorization layer uses role-based access control

(RBAC) policies to determine user privileges.

The OpenShift API has two methods for authenticating requests:

• OAuth access tokens

92 DO280-OCP4.14-en-1-20240215

Chapter 3 | Authentication and Authorization

• X.509 client certificates

If the request does not present an access token or certificate, then the authentication layer

assigns it the system:anonymous virtual user and the system:unauthenticated virtual

group.

The Authentication Operator

The OpenShift Container Platform provides the Authentication operator, which runs an

OAuth server. The OAuth server provides OAuth access tokens to users when they attempt to

authenticate to the API. An identity provider must be configured and available to the OAuth

server. The OAuth server uses an identity provider to validate the identity of the requester. The

server reconciles the user with the identity and creates the OAuth access token for the user.

OpenShift automatically creates identity and user resources after a successful login.

Identity Providers

The OpenShift OAuth server can be configured to use many identity providers. The following lists

includes the more common identity providers:

HTPasswd
Validates usernames and passwords against a secret that stores credentials that are

generated by using the htpasswd command.

Keystone
Enables shared authentication with an OpenStack Keystone v3 server.

LDAP
Configures the LDAP identity provider to validate usernames and passwords against an

LDAPv3 server, by using simple bind authentication.

GitHub or GitHub Enterprise
Configures a GitHub identity provider to validate usernames and passwords against GitHub or

the GitHub Enterprise OAuth authentication server.

OpenID Connect
Integrates with an OpenID Connect identity provider by using an Authorization Code Flow.

The OAuth custom resource must be updated with your chosen identity provider. You can define

multiple identity providers, of the same or different kinds, on the same OAuth custom resource.

Authenticating as a Cluster Administrator
Before you can configure an identity provider and manage users, you must access your

OpenShift cluster as a cluster administrator. A newly installed OpenShift cluster provides two

ways to authenticate API requests with cluster administrator privileges. One way is to use the

kubeconfig file, which embeds an X.509 client certificate that never expires. Another way is to

authenticate as the kubeadmin virtual user. Successful authentication grants an OAuth access

token.

To create additional users and grant them different access levels, you must configure an identity

provider and assign roles to your users.

Authenticating with the X.509 Certificate

During installation, the OpenShift installer creates a unique kubeconfig file in the auth
directory. The kubeconfig file contains specific details and parameters for the CLI to connect a

client to the correct API server, including an X.509 certificate.

DO280-OCP4.14-en-1-20240215 93

Chapter 3 | Authentication and Authorization

The installation logs provide the location of the kubeconfig file:

INFO Run 'export KUBECONFIG=root/auth/kubeconfig' to manage the cluster with 'oc'.

Note

In the classroom environment, the utility machine stores the kubeconfig file at

/home/lab/ocp4/auth/kubeconfig.

To use the kubeconfig file to authenticate oc commands, you must copy the file to your

workstation and set the absolute or relative path to the KUBECONFIG environment variable. Then,

you can run any oc command that requires cluster administrator privileges without logging in to

OpenShift.

[user@host ~]$ export KUBECONFIG=/home/user/auth/kubeconfig
[user@host ~]$ oc get nodes

As an alternative, you can use the --kubeconfig option of the oc command.

[user@host ~]$ oc --kubeconfig /home/user/auth/kubeconfig get nodes

Authenticating with the kubeadmin Virtual User

After installation completes, OpenShift creates the kubeadmin virtual user. The kubeadmin
secret in the kube-system namespace contains the hashed password for the kubeadmin user.

The kubeadmin user has cluster administrator privileges.

The OpenShift installer dynamically generates a unique kubeadmin password for the cluster. The

installation logs provide the kubeadmin credentials to log in to the cluster. The cluster installation

logs also provide the login, password, and the URL for console access.

...output omitted...
INFO The cluster is ready when 'oc login -u kubeadmin -p shdU_trbi_6ucX_edbu_aqop'
...output omitted...
INFO Access the OpenShift web-console here:
 https://console-openshift-console.apps.ocp4.example.com
INFO Login to the console with user: kubeadmin, password: shdU_trbi_6ucX_edbu_aqop

Note

In the classroom environment, the utility machine stores the password for the

kubeadmin user in the /home/lab/ocp4/auth/kubeadmin-password file.

Deleting the Virtual User

After you define an identity provider, create a user, and assign that user the cluster-admin role,

you can remove the kubeadmin user credentials to improve cluster security.

[user@host ~]$ oc delete secret kubeadmin -n kube-system

94 DO280-OCP4.14-en-1-20240215

Chapter 3 | Authentication and Authorization

Warning

If you delete the kubeadmin secret before you configure another user with

cluster admin privileges, then you can administer your cluster only by using the

kubeconfig file. If you do not have a copy of this file in a safe location, then you

cannot recover administrative access to your cluster. The only alternative is to

destroy and reinstall your cluster.

Warning

Do not delete the kubeadmin user at any time during this course. The kubeadmin
user is essential to the course lab architecture. If you deleted this user, you would

have to delete the lab environment and re-create it.

Configuring the HTPasswd Identity Provider
The HTPasswd identity provider validates users against a secret that contains usernames and

passwords that are generated with the htpasswd command from the Apache HTTP Server

project. Only a cluster administrator can change the data inside the HTPasswd secret. Regular

users cannot change their own passwords.

Managing users with the HTPasswd identity provider might suffice for a proof-of-concept

environment with a small set of users. However, most production environments require a more

powerful identity provider that integrates with the organization's identity management system.

Configuring the OAuth Custom Resource

To use the HTPasswd identity provider, the OAuth custom resource must be edited to add an

entry to the .spec.identityProviders array:

apiVersion: config.openshift.io/v1
kind: OAuth
metadata:
 name: cluster
spec:
 identityProviders:
 - name: my_htpasswd_provider
 mappingMethod: claim
 type: HTPasswd
 htpasswd:
 fileData:
 name: htpasswd-secret

This provider name is prefixed to provider user names to form an identity name.

Controls how mappings are established between provider identities and user objects. With

the default claim value, you cannot log in with different identity providers.

An existing secret that contains data that is generated by using the htpasswd command.

DO280-OCP4.14-en-1-20240215 95

Chapter 3 | Authentication and Authorization

Updating the OAuth Custom Resource

To update the OAuth custom resource, use the oc get command to export the existing OAuth

cluster resource to a file in YAML format.

[user@host ~]$ oc get oauth cluster -o yaml > oauth.yaml

Then, open the resulting file in a text editor and make the needed changes to the embedded

identity provider settings.

After completing modifications and saving the file, you must apply the new custom resource by

using the oc replace command.

[user@host ~]$ oc replace -f oauth.yaml

Managing Users with the HTPasswd Identity Provider
Managing user credentials with the HTPasswd Identity Provider requires creating a temporary

htpasswd file, changing the file, and applying these changes to the secret.

Creating an HTPasswd File

The httpd-tools package provides the htpasswd utility, which must be installed and available

on your system.

Create the htpasswd file.

[user@host ~]$ htpasswd -c -B -b /tmp/htpasswd student redhat123

Important

Use the -c option only when creating a file. The -c option replaces all file content if

the file already exists.

Add or update credentials.

[user@host ~]$ htpasswd -b /tmp/htpasswd student redhat1234

Delete credentials.

[user@host ~]$ htpasswd -D /tmp/htpasswd student

Creating the HTPasswd Secret

To use the HTPasswd provider, you must create a secret that contains the htpasswd file data. The

following example uses a secret named htpasswd-secret.

[user@host ~]$ oc create secret generic htpasswd-secret \
 --from-file htpasswd=/tmp/htpasswd -n openshift-config

96 DO280-OCP4.14-en-1-20240215

Chapter 3 | Authentication and Authorization

Important

A secret that the HTPasswd identity provider uses requires adding the htpasswd=
prefix before specifying the path to the file.

Extracting Secret Data

When adding or removing users, use the oc extract command to retrieve the secret. Extracting

the secret ensures that you work on the current set of users.

By default, the oc extract command saves each key within a configuration map or secret as a

separate file. Alternatively, you can then redirect all data to a file or display it as standard output.

To extract data from the htpasswd-secret secret to the /tmp/ directory, use the following

command. The --confirm option replaces the file if it exists.

[user@host ~]$ oc extract secret/htpasswd-secret -n openshift-config \
 --to /tmp/ --confirm
/tmp/htpasswd

Updating the HTPasswd Secret

The secret must be updated after adding, changing, or deleting users. Use the oc set data
secret command to update a secret. Unless the file name is htpasswd, you must specify

htpasswd= to update the htpasswd key within the secret.

The following command updates the htpasswd-secret secret in the openshift-config
namespace by using the content of the /tmp/htpasswd file.

[user@host ~]$ oc set data secret/htpasswd-secret \
 --from-file htpasswd=/tmp/htpasswd -n openshift-config

After updating the secret, the OAuth operator redeploys pods in the openshift-
authentication namespace. Monitor the redeployment of the new OAuth pods by running the

following command:

[user@host ~]$ watch oc get pods -n openshift-authentication

Test additions, changes, or deletions to the secret after the new pods finish deploying.

Deleting Users and Identities
When a scenario occurs that requires you to delete a user, it is not sufficient to delete the user

from the identity provider. The user and identity resources must also be deleted.

You must remove the password from the htpasswd secret, remove the user from the local

htpasswd file, and then update the secret.

To delete the user from htpasswd, run the following command:

[user@host ~]$ htpasswd -D /tmp/htpasswd manager

Update the secret to remove all remnants of the user's password.

DO280-OCP4.14-en-1-20240215 97

Chapter 3 | Authentication and Authorization

[user@host ~]$ oc set data secret/htpasswd-secret \
 --from-file htpasswd=/tmp/htpasswd -n openshift-config

Remove the user resource with the following command:

[user@host ~]$ oc delete user manager
user.user.openshift.io "manager" deleted

Identity resources include the name of the identity provider. To delete the identity resource for the

manager user, find the resource and then delete it.

[user@host ~]$ oc get identities | grep manager
my_htpasswd_provider:manager my_htpasswd_provider manager manager ...

[user@host ~]$ oc delete identity my_htpasswd_provider:manager
identity.user.openshift.io "my_htpasswd_provider:manager" deleted

Assigning Administrative Privileges
The cluster-wide cluster-admin role grants cluster administration privileges to users and

groups. With this role, the user can perform any action on any resources within the cluster. The

following example assigns the cluster-admin role to the student user.

[user@host ~]$ oc adm policy add-cluster-role-to-user cluster-admin student

References

For more information about identity providers, refer to the Understanding Identity

Provider Configuration chapter in the Red Hat OpenShift Container Platform 4.14

Authentication and Authorization documentation at

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.14/html-single/authentication_and_authorization/

index#understanding-identity-provider

98 DO280-OCP4.14-en-1-20240215

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/authentication_and_authorization/index#understanding-identity-provider
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/authentication_and_authorization/index#understanding-identity-provider
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/authentication_and_authorization/index#understanding-identity-provider

Chapter 3 | Authentication and Authorization

Guided Exercise

Configure Identity Providers

Configure the HTPasswd identity provider and create users for cluster administrators.

Outcomes
• Create users and passwords for HTPasswd authentication.

• Configure the Identity Provider for HTPasswd authentication.

• Assign cluster administration rights to users.

Before You Begin

[student@workstation ~]$ lab start auth-providers

The command ensures that the cluster API is reachable, the httpd-utils package is

installed, and that the authentication settings are configured to the installation defaults.

Instructions

 1. Add an entry for two users, new_admin and new_developer. Assign the new_admin user

the redhat password, and assign the new_developer user the developer password.

1.1. Create an HTPasswd authentication file named htpasswd in the ~/DO280/
labs/auth-providers/ directory. Add the new_admin user with the redhat
password. The file name is arbitrary; this exercise uses the ~/DO280/labs/auth-
providers/htpasswd file.

Use the htpasswd command to populate the HTPasswd authentication file with

the usernames and encrypted passwords. The -B option uses bcrypt encryption.

By default, the htpasswd command uses the MD5 hashing algorithm if you do not

specify another algorithm.

[student@workstation ~]$ htpasswd -c -B -b ~/DO280/labs/auth-providers/htpasswd \
 new_admin redhat
Adding password for user new_admin

1.2. Add the new_developer user with the developer password to the ~/DO280/
labs/auth-providers/htpasswd file. The password for the new_developer
user is hashed with the MD5 algorithm, because no algorithm was specified and MD5

is the default hashing algorithm.

[student@workstation ~]$ htpasswd -b ~/DO280/labs/auth-providers/htpasswd \
 new_developer developer
Adding password for user new_developer

DO280-OCP4.14-en-1-20240215 99

Chapter 3 | Authentication and Authorization

1.3. Review the contents of the ~/DO280/labs/auth-providers/htpasswd file and

verify that it includes two entries with hashed passwords: one for the new_admin
user and another for the new_developer user.

[student@workstation ~]$ cat ~/DO280/labs/auth-providers/htpasswd
new_admin:$2y$05$qQaFbpx4hbf4uZe.SMLSduTN8uN4DNJMJ4jE5zXDA57WrTRlpu2QS
new_developer:$apr1$S0TxtLXl$QSRfBIufYP39pKNsIg/nD1

 2. Log in to OpenShift and create a secret that contains the HTPasswd users file.

2.1. Log in to the cluster as the admin user.

[student@workstation ~]$ oc login -u admin -p redhatocp \
 https://api.ocp4.example.com:6443
Login successful.

...output omitted...

2.2. Create a secret from the ~/DO280/labs/auth-providers/htpasswd file.

To use the HTPasswd identity provider, you must define a secret with a key

named htpasswd that contains the HTPasswd user file ~/DO280/labs/auth-
providers/htpasswd.

[student@workstation ~]$ oc create secret generic localusers \
 --from-file htpasswd=~/DO280/labs/auth-providers/htpasswd \
 -n openshift-config
secret/localusers created

2.3. Assign the new_admin user the cluster-admin role.

[student@workstation ~]$ oc adm policy add-cluster-role-to-user \
 cluster-admin new_admin
Warning: User 'new_admin' not found
clusterrole.rbac.authorization.k8s.io/cluster-admin added: "new_admin"

Note

The output indicates that the new_admin user is not found. You can safely ignore

this warning.

 3. Update the HTPasswd identity provider for the cluster so that your users can authenticate.

Configure the custom resource file and update the cluster.

3.1. Export the existing OAuth resource to a file named oauth.yaml in the ~/DO280/
labs/auth-providers directory.

[student@workstation ~]$ oc get oauth cluster \
 -o yaml > ~/DO280/labs/auth-providers/oauth.yaml

100 DO280-OCP4.14-en-1-20240215

Chapter 3 | Authentication and Authorization

Note

For convenience, an oauth.yaml file that contains the completed custom resource

file is downloaded to ~/DO280/solutions/auth-providers.

3.2. Edit the ~/DO280/labs/auth-providers/oauth.yaml file with your preferred

text editor. You can choose the names of the identityProviders and fileData
structures. For this exercise, use the myusers and localusers values, respectively.

The completed custom resource should match the following structure. Ensure

that the htpasswd, mappingMethod, name, and type strings are at the same

indentation level.

apiVersion: config.openshift.io/v1
kind: OAuth
...output omitted...
spec:
 identityProviders:
 - ldap:
...output omitted...
 type: LDAP
 - htpasswd:
 fileData:
 name: localusers
 mappingMethod: claim
 name: myusers
 type: HTPasswd

3.3. Apply the custom resource that was defined in the previous step.

[student@workstation ~]$ oc replace -f ~/DO280/labs/auth-providers/oauth.yaml
oauth.config.openshift.io/cluster replaced

Note

Authentication changes require redeploying pods in the openshift-
authentication namespace.

Use the watch command to examine the status of workloads in the openshift-
authentication namespace.

[student@workstation ~]$ watch oc get all -n openshift-authentication
NAME READY STATUS RESTARTS AGE
pod/oauth-openshift-6d68ffb9dc-6f8dr 1/1 Running 3 2m
...output omitted...

A few minutes after you ran the oc replace command, the redeployment starts.

Wait until new pods are running. Press Ctrl+C to exit the watch command.

Provided that the previously created secret was created correctly, you can log in by

using the HTPasswd identity provider.

DO280-OCP4.14-en-1-20240215 101

Chapter 3 | Authentication and Authorization

 4. Log in as the new_admin and as the new_developer user to verify the HTPasswd user

configuration.

4.1. Log in to the cluster as the new_admin user to verify that the HTPasswd

authentication is configured correctly. The authentication operator takes some time

to load the configuration changes from the previous step.

Note

If the authentication fails, then wait a few moments and try again.

[student@workstation ~]$ oc login -u new_admin -p redhat
Login successful.

...output omitted...

4.2. Use the oc get nodes command to verify that the new_admin user has the

cluster-admin role.

[student@workstation ~]$ oc get nodes
NAME STATUS ROLES AGE VERSION
master01 Ready control-plane,master,worker 13d v1.27.6+f67aeb3

4.3. Log in to the cluster as the new_developer user to verify that the HTPasswd

authentication is configured correctly.

[student@workstation ~]$ oc login -u new_developer -p developer
Login successful.

...output omitted...

4.4. Use the oc get nodes command to verify that the new_developer and

new_admin users do not have the same level of access.

[student@workstation ~]$ oc get nodes
Error from server (Forbidden): nodes is forbidden: User "new_developer" cannot
 list resource "nodes" in API group "" at the cluster scope

4.5. Log in as the new_admin user.

[student@workstation ~]$ oc login -u new_admin -p redhat
Login successful.

...output omitted...

4.6. List the current users.

102 DO280-OCP4.14-en-1-20240215

Chapter 3 | Authentication and Authorization

[student@workstation ~]$ oc get users
NAME UID ... IDENTITIES
admin 6126c5a9-4d18-4cdf-95f7-b16c3d3e7f24
new_admin 489c7402-d318-4805-b91d-44d786a92fc1 ... myusers:new_admin
new_developer 8dbae772-1dd4-4242-b2b4-955b005d9022 ... myusers:new_developer

Note

You might see additional users from previously completed exercises.

4.7. Display the list of current identities.

[student@workstation ~]$ oc get identity
NAME IDP NAME IDP USER NAME USER NAME
 USER UID
... admin
 6126c5a9-4d18-4cdf-95f7-b16c3d3e7f24
myusers:new_admin myusers new_admin new_admin
 489c7402-d318-4805-b91d-44d786a92fc1
myusers:new_developer myusers new_developer new_developer
 8dbae772-1dd4-4242-b2b4-955b005d9022

Note

You might see additional identities from previously completed exercises.

 5. As the new_admin user, create a HTPasswd user named manager with a password of

redhat.

5.1. Extract the file data from the secret to the ~/DO280/labs/auth-providers/
htpasswd file.

[student@workstation ~]$ oc extract secret/localusers -n openshift-config \
 --to ~/DO280/labs/auth-providers/ --confirm
/home/student/DO280/labs/auth-providers/htpasswd

5.2. Add an entry to your ~/DO280/labs/auth-providers/htpasswd file for the

additional manager user with the redhat password.

[student@workstation ~]$ htpasswd -b ~/DO280/labs/auth-providers/htpasswd \
 manager redhat
Adding password for user manager

5.3. Review the contents of your ~/DO280/labs/auth-providers/htpasswd file

and verify that it includes three entries with hashed passwords: one each for the

new_admin, new_developer, and manager users.

DO280-OCP4.14-en-1-20240215 103

Chapter 3 | Authentication and Authorization

[student@workstation ~]$ cat ~/DO280/labs/auth-providers/htpasswd
new_admin:$2y$05$qQaFbpx4hbf4uZe.SMLSduTN8uN4DNJMJ4jE5zXDA57WrTRlpu2QS
new_developer:$apr1$S0TxtLXl$QSRfBIufYP39pKNsIg/nD1
manager:$apr1$HZ/9tC6b$j2OcHHg2GO2SSu1wyGOge.

5.4. You must update the secret after adding additional users. Use the oc set data
secret command to update the secret. If the command fails, then wait a few

moments for the oauth operator to finish reloading, and rerun the command.

[student@workstation ~]$ oc set data secret/localusers \
 --from-file htpasswd=~/DO280/labs/auth-providers/htpasswd \
 -n openshift-config
secret/localusers data updated

5.5. Use the watch command to examine the status of workloads in the openshift-
authentication namespace.

[student@workstation ~]$ watch oc get all -n openshift-authentication
NAME READY STATUS RESTARTS AGE
pod/oauth-openshift-6d68ffb9dc-6f8dr 1/1 Running 3 2m
...output omitted...

A few minutes after you ran the oc set data command, the redeployment starts.

Wait until new pods are running. Press Ctrl+C to exit the watch command.

5.6. Log in to the cluster as the manager user.

Note

If the authentication fails, then wait a few moments and try again.

[student@workstation ~]$ oc login -u manager -p redhat
Login successful.

...output omitted...

 6. Create an auth-providers project, and then verify that the new_developer user

cannot access the project.

6.1. As the manager user, create an auth-providers project.

[student@workstation ~]$ oc new-project auth-providers
Now using project "auth-providers" on server https://api.ocp4.example.com:6443".
...output omitted...

6.2. Log in as the new_developer user.

104 DO280-OCP4.14-en-1-20240215

Chapter 3 | Authentication and Authorization

[student@workstation ~]$ oc login -u new_developer -p developer
Login successful.

...output omitted...

6.3. Attempt to delete the auth-providers project.

[student@workstation ~]$ oc delete project auth-providers
Error from server (Forbidden): projects.project.openshift.io "auth-providers" is
 forbidden: User "new_developer" cannot delete resource "projects" in API group
 "project.openshift.io" in the namespace "auth-providers"

 7. Change the password for the manager user.

7.1. Log in as the new_admin user.

[student@workstation ~]$ oc login -u new_admin -p redhat
Login successful.

...output omitted...

7.2. Extract the file data from the secret to the ~/DO280/labs/auth-providers/
htpasswd file.

[student@workstation ~]$ oc extract secret/localusers -n openshift-config \
 --to ~/DO280/labs/auth-providers/ --confirm
/home/student/DO280/labs/auth-providers/htpasswd

7.3. Generate a random user password and assign it to the MANAGER_PASSWD variable.

[student@workstation ~]$ MANAGER_PASSWD="$(openssl rand -hex 15)"

7.4. Update the manager user to use the stored password in the MANAGER_PASSWD
variable.

[student@workstation ~]$ htpasswd -b ~/DO280/labs/auth-providers/htpasswd \
 manager ${MANAGER_PASSWD}
Updating password for user manager

7.5. Update the secret.

[student@workstation ~]$ oc set data secret/localusers \
 --from-file htpasswd=~/DO280/labs/auth-providers/htpasswd \
 -n openshift-config
secret/localusers data updated

7.6. Use the watch command to examine the status of workloads in the openshift-
authentication namespace.

DO280-OCP4.14-en-1-20240215 105

Chapter 3 | Authentication and Authorization

[student@workstation ~]$ watch oc get all -n openshift-authentication
NAME READY STATUS RESTARTS AGE
pod/oauth-openshift-6d68ffb9dc-6f8dr 1/1 Running 3 2m
...output omitted...

A few minutes after you ran the oc set data command, the redeployment starts.

Wait until new pods are running. Press Ctrl+C to exit the watch command.

7.7. Log in as the manager user to verify the updated password.

[student@workstation ~]$ oc login -u manager -p ${MANAGER_PASSWD}
Login successful.

...output omitted...

Note

If the authentication fails, then wait a few moments and try again.

 8. Remove the manager user.

8.1. Log in as the new_admin user.

[student@workstation ~]$ oc login -u new_admin -p redhat
Login successful.

...output omitted...

8.2. Extract the file data from the secret to the ~/DO280/labs/auth-providers/
htpasswd file.

[student@workstation ~]$ oc extract secret/localusers -n openshift-config \
 --to ~/DO280/labs/auth-providers/ --confirm
/home/student/DO280/labs/auth-providers/htpasswd

8.3. Delete the manager user from the ~/DO280/labs/auth-providers/htpasswd
file.

[student@workstation ~]$ htpasswd -D ~/DO280/labs/auth-providers/htpasswd manager
Deleting password for user manager

8.4. Update the secret.

[student@workstation ~]$ oc set data secret/localusers \
 --from-file htpasswd=~/DO280/labs/auth-providers/htpasswd \
 -n openshift-config
secret/localusers data updated

8.5. Use the watch command to examine the status of workloads in the openshift-
authentication namespace.

106 DO280-OCP4.14-en-1-20240215

Chapter 3 | Authentication and Authorization

[student@workstation ~]$ watch oc get all -n openshift-authentication
NAME READY STATUS RESTARTS AGE
pod/oauth-openshift-6d68ffb9dc-6f8dr 1/1 Running 3 2m
...output omitted...

A few minutes after you ran the oc set data command, the redeployment starts.

Wait until new pods are running. Press Ctrl+C to exit the watch command.

8.6. Log in as the manager user. If the login succeeds, then try again until the login fails.

[student@workstation ~]$ oc login -u manager -p ${MANAGER_PASSWD}
Login failed (401 Unauthorized)
Verify you have provided correct credentials.

8.7. Log in as the new_admin user.

[student@workstation ~]$ oc login -u new_admin -p redhat
Login successful.

...output omitted...

8.8. Delete the identity resource for the manager user.

[student@workstation ~]$ oc delete identity "myusers:manager"
identity.user.openshift.io "myusers:manager" deleted

8.9. Delete the user resource for the manager user.

[student@workstation ~]$ oc delete user manager
user.user.openshift.io manager deleted

8.10. List the current users to verify that you deleted the manager user.

[student@workstation ~]$ oc get users
NAME UID ... IDENTITIES
admin 6126c5a9-4d18-4cdf-95f7-b16c3d3e7f24
new_admin 489c7402-d318-4805-b91d-44d786a92fc1 ... myusers:new_admin
new_developer 8dbae772-1dd4-4242-b2b4-955b005d9022 ... myusers:new_developer

8.11. Display the list of current identities to verify that you deleted the manager identity.

[student@workstation ~]$ oc get identity
NAME IDP NAME IDP USER NAME USER NAME
 USER UID
... admin
 6126c5a9-4d18-4cdf-95f7-b16c3d3e7f24
myusers:new_admin myusers new_admin new_admin
 489c7402-d318-4805-b91d-44d786a92fc1
myusers:new_developer myusers new_developer new_developer
 8dbae772-1dd4-4242-b2b4-955b005d9022

DO280-OCP4.14-en-1-20240215 107

Chapter 3 | Authentication and Authorization

8.12. Extract the secret and verify that only the new_admin and new_developer users

are displayed. Using --to - sends the secret to STDOUT rather than saving it to a

file.

[student@workstation ~]$ oc extract secret/localusers -n openshift-config --to -
htpasswd
new_admin:$2y$05$qQaFbpx4hbf4uZe.SMLSduTN8uN4DNJMJ4jE5zXDA57WrTRlpu2QS
new_developer:$apr1$S0TxtLXl$QSRfBIufYP39pKNsIg/nD1

 9. Remove the identity provider and clean up all users.

9.1. Log in as the admin user.

[student@workstation ~]$ oc login -u admin -p redhatocp
Login successful.

...output omitted...

9.2. Delete the auth-providers project.

[student@workstation ~]$ oc delete project auth-providers
project.project.openshift.io "auth-providers" deleted

9.3. Edit the resource in place to remove the identity provider from OAuth:

[student@workstation ~]$ oc edit oauth

Delete all the lines under the ldap identity provider definition. Your file should match

the following example:

apiVersion: config.openshift.io/v1
kind: OAuth
metadata:
 name: cluster
spec:
 identityProviders:
 - ldap:
...output omitted...
 type: LDAP
 # Delete all lines below
 - htpasswd:
 fileData:
 name: localusers
 mappingMethod: claim
 name: myusers
 type: HTPasswd

Save your changes, and then verify that the oc edit command applied those

changes:

oauth.config.openshift.io/cluster edited

108 DO280-OCP4.14-en-1-20240215

Chapter 3 | Authentication and Authorization

9.4. Use the watch command to examine the status of workloads in the openshift-
authentication namespace.

[student@workstation ~]$ watch oc get all -n openshift-authentication
NAME READY STATUS RESTARTS AGE
pod/oauth-openshift-6d68ffb9dc-6f8dr 1/1 Running 3 2m
...output omitted...

A few minutes after you ran the oc edit command, the redeployment starts. Wait

until new pods are running. Press Ctrl+C to exit the watch command.

9.5. Delete the localusers secret from the openshift-config namespace.

[student@workstation ~]$ oc delete secret localusers -n openshift-config
secret "localusers" deleted

9.6. Delete all identity resources.

[student@workstation ~]$ oc delete identity --all
identity.user.openshift.io "Red Hat Identity Management:dWlk...jb20" deleted
identity.user.openshift.io "myusers:new_admin" deleted
identity.user.openshift.io "myusers:new_developer" deleted

Note

You might see additional identities from previously completed exercises.

9.7. Delete all user resources.

[student@workstation ~]$ oc delete user --all
user.user.openshift.io "admin" deleted
user.user.openshift.io "developer" deleted
user.user.openshift.io "new_admin" deleted
user.user.openshift.io "new_developer" deleted

Note

You might see additional users from previously completed exercises.

Finish

On the workstation machine, use the lab command to complete this exercise. This step is

important to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab finish auth-providers

DO280-OCP4.14-en-1-20240215 109

Chapter 3 | Authentication and Authorization

Define and Apply Permissions with RBAC

Objectives
• Define role-based access controls and apply permissions to users.

Role-based Access Control (RBAC)
Role-based access control (RBAC) is a technique for managing access to resources in a computer

system. In Red Hat OpenShift, RBAC determines whether a user can perform certain actions

within the cluster or project. You can choose between two role types, depending on the user's

level of responsibility: cluster and local.

Note

Authorization is a separate step from authentication.

Authorization Process
The authorization process is managed by rules, roles, and bindings.

RBAC Object Description

Rule Allowed actions for objects or groups of objects.

Role Sets of rules. Users and groups can be associated with multiple roles.

Binding Assignment of users or groups to a role.

RBAC Scope
Red Hat OpenShift Container Platform (RHOCP) defines two groups of roles and bindings

depending on the user's scope and responsibility: cluster roles and local roles.

Role Level Description

Cluster role Users or groups with this role level can manage the OpenShift cluster.

Local role Users or groups with this role level can manage only elements at a

project level.

Note

Cluster role bindings take precedence over local role bindings.

110 DO280-OCP4.14-en-1-20240215

Chapter 3 | Authentication and Authorization

Managing RBAC with the CLI

Cluster administrators can use the oc adm policy command to add and remove cluster roles

and namespace roles.

To add a cluster role to a user, use the add-cluster-role-to-user subcommand:

[user@host ~]$ oc adm policy add-cluster-role-to-user cluster-role username

For example, to change a regular user to a cluster administrator, use the following command:

[user@host ~]$ oc adm policy add-cluster-role-to-user cluster-admin username

To remove a cluster role from a user, use the remove-cluster-role-from-user
subcommand:

[user@host ~]$ oc adm policy remove-cluster-role-from-user cluster-role username

For example, to change a cluster administrator to a regular user, use the following command:

[user@host ~]$ oc adm policy remove-cluster-role-from-user cluster-admin username

Rules are defined by an action and a resource. For example, the create user rule is part of the

cluster-admin role.

You can use the oc adm policy who-can command to determine whether a user can execute

an action on a resource. For example:

[user@host ~]$ oc adm policy who-can delete user

Default Roles
OpenShift ships with a set of default cluster roles that can be assigned locally or to the entire

cluster. You can modify these roles for fine-grained access control to OpenShift resources. Other

required steps are outside the scope of this course.

Default roles Description

admin Users with this role can manage all project resources, including

granting access to other users to access the project.

basic-user Users with this role have read access to the project.

cluster-admin Users with this role have superuser access to the cluster resources.

These users can perform any action on the cluster, and have full

control of all projects.

cluster-status Users with this role can get cluster status information.

DO280-OCP4.14-en-1-20240215 111

Chapter 3 | Authentication and Authorization

Default roles Description

edit Users with this role can create, change, and delete common

application resources on the project, such as services and

deployments. These users cannot act on management resources

such as limit ranges and quotas, and cannot manage access

permissions to the project.

self-provisioner Users with this role can create projects. It is a cluster role, not a

project role.

view Users with this role can view project resources, but cannot modify

project resources.

The admin role gives a user access to project resources such as quotas and limit ranges, and also

the ability to create applications. The edit role gives a user sufficient access to act as a developer

inside the project, but working under the constraints that a project administrator configured.

Project administrators can use the oc policy command to add and remove namespace roles.

Add a specified role to a user with the add-role-to-user subcommand. For example:

[user@host ~]$ oc policy add-role-to-user role-name username -n project

For example, run the following command to add the dev user to the basic-user cluster role in

the wordpress project.

[user@host ~]$ oc policy add-role-to-user basic-user dev -n wordpress

Even though basic-user is a cluster role, the add-role-to-user subcommand limits the

scope of the role to the wordpress namespace for the dev user.

User Types
Interaction with OpenShift Container Platform is associated with a user. An OpenShift Container

Platform user object represents a user who can be granted permissions in the system by adding

roles to that user or to a user's group via role bindings.

Regular users
Most interactive OpenShift Container Platform users are regular users, and are represented

with the User object. This type of user represents a person with access to the platform.

System users
Many system users are created automatically when the infrastructure is defined, mainly for the

infrastructure to securely interact with the API. System users include a cluster administrator

(with access to everything), a per-node user, users for routers and registries, and various

others. An anonymous system user is used by default for unauthenticated requests.

System user names start with a system: prefix, such as system:admin,

system:openshift-registry, and system:node:node1.example.com.

Service accounts
Service accounts are system users that are associated with projects. Workloads can use

service accounts to invoke Kubernetes APIs.

112 DO280-OCP4.14-en-1-20240215

Chapter 3 | Authentication and Authorization

Some service account users are created automatically during project creation. Project

administrators can create more service accounts to grant extra privileges to workloads. By

default, service accounts have no roles. Grant roles to service accounts to enable workloads to

use specific APIs.

Service accounts are represented with the ServiceAccount object.

System account user names start with a system:serviceaccount:namespace:
prefix, such as system:serviceaccount:default:deployer and

system:serviceaccount:accounting:builder.

Every user must authenticate before they can access OpenShift Container Platform. API requests

with no authentication or invalid authentication are authenticated as requests by the anonymous

system user. After successful authentication, the policy determines what the user is authorized to

do.

Group Management
A group resource represents a set of users. Cluster administrators can use the oc adm groups
command to add groups or to add users to groups. For example, run the following command to

add the lead-developers group to the cluster:

[user@host ~]$ oc adm groups new lead-developers

Likewise, the following command adds the user1 user to the lead-developers group:

[user@host ~]$ oc adm groups add-user lead-developers user1

References

For more information about RBAC, refer to the Using RBAC to Define and

Apply Permissions chapter in the Red Hat OpenShift Container Platform 4.14

Authentication and Authorization documentation at

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.14/html-single/authentication_and_authorization/

index#using-rbac

For more information about groups, refer to the Understanding Authentication

chapter in the Red Hat OpenShift Container Platform 4.14 Authentication and

Authorization documentation at

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.14/html-single/authentication_and_authorization/

index#understanding-authentication

Kubernetes Namespaces

https://kubernetes.io/docs/concepts/overview/working-with-objects/

namespaces/

DO280-OCP4.14-en-1-20240215 113

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/authentication_and_authorization/index#using-rbac
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/authentication_and_authorization/index#using-rbac
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/authentication_and_authorization/index#using-rbac
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/authentication_and_authorization/index#understanding-authentication
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/authentication_and_authorization/index#understanding-authentication
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/authentication_and_authorization/index#understanding-authentication
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/

Chapter 3 | Authentication and Authorization

Guided Exercise

Define and Apply Permissions with RBAC

Define role-based access controls and apply permissions to users.

Outcomes
• Remove project creation privileges from users who are not OpenShift cluster

administrators.

• Create OpenShift groups and add members to these groups.

• Create a project and assign project administration privileges to the project.

• As a project administrator, assign read and write privileges to different groups of users.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your

system for this exercise.

This command ensures that the cluster API is reachable and creates some HTPasswd users

for the exercise.

[student@workstation ~]$ lab start auth-rbac

Instructions

 1. Log in to the OpenShift cluster and determine which cluster role bindings assign the self-
provisioner cluster role.

1.1. Log in to the cluster as the admin user.

[student@workstation ~]$ oc login -u admin -p redhatocp \
 https://api.ocp4.example.com:6443
Login successful.

...output omitted...

1.2. List all cluster role bindings that reference the self-provisioner cluster role.

[student@workstation ~]$ oc get clusterrolebinding -o wide | \
 grep -E 'ROLE|self-provisioner'
NAME ROLE ... GROUPS ...
self-provisioners ClusterRole/self-provisioner ... system:authenticated:oauth

 2. Remove the privilege to create projects from all users who are not cluster administrators by

deleting the self-provisioner cluster role from the system:authenticated:oauth
virtual group.

114 DO280-OCP4.14-en-1-20240215

Chapter 3 | Authentication and Authorization

2.1. Confirm that the self-provisioners cluster role binding that you found

in the previous step assigns the self-provisioner cluster role to the

system:authenticated:oauth group.

[student@workstation ~]$ oc describe clusterrolebindings self-provisioners
Name: self-provisioners
Labels: <none>
Annotations: rbac.authorization.kubernetes.io/autoupdate: true
Role:
 Kind: ClusterRole
 Name: self-provisioner
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 Group system:authenticated:oauth

2.2. Remove the self-provisioner cluster role from the

system:authenticated:oauth virtual group, which deletes the self-
provisioners role binding.

[student@workstation ~]$ oc adm policy remove-cluster-role-from-group \
 self-provisioner system:authenticated:oauth
Warning: Your changes may get lost whenever a master is restarted, unless you
 prevent reconciliation of this rolebinding using the following command:
oc annotate clusterrolebinding.rbac self-provisioners
 'rbac.authorization.kubernetes.io/autoupdate=false' --overwrite
clusterrole.rbac.authorization.k8s.io/self-provisioner removed:
 "system:authenticated:oauth"

Note

You can safely ignore the warning about your changes being lost.

2.3. Verify that the role is removed from the group. The cluster role binding self-
provisioners should not exist.

[student@workstation ~]$ oc describe clusterrolebindings self-provisioners
Error from server (NotFound): clusterrolebindings.rbac.authorization.k8s.io "self-
provisioners" not found

2.4. Determine whether any other cluster role bindings reference the self-
provisioner cluster role.

[student@workstation ~]$ oc get clusterrolebinding -o wide | \
 grep -E 'ROLE|self-provisioner'
NAME ROLE AGE USERS GROUPS SERVICEACCOUNTS

2.5. Log in as the leader user with the redhat password.

DO280-OCP4.14-en-1-20240215 115

Chapter 3 | Authentication and Authorization

[student@workstation ~]$ oc login -u leader -p redhat
Login successful.

...output omitted...

2.6. Try to create a project. The operation should fail.

[student@workstation ~]$ oc new-project test
Error from server (Forbidden): You may not request a new project via this API.

 3. Create a project and add project administration privileges to the leader user.

3.1. Log in as the admin user.

[student@workstation ~]$ oc login -u admin -p redhatocp
Login successful.

...output omitted...

3.2. Create the auth-rbac project.

[student@workstation ~]$ oc new-project auth-rbac
Now using project "auth-rbac" on server "https://api.ocp4.example.com:6443".

...output omitted...

3.3. Grant project administration privileges to the leader user on the auth-rbac
project.

[student@workstation ~]$ oc policy add-role-to-user admin leader
clusterrole.rbac.authorization.k8s.io/admin added: "leader"

 4. Create the dev-group and qa-group groups and add their respective members.

4.1. Create a group named dev-group.

[student@workstation ~]$ oc adm groups new dev-group
group.user.openshift.io/dev-group created

4.2. Add the developer user to the group that you created in the previous step.

[student@workstation ~]$ oc adm groups add-users dev-group developer
group.user.openshift.io/dev-group added: "developer"

4.3. Create a second group named qa-group.

[student@workstation ~]$ oc adm groups new qa-group
group.user.openshift.io/qa-group created

116 DO280-OCP4.14-en-1-20240215

Chapter 3 | Authentication and Authorization

4.4. Add the qa-engineer user to the group that you created in the previous step.

[student@workstation ~]$ oc adm groups add-users qa-group qa-engineer
group.user.openshift.io/qa-group added: "qa-engineer"

4.5. Review all existing OpenShift groups to verify that they have the correct members.

[student@workstation ~]$ oc get groups
NAME USERS
Default SMB Group
admins admin
dev-group developer
developer
editors
ocpadmins admin
ocpdevs developer
qa-group qa-engineer

Note

The lab environment already contains groups from the lab LDAP directory.

 5. As the leader user, assign write privileges for dev-group and read privileges for qa-
group to the auth-rbac project.

5.1. Log in as the leader user.

[student@workstation ~]$ oc login -u leader -p redhat
Login successful.

...output omitted...

Using project "auth-rbac".

5.2. Add write privileges to the dev-group group on the auth-rbac project.

[student@workstation ~]$ oc policy add-role-to-group edit dev-group
clusterrole.rbac.authorization.k8s.io/edit added: "dev-group"

5.3. Add read privileges to the qa-group group on the auth-rbac project.

[student@workstation ~]$ oc policy add-role-to-group view qa-group
clusterrole.rbac.authorization.k8s.io/view added: "qa-group"

5.4. Review all role bindings on the auth-rbac project to verify that they assign roles to

the correct groups and users. The following output omits default role bindings that

OpenShift assigns to service accounts.

DO280-OCP4.14-en-1-20240215 117

Chapter 3 | Authentication and Authorization

[student@workstation ~]$ oc get rolebindings -o wide | grep -v '^system:'
NAME ROLE AGE USERS GROUPS SERVICEACCOUNTS
admin ClusterRole/admin 60s admin
admin-0 ClusterRole/admin 45s leader
edit ClusterRole/edit 30s dev-group
view ClusterRole/view 15s qa-group

 6. As the developer user, deploy an Apache HTTP Server to prove that the developer user

has write privileges in the project. Also try to grant write privileges to the qa-engineer
user to prove that the developer user has no project administration privileges.

6.1. Log in as the developer user.

[student@workstation ~]$ oc login -u developer -p developer
Login successful.

...output omitted...

Using project "auth-rbac".

6.2. Deploy an Apache HTTP Server by using the standard image stream from OpenShift.

[student@workstation ~]$ oc new-app --name httpd httpd:2.4
...output omitted...
--> Creating resources ...
 deployment.apps "httpd" created
 service "httpd" created
--> Success
...output omitted...

Note

It is safe to ignore pod security warnings for exercises in this course. OpenShift uses

the Security Context Constraints controller to provide safe defaults for pod security.

6.3. Try to grant write privileges to the qa-engineer user. The operation should fail.

[student@workstation ~]$ oc policy add-role-to-user edit qa-engineer
Error from server (Forbidden): rolebindings.rbac.authorization.k8s.io is
 forbidden: User "developer" cannot list resource "rolebindings" in API group
 "rbac.authorization.k8s.io" in the namespace "auth-rbac"

 7. Verify that the qa-engineer user can view objects in the auth-rbac project, but not

modify anything.

7.1. Log in as the qa-engineer user.

118 DO280-OCP4.14-en-1-20240215

Chapter 3 | Authentication and Authorization

[student@workstation ~]$ oc login -u qa-engineer -p redhat
Login successful.

...output omitted...

Using project "auth-rbac".

7.2. Attempt to scale the httpd application. The operation should fail.

[student@workstation ~]$ oc scale deployment httpd --replicas 3
Error from server (Forbidden): deployments.apps "httpd" is forbidden: User "qa-
engineer" cannot patch resource "deployments/scale" in API group "apps" in the
 namespace "auth-rbac"

 8. Restore project creation privileges to all users.

8.1. Log in as the admin user.

[student@workstation ~]$ oc login -u admin -p redhatocp
Login successful.

...output omitted...

8.2. Restore project creation privileges for all users by re-creating the self-
provisioners cluster role binding that the OpenShift installer created.

[student@workstation ~]$ oc adm policy add-cluster-role-to-group \
 --rolebinding-name self-provisioners \
 self-provisioner system:authenticated:oauth
Warning: Group 'system:authenticated:oauth' not found
clusterrole.rbac.authorization.k8s.io/self-provisioner added:
 "system:authenticated:oauth"

Note

You can safely ignore the warning that the group was not found.

Finish

On the workstation machine, use the lab command to complete this exercise. This step is

important to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab finish auth-rbac

DO280-OCP4.14-en-1-20240215 119

Chapter 3 | Authentication and Authorization

Lab

Authentication and Authorization

Configure the HTPasswd identity provider, create groups, and assign roles to users and

groups.

Outcomes
• Create users and passwords for HTPasswd authentication.

• Configure the identity provider for HTPasswd authentication.

• Assign cluster administration rights to users.

• Remove the ability to create projects at the cluster level.

• Create groups and add users to groups.

• Manage user privileges in projects by granting privileges to groups.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your

system for this exercise.

[student@workstation ~]$ lab start auth-review

The command ensures that the cluster API is reachable, and that the cluster uses the initial

lab authentication settings.

Instructions

1. Update the existing ~/DO280/labs/auth-review/tmp_users HTPasswd authentication

file to remove the analyst user. Ensure that the tester and leader users in the

file use the L@bR3v!ew password. Add two entries to the file for the new_admin and

new_developer users. Use the L@bR3v!ew password for each new user.

2. Log in to your OpenShift cluster as the admin user with the redhatocp password.

Configure your cluster to use the HTPasswd identity provider by using the defined user

names and passwords in the ~/DO280/labs/auth-review/tmp_users file. For grading,

use the auth-review name for the secret.

3. Make the new_admin user a cluster administrator. Log in as both the new_admin and

new_developer users to verify HTPasswd user configuration and cluster privileges.

4. As the new_admin user, prevent users from creating projects in the cluster.

5. Create a managers group, and add the leader user to the group. Grant project creation

privileges to the managers group. As the leader user, create the auth-review project.

6. Create a developers group and grant edit privileges on the auth-review project. Add the

new_developer user to the group.

7. Create a qa group and grant view privileges on the auth-review project. Add the tester
user to the group.

120 DO280-OCP4.14-en-1-20240215

Chapter 3 | Authentication and Authorization

Evaluation

As the student user on the workstation machine, use the lab command to grade your work.

Correct any reported failures and rerun the command until successful.

[student@workstation ~]$ lab grade auth-review

Finish

As the student user on the workstation machine, use the lab command to complete this

exercise. This step is important to ensure that resources from previous exercises do not impact

upcoming exercises.

[student@workstation ~]$ lab finish auth-review

DO280-OCP4.14-en-1-20240215 121

Chapter 3 | Authentication and Authorization

Solution

Authentication and Authorization

Configure the HTPasswd identity provider, create groups, and assign roles to users and

groups.

Outcomes
• Create users and passwords for HTPasswd authentication.

• Configure the identity provider for HTPasswd authentication.

• Assign cluster administration rights to users.

• Remove the ability to create projects at the cluster level.

• Create groups and add users to groups.

• Manage user privileges in projects by granting privileges to groups.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your

system for this exercise.

[student@workstation ~]$ lab start auth-review

The command ensures that the cluster API is reachable, and that the cluster uses the initial

lab authentication settings.

Instructions

1. Update the existing ~/DO280/labs/auth-review/tmp_users HTPasswd authentication

file to remove the analyst user. Ensure that the tester and leader users in the

file use the L@bR3v!ew password. Add two entries to the file for the new_admin and

new_developer users. Use the L@bR3v!ew password for each new user.

1.1. Remove the analyst user from the ~/DO280/labs/auth-review/tmp_users
HTPasswd authentication file.

[student@workstation ~]$ htpasswd -D ~/DO280/labs/auth-review/tmp_users analyst
Deleting password for user analyst

1.2. Update the entries for the tester and leader users to use the L@bR3v!ew
password. Add entries for the new_admin and new_developer users with the

L@bR3v!ew password.

122 DO280-OCP4.14-en-1-20240215

Chapter 3 | Authentication and Authorization

[student@workstation ~]$ for NAME in tester leader new_admin new_developer ; \
 do \
 htpasswd -b ~/DO280/labs/auth-review/tmp_users ${NAME} 'L@bR3v!ew' ; \
 done
Updating password for user tester
Updating password for user leader
Adding password for user new_admin
Adding password for user new_developer

1.3. Review the contents of the ~/DO280/labs/auth-review/tmp_users file. This file

does not contain a line for the analyst user. The file includes two new entries with

hashed passwords for the new_admin and new_developer users.

[student@workstation ~]$ cat ~/DO280/labs/auth-review/tmp_users
tester:$apr1$EyWSDib4$uLoUMpwohNWUrU5L5ogkB/
leader:$apr1$/O8SyNdp$gjr.P7FMJbK2IebFU0QQn/
new_admin:$apr1$M5WHRPR2$GbGDkTK8QTrW2S/f2/1Kt1
new_developer:$apr1$dXdG8tWd$N8HA0SUe3TbqAhI049gOH0

2. Log in to your OpenShift cluster as the admin user with the redhatocp password.

Configure your cluster to use the HTPasswd identity provider by using the defined user

names and passwords in the ~/DO280/labs/auth-review/tmp_users file. For grading,

use the auth-review name for the secret.

2.1. Log in to the cluster as the admin user.

[student@workstation ~]$ oc login -u admin -p redhatocp \
 https://api.ocp4.example.com:6443
Login successful.

...output omitted...

2.2. Create an auth-review secret by using the ~/DO280/labs/auth-review/
tmp_users file.

[student@workstation ~]$ oc create secret generic auth-review \
 --from-file htpasswd=/home/student/DO280/labs/auth-review/tmp_users \
 -n openshift-config
secret/auth-review created

2.3. Export the existing OAuth resource to ~/DO280/labs/auth-review/oauth.yaml.

[student@workstation ~]$ oc get oauth cluster \
 -o yaml > ~/DO280/labs/auth-review/oauth.yaml

2.4. Edit the ~/DO280/labs/auth-review/oauth.yaml file to add an identity provider

by including the lines from the following example that are displayed in bold. Ensure that

the htpasswd, mappingMethod, name, and type strings are at the same indentation

level.

DO280-OCP4.14-en-1-20240215 123

Chapter 3 | Authentication and Authorization

apiVersion: config.openshift.io/v1
kind: OAuth
...output omitted...
spec:
 identityProviders:
 - ldap:
...output omitted...
 type: LDAP
 - htpasswd:
 fileData:
 name: auth-review
 mappingMethod: claim
 name: htpasswd
 type: HTPasswd

Note

For convenience, the ~/DO280/solutions/auth-review/oauth.yaml
file contains a minimal version of the OAuth configuration with the specified

customizations.

2.5. Apply the customized resource that you defined in the previous step.

[student@workstation ~]$ oc replace -f ~/DO280/labs/auth-review/oauth.yaml
oauth.config.openshift.io/cluster replaced

2.6. A successful update to the oauth/cluster resource re-creates the oauth-
openshift pods in the openshift-authentication namespace.

[student@workstation ~]$ watch oc get pods -n openshift-authentication

Wait until the new oauth-openshift pods are ready and running, and the previous

pods have terminated.

Every 2.0s: oc get pods -n openshift-authentication ...

NAME READY STATUS RESTARTS AGE
oauth-openshift-68d6f666fd-z746p 1/1 Running 0 42s

Press Ctrl+C to exit the watch command.

124 DO280-OCP4.14-en-1-20240215

Chapter 3 | Authentication and Authorization

Note

Pods in the openshift-authentication namespace redeploy when the oc
replace command succeeds.

In this exercise, changes to authentication might require a few minutes to apply.

You can examine the status of pods and deployments in the openshift-
authentication namespace to monitor the authentication status. You can also

examine the authentication cluster operator for further status information.

Provided that the previously created secret was created correctly, you can log in by

using the HTPasswd identity provider.

3. Make the new_admin user a cluster administrator. Log in as both the new_admin and

new_developer users to verify HTPasswd user configuration and cluster privileges.

3.1. Assign the new_admin user the cluster-admin role.

[student@workstation ~]$ oc adm policy add-cluster-role-to-user \
 cluster-admin new_admin
Warning: User 'new_admin' not found
clusterrole.rbac.authorization.k8s.io/cluster-admin added: "new_admin"

Note

You can safely ignore the warning that the new_admin user is not found.

3.2. Log in to the cluster as the new_admin user to verify that HTPasswd authentication is

configured correctly.

[student@workstation ~]$ oc login -u new_admin -p 'L@bR3v!ew'
Login successful.

...output omitted...

3.3. Use the oc get nodes command to verify that the new_admin user has the

cluster-admin role. The names of the nodes from your cluster might be different.

[student@workstation ~]$ oc get nodes
NAME STATUS ROLES AGE VERSION
master01 Ready control-plane,master,worker 14d v1.27.6+f67aeb3

3.4. Log in to the cluster as the new_developer user to verify that the HTPasswd

authentication is configured correctly.

[student@workstation ~]$ oc login -u new_developer -p 'L@bR3v!ew'
Login successful.

...output omitted...

DO280-OCP4.14-en-1-20240215 125

Chapter 3 | Authentication and Authorization

3.5. Use the oc get nodes command to verify that the new_developer user does not

have cluster administration privileges.

[student@workstation ~]$ oc get nodes
Error from server (Forbidden): nodes is forbidden: User "new_developer" cannot
 list resource "nodes" in API group "" at the cluster scope

4. As the new_admin user, prevent users from creating projects in the cluster.

4.1. Log in to the cluster as the new_admin user.

[student@workstation ~]$ oc login -u new_admin -p 'L@bR3v!ew'
Login successful.

...output omitted...

4.2. Remove the self-provisioner cluster role from the

system:authenticated:oauth virtual group.

[student@workstation ~]$ oc adm policy remove-cluster-role-from-group \
 self-provisioner system:authenticated:oauth
Warning: Your changes may get lost whenever a master is restarted,
 unless you prevent reconciliation of this rolebinding using the
 following command: oc annotate clusterrolebinding.rbac self-provisioners
 'rbac.authorization.kubernetes.io/autoupdate=false' --overwrite
clusterrole.rbac.authorization.k8s.io/self-provisioner removed:
 "system:authenticated:oauth"

Note

You can safely ignore the warning about your changes being lost.

5. Create a managers group, and add the leader user to the group. Grant project creation

privileges to the managers group. As the leader user, create the auth-review project.

5.1. Create a managers group.

[student@workstation ~]$ oc adm groups new managers
group.user.openshift.io/managers created

5.2. Add the leader user to the managers group.

[student@workstation ~]$ oc adm groups add-users managers leader
group.user.openshift.io/managers added: "leader"

5.3. Assign the self-provisioner cluster role to the managers group.

[student@workstation ~]$ oc adm policy add-cluster-role-to-group \
 self-provisioner managers
clusterrole.rbac.authorization.k8s.io/self-provisioner added: "managers"

126 DO280-OCP4.14-en-1-20240215

Chapter 3 | Authentication and Authorization

5.4. As the leader user, create the auth-review project.

[student@workstation ~]$ oc login -u leader -p 'L@bR3v!ew'
Login successful.

...output omitted...

The user who creates a project is automatically assigned the admin role on the project.

[student@workstation ~]$ oc new-project auth-review
Now using project "auth-review" on server "https://api.ocp4.example.com:6443".

...output omitted...

6. Create a developers group and grant edit privileges on the auth-review project. Add the

new_developer user to the group.

6.1. Log in to the cluster as the new_admin user.

[student@workstation ~]$ oc login -u new_admin -p 'L@bR3v!ew'
Login successful.

...output omitted...

6.2. Create a developers group.

[student@workstation ~]$ oc adm groups new developers
group.user.openshift.io/developers created

6.3. Add the new_developer user to the developers group.

[student@workstation ~]$ oc adm groups add-users developers new_developer
group.user.openshift.io/developers added: "new_developer"

6.4. Grant edit privileges to the developers group on the auth-review project.

[student@workstation ~]$ oc policy add-role-to-group edit developers
clusterrole.rbac.authorization.k8s.io/edit added: "developers"

7. Create a qa group and grant view privileges on the auth-review project. Add the tester
user to the group.

7.1. Create a qa group.

[student@workstation ~]$ oc adm groups new qa
group.user.openshift.io/qa created

7.2. Add the tester user to the qa group.

[student@workstation ~]$ oc adm groups add-users qa tester
group.user.openshift.io/qa added: "tester"

DO280-OCP4.14-en-1-20240215 127

Chapter 3 | Authentication and Authorization

7.3. Grant view privileges to the qa group on the auth-review project.

[student@workstation ~]$ oc policy add-role-to-group view qa
clusterrole.rbac.authorization.k8s.io/view added: "qa"

Evaluation

As the student user on the workstation machine, use the lab command to grade your work.

Correct any reported failures and rerun the command until successful.

[student@workstation ~]$ lab grade auth-review

Finish

As the student user on the workstation machine, use the lab command to complete this

exercise. This step is important to ensure that resources from previous exercises do not impact

upcoming exercises.

[student@workstation ~]$ lab finish auth-review

128 DO280-OCP4.14-en-1-20240215

Chapter 3 | Authentication and Authorization

Summary

• A newly installed OpenShift cluster provides two authentication methods that grant

administrative access: the kubeconfig file and the kubeadmin virtual user.

• The HTPasswd identity provider authenticates users against credentials that are stored in a

secret. The secret name and other settings for the identity provider are stored inside the OAuth

custom resource.

• To manage user credentials by using the HTPasswd identity provider, you must extract data

from the secret, change that data using the htpasswd command, and then apply the data back

to the secret.

• Creating OpenShift users requires valid credentials, which an identity provider manages, plus

user and identity resources.

• Deleting OpenShift users requires deleting their credentials from the identity provider, and also

deleting their user and identity resources.

• OpenShift uses role-based access control (RBAC) to manage user actions. A role is a collection

of rules that govern interaction with OpenShift resources. Default roles exist for cluster

administrators, developers, and auditors.

• To control user interaction, assign a user to one or more roles. A role binding contains all of the

role's associations to users and groups.

• To grant a user cluster administrator privileges, assign the cluster-admin role to that user.

DO280-OCP4.14-en-1-20240215 129

130 DO280-OCP4.14-en-1-20240215

Chapter 4

Network Security

Goal Protect network traffic between applications inside
and outside the cluster.

Objectives • Allow and protect network connections to
applications inside an OpenShift cluster.

• Restrict network traffic between projects and
pods.

• Configure and use automatic service
certificates.

Sections • Protect External Traffic with TLS (and Guided
Exercise)

• Configure Network Policies (and Guided
Exercise)

• Protect Internal Traffic with TLS (and Guided
Exercise)

Lab • Network Security

DO280-OCP4.14-en-1-20240215 131

Chapter 4 | Network Security

Protect External Traffic with TLS

Objectives
• Allow and protect network connections to applications inside an OpenShift cluster.

Accessing Applications from External Networks
OpenShift Container Platform offers many ways to expose your applications to external networks.

You can expose HTTP and HTTPS traffic, TCP applications, and also non-TCP traffic. Some of

these methods are service types, such as NodePort or load balancer, whereas others use their

own API resource, such as Ingress and Route.

With OpenShift routes, you can expose your applications to external networks, to reach the

applications with a unique, publicly accessible hostname. Routes rely on a router plug-in to redirect

the traffic from the public IP to pods.

The following diagram shows how a route exposes an application that runs as pods in your cluster:

Figure 4.1: Using routes to expose applications

132 DO280-OCP4.14-en-1-20240215

Chapter 4 | Network Security

Note

For performance reasons, routers send requests directly to pods based on service

configuration.

The dotted line in the diagram indicates this implementation. The router accesses

the pods through the services network.

Securing Routes
Routes can be either secured or unsecured. Secure routes support several types of transport layer

security (TLS) termination to serve certificates to the client. Unsecured routes are the simplest to

configure, because they require no key or certificates. By contrast, secured routes encrypt traffic

to and from the pods.

A secured route specifies the TLS termination of the route. The following termination types are

available:

OpenShift Secure Routes

Edge
With edge termination, TLS termination occurs at the router, before the traffic is routed to

the pods. The router serves the TLS certificates, so you must configure them into the route;

otherwise, OpenShift assigns its own certificate to the router for TLS termination. Because

TLS is terminated at the router, connections from the router to the endpoints over the internal

network are not encrypted.

Passthrough
With passthrough termination, encrypted traffic is sent straight to the destination pod without

TLS termination from the router. In this mode, the application is responsible for serving

certificates for the traffic. Passthrough is currently the only method that supports mutual

authentication between the application and a client that accesses it.

Re-encryption
Re-encryption is a variation on edge termination, whereby the router terminates TLS with a

certificate, and then re-encrypts its connection to the endpoint, which might have a different

certificate. Therefore, the full path of the connection is encrypted, even over the internal

network. The router uses health checks to determine the authenticity of the host.

Securing Applications with Edge Routes

Before creating a secure route, you need a TLS certificate. The following command shows how to

create a secure edge route with a TLS certificate:

[user@host ~]$ oc create route edge \
 --service api-frontend --hostname api.apps.acme.com \
 --key api.key --cert api.crt

The --key option requires the certificate private key.

The --cert option requires the signed certificate.

When using a route in edge mode, the traffic between the client and the router is encrypted, but

traffic between the router and the application is not encrypted:

DO280-OCP4.14-en-1-20240215 133

Chapter 4 | Network Security

Figure 4.2: Securing applications with edge routes

Note

Network policies can help you to protect the internal traffic between your

applications or between projects.

Securing Applications with Passthrough Routes

The previous example demonstrates how to create an edge route, which means an OpenShift

route that presents a certificate at the edge. Passthrough routes offer a secure alternative,

because the application exposes its TLS certificate. As such, the traffic is encrypted between the

client and the application.

To create a passthrough route, you need a certificate and a way for your application to access it.

The best way to provide the certificate is by using OpenShift TLS secrets. Secrets are exposed via

a mount point into the container.

The following diagram shows how you can mount a secret resource in your container. The

application is then able to access your certificate.

Figure 4.3: Securing applications with passthrough routes

134 DO280-OCP4.14-en-1-20240215

Chapter 4 | Network Security

Securing Applications with Re-encrypt Routes

Re-encrypt routes provide end-to-end encryption. First, re-encrypt routes terminate the

encryption between an external client and the router. This encryption uses a certificate with a

fully qualified domain name (FQDN) that is trusted by the client, such as the my-app.example.com

hostname.

Then, the router re-encrypts the connection when accessing an internal cluster service. This

internal communication requires a certificate for the target service with an OpenShift FQDN, such

as the my-app.namespace.svc.cluster.local hostname.

The certificates for internal TLS connections require a public key infrastructure (PKI) to sign

the certificate. With an OpenShift service certificate, you can mount a secret that contains a

certificate and key pair into an application. This feature uses the OpenShift PKI to generate the

certificate and key into a service-specific secret.

References

For more information about how to manage routes, refer to the Configuring

Routes chapter in the Red Hat OpenShift Container Platform 4.14 Networking

documentation at

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.14/html-single/networking/index#configuring-

routes

For more information about how to configure ingress cluster traffic, refer to the

Configuring Ingress Cluster Traffic chapter in the Red Hat OpenShift Container

Platform 4.14 Networking documentation at

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.14/html-single/networking/index#configuring-

ingress-cluster-traffic

Self-Serviced End-to-end Encryption Approaches for Applications Deployed

in OpenShift

https://cloud.redhat.com/blog/self-serviced-end-to-end-encryption-approaches-

for-applications-deployed-in-openshift

DO280-OCP4.14-en-1-20240215 135

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/networking/index#configuring-routes
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/networking/index#configuring-routes
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/networking/index#configuring-routes
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/networking/index#configuring-ingress-cluster-traffic
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/networking/index#configuring-ingress-cluster-traffic
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/networking/index#configuring-ingress-cluster-traffic
https://cloud.redhat.com/blog/self-serviced-end-to-end-encryption-approaches-for-applications-deployed-in-openshift
https://cloud.redhat.com/blog/self-serviced-end-to-end-encryption-approaches-for-applications-deployed-in-openshift

Chapter 4 | Network Security

Guided Exercise

Protect External Traffic with TLS

Expose an application that is secured by TLS certificates.

Outcomes
• Deploy an application and create an unencrypted route for it.

• Create an OpenShift edge route with encryption.

• Update an OpenShift deployment to support a new version of the application.

• Create an OpenShift TLS secret and mount it to your application.

• Verify that the communication to the application is encrypted.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your

system for this exercise.

The command ensures that the cluster API is reachable, and creates the network-ingress
OpenShift project. The command also gives the developer user edit access on the project.

[student@workstation ~]$ lab start network-ingress

Instructions

As an application developer, you are ready to deploy your application in OpenShift. In this activity,

you deploy two versions of the application: one that is exposed over unencrypted traffic (HTTP),

and one that is exposed over secure traffic (HTTPS).

The container image, which is accessible at https://registry.ocp4.example.com:8443/
redhattraining/todo-angular, has two tags: v1.1, which is the insecure version of the

application, and v1.2, which is the secure version. Your organization uses its own certificate

authority (CA) that can sign certificates for the following domains:

• *.apps.ocp4.example.com
• *.ocp4.example.com

The CA certificate is accessible at ~/DO280/labs/network-ingress/certs/training-
CA.pem. The passphrase.txt file contains a unique password that protects the CA key. The

certs directory also contains the CA key.

 1. Log in to the OpenShift cluster and create the network-ingress project.

1.1. Log in to the cluster as the developer user.

136 DO280-OCP4.14-en-1-20240215

Chapter 4 | Network Security

[student@workstation ~]$ oc login -u developer -p developer \
 https://api.ocp4.example.com:6443
Login successful.

...output omitted...

1.2. Create the network-ingress project.

[student@workstation ~]$ oc new-project network-ingress
Now using project "network-ingress" on server "https://api.ocp4.example.com:6443".

...output omitted...

 2. The OpenShift deployment file for the application is accessible at ~/DO280/
labs/network-ingress/todo-app-v1.yaml. The deployment points to

registry.ocp4.example.com:8443/redhattraining/todo-angular:v1.1,

which is the initial and unencrypted version of the application. The file defines the todo-
http service that points to the application pod.

Create the application and expose the service.

2.1. Use the oc create command to deploy the application in the network-ingress
OpenShift project.

[student@workstation ~]$ oc create -f \
 ~/DO280/labs/network-ingress/todo-app-v1.yaml
deployment.apps/todo-http created
service/todo-http created

2.2. Wait a few minutes, so that the application can start, and then review the resources in

the project.

[student@workstation ~]$ oc status
...output omitted...
In project network-ingress on server https://api.ocp4.example.com:6443

svc/todo-http - 172.30.247.75:80 -> 8080
 deployment/todo-http deploys registry.ocp4.example.com:8443/redhattraining/todo-
angular:v1.1
 deployment #1 running for 16 seconds - 1 pod
...output omitted...

2.3. Run the oc expose command to create a route for accessing the application. Give

the route a hostname of todo-http.apps.ocp4.example.com.

[student@workstation ~]$ oc expose svc todo-http \
 --hostname todo-http.apps.ocp4.example.com
route.route.openshift.io/todo-http exposed

2.4. Retrieve the name of the route and copy it to the clipboard.

DO280-OCP4.14-en-1-20240215 137

Chapter 4 | Network Security

[student@workstation ~]$ oc get routes
NAME HOST/PORT PATH SERVICES PORT ...
todo-http todo-http.apps.ocp4.example.com todo-http 8080 ...

2.5. On the workstation machine, open Firefox and access the application URL.

Confirm that you can see the application.

• http://todo-http.apps.ocp4.example.com

2.6. Open a new terminal tab and run the tcpdump command with the following options

to intercept the traffic on port 80:

• -i eth0 intercepts traffic on the main interface.

• -A strips the headers and prints the packets in ASCII format.

• -n disables DNS resolution.

• port 80 is the port of the application.

Optionally, use the grep command to filter on JavaScript resources.

Start by retrieving the name of the main interface, whose IP is 172.25.250.9.

[student@workstation ~]$ ip addr | grep 172.25.250.9
inet 172.25.250.9/24 brd 172.25.250.255 scope global noprefixroute eth0

[student@workstation ~]$ sudo tcpdump -i eth0 -A -n port 80 | grep "angular"

Note

The full command is available at ~/DO280/labs/network-ingress/tcpdump-
command.txt.

2.7. On Firefox, refresh the page and notice the activity in the terminal. Press Ctrl+C to

stop the capture.

...output omitted...
<script type="text/javascript" src="assets/js/libs/angular/angular.min.js">
<script type="text/javascript" src="assets/js/libs/angular/angular-route.min.js">
<script type="text/javascript" src="assets/js/libs/angular/angular-
animate.min.js">
...output omitted...

 3. Create a secure edge route. Edge certificates encrypt the traffic between the client and

the router, but leave the traffic between the router and the service unencrypted. OpenShift

generates its own certificate that it signs with its CA.

In later steps, you extract the CA to ensure that the route certificate is signed.

3.1. Go to ~/DO280/labs/network-ingress and run the oc create route
command to define the new route.

Give the route a hostname of todo-https.apps.ocp4.example.com.

138 DO280-OCP4.14-en-1-20240215

Chapter 4 | Network Security

[student@workstation ~]$ cd ~/DO280/labs/network-ingress
[student@workstation network-ingress]$ oc create route edge todo-https \
 --service todo-http \
 --hostname todo-https.apps.ocp4.example.com
route.route.openshift.io/todo-https created

3.2. To test the route and read the certificate, open Firefox and access the application

URL.

• https://todo-https.apps.ocp4.example.com

Click the padlock, and then click the arrow next to Connection secure.

Firefox displays a message that the connection is verified by a certificate issuer

that Mozilla does not recognize. This message is displayed because the route

signed certificate comes from an internal CA that is installed on the classroom

OS. This CA, although not recognized by Mozilla, is valid for the lab environment

purposes. If your organization uses a custom public key infrastructure (PKI), then

you might see the same message.

Click More Information to display the page information window.

DO280-OCP4.14-en-1-20240215 139

Chapter 4 | Network Security

Click View Certificate to display the certificate information.

Locate the CN entry to see that the OpenShift ingress operator created the

certificate with its own CA.

140 DO280-OCP4.14-en-1-20240215

Chapter 4 | Network Security

3.3. From the terminal, use the curl command with the -I and -v options to retrieve the

connection headers.

The Server certificate section shows some information about the certificate.

The alternative name matches the name of the route. The output indicates that the

remote certificate is trusted because it matches the CA.

[student@workstation network-ingress]$ curl -I -v \
 https://todo-https.apps.ocp4.example.com
...output omitted...
* Server certificate:
* subject: O=EXAMPLE.COM; CN=.api.ocp4.example.com
* start date: May 10 11:18:41 2021 GMT
* expire date: May 10 11:18:41 2026 GMT
* subjectAltName: host "todo-https.apps.ocp4.example.com" matched cert's
 "*.apps.ocp4.example.com"
* issuer: O=EXAMPLE.COM; CN=Red Hat Training Certificate Authority
* SSL certificate verify ok.
...output omitted...

3.4. Although the traffic is encrypted at the edge with a certificate, you can still access

the insecure traffic at the service level, because the pod behind the service does not

offer an encrypted route.

Retrieve the IP address of the todo-http service.

[student@workstation network-ingress]$ oc get svc todo-http \
 -o jsonpath="{.spec.clusterIP}{'\n'}"
172.30.102.29

3.5. Create a debug pod in the todo-http deployment. Use the Red Hat Universal Base

Image (UBI), which contains tools to interact with containers.

DO280-OCP4.14-en-1-20240215 141

Chapter 4 | Network Security

[student@workstation network-ingress]$ oc debug -t deployment/todo-http \
 --image registry.ocp4.example.com:8443/ubi8/ubi:8.4
Starting pod/todo-http-debug ...
Pod IP: 10.131.0.255
If you don't see a command prompt, try pressing enter.
sh-4.4$

3.6. From the debug pod, use the curl command to access the service over HTTP.

Replace the IP address with the one that you obtained in a previous step.

The output indicates that the application is available over HTTP.

sh-4.4$ curl -v 172.30.102.29
* Rebuilt URL to: 172.30.102.29/
* Trying 172.30.102.29...
* TCP_NODELAY set
* Connected to 172.30.102.29 (172.30.102.29) port 80 (#0)
> GET / HTTP/1.1
> Host: 172.30.102.29
> User-Agent: curl/7.61.1
> Accept: */*
>
< HTTP/1.1 200 OK
...output omitted...

3.7. Exit the debug pod.

sh-4.4$ exit
Removing debug pod ...

3.8. Delete the edge route. In the following steps, you define the passthrough route.

[student@workstation network-ingress]$ oc delete route todo-https
route.route.openshift.io "todo-https" deleted

 4. Generate TLS certificates for the application.

In the following steps, you generate a CA-signed certificate that you attach as a secret to

the pod. You then configure a secure route in passthrough mode and let the application

expose that certificate.

4.1. Go to the ~/DO280/labs/network-ingress/certs directory and list the files.

[student@workstation network-ingress]$ cd certs
[student@workstation certs]$ ls -l
total 20
-rw-rw-r--. 1 student student 604 Nov 29 17:35 openssl-commands.txt
-rw-r--r--. 1 student student 33 Nov 29 17:35 passphrase.txt
-rw-r--r--. 1 student student 1743 Nov 29 17:35 training-CA.key
-rw-r--r--. 1 student student 1363 Nov 29 17:35 training-CA.pem
-rw-r--r--. 1 student student 406 Nov 29 17:35 training.ext

142 DO280-OCP4.14-en-1-20240215

Chapter 4 | Network Security

4.2. Generate the private key for your CA-signed certificate.

Note

The following commands for generating a signed certificate are all available in the

~/DO280/labs/network-ingress/certs/openssl-commands.txt file.

[student@workstation certs]$ openssl genrsa -out training.key 4096

4.3. Generate the certificate signing request (CSR) for the todo-
https.apps.ocp4.example.com hostname.

[student@workstation certs]$ openssl req -new \
 -key training.key -out training.csr \
 -subj "/C=US/ST=North Carolina/L=Raleigh/O=Red Hat/\
 CN=todo-https.apps.ocp4.example.com"

Warning

Type the request subject on one line. Alternatively, remove the -subj
option and its content. Without the -subj option, the openssl command

prompts you for the values; indicate a common name (CN) of todo-
https.apps.ocp4.example.com.

4.4. Finally, generate the signed certificate. Notice the use of the -CA and -CAkey
options for signing the certificate against the CA. Use the -passin option to reuse

the password of the CA. Use the extfile option to define a Subject Alternative

Name (SAN).

[student@workstation certs]$ openssl x509 -req -in training.csr \
 -passin file:passphrase.txt \
 -CA training-CA.pem -CAkey training-CA.key -CAcreateserial \
 -out training.crt -days 1825 -sha256 -extfile training.ext
Certificate request self-signature ok
subject=C = US, ST = North Carolina, L = Raleigh, O = Red Hat, CN = todo-
https.apps.ocp4.example.com

4.5. Ensure that the newly created certificate and key are present in the current directory.

[student@workstation certs]$ ls -lrt
total 36
-rw-r--r--. 1 student student 599 Jul 31 09:35 openssl-commands.txt
-rw-r--r--. 1 student student 33 Aug 3 12:38 passphrase.txt
-rw-r--r--. 1 student student 352 Aug 3 12:38 training.ext
-rw-------. 1 student student 1743 Aug 3 12:38 training-CA.key
-rw-r--r--. 1 student student 1334 Aug 3 12:38 training-CA.pem
-rw-------. 1 student student 1675 Aug 3 13:38 training.key
-rw-rw-r--. 1 student student 1017 Aug 3 13:39 training.csr
-rw-rw-r--. 1 student student 41 Aug 3 13:40 training-CA.srl
-rw-rw-r--. 1 student student 1399 Aug 3 13:40 training.crt

DO280-OCP4.14-en-1-20240215 143

Chapter 4 | Network Security

4.6. Return to the network-ingress directory. This step is important, because the next

step involves creating a route that uses the self-signed certificate.

[student@workstation certs]$ cd ~/DO280/labs/network-ingress

 5. Deploy a new version of your application.

The new version of the application expects a certificate and a key inside the container at

/usr/local/etc/ssl/certs. The web server in that version is configured with SSL

support. Create a secret to import the certificate from the workstation machine. In a

later step, the application deployment requests that secret and exposes its content to the

container at /usr/local/etc/ssl/certs.

5.1. Create a tls OpenShift secret named todo-certs. Use the --cert and --key
options to embed the TLS certificates. Use training.crt as the certificate, and

training.key as the key.

[student@workstation network-ingress]$ oc create secret tls todo-certs \
 --cert certs/training.crt --key certs/training.key
secret/todo-certs created

5.2. The deployment file at ~/DO280/labs/network-ingress/todo-app-v2.yaml
points to version 2 of the container image. Examine how the new version of the

application is configured to support SSL certificates.

[student@workstation network-ingress]$ cat todo-app-v2.yaml
apiVersion: apps/v1
kind: Deployment
...output omitted...
 volumeMounts:
 - name: tls-certs
 readOnly: true
 mountPath: /usr/local/etc/ssl/certs
...output omitted...
 volumes:
 - name: tls-certs
 secret:
 secretName: todo-certs

apiVersion: v1
kind: Service
...output omitted...
 ports:
 - name: https
 port: 8443
 protocol: TCP
 targetPort: 8443
...output omitted...

The todo-certs secret with the SSL certificate is mounted in the container in

the /usr/local/etc/ssl/certs directory to enable TLS for the application.

Additionally, the todo-app-v2 deployment changes the service to include port

8443.

144 DO280-OCP4.14-en-1-20240215

Chapter 4 | Network Security

5.3. Run the oc create command to create a deployment that uses that image.

[student@workstation network-ingress]$ oc create -f todo-app-v2.yaml
deployment.apps/todo-https created
service/todo-https created

5.4. Wait a couple of minutes to ensure that the application pod is running. Use the oc
set volumes command to review the volumes that are mounted inside the pod.

[student@workstation network-ingress]$ oc set volumes deployment/todo-https
 todo-https
 secret/todo-certs as tls-certs
 mounted at /usr/local/etc/ssl/certs

 6. Create the secure route.

6.1. Run the oc create route command to define the new route.

Give the route a hostname of todo-https.apps.ocp4.example.com.

[student@workstation network-ingress]$ oc create route passthrough todo-https \
 --service todo-https --port 8443 \
 --hostname todo-https.apps.ocp4.example.com
route.route.openshift.io/todo-https created

6.2. Use the curl command in verbose mode to test the route and to read the certificate.

Use the --cacert option to pass the CA certificate to the curl command.

The output indicates a match between the certificate chain and the application

certificate. This match indicates that the OpenShift router forwards only packets that

are encrypted by the application web server certificate.

[student@workstation network-ingress]$ curl -vv -I \
 --cacert certs/training-CA.pem \
 https://todo-https.apps.ocp4.example.com
...output omitted...
* Server certificate:
* subject: C=US; ST=North Carolina; L=Raleigh; O=Red Hat; CN=todo-
https.apps.ocp4.example.com
* start date: Jun 15 01:53:30 2021 GMT
* expire date: Jun 14 01:53:30 2026 GMT
* subjectAltName: host "todo-https.apps.ocp4.example.com" matched cert's
 "*.apps.ocp4.example.com"
* issuer: C=US; ST=North Carolina; L=Raleigh; O=Red Hat; CN=ocp4.example.com
* SSL certificate verify ok.
...output omitted...

 7. Create a debug pod to further confirm proper encryption at the service level.

7.1. Retrieve the IP address of the todo-https service.

DO280-OCP4.14-en-1-20240215 145

Chapter 4 | Network Security

[student@workstation network-ingress]$ oc get svc todo-https \
 -o jsonpath="{.spec.clusterIP}{'\n'}"
172.30.121.154

7.2. Create a debug pod in the todo-https deployment with the Red Hat UBI container

image.

[student@workstation network-ingress]$ oc debug -t deployment/todo-https \
 --image registry.ocp4.example.com:8443/ubi8/ubi:8.4
Starting pod/todo-https-debug ...
Pod IP: 10.128.2.129
If you don't see a command prompt, try pressing enter.
sh-4.4$

7.3. From the debug pod, use the curl command to access the service over HTTP.

Replace the IP address with the one that you obtained in a previous step.

The output indicates that the application is not available over HTTP, and the web

server redirects you to the secure version.

sh-4.4$ curl -I http://172.30.121.154
HTTP/1.1 301 Moved Permanently
Server: nginx/1.14.1
Date: Tue, 15 Jun 2021 02:01:19 GMT
Content-Type: text/html
Connection: keep-alive
Location: https://172.30.121.154:8443/

7.4. Finally, access the application over HTTPS. Use the -k option, because the container

does not have access to the CA certificate.

sh-4.4$ curl -s -k https://172.30.121.154:8443 | head -n5
<!DOCTYPE html>
<html lang="en" ng-app="todoItemsApp" ng-controller="appCtl">
<head>
 <meta charset="utf-8">
 <title>ToDo app</title>

7.5. Exit the debug pod.

sh-4.4$ exit
Removing debug pod ...

 8. Clean up the exercise directory and project.

8.1. Change to the home directory.

[student@workstation network-ingress]$ cd

8.2. Delete the network-ingress project.

146 DO280-OCP4.14-en-1-20240215

Chapter 4 | Network Security

[student@workstation ~]$ oc delete project network-ingress
project.project.openshift.io "network-ingress" deleted

Finish

On the workstation machine, use the lab command to complete this exercise. This step is

important to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab finish network-ingress

DO280-OCP4.14-en-1-20240215 147

Chapter 4 | Network Security

Configure Network Policies

Objectives
• Restrict network traffic between projects and pods.

Managing Network Policies in OpenShift
With network policies, you can configure isolation policies for individual pods. Network policies

do not require administrative privileges, and give developers more control over the applications

in their projects. You can use network policies to create logical zones in the SDN that map to your

organization network zones. The benefit of this approach is that the location of running pods

becomes irrelevant, because with network policies, you can separate traffic regardless of where it

originates.

In contrast to traditional firewalls, Kubernetes network policies control network traffic between

pods by using labels instead of IP addresses. To manage network communication between pods

in two namespaces, assign a label to the namespace that needs access to another namespace,

and create a network policy that selects these labels. You can also use a network policy to select

labels on individual pods to create ingress or egress rules. In network policies, use selectors

under spec to assign which destination pods are affected by the policy, and selectors under

spec.ingress to assign which source pods are allowed. The following command assigns the

network=network-1 label to the network-1 namespace:

[user@host ~]$ oc label namespace network-1 network=network-1

The following examples describe network policies that allow communication between pods in the

network-1 and network-2 namespaces:

• The following network policy applies to any pods with the deployment="product-
catalog" label in the network-1 namespace. The network-2 namespace has the

network=network-2 label. The policy allows TCP traffic over port 8080 from pods whose

label is role="qa" in namespaces with the network=network-2 label.

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: network-1-policy
 namespace: network-1
spec:
 podSelector:
 matchLabels:
 deployment: product-catalog
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 network: network-2
 podSelector:
 matchLabels:

148 DO280-OCP4.14-en-1-20240215

Chapter 4 | Network Security

 role: qa
 ports:
 - port: 8080
 protocol: TCP

The top-level podSelector field is required and defines which pods use the network

policy. If the podSelector is empty, then all pods in the namespace are matched.

The ingress field defines a list of ingress traffic rules to apply to the matched pods from

the top-level podSelector field.

The from field defines a list of rules to match traffic from all sources. The selectors are not

limited to the project in which the network policy is defined.

The ports field is a list of destination ports that allow traffic to reach the selected pods.

• The following network policy allows traffic from any pods in namespaces with the

network=network-1 label into any pods and ports in the network-2 namespace. This policy

is less restrictive than the network-1 policy, because it does not restrict traffic from any pods

in the network-1 namespace.

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: network-2-policy
 namespace: network-2
spec:
 podSelector: {}
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 network: network-1

Note

Network policies are Kubernetes resources. As such, you can manage them with oc
commands.

Network Policies Between Projects

One benefit of using network policies is to manage security between projects (tenants), which you

cannot do with layer 2 technologies such as VLANs. With this approach, you can create tailored

policies between projects to ensure that users can access only what they should (which conforms

to the least privilege approach).

The fields in the network policy that take a list of objects can either be combined in the same

object or can be listed as multiple objects. If combined, the conditions are combined with a logical

AND. If separated in a list, the conditions are combined with a logical OR. With the logic options,

you can create specific policy rules. The following examples highlight the differences that the

syntax can make:

• This example combines the selectors into one rule, and thereby allows access only from pods

with the app=mobile label in namespaces with the network=dev label. This sample shows a

logical AND statement.

DO280-OCP4.14-en-1-20240215 149

Chapter 4 | Network Security

...output omitted...
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 network: dev
 podSelector:
 matchLabels:
 app: mobile

• By changing the podSelector field in the previous example to be an item in the from list, any

pods in namespaces with the network=dev label or any pods with the app=mobile label from

any namespace can reach the pods that match the top-level podSelector field. This sample

shows a logical OR statement.

...output omitted...
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 network: dev
 - podSelector:
 matchLabels:
 app: mobile

Deny-all Network Policies

If a pod is matched by selectors in one or more network policies, then the pod accepts only

connections that at least one of those network policies allows. A strict example is a policy to deny-

all ingress traffic to pods in your project, including from other pods inside your project. An empty

pod selector means that this policy applies to all pods in this project. The following policy blocks

all traffic, because no ingress rules are defined. Traffic is blocked unless you also define an explicit

policy that overrides this default behavior.

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: default-deny
spec:
 podSelector: {}

Important

If a pod does not match any network policies, then OpenShift does not restrict

traffic to that pod. When creating an environment to allow network traffic only

explicitly, you must include a deny-all policy.

150 DO280-OCP4.14-en-1-20240215

Chapter 4 | Network Security

Allowing Access from OpenShift Cluster Services

When you protect your pods by using network policies, OpenShift cluster services might need

explicit policies to access pods. Several common scenarios require explicit policies, including the

following ones:

• The router pods that enable access from outside the cluster by using ingress or route resources

• The monitoring service, if your application exposes metrics endpoints

The following policies allow ingress from OpenShift monitoring and ingress pods:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-from-openshift-ingress
spec:
 podSelector: {}
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 policy-group.network.openshift.io/ingress: ""

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-from-openshift-monitoring
spec:
 podSelector: {}
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 network.openshift.io/policy-group: monitoring

Important

Network policies do not block traffic from pods that use host networking to pods in

the same node.

For example, on a single-node cluster, a deny-all network policy does not prevent

ingress pods that use the host network strategy from accessing application pods.

Inside a node, traffic from pods that use host networking is treated differently from

traffic from other pods. Network policies control only internal traffic from pods that

do not use host networking.

When traffic leaves a node, no such different treatment exists, and network policies

control all traffic from other nodes.

For more information about this topic, refer to Network Policies [https://

kubernetes.io/docs/concepts/services-networking/network-policies/#what-you-

can-t-do-with-network-policies-at-least-not-yet]

DO280-OCP4.14-en-1-20240215 151

https://kubernetes.io/docs/concepts/services-networking/network-policies/#what-you-can-t-do-with-network-policies-at-least-not-yet
https://kubernetes.io/docs/concepts/services-networking/network-policies/#what-you-can-t-do-with-network-policies-at-least-not-yet
https://kubernetes.io/docs/concepts/services-networking/network-policies/#what-you-can-t-do-with-network-policies-at-least-not-yet
https://kubernetes.io/docs/concepts/services-networking/network-policies/#what-you-can-t-do-with-network-policies-at-least-not-yet

Chapter 4 | Network Security

References

For more information about network policy, refer to the Network Policy chapter in

the Red Hat OpenShift Container Platform 4.14 Networking documentation at

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.14/html-single/networking/index#network-policy

152 DO280-OCP4.14-en-1-20240215

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/networking/index#network-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/networking/index#network-policy

Chapter 4 | Network Security

Guided Exercise

Configure Network Policies

Create network policies and review pod isolation that these network policies created.

Outcomes
• Create network policies to control communication between pods.

• Verify that ingress traffic is limited to pods.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your

system for this exercise.

This command ensures that the environment is ready and downloads the necessary resource

files for the exercise.

[student@workstation ~]$ lab start network-policy

Instructions

 1. Log in to the OpenShift cluster and create the network-policy project.

1.1. Log in to the cluster as the developer user with the developer password.

[student@workstation ~]$ oc login -u developer -p developer \
 https://api.ocp4.example.com:6443
Login successful.

...output omitted...

1.2. Create the network-policy project.

[student@workstation ~]$ oc new-project network-policy
Now using project "network-policy" on server "https://api.ocp4.example.com:6443".

...output omitted...

 2. Create two identical deployments named hello and test. Create a route to the hello
deployment.

2.1. Create the hello deployment that uses the

registry.ocp4.example.com:8443/redhattraining/hello-world-
nginx:v1.0 container image.

DO280-OCP4.14-en-1-20240215 153

Chapter 4 | Network Security

[student@workstation ~]$ oc new-app --name hello \
 --image registry.ocp4.example.com:8443/redhattraining/hello-world-nginx:v1.0
...output omitted...
--> Creating resources ...
 imagestream.image.openshift.io "hello" created
 deployment.apps "hello" created
 service "hello" created
--> Success
...output omitted...

2.2. Create the test deployment that uses the registry.ocp4.example.com:8443/
redhattraining/hello-world-nginx:v1.0 container image.

[student@workstation ~]$ oc new-app --name test \
 --image registry.ocp4.example.com:8443/redhattraining/hello-world-nginx:v1.0
...output omitted...
--> Creating resources ...
 imagestream.image.openshift.io "test" created
 deployment.apps "test" created
 service "test" created
--> Success
...output omitted...

2.3. Use the oc expose command to create a route to the hello service.

[student@workstation ~]$ oc expose service hello
route.route.openshift.io/hello exposed

 3. Verify that the test pod can access the hello pod by using the oc rsh and curl
commands.

3.1. Open a second terminal and run the script at ~/DO280/labs/network-policy/
display-project-info.sh. This script provides information about the pods,

service, and route that are used in the rest of this exercise.

[student@workstation ~]$ ~/DO280/labs/network-policy/display-project-info.sh
===
PROJECT: network-policy

POD NAME IP ADDRESS
hello-6c4984d949-g28c4 10.8.0.13
test-c4d74c9d5-5pq9s 10.8.0.14

SERVICE NAME CLUSTER-IP
hello 172.30.137.226
test 172.30.159.119

ROUTE NAME HOSTNAME PORT
hello hello-network-policy.apps.ocp4.example.com 8080-tcp
===

154 DO280-OCP4.14-en-1-20240215

Chapter 4 | Network Security

3.2. Access the hello pod IP address from the test pod by using the oc rsh and curl
commands.

[student@workstation ~]$ oc rsh test-c4d74c9d5-5pq9s \
 curl 10.8.0.13:8080 | grep Hello
 <h1>Hello, world from nginx!</h1>

3.3. Access the hello service IP address from the test pod by using the oc rsh and

curl commands.

[student@workstation ~]$ oc rsh test-c4d74c9d5-5pq9s \
 curl 172.30.137.226:8080 | grep Hello
 <h1>Hello, world from nginx!</h1>

3.4. Access the hello route hostname by using the curl command.

[student@workstation ~]$ curl -s hello-network-policy.apps.ocp4.example.com | \
 grep Hello
 <h1>Hello, world from nginx!</h1>

 4. Create a project named different-namespace that contains a deployment named

sample-app.

4.1. Create the different-namespace project.

[student@workstation ~]$ oc new-project different-namespace
Now using project "different-namespace" on server "https://
api.ocp4.example.com:6443".
...output omitted...

4.2. Create the sample-app deployment from the

registry.ocp4.example.com:8443/redhattraining/hello-world-
nginx:v1.0 image. The web app listens on port 8080.

[student@workstation ~]$ oc new-app --name sample-app \
 --image registry.ocp4.example.com:8443/redhattraining/hello-world-nginx:v1.0
...output omitted...
--> Creating resources ...
 imagestream.image.openshift.io "sample-app" created
 deployment.apps "sample-app" created
 service "sample-app" created
--> Success
...output omitted...

 5. Access the hello and test pods in the network-policy project from the sample-app
pod in the different-namespace project.

5.1. In the second terminal, view the full name of the sample-app pod with the

display-project-info.sh script.

DO280-OCP4.14-en-1-20240215 155

Chapter 4 | Network Security

[student@workstation ~]$ ~/DO280/labs/network-policy/display-project-info.sh
===
PROJECT: network-policy

POD NAME IP ADDRESS
hello-6c4984d949-g28c4 10.8.0.13
test-c4d74c9d5-5pq9s 10.8.0.14

SERVICE NAME CLUSTER-IP
hello 172.30.137.226
test 172.30.159.119

ROUTE NAME HOSTNAME PORT
hello hello-network-policy.apps.ocp4.example.com 8080-tcp
===
PROJECT: different-namespace

POD NAME
sample-app-d5f945-spx9q
===

5.2. In the first terminal, access the hello pod IP address from the sample-app pod by

using the oc rsh and curl commands.

[student@workstation ~]$ oc rsh sample-app-d5f945-spx9q \
 curl 10.8.0.13:8080 | grep Hello
 <h1>Hello, world from nginx!</h1>

5.3. Access the test pod IP address from the sample-app pod by using the oc rsh and

curl commands. Target the IP address that was previously retrieved for the test
pod.

[student@workstation ~]$ oc rsh sample-app-d5f945-spx9q \
 curl 10.8.0.14:8080 | grep Hello
 <h1>Hello, world from nginx!</h1>

 6. In the network-policy project, create a deny-all network policy by using the resource

file at ~/DO280/labs/network-policy/deny-all.yaml.

6.1. Switch to the network-policy project.

[student@workstation ~]$ oc project network-policy
Now using project "network-policy" on server "https://api.ocp4.example.com:6443".

6.2. Change to the ~/DO280/labs/network-policy directory.

[student@workstation ~]$ cd ~/DO280/labs/network-policy

6.3. Use a text editor to update the deny-all.yaml file with an empty podSelector
field to target all pods in the network-policy project.

156 DO280-OCP4.14-en-1-20240215

Chapter 4 | Network Security

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: deny-all
spec:
 podSelector: {}

Note

A solution is provided at ~/DO280/solutions/network-policy/deny-
all.yaml.

6.4. Create the network policy with the oc create command.

[student@workstation network-policy]$ oc create -f deny-all.yaml
networkpolicy.networking.k8s.io/deny-all created

 7. Verify that the deny-all network policy forbids network access to pods in the network-
policy project.

7.1. Verify that the test pod can no longer access the IP address of the hello pod. Wait

a few seconds, and then press Ctrl+C to exit the curl command that does not reply.

[student@workstation network-policy]$ oc rsh test-c4d74c9d5-5pq9s \
 curl 10.8.0.13:8080 | grep Hello
^C
command terminated with exit code 130

7.2. Switch to the different-namespace project.

[student@workstation network-policy]$ oc project different-namespace
Now using project "different-namespace" on server "https://
api.ocp4.example.com:6443".

7.3. Verify that the sample-app pod can no longer access the IP address of the test
pod. Wait a few seconds, and then press Ctrl+C to exit the curl command that

does not reply.

[student@workstation network-policy]$ oc rsh sample-app-d5f945-spx9q \
 curl 10.8.0.14:8080 | grep Hello
^C
command terminated with exit code 130

 8. Create a network policy to allow traffic to the hello pod in the network-policy project

from the sample-app pod in the different-namespace project via TCP on port 8080.

Use the resource file at ~/DO280/labs/network-policy/allow-specific.yaml.

8.1. Use a text editor to replace the CHANGE_ME sections in the allow-specific.yaml
file as follows:

DO280-OCP4.14-en-1-20240215 157

Chapter 4 | Network Security

...output omitted...
spec:
 podSelector:
 matchLabels:
 deployment: hello
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 network: different-namespace
 podSelector:
 matchLabels:
 deployment: sample-app
 ports:
 - port: 8080
 protocol: TCP

Note

A solution is provided at ~/DO280/solutions/network-policy/allow-
specific.yaml.

8.2. Apply the network policy from the allow-specific.yaml file with the oc create
command.

[student@workstation network-policy]$ oc create -n network-policy -f \
 allow-specific.yaml
networkpolicy.networking.k8s.io/allow-specific created

8.3. View the network policies in the network-policy project.

[student@workstation network-policy]$ oc get networkpolicies -n network-policy
NAME POD-SELECTOR AGE
allow-specific deployment=hello 11s
deny-all <none> 5m6s

 9. As the admin user, label the different-namespace namespace with the

network=different-namespace label.

9.1. Log in as the admin user.

[student@workstation network-policy]$ oc login -u admin -p redhatocp
Login successful.

...output omitted...

9.2. Apply the network=different-namespace label with the oc label command.

158 DO280-OCP4.14-en-1-20240215

Chapter 4 | Network Security

[student@workstation network-policy]$ oc label namespace different-namespace \
 network=different-namespace
namespace/different-namespace labeled

Important

The allow-specific network policy uses labels to match the different-
namespace namespace. By default, namespaces and projects do not get any labels

automatically.

9.3. Confirm that the different-namespace label was applied.

[student@workstation network-policy]$ oc describe namespace different-namespace
Name: different-namespace
Labels: network=different-namespace
...output omitted...

9.4. Log in as the developer user.

[student@workstation network-policy]$ oc login -u developer -p developer
Login successful.

...output omitted...

 10. Verify that the sample-app pod can access the IP address of the hello pod, but cannot

access the IP address of the test pod.

10.1. Switch to the different-namespace project.

[student@workstation network-policy]$ oc project different-namespace
Already on project "different-namespace" on server "https://
api.ocp4.example.com:6443".

10.2. Access the hello pod in the network-policy namespace with the oc rsh and

curl commands via the 8080 port.

[student@workstation network-policy]$ oc rsh sample-app-d5f945-spx9q \
 curl 10.8.0.13:8080 | grep Hello
 <h1>Hello, world from nginx!</h1>

10.3. Verify that the hello pod cannot be accessed on another port. Because the network

policy allows access only to port 8080 on the hello pod, requests to any other port

are ignored and eventually time out. Wait a few seconds, and then press Ctrl+C to

exit the curl command when no response occurs.

[student@workstation network-policy]$ oc rsh sample-app-d5f945-spx9q \
 curl 10.8.0.13:8181 | grep Hello
^C
command terminated with exit code 130

DO280-OCP4.14-en-1-20240215 159

Chapter 4 | Network Security

10.4. Verify that the test pod cannot be accessed from the sample-app pod. Wait a

few seconds, and then press Ctrl+C to exit the curl command when no response

occurs.

[student@workstation network-policy]$ oc rsh sample-app-d5f945-spx9q \
 curl 10.8.0.14:8080 | grep Hello
^C
command terminated with exit code 130

 11. Verify if the hello route cannot access the hello pod.

11.1. Verify if the hello pod cannot be accessed via its exposed route.

[student@workstation network-policy]$ curl -s \
 hello-network-policy.apps.ocp4.example.com
 <h1>Hello, world from nginx!</h1>

The lab environment is a single-node cluster. Because the ingress pods use host

networking and the application pods are in the same node, the network policy does

not block the traffic.

 12. Create a network policy that allows traffic to the hello pod via the exposed route. Use

the resource file at ~/DO280/labs/network-policy/allow-from-openshift-
ingress.yaml.

This step does not have an effect on the lab environment, because the lab environment

is a single-node cluster. On a cluster with multiple nodes, this step is required for correct

ingress operation.

12.1. Use a text editor to replace the CHANGE_ME values in the allow-from-
openshift-ingress.yaml file as follows:

...output omitted...
spec:
 podSelector: {}
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 policy-group.network.openshift.io/ingress: ""

Note

A solution is provided at ~/DO280/solutions/network-policy/allow-from-
openshift-ingress.yaml.

12.2. Apply the network policy from the allow-from-openshift-ingress.yaml file

with the oc create command.

[student@workstation network-policy]$ oc create -n network-policy -f \
 allow-from-openshift-ingress.yaml
networkpolicy.networking.k8s.io/allow-from-openshift-ingress created

160 DO280-OCP4.14-en-1-20240215

Chapter 4 | Network Security

12.3. View the network policies in the network-policy namespace.

[student@workstation network-policy]$ oc get networkpolicies -n network-policy
NAME POD-SELECTOR AGE
allow-from-openshift-ingress <none> 10s
allow-specific deployment=hello 8m16s
deny-all <none> 13m

12.4. Log in as the admin user.

[student@workstation network-policy]$ oc login -u admin -p redhatocp
Login successful.

...output omitted...

12.5. Access the hello pod via the exposed route with the curl command.

[student@workstation network-policy]$ curl -s \
 hello-network-policy.apps.ocp4.example.com | grep Hello
 <h1>Hello, world from nginx!</h1>

 13. Close the terminal window that contains the output of the display-project-info.sh
script, and navigate to the home directory.

[student@workstation network-policy]$ cd

Finish

On the workstation machine, use the lab command to complete this exercise. This step is

important to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab finish network-policy

DO280-OCP4.14-en-1-20240215 161

Chapter 4 | Network Security

Protect Internal Traffic with TLS

Objectives
• Configure and use automatic service certificates.

Zero-trust Environments
Zero-trust environments assume that every interaction begins in an untrusted state. Users can

access only files or objects that are specifically allowed; communication must be encrypted; and

client applications must verify the authenticity of servers.

By default, OpenShift encrypts network traffic between nodes and the control plane, and prevents

external entities from reading internal traffic. This encryption provides stronger security than

default Kubernetes, which does not automatically encrypt internal traffic. Although the control

plane traffic is encrypted, applications in OpenShift do not necessarily verify the authenticity of

other applications or encrypt application traffic.

Zero-trust environments require that a trusted certificate authority (CA) signs the certificates that

are used to encrypt traffic. By referencing the CA certificate, an application can cryptographically

verify the authenticity of another application with a signed certificate.

Service Certificates
OpenShift provides the service-ca controller to generate and sign service certificates for

internal traffic. The service-ca controller creates a secret that it populates with a signed

certificate and key. A deployment can mount this secret as a volume to use the signed certificate.

Additionally, client applications need to trust the service-ca controller CA.

Service Certificate Creation

To generate a certificate and key pair, apply the service.beta.openshift.io/serving-
cert-secret-name=your-secret annotation to a service. The service-ca controller creates

the your-secret secret in the same namespace if it does not exist, and populates it with a

signed certificate and key pair for the service.

[user@host ~]$ oc annotate service hello \
 service.beta.openshift.io/serving-cert-secret-name=hello-secret
service/hello annotated

The hello service is annotated.

The secret that contains the certificate and key pair is named hello-secret.

After OpenShift generates the secret, you must mount the secret in the application deployment.

The location to place the certificate and key is application-dependent. The following YAML patch

is for an NGINX deployment:

162 DO280-OCP4.14-en-1-20240215

Chapter 4 | Network Security

spec:
 template:
 spec:
 containers:
 - name: hello
 volumeMounts:
 - name: hello-volume
 mountPath: /etc/pki/nginx/
 volumes:
 - name: hello-volume
 secret:
 defaultMode: 420
 secretName: hello-secret
 items:
 - key: tls.crt
 path: server.crt
 - key: tls.key
 path: private/server.key

Defining the volume as hello-volume.

The application-specific mount path.

The read-write permissions that the application recommends.

The secret that the earlier annotation defined.

The secret has tls.crt as the signed certificate and tls.key as the key.

The application-specific destinations for the certificate and key.

After mounting the secret to the application container, the application can use the signed

certificate for TLS traffic.

Client Service Application Configuration

For a client service application to verify the validity of a certificate, the application needs the CA

bundle that signed that certificate. The service-ca controller injects the CA bundle when you

apply the service.beta.openshift.io/inject-cabundle=true annotation to an object.

You can apply the annotation to configuration maps, API services, custom resource definitions

(CRD), mutating webhooks, and validating webhooks.

Configuration Maps
Apply the service.beta.openshift.io/inject-cabundle=true annotation to a

configuration map to inject the CA bundle into the data: { service-ca.crt } field.

The service-ca controller replaces all data in the selected configuration map with the CA

bundle. You must therefore use a dedicated configuration map to prevent overwriting existing

data.

[user@host ~]$ oc annotate configmap ca-bundle \
 service.beta.openshift.io/inject-cabundle=true
configmap/ca-bundle annotated

DO280-OCP4.14-en-1-20240215 163

Chapter 4 | Network Security

API service
Applying the annotation to an API service injects the CA bundle into the spec.caBundle
field.

CRD
Applying the annotation to a CRD injects the CA bundle into the

spec.conversion.webhook.clientConfig.caBundle field.

Mutating or validating webhook
Applying the annotation to a mutating webhook or validating webhook injects the CA bundle

into the clientConfig.caBundle field.

Key Rotation

The service CA certificate is valid for 26 months by default and is automatically rotated after 13

months. After rotation is a 13-month grace period where the original CA certificate is still valid.

During this grace period, each pod that is configured to trust the original CA certificate must be

restarted in some way. A service restart automatically injects the new CA bundle.

You can also manually rotate the certificate for the service CA and for generated service

certificates. To rotate a generated service certificate, delete the existing secret, and the

service-ca controller automatically generates a new one.

[user@host ~]$ oc delete secret certificate-secret
secret/certificate-secret deleted

To manually rotate the service CA certificate, delete the signing-key secret in the openshift-
service-ca namespace.

[user@host ~]$ oc delete secret/signing-key -n openshift-service-ca
secret/signing-key deleted

This process immediately invalidates the former service CA certificate. You must restart all pods

that use it, for TLS to function.

Alternatives to Service Certificates
Other options can handle TLS encryption inside an OpenShift cluster, such as a service mesh or

the certmanager operator.

You can use the certmanager operator to delegate the certificate signing process to a trusted

external service, and also to renew a certificate.

You can also use Red Hat OpenShift Service Mesh for encrypted service-to-service

communication and for other advanced features. Service mesh is an advanced topic and is not

covered in the course.

Patching Kubernetes Resources
You can modify objects in OpenShift in a repeatable way with the oc patch command. The oc
patch command updates or adds fields in an existing object from a provided JSON or YAML

snippet or file. A software developer might distribute a patch file or snippet to fix problems before

a full update is available.

164 DO280-OCP4.14-en-1-20240215

Chapter 4 | Network Security

To patch an object from a snippet, use the oc patch command with the -p option and the

snippet. The following example updates the hello deployment to have a CPU resource request of

100m with a JSON snippet:

[user@host ~]$ oc patch deployment hello -p \
 '{"spec":{"template":{"spec":{"resources":{"requests":{"cpu": "100m"}}}}}}'
deployment/hello patched

To patch an object from a patch file, use the oc patch command with the --patch-file
option and the location of the patch file. The following example updates the hello deployment to

include the content of the ~/volume-mount.yaml patch file:

[user@host ~]$ oc patch deployment hello --patch-file ~/volume-mount.yaml
deployment.apps/hello patched

The contents of the patch file describe mounting a persistent volume claim as a volume:

spec:
 template:
 spec:
 containers:
 - name: hello
 volumeMounts:
 - name: www
 mountPath: /usr/share/nginx/html/
 volumes:
 - name: www
 persistentVolumeClaim:
 claimName: nginx-www

This patch results in the following manifest for the hello deployment:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: hello
 ...output omitted...
spec:
 ...output omitted...
 template:
 ...output omitted...
 spec:
 containers:
 ...output omitted...
 name: server
 ...output omitted...
 volumeMounts:
 - mountPath: /usr/share/nginx/html/
 name: www
 - mountPath: /etc/nginx/conf.d/
 name: tls-conf
 ...output omitted...

DO280-OCP4.14-en-1-20240215 165

Chapter 4 | Network Security

 volumes:
 - configMap:
 defaultMode: 420
 name: tls-conf
 name: tls-conf
 - persistentVolumeClaim:
 claimName: nginx-www
 name: www
...output omitted...

The patch applies to the hello deployment regardless of whether the www volume mount exists.

The oc patch command modifies existing fields in the object that are specified in the patch. If

the beginning state of the hello deployment already contains data as follows, then the end result

is the same as if the fields do not exist:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: hello
 ...output omitted...
spec:
 ...output omitted...
 template:
 ...output omitted...
 spec:
 containers:
 ...output omitted...
 name: server
 ...output omitted...
 volumeMounts:
 - mountPath: /usr/share/nginx/www/
 name: www
 - mountPath: /etc/nginx/conf.d/
 name: tls-conf
 ...output omitted...
 volumes:
 - configMap:
 defaultMode: 420
 name: tls-conf
 name: tls-conf
 - persistentVolumeClaim:
 claimName: deprecated-www
 name: www
...output omitted...

The www volume already exists. The patch replaces the existing data with the new data.

166 DO280-OCP4.14-en-1-20240215

Chapter 4 | Network Security

References

For more information about service certificates, refer to the Securing Service Traffic

Using Service Serving Certificate Secrets section in the Configuring Certificates

chapter in the Red Hat OpenShift Container Platform 4.14 Security and Compliance

documentation at

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.14/html-single/security_and_compliance#add-

service-serving

For more information about service mesh, refer to the About OpenShift Service

Mesh section in the Service Mesh 2.x chapter in the Red Hat OpenShift Container

Platform 4.14 Service Mesh documentation at

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.14/html-single/service_mesh#ossm-about

For more information about the cert-manager operator, refer to the cert-manager

Operator for Red Hat OpenShift chapter in the Red Hat OpenShift Container

Platform 4.14 Security and Compliance documentation at

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.14/html-single/security_and_compliance#cert-

manager-operator-for-red-hat-openshift

For more information about the oc patch command, refer to the oc patch section

in the OpenShift CLI Developer Command Reference chapter in the Red Hat

OpenShift Container Platform 4.14 CLI Tools documentation at

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.14/html-single/cli_tools/index#oc-patch

Red Hat Topics - What Is Zero Trust?

https://www.redhat.com/en/topics/security/what-is-zero-trust

DO280-OCP4.14-en-1-20240215 167

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/security_and_compliance#add-service-serving
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/security_and_compliance#add-service-serving
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/security_and_compliance#add-service-serving
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/service_mesh#ossm-about
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/service_mesh#ossm-about
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/security_and_compliance#cert-manager-operator-for-red-hat-openshift
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/security_and_compliance#cert-manager-operator-for-red-hat-openshift
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/security_and_compliance#cert-manager-operator-for-red-hat-openshift
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/cli_tools/index#oc-patch
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/cli_tools/index#oc-patch
https://www.redhat.com/en/topics/security/what-is-zero-trust

Chapter 4 | Network Security

Guided Exercise

Protect Internal Traffic with TLS

Configure two applications to connect securely inside the cluster by using TLS certificates

that OpenShift manages.

Outcomes
• Generate service certificates with the service-ca controller.

• Mount a service certificate by using secrets.

• Use a configuration map to inject a service certificate into a pod.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your

system for this exercise.

This command ensures that the OpenShift cluster is ready and creates the network-
svccerts project and server deployment for the exercise. The command also creates a

test pod named no-ca-bundle for use later in the exercise.

[student@workstation ~]$ lab start network-svccerts

Instructions

In this exercise, you work with the server deployment, which has an NGINX container that serves

a "Hello World!" page with the HTTPS protocol. This deployment differs from earlier NGINX

deployments, because it allows only the HTTPS protocol. The server application expects the

existence of a certificate that you create in the exercise steps.

 1. Log in to the OpenShift cluster as the admin user and switch to the network-svccerts
project.

1.1. Use the oc login command to log in to api.ocp4.example.com:6443 as the

admin user with the redhatocp password.

[student@workstation ~]$ oc login -u admin -p redhatocp \
 https://api.ocp4.example.com:6443
Login successful.

...output omitted...

1.2. Use the oc project command to switch to the network-svccerts project.

[student@workstation ~]$ oc project network-svccerts
Now using project "network-svccerts" on server "https://
api.ocp4.example.com:6443".

168 DO280-OCP4.14-en-1-20240215

Chapter 4 | Network Security

 2. Generate a service certificate and secret that are named server-secret for the server
service, and then mount the secret in the server deployment.

2.1. Annotate the server service with service.beta.openshift.io/serving-
cert-secret-name=server-secret by using the oc annotate command. It

automatically creates a secret named server-secret, which is populated with a

signed TLS key and certificate.

[student@workstation ~]$ oc annotate service server \
 service.beta.openshift.io/serving-cert-secret-name=server-secret
service/server annotated

2.2. Use the oc describe command to view the service and secret descriptions to verify

that OpenShift created the secret.

[student@workstation ~]$ oc describe service server
...output omitted...
Annotations: service.beta.openshift.io/serving-cert-secret-name: server-
secret
 service.beta.openshift.io/serving-cert-signed-by: openshift-
service-serving-signer@1667565598
...output omitted...

[student@workstation ~]$ oc describe secret server-secret
Name: server-secret
Namespace: network-svccerts
...output omitted...
Type: kubernetes.io/tls

Data
====
tls.key: 1675 bytes
tls.crt: 2615 bytes

2.3. Use a text editor to create a patch file to mount the server-secret secret in

the server deployment. Edit the resource file at ~/DO280/labs/network-
svccerts/server-secret.yaml. Replace the CHANGE_ME sections as shown in

the following example:

spec:
 template:
 spec:
 containers:
 - name: server
 volumeMounts:
 - name: server-secret
 mountPath: /etc/pki/nginx/
 volumes:
 - name: server-secret
 secret:
 defaultMode: 420
 secretName: server-secret
 items:
 - key: tls.crt

DO280-OCP4.14-en-1-20240215 169

Chapter 4 | Network Security

 path: server.crt
 - key: tls.key
 path: private/server.key

2.4. Apply the patch file to the server deployment with the oc patch command.

[student@workstation ~]$ oc patch deployment server \
 --patch-file ~/DO280/labs/network-svccerts/server-secret.yaml
deployment.apps/server patched

2.5. Use the openssl s_client command in the no-ca-bundle pod to verify that

OpenShift supplied the server deployment with a certificate. Verify that the no-
ca-bundle pod needs to configure the CA that issued the OpenShift service

certificate for certificate validation.

[student@workstation ~]$ oc exec no-ca-bundle -- \
 openssl s_client -connect server.network-svccerts.svc:443
depth=1 CN = openshift-service-serving-signer@1667565598
CONNECTED(00000004)

Certificate chain
 0 s:CN = server.network-svccerts.svc
 i:CN = openshift-service-serving-signer@1667565598
 1 s:CN = openshift-service-serving-signer@1667565598
 i:CN = openshift-service-serving-signer@1667565598

...output omitted...
verify error:num=19:self signed certificate in certificate chain
DONE

Note

The output shows the verify error:num=19:self signed certificate
in certificate chain error, because the no-ca-bundle pod is not

configured with the OpenShift cluster's CA bundle.

 3. Generate the ca-bundle configuration map that contains the service CA bundle, and use

it to create the client pod.

3.1. Create an empty configuration map named ca-bundle by using the oc create
command.

[student@workstation ~]$ oc create configmap ca-bundle
configmap/ca-bundle created

3.2. Annotate the ca-bundle configuration map with service.beta.openshift.io/
inject-cabundle=true by using the oc annotate command.

[student@workstation ~]$ oc annotate configmap ca-bundle \
 service.beta.openshift.io/inject-cabundle=true
configmap/ca-bundle annotated

170 DO280-OCP4.14-en-1-20240215

Chapter 4 | Network Security

3.3. View the YAML output of the ca-bundle configuration map to verify that the CA

bundle is present.

[student@workstation ~]$ oc get configmap ca-bundle -o yaml
...output omitted...
data:
 service-ca.crt: |
 -----BEGIN CERTIFICATE-----
...output omitted...

3.4. Use a text editor to add the ca-bundle configuration map to the client.yaml
pod definition. Edit the resource file at ~/DO280/labs/network-svccerts/
client.yaml. Replace the CHANGE_ME sections of the file as shown in the

following example:

apiVersion: apps/v1
kind: Deployment
metadata:
 annotations:
 labels:
 app: client
 name: client
 namespace: network-svccerts
spec:
 replicas: 1
 selector:
 matchLabels:
 deployment: client
 strategy:
 rollingUpdate:
 maxSurge: 25%
 maxUnavailable: 25%
 type: RollingUpdate
 template:
 metadata:
 annotations:
 openshift.io/generated-by: OpenShiftNewApp
 labels:
 deployment: client
 spec:
 containers:
 - image: registry.ocp4.example.com:8443/redhattraining/hello-world-nginx
 imagePullPolicy: IfNotPresent
 name: client-deploy
 ports:
 - containerPort: 8080
 protocol: TCP
 volumeMounts:
 - mountPath: /etc/pki/ca-trust/extracted/pem
 name: trusted-ca
 terminationMessagePath: /dev/termination-log
 terminationMessagePolicy: File
 dnsPolicy: ClusterFirst
 restartPolicy: Always

DO280-OCP4.14-en-1-20240215 171

Chapter 4 | Network Security

 schedulerName: default-scheduler
 terminationGracePeriodSeconds: 30
 volumes:
 - configMap:
 defaultMode: 420
 name: ca-bundle
 items:
 - key: service-ca.crt
 path: tls-ca-bundle.pem
 name: trusted-ca
 name: trusted-ca

3.5. Apply the client.yaml file with the oc apply command to create the client
pod.

[student@workstation ~]$ oc apply -f ~/DO280/labs/network-svccerts/client.yaml
...output omitted...
pod/client created

 4. Show that the server service is now accessible over HTTPS with a certificate that is

signed by the OpenShift cluster.

4.1. Use the curl command within the client pod to test that the server service is

accessible on HTTPS.

[student@workstation ~]$ oc exec deploy/client -- \
 curl -s https://server.network-svccerts.svc
<html>
 <body>
 <h1>Hello, world from nginx!</h1>
 </body>
</html>

4.2. Use the openssl s_client command within the client pod to verify that the

certificate is signed by the OpenShift cluster.

[student@workstation ~]$ oc exec deploy/client -- \
 openssl s_client -connect server.network-svccerts.svc:443
CONNECTED(00000004)

Certificate chain
 0 s:CN = server.network-svccerts.svc
 i:CN = openshift-service-serving-signer@1667565598
 1 s:CN = openshift-service-serving-signer@1667565598
 i:CN = openshift-service-serving-signer@1667565598

...output omitted...
verify return:1
DONE

172 DO280-OCP4.14-en-1-20240215

Chapter 4 | Network Security

Finish

On the workstation machine, use the lab command to complete this exercise. This step is

important to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab finish network-svccerts

DO280-OCP4.14-en-1-20240215 173

Chapter 4 | Network Security

Lab

Network Security

Configure firewall rules to protect microservice communication, and also configure TLS

encryption between those microservices and for external access.

Outcomes
• Encrypt internal traffic between pods by using TLS service secrets that OpenShift

generates.

• Route external traffic to terminate TLS within the cluster.

• Restrict ingress traffic for a group of pods by using network policies.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your

system for this exercise.

[student@workstation ~]$ lab start network-review

This command ensures that the environment is ready and copies the necessary files for this

exercise.

This command also deploys an API that is composed of a product and a stock microservice

to the network-review project.

The product microservice is the entry point to the API. The stock microservice provides only

additional information to the product response. If the product microservice cannot reach the

stock microservice, then the product microservice returns the -1 value.

The developer deployed the API without the security configuration. You must configure TLS

for end-to-end communications and restrict the ingress to pods for both microservices.

To complete the exercise, the following URLs must respond without errors:

• https://stock.network-review.svc.cluster.local/product/1

• https://product.apps.ocp4.example.com/products

Note

The lab start deploys solution files in the ~/DO280/solutions/network-
review/ directory.

Instructions

1. Log in to your OpenShift cluster as the admin user with the redhatocp password.

2. Create the stock-service-cert secret for the OpenShift service certificate to encrypt

communications between the product and the stock microservices.

174 DO280-OCP4.14-en-1-20240215

Chapter 4 | Network Security

3. Configure TLS on the stock microservice by using the stock-service-cert secret that

OpenShift generates.

Use the following settings in the deployment to configure TLS:

• Set the path for the certificate and key to /etc/pki/stock/.

• Set the TLS_ENABLED environment variable to "true".

• Update the liveness and readiness probes to use TLS.

• Change the service to listen on the standard HTTPS 443 port.

4. Configure TLS between the product and the stock microservices by using the internal

Certificate Authority (CA) from OpenShift.

The product microservice requires the following settings:

• The CERT_CA environment variable that is set to /etc/pki/ca-trust/extracted/
pem/tls-ca-bundle.pem to access the OpenShift CA

• The STOCK_URL environment variable with the HTTPS protocol

5. Configure TLS on the product microservice by using a signed certificate by a corporate CA

to accept TLS connections from outside the cluster.

You have the CA certificate and the signed certificate for the

product.apps.ocp4.example.com domain in the certs directory of the lab.

Use the following settings in the deployment to configure TLS:

• Set the path for the certificate and key to /etc/pki/product/.

• Set the TLS_ENABLED environment variable to the "true" value.

• Update the liveness and readiness probes to use TLS.

6. Expose the product microservice to outer cluster access by using the FQDN in the signed

certificate by the corporate CA. Use the product.apps.ocp4.example.com hostname.

7. Configure network policies to accept only ingress connections to the stock pod on the 8085
port that come from a pod with the app=product label.

8. Configure network policies to accept only ingress connections to the product pod on the

8080 port that come from the OpenShift router pods.

Evaluation

As the student user on the workstation machine, use the lab command to grade your work.

Correct any reported failures and rerun the command until successful.

[student@workstation ~]$ lab grade network-review

Finish

As the student user on the workstation machine, use the lab command to complete this

exercise. This step is important to ensure that resources from previous exercises do not impact

upcoming exercises.

[student@workstation ~]$ lab finish network-review

DO280-OCP4.14-en-1-20240215 175

Chapter 4 | Network Security

Solution

Network Security

Configure firewall rules to protect microservice communication, and also configure TLS

encryption between those microservices and for external access.

Outcomes
• Encrypt internal traffic between pods by using TLS service secrets that OpenShift

generates.

• Route external traffic to terminate TLS within the cluster.

• Restrict ingress traffic for a group of pods by using network policies.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your

system for this exercise.

[student@workstation ~]$ lab start network-review

This command ensures that the environment is ready and copies the necessary files for this

exercise.

This command also deploys an API that is composed of a product and a stock microservice

to the network-review project.

The product microservice is the entry point to the API. The stock microservice provides only

additional information to the product response. If the product microservice cannot reach the

stock microservice, then the product microservice returns the -1 value.

The developer deployed the API without the security configuration. You must configure TLS

for end-to-end communications and restrict the ingress to pods for both microservices.

To complete the exercise, the following URLs must respond without errors:

• https://stock.network-review.svc.cluster.local/product/1

• https://product.apps.ocp4.example.com/products

Note

The lab start deploys solution files in the ~/DO280/solutions/network-
review/ directory.

Instructions

1. Log in to your OpenShift cluster as the admin user with the redhatocp password.

1.1. Use the oc login command to log in to your OpenShift cluster as the admin user.

176 DO280-OCP4.14-en-1-20240215

Chapter 4 | Network Security

[student@workstation ~]$ oc login -u admin -p redhatocp \
 https://api.ocp4.example.com:6443
Login successful.

...output omitted...

2. Create the stock-service-cert secret for the OpenShift service certificate to encrypt

communications between the product and the stock microservices.

2.1. Change to the network-review project.

[student@workstation ~]$ oc project network-review
Now using project "network-review" on server "https://api.ocp4.example.com:6443"

2.2. Change to the ~/DO280/labs/network-review directory to access the lab files.

[student@workstation ~]$ cd ~/DO280/labs/network-review

2.3. Edit the stock-service.yaml manifest to configure the stock service with the

service.beta.openshift.io/serving-cert-secret-name: stock-
service-cert annotation. This annotation creates the stock-service-cert
secret with the service certificate and the key.

apiVersion: v1
kind: Service
metadata:
 name: stock
 namespace: network-review
 annotations:
 service.beta.openshift.io/serving-cert-secret-name: stock-service-cert
spec:
...output omitted...

2.4. Apply the stock service changes by using the oc apply command.

[student@workstation network-review]$ oc apply -f stock-service.yaml
service/stock configured

2.5. Verify that the stock-service-cert secret contains a valid certificate for the

stock.network-review.svc hostname in the tls.crt secret key. Decode the

secret output with the base64 command by using the -d option. Then, use the

openssl x509 command to read the output from standard input, and use the -text
option to print the certificate in text form.

DO280-OCP4.14-en-1-20240215 177

Chapter 4 | Network Security

[student@workstation network-review]$ oc get secret stock-service-cert \
 --output="jsonpath={.data.tls\.crt}" \
 | base64 -d \
 | openssl x509 -text
...output omitted...
 X509v3 Subject Alternative Name:
 DNS:stock.network-review.svc, DNS:stock.network-review.svc.cluster.local
...output omitted...

3. Configure TLS on the stock microservice by using the stock-service-cert secret that

OpenShift generates.

Use the following settings in the deployment to configure TLS:

• Set the path for the certificate and key to /etc/pki/stock/.

• Set the TLS_ENABLED environment variable to "true".

• Update the liveness and readiness probes to use TLS.

• Change the service to listen on the standard HTTPS 443 port.

3.1. Edit the stock-deployment.yaml file to mount the stock-service-cert secret

on the /etc/pki/stock/ path.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: stock
 namespace: network-review
spec:
...output omitted...
 spec:
 containers:
 - name: stock
...output omitted...
 env:
 - name: TLS_ENABLED
 value: "false"
 volumeMounts:
 - name: stock-service-cert
 mountPath: /etc/pki/stock/
 volumes:
 - name: stock-service-cert
 secret:
 defaultMode: 420
 secretName: stock-service-cert

3.2. Edit the stock deployment in the stock-deployment.yaml file to configure TLS

for the application and for the liveness and readiness probes.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: stock
 namespace: network-review
spec:

178 DO280-OCP4.14-en-1-20240215

Chapter 4 | Network Security

...output omitted...
 spec:
 containers:
 - name: stock
...output omitted...
 ports:
 - containerPort: 8085
 readinessProbe:
 httpGet:
 port: 8085
 path: /readyz
 scheme: HTTPS
 livenessProbe:
 httpGet:
 port: 8085
 path: /livez
 scheme: HTTPS
 env:
 - name: TLS_ENABLED
 value: "true"
...output omitted...

3.3. Apply the stock deployment updates by using the oc apply command.

[student@workstation network-review]$ oc apply -f stock-deployment.yaml
deployment/stock configured

3.4. Edit the stock-service.yaml file to configure the stock service to listen on the

standard HTTPS 443 port.

apiVersion: v1
kind: Service
metadata:
 name: stock
 namespace: network-review
 annotations:
 service.beta.openshift.io/serving-cert-secret-name: stock-service-cert
spec:
 selector:
 app: stock
 ports:
 - port: 443
 targetPort: 8085
 name: https

3.5. Apply the stock service changes by using the oc apply command.

[student@workstation network-review]$ oc apply -f stock-service.yaml
service/stock configured

4. Configure TLS between the product and the stock microservices by using the internal

Certificate Authority (CA) from OpenShift.

The product microservice requires the following settings:

DO280-OCP4.14-en-1-20240215 179

Chapter 4 | Network Security

• The CERT_CA environment variable that is set to /etc/pki/ca-trust/extracted/
pem/tls-ca-bundle.pem to access the OpenShift CA

• The STOCK_URL environment variable with the HTTPS protocol

4.1. Edit the configuration map in the service-ca-configmap.yaml file to add the

service.beta.openshift.io/inject-cabundle: "true" annotation. This

annotation injects the OpenShift internal CA into the service-ca configuration map.

apiVersion: v1
kind: ConfigMap
metadata:
 name: service-ca
 namespace: network-review
 annotations:
 service.beta.openshift.io/inject-cabundle: "true"
data: {}

4.2. Create the service-ca configuration map by using the oc create command.

[student@workstation network-review]$ oc create -f service-ca-configmap.yaml
configmap/service-ca created

4.3. Verify that OpenShift injects the CA certificate by describing the service-ca
configuration map with the oc describe command.

[student@workstation network-review]$ oc describe configmap service-ca
Name: service-ca
Namespace: network-review
Labels: <none>
Annotations: service.beta.openshift.io/inject-cabundle: true

Data
====
service-ca.crt:

-----BEGIN CERTIFICATE-----

4.4. Edit the product-deployment.yaml file to configure the product deployment to

use the service-ca configuration map, to add the CERT_CA environment variable,

and to update the STOCK_URL environment variable to use the HTTPS protocol.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: product
 namespace: network-review
spec:
...output omitted...
 spec:
 containers:
 - name: product

180 DO280-OCP4.14-en-1-20240215

Chapter 4 | Network Security

...output omitted...
 env:
 - name: CERT_CA
 value: "/etc/pki/ca-trust/extracted/pem/tls-ca-bundle.pem"
 - name: TLS_ENABLED
 value: "false"
 - name: STOCK_URL
 value: "https://stock.network-review.svc"
 volumeMounts:
 - name: trusted-ca
 mountPath: /etc/pki/ca-trust/extracted/pem
 volumes:
 - name: trusted-ca
 configMap:
 defaultMode: 420
 name: service-ca
 items:
 - key: service-ca.crt
 path: tls-ca-bundle.pem

4.5. Apply the product deployment updates by using the oc apply command.

[student@workstation network-review]$ oc apply -f product-deployment.yaml
deployment/product configured

4.6. Send a request to the https://stock.network-review.svc/product/1 URL

from product deployment to verify that you can query the stock microservice

by using HTTPS. Run the oc exec command to run the curl command to send a

request to the stock microservice.

[student@workstation network-review]$ oc exec deployment/product \
 -- curl -s https://stock.network-review.svc/product/1
10

5. Configure TLS on the product microservice by using a signed certificate by a corporate CA

to accept TLS connections from outside the cluster.

You have the CA certificate and the signed certificate for the

product.apps.ocp4.example.com domain in the certs directory of the lab.

Use the following settings in the deployment to configure TLS:

• Set the path for the certificate and key to /etc/pki/product/.

• Set the TLS_ENABLED environment variable to the "true" value.

• Update the liveness and readiness probes to use TLS.

5.1. Create the passthrough-cert secret by using the product.pem certificate and the

product.key key from the lab directory.

[student@workstation network-review]$ oc create secret tls passthrough-cert \
 --cert certs/product.pem --key certs/product.key
secret/passthrough-cert created

5.2. Edit the product deployment to mount the passthrough-cert secret on the /
etc/pki/product/ path.

DO280-OCP4.14-en-1-20240215 181

Chapter 4 | Network Security

apiVersion: apps/v1
kind: Deployment
metadata:
 name: product
spec:
...output omitted...
 spec:
 containers:
 - name: product
...output omitted...
 volumeMounts:
 - name: passthrough-cert
 mountPath: /etc/pki/product/
 - name: trusted-ca
 mountPath: /etc/pki/ca-trust/extracted/pem
 volumes:
 - name: passthrough-cert
 secret:
 defaultMode: 420
 secretName: passthrough-cert
 - name: trusted-ca
 configMap:
 defaultMode: 420
 name: service-ca
 items:
 - key: service-ca.crt
 path: tls-ca-bundle.pem

5.3. Edit the product deployment to configure TLS for the application and for the liveness

and readiness probes.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: product
spec:
...output omitted...
 spec:
 containers:
 - name: product
...output omitted...
 ports:
 - containerPort: 8080
 readinessProbe:
 httpGet:
 port: 8080
 path: /readyz
 scheme: HTTPS
 livenessProbe:
 httpGet:
 port: 8080
 path: /livez
 scheme: HTTPS

182 DO280-OCP4.14-en-1-20240215

Chapter 4 | Network Security

 env:
 - name: TLS_ENABLED
 value: "true"
 - name: STOCK_URL
 value: "https://stock.network-review.svc"
...output omitted...

5.4. Apply the product deployment updates by using the oc apply command.

[student@workstation network-review]$ oc apply -f product-deployment.yaml
deployment.apps/product configured

6. Expose the product microservice to outer cluster access by using the FQDN in the signed

certificate by the corporate CA. Use the product.apps.ocp4.example.com hostname.

6.1. Create a passthrough route for the product service by using the

product.apps.ocp4.example.com hostname.

[student@workstation network-review]$ oc create route passthrough product-https \
 --service product --port 8080 \
 --hostname product.apps.ocp4.example.com
route.route.openshift.io/product-https created

6.2. Verify that you can query the product microservice from outside the cluster by using

the curl command with the ca.pem CA certificate.

[student@workstation network-review]$ curl --cacert certs/ca.pem \
 https://product.apps.ocp4.example.com/products
[{"id":1,"name":"rpi4_4gb","stock":10},{"id":2,"name":"rpi4_8gb","stock":5}]

7. Configure network policies to accept only ingress connections to the stock pod on the 8085
port that come from a pod with the app=product label.

7.1. Edit the stock-ingresspolicy.yaml to add the network policy specification.

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: ingress-stock-policy
spec:
 podSelector:
 matchLabels:
 app: stock
 ingress:
 - from:
 - podSelector:
 matchLabels:
 app: product
 ports:
 - protocol: TCP
 port: 8085

7.2. Create the network policy.

DO280-OCP4.14-en-1-20240215 183

Chapter 4 | Network Security

[student@workstation network-review]$ oc create -f stock-ingresspolicy.yaml
networkpolicy.networking.k8s.io/stock-ingress-policy created

8. Configure network policies to accept only ingress connections to the product pod on the

8080 port that come from the OpenShift router pods.

8.1. Edit the product-ingresspolicy.yaml file to accept ingress connections

from router pods by adding a namespace selector with the policy-
group.network.openshift.io/ingress label.

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: product-ingress-policy
spec:
 podSelector:
 matchLabels:
 app: product
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 policy-group.network.openshift.io/ingress: ""
 ports:
 - protocol: TCP
 port: 8080

8.2. Create the network policy.

[student@workstation network-review]$ oc create -f product-ingresspolicy.yaml
networkpolicy.networking.k8s.io/product-ingress-policy created

8.3. Change to the home directory.

[student@workstation network-ingress]$ cd

Evaluation

As the student user on the workstation machine, use the lab command to grade your work.

Correct any reported failures and rerun the command until successful.

[student@workstation ~]$ lab grade network-review

Finish

As the student user on the workstation machine, use the lab command to complete this

exercise. This step is important to ensure that resources from previous exercises do not impact

upcoming exercises.

[student@workstation ~]$ lab finish network-review

184 DO280-OCP4.14-en-1-20240215

Chapter 4 | Network Security

DO280-OCP4.14-en-1-20240215 185

Chapter 4 | Network Security

Summary

• With OpenShift routes, you can expose your applications to external networks securely.

• The types of secure routes are edge, passthrough, and re-encryption.

• With network policies, you can configure isolation policies for individual pods.

• You can use network policies to create logical zones in the SDN that map to your organization

network zones.

• In contrast to traditional firewalls, Kubernetes network policies control network traffic between

pods by using labels instead of IP addresses.

• OpenShift provides the service-ca controller to generate and sign service certificates for

internal traffic.

• To generate a certificate and key pair, apply the service.beta.openshift.io/serving-
cert-secret-name=your-secret annotation to a service.

• OpenShift can inject its CA into configuration maps with a custom annotation. Client

applications can use these configuration maps to validate connections to services that run in the

cluster.

186 DO280-OCP4.14-en-1-20240215

Chapter 5

Expose non-HTTP/SNI
Applications

Goal Expose applications to external access without
using an ingress controller.

Objectives • Expose applications to external access by using
load balancer services.

• Expose applications to external access by using
a secondary network.

Sections • Load Balancer Services (and Guided Exercise)

• Multus Secondary Networks (and Guided
Exercise)

Lab • Expose non-HTTP/SNI Applications

DO280-OCP4.14-en-1-20240215 187

Chapter 5 | Expose non-HTTP/SNI Applications

Load Balancer Services

Objectives
• Expose applications to external access by using load balancer services.

Exposing Non-HTTP Services
When you use Kubernetes, you run workloads that provide services to users. You create resources

such as deployments to run workloads, for example a web application. Ingresses and routes

provide a way to expose the services that these workloads implement. However, in some

scenarios, ingresses and routes are not sufficient to expose the service that a pod provides.

Many internet services implement a process that listens on a given port and IP address. For

example, a service that uses the 1.2.3.4 IP address runs an SSH server that listens on port 22.

Clients connect to port 22 on that IP address to use the SSH service.

Web servers implement the HTTP protocol and other related protocols such as HTTPS.

Kubernetes ingresses and OpenShift routes use the virtual hosting property of the HTTP protocol

to expose web services that are running on the cluster. Ingresses and routes run a single web

server that uses virtual hosting to route each incoming request to a Kubernetes service by using

the request hostname.

For example, ingresses can route requests for the https://a.example.com URL to a

Kubernetes service in the cluster, and can route requests for the https://b.example.com URL

to a different service in the cluster.

However, many protocols do not have equivalent features. Ingress and route resources can expose

only HTTP services. To expose non-HTTP services, you must use a different resource. Because

these resources cannot expose multiple services on the same IP address and port, they require

more setup effort, and might require more resources, such as IP addresses.

Important

Preferably use ingresses and routes to expose services when possible.

Kubernetes Services
Kubernetes workloads are flexible resources that can create many pods. By creating multiple pods

for a workload, Kubernetes can provide increased reliability and performance. If a pod fails, then

other pods can continue providing a service. With multiple pods, which possibly run on different

systems, workloads can use more resources for increased performance.

However, if many pods provide a workload service, then users of the service can no longer access

the service by using the combination of a single IP address and a port. To provide transparent

access to workload services that run on multiple pods, Kubernetes uses resources of the Service
type. A service resource contains the following information:

• A selector that describes the pods that run the service

188 DO280-OCP4.14-en-1-20240215

Chapter 5 | Expose non-HTTP/SNI Applications

• A list of the ports that provide the service on the pods

Different types of Kubernetes services exist, each with different purposes:

Internal communication
Services of the ClusterIP type provide service access within the cluster.

Exposing services externally
Services of the NodePort and LoadBalancer types, as well as the use of the external IP

feature of ClusterIP services, expose services that are running in the cluster to outside the

cluster.

Different providers can implement Kubernetes services, by using the type field of the service

resource.

Although these services are useful in specific scenarios, some services require extra configuration,

and they can pose security challenges. Load balancer services have fewer limitations and provide

load balancing.

Load Balancer Services
Load balancer services require the use of network features that are not available in all

environments.

For example, cloud providers typically provide their own load balancer services. These services use

features that are specific to the cloud provider.

If you run a Kubernetes cluster on a cloud provider, controllers in Kubernetes use the cloud

provider's APIs to configure the required cloud provider resources for a load balancing service. On

environments where managed load balancer services are not available, you must configure a load

balancer component according to the specifics of your network.

The MetalLB Component
MetalLB is a load balancer component that provides a load balancing service for clusters that

do not run on a cloud provider, such as a bare metal cluster, or clusters that run on hypervisors.

MetalLB operates in two modes: layer 2 and Border Gateway Protocol (BGP), with different

properties and requirements. You must plan the use of MetalLB to consider your requirements and

your network design.

MetalLB is an operator that you can install with the Operator Lifecycle Manager. After installing

the operator, you must configure MetalLB through its custom resource definitions. In most

situations, you must provide MetalLB with an IP address range.

Using Load Balancer Services
When a cluster has a configured load balancer component, you can create services of the

LoadBalancer type to expose non-HTTP services outside the cluster.

For example, the following resource definition exposes port 1234 on pods with the example value

for the name label.

apiVersion: v1
kind: Service
metadata:
 name: example-lb
 namespace: example

DO280-OCP4.14-en-1-20240215 189

Chapter 5 | Expose non-HTTP/SNI Applications

spec:
 ports:
 - port: 1234
 protocol: TCP
 targetPort: 1234
 selector:
 name: example
 type: LoadBalancer

Exposed port

Pod selector

LoadBalancer service type You can also use the kubectl expose command with the --
type LoadBalancer argument to create load balancer services imperatively.

After you create the service, the load balancer component updates the service resource with

information such as the public IP address where the service is available.

[user@host ~]$ kubectl get service
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
example-lb LoadBalancer 172.30.21.79 192.168.50.20 1234:31265/TCP 4m7s

You can now connect to the service on port 1234 of the 192.168.50.20 address.

You can also obtain the address from the status field of the resource.

[user@host ~]$ oc get example-lb -o jsonpath="{.status.loadBalancer.ingress}"
[{"ip":"192.168.50.20"}]

Each load balancer service allocates IP addresses for services by following different processes.

For example, when installing MetalLB, you must provide ranges of IPs that MetalLB assigns to

services.

After exposing a service by using a load balancer, always verify that the service is available from

your intended network locations. Use a client for the exposed protocol to ensure connectivity, and

test that load balancing works as expected. Some protocols might require further adjustments

to work correctly behind a load balancer. You can also use network debugging tools, such as the

ping and traceroute commands to examine connectivity.

References

For more information, refer to the Load Balancing with MetalLB chapter in the

Red Hat OpenShift Container Platform 4.14 Networking documentation at

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.14/html-single/networking/index#load-balancing-

with-metallb

Kubernetes Services

https://kubernetes.io/docs/concepts/services-networking/service/

MetalLB on OpenShift

https://metallb.universe.tf/installation/clouds/#metallb-on-openshift-ocp

190 DO280-OCP4.14-en-1-20240215

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/networking/index#load-balancing-with-metallb
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/networking/index#load-balancing-with-metallb
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/networking/index#load-balancing-with-metallb
https://kubernetes.io/docs/concepts/services-networking/service/
https://metallb.universe.tf/installation/clouds/#metallb-on-openshift-ocp

Chapter 5 | Expose non-HTTP/SNI Applications

Guided Exercise

Load Balancer Services

Expose a deployment to external access by using a load balancer service.

Outcomes
• Use load balancer services to expose the video streams that the application produces.

• Access the video streams with a media player.

• Realize that external factors can cause a load balancer to fail.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your

system for this exercise.

[student@workstation ~]$ lab start non-http-lb

Instructions

 1. Log in as the developer user, and list the YAML resource manifests for the video

streaming application in the ~/DO280/labs/non-http-lb directory.

1.1. Log in to the cluster as the developer user.

[student@workstation ~]$ oc login -u developer -p developer \
 https://api.ocp4.example.com:6443
Login successful.

...output omitted...

1.2. Create the non-http-lb project.

[student@workstation ~]$ oc new-project non-http-lb
Now using project "non-http-lb" on server ...
...output omitted...

1.3. Change to the ~/DO280/labs/non-http-lb directory.

[student@workstation ~]$ cd ~/DO280/labs/non-http-lb
[student@workstation non-http-lb]$

1.4. List the contents of the directory. The YAML resource manifests represent three

instances of the video streaming application.

DO280-OCP4.14-en-1-20240215 191

Chapter 5 | Expose non-HTTP/SNI Applications

[student@workstation non-http-lb]$ ls -l
total 12
-rw-rw-r--. 1 student student 1561 Jun 21 16:29 virtual-rtsp-1.yaml
-rw-rw-r--. 1 student student 1563 Jun 21 16:29 virtual-rtsp-2.yaml
-rw-rw-r--. 1 student student 1565 Jun 21 16:21 virtual-rtsp-3.yaml

1.5. Each deployment emulates the video stream from a security camera on port 8554.

Deployment Video stream Location Image

virtual-rtsp-1 Camera 1 Downtown

virtual-rtsp-2 Camera 2 Roundabout

virtual-rtsp-3 Camera 3 Intersection

 2. Deploy the first instance of the application, and expose the video stream from the

downtown camera by using a load balancer service.

2.1. Create the first instance of the video stream deployment. This application produces

the video stream of the downtown camera.

[student@workstation non-http-lb]$ oc apply -f virtual-rtsp-1.yaml
deployment.apps/virtual-rtsp-1 created

2.2. Wait until the pod is running and the deployment is ready. Press Ctrl+C to exit the

watch command.

[student@workstation non-http-lb]$ watch oc get deployments,pods
Every 2.0s: oc get deployments,pods workstation: Wed Jun 21 16:25:26 2023

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/virtual-rtsp-1 1/1 1 1 59s

NAME READY STATUS RESTARTS AGE
pod/virtual-rtsp-1-98cd84d79a-qhn9r 1/1 Running 0 59s

192 DO280-OCP4.14-en-1-20240215

Chapter 5 | Expose non-HTTP/SNI Applications

2.3. Create a load balancer service to expose the first deployment.

[student@workstation non-http-lb]$ oc expose deployment/virtual-rtsp-1 \
 --type=LoadBalancer --target-port=8554
service/virtual-rtsp-1 exposed

2.4. Get the external IP address of the load balancer service.

[student@workstation non-http-lb]$ oc get services
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
virtual-rtsp-1 LoadBalancer 172.30.4.18 192.168.50.20 8554:32170/TCP 59s

2.5. Verify that you can connect to the external IP address of the load balancer service on

port 8554.

[student@workstation non-http-lb]$ nc -vz 192.168.50.20 8554
Ncat: Version 7.91 (https://nmap.org/ncat)
Ncat: Connected to 192.168.50.20:8554.
Ncat: 0 bytes sent, 0 bytes received in 0.01 seconds

2.6. Open the URL in the media player to confirm that the video stream of the downtown
camera is working correctly.

• rtsp://192.168.50.20:8554/stream

[student@workstation non-http-lb]$ totem rtsp://192.168.50.20:8554/stream
...output omitted...

Close the media player window after confirming that the video stream works

correctly.

DO280-OCP4.14-en-1-20240215 193

Chapter 5 | Expose non-HTTP/SNI Applications

 3. Deploy the remaining instances of the video stream application. Expose the video streams

from the roundabout and intersection cameras by using a load balancer service.

Understand that the classroom is configured to provide only two IP addresses.

3.1. Create the second instance of the video stream deployment. This application

produces the video stream of the roundabout camera.

[student@workstation non-http-lb]$ oc apply -f virtual-rtsp-2.yaml
deployment.apps/virtual-rtsp-2 created

3.2. Create the third instance of the video stream deployment. This application produces

the video stream of the intersection camera.

[student@workstation non-http-lb]$ oc apply -f virtual-rtsp-3.yaml
deployment.apps/virtual-rtsp-3 created

3.3. Wait until the pods are running and the deployments are ready. Press Ctrl+C to exit

the watch command.

[student@workstation non-http-lb]$ watch oc get deployments,pods
Every 2.0s: oc get deployments,pods workstation: Wed Jun 21 16:30:33 2023

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/virtual-rtsp-1 1/1 1 1 5m
deployment.apps/virtual-rtsp-2 1/1 1 1 60s
deployment.apps/virtual-rtsp-3 1/1 1 1 30s

NAME READY STATUS RESTARTS AGE
pod/virtual-rtsp-1-98cd84d79a-qhn9r 1/1 Running 0 5m
pod/virtual-rtsp-2-769b5bcb89-r8csp 1/1 Running 0 60s
pod/virtual-rtsp-3-6cdb9f7ffb-g6d9d 1/1 Running 0 30s

3.4. Create a load balancer service to expose the second deployment.

[student@workstation non-http-lb]$ oc expose deployment/virtual-rtsp-2 \
 --type=LoadBalancer --target-port=8554
service/virtual-rtsp-2 exposed

3.5. Create a load balancer service to expose the third deployment.

[student@workstation non-http-lb]$ oc expose deployment/virtual-rtsp-3 \
 --type=LoadBalancer --target-port=8554
service/virtual-rtsp-3 exposed

3.6. Get the external IP address of the second load balancer service.

[student@workstation non-http-lb]$ oc get services
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) ...
virtual-rtsp-1 LoadBalancer 172.30.94.188 192.168.50.20 8554:32325/TCP ...
virtual-rtsp-2 LoadBalancer 172.30.15.148 192.168.50.21 8554:31640/TCP
virtual-rtsp-3 LoadBalancer 172.30.228.35 <pending> 8554:32089/TCP

194 DO280-OCP4.14-en-1-20240215

Chapter 5 | Expose non-HTTP/SNI Applications

The second load balancer service has an associated external IP address.

No IP address is assigned to the third load balancer, and it is displayed as

<pending> because all available load balancer IP addresses are in use. The

MetalLB operator in the classroom uses the IPAddressPools configuration

to restrict the available load balancer IP addresses to 192.168.50.20 and

192.168.50.21.

3.7. Open the URL in the media player to confirm that the video stream of the

roundabout camera is working correctly.

• rtsp://192.168.50.21:8554/stream

[student@workstation non-http-lb]$ totem rtsp://192.168.50.21:8554/stream
...output omitted...

Close the media player window after confirming that the video stream works

correctly.

 4. Delete the first service to reallocate the IP address to the third service, and view the video

stream of the intersection camera.

4.1. Delete the first service to release the assigned IP address.

[student@workstation non-http-lb]$ oc delete service/virtual-rtsp-1
service "virtual-rtsp-1" deleted

4.2. Verify that the third service has an assigned external IP address.

[student@workstation non-http-lb]$ oc get services
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) ...
virtual-rtsp-2 LoadBalancer 172.30.15.148 192.168.50.21 8554:31640/TCP ...
virtual-rtsp-3 LoadBalancer 172.30.228.35 192.168.50.20 8554:32089/TCP

DO280-OCP4.14-en-1-20240215 195

Chapter 5 | Expose non-HTTP/SNI Applications

The IP address is now allocated to the third service.

4.3. Open the URL in the media player to confirm that the video stream of the

intersection camera is working correctly.

• rtsp://192.168.50.20:8554/stream

[student@workstation non-http-lb]$ totem rtsp://192.168.50.20:8554/stream
...output omitted...

Close the media player window after confirming that the video stream works

correctly.

 5. Clean up the resources.

5.1. Change to the student HOME directory.

[student@workstation non-http-lb]$ cd
[student@workstation ~]$

5.2. Delete all the services in the namespace.

[student@workstation ~]$ oc delete services --all
service "virtual-rstp-2" deleted
service "virtual-rstp-3" deleted

5.3. Delete all the deployments in the namespace.

[student@workstation ~]$ oc delete deployments --all
deployment.apps "virtual-rtsp-1" deleted
deployment.apps "virtual-rtsp-2" deleted
deployment.apps "virtual-rtsp-3" deleted

196 DO280-OCP4.14-en-1-20240215

Chapter 5 | Expose non-HTTP/SNI Applications

5.4. Delete the non-http-lb project.

[student@workstation ~]$ oc delete project/non-http-lb
project.project.openshift.io "non-http-lb" deleted

Finish

On the workstation machine, use the lab command to complete this exercise. This step is

important to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab finish non-http-lb

DO280-OCP4.14-en-1-20240215 197

Chapter 5 | Expose non-HTTP/SNI Applications

Multus Secondary Networks

Objectives
• Expose applications to external access by using a secondary network.

Using Different Networks
Kubernetes manages a pod network and a service network. The pod network provides network

interfaces to each pod, and by default, provides network communication between all pods. The

service network provides stable addressing for services that run on pods. Furthermore, other

facilities provide mechanisms to expose services outside the cluster.

However, in some cases, connecting some pods to a different network can provide benefits or help

to address requirements.

For example, using a dedicated network with dedicated resources can improve the performance of

specific traffic. Additionally, a dedicated network can have different security properties from the

default network and help to achieve security requirements.

In addition to these advantages, using extra interfaces can also simplify some tasks, such as

controlling outgoing traffic from pods.

The Multus CNI (container network interface) plug-in helps to attach pods to custom networks.

These custom networks can be either existing networks outside the cluster, or custom networks

that are internal to the cluster.

Configuring Secondary Networks
To use existing custom networks, first you must make available the network on cluster nodes.

You can use operators, such as the Kubernetes NMState operator or the SR-IOV (Single Root I/O

Virtualization) network operator, to customize node network configuration. With these operators,

you define custom resources to describe the intended network configuration, and the operator

applies the configuration.

The SR-IOV network operator configures SR-IOV network devices for improved bandwidth and

latency on certain platforms and devices.

Attaching Secondary Networks
To configure secondary networks, create a NetworkAttachmentDefinition resource.

Alternatively, update the configuration of the cluster network operator to add a secondary

network. Some network attachment definitions create and manage virtual network devices,

including virtual bridges. The virtual network devices attach to existing networks that are

configured and managed outside OpenShift. Other network attachment definitions use existing

network interfaces on the cluster nodes. Network attachment definitions can also perform

additional network configuration.

198 DO280-OCP4.14-en-1-20240215

Chapter 5 | Expose non-HTTP/SNI Applications

Pod Annotations

Network attachment resources are namespaced, and are available only to pods in their

namespace.

When the cluster has additional networks, you can add the k8s.v1.cni.cncf.io/networks
annotation to the pod's template to use one of the additional networks. The value of the

annotation is the name of the network attachment definition to use, or a list of maps with

additional configuration options. Besides network attachments, you can also add pods to networks

that the SR-IOV network operator configures.

For example, the following deployment uses the example network:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: example
 namespace: example
spec:
 selector:
 matchLabels:
 app: example
 name: example
 template:
 metadata:
 annotations:
 k8s.v1.cni.cncf.io/networks: example
 labels:
 app: example
 name: example
 spec:
...output omitted...

Multus updates the k8s.v1.cni.cncf.io/networks-status annotation with the status of

the additional networks.

[user@host ~]$ oc get pod example \
 -o jsonpath='{.metadata.annotations.k8s\.v1\.cni\.cncf\.io/networks-status}'
[{
 "name": "ovn-kubernetes",
 "interface": "eth0",
 "ips": [
 "10.8.0.59"
],
 "mac": "0a:58:0a:08:00:3b",
 "default": true,
 "dns": {}
},{
 "name": "non-http-multus/example",
 "interface": "net1",
 "ips": [
 "1.2.3.4"
],

DO280-OCP4.14-en-1-20240215 199

Chapter 5 | Expose non-HTTP/SNI Applications

 "mac": "52:54:00:01:33:0a",
 "dns": {}
}]

The example pod is attached to the default pod network and to the example custom

network.

To access the custom network, Multus creates a network interface in the pod. Multus uses the

net string followed by a number to name these network interfaces.

Note

The period is the JSONPath field access operator. Normally, you use the period to

access parts of the resource, such as in the .metadata.annotations JSONPath

expression. To access fields that contain periods with JSONPath, you must escape

the periods with a backslash (\).

Network Attachment Custom Resource

You can create network attachment definitions of the following types:

Host device
Attaches a network interface to a single pod.

Bridge
Uses an existing bridge interface on the node, or configures a new bridge interface. The pods

that are attached to this network can communicate with each other through the bridge, and to

any other networks that are attached to the bridge.

IPVLAN
Creates an IPVLAN-based network that is attached to a network interface.

MACVLAN
Creates an MACVLAN-based network that is attached to a network interface.

Bridges are network interfaces that can forward packets between different network interfaces that

are attached to the bridge. Virtualization environments often use bridges to connect the network

interfaces of virtual machines to the network.

IPVLAN and MACVLAN are Linux network drivers that are designed for container environments.

Container environments often use these network drivers to connect pods to the network.

Although bridge interfaces, IPVLAN, and MACVLAN have similar purposes, they have different

characteristics, such as different usage of MAC addresses, filtering capabilities, and other

features. For example, you might need to use IPVLAN instead of MACVLAN in networks with a

limit of MAC addresses, because IPVLAN uses fewer MAC addresses.

The following resource definition shows a NetworkAttachmentDefinition resource for a host

device.

apiVersion: k8s.cni.cncf.io/v1
kind: NetworkAttachmentDefinition
metadata:
 name: example
spec:
 config: |-

200 DO280-OCP4.14-en-1-20240215

Chapter 5 | Expose non-HTTP/SNI Applications

 {
 "cniVersion": "0.3.1",
 "name": "example",
 "type": "host-device",
 "device": "ens4",
 "ipam": {
 "type": "dhcp"
 }
 }

The network name

The network type

Additional network configuration

Network Operator Settings

You can also create the same network attachment by editing the cluster network operator

configuration:

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
...output omitted...
 additionalNetworks:
 - name: example
 namespace: example
 rawCNIConfig: |-
 {
 "cniVersion": "0.3.1",
 "name": "example",
 "type": "host-device",
 "device": "ens4",
 "ipam": {
 "type": "dhcp"
 }
 }
 type: Raw

The network name

The namespace

The network type

Additional network configuration

The IP Address Management (IPAM) CNI plug-in provides IP addresses for other CNI plug-ins.

In the previous examples, the ipam key contains a network configuration that uses DHCP. You

can provide more complex network configurations in the ipam key. For example, the following

configuration uses a static address.

DO280-OCP4.14-en-1-20240215 201

Chapter 5 | Expose non-HTTP/SNI Applications

"ipam": {
 "type": "static",
 "addresses": [
 {"address": "192.168.X.X/24"}
]
}

Although all the pods in the cluster still use the cluster-wide default network to maintain

connectivity across the cluster, you can define more than one additional network for your cluster.

The added networks give you flexibility when you configure pods that deliver network functions.

The network isolation that an additional network provides is useful for enhanced performance or

for security, depending on your needs.

References

For more information, refer to the Multiple Networks chapter in the Red Hat

OpenShift Container Platform 4.14 Networking documentation at

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.14/html-single/networking/index#multiple-

networks

For more information about the SR-IOV network operator, including supported

platforms and devices, refer to the About Single Root I/O Virtualization (SR-IOV)

Hardware Networks section in the Hardware Networks chapter in the Red Hat

OpenShift Container Platform 4.14 Networking documentation at

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.14/html-single/networking/index#about-sriov

For more information, refer to the About the Kubernetes NMState Operator section

in the About Networking chapter in the Red Hat OpenShift Container Platform 4.14

Networking documentation at

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.14/html-single/networking/index#kubernetes-

nmstate

202 DO280-OCP4.14-en-1-20240215

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/networking/index#multiple-networks
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/networking/index#multiple-networks
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/networking/index#multiple-networks
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/networking/index#about-sriov
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/networking/index#about-sriov
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/networking/index#kubernetes-nmstate
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/networking/index#kubernetes-nmstate
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/networking/index#kubernetes-nmstate

Chapter 5 | Expose non-HTTP/SNI Applications

Guided Exercise

Multus Secondary Networks

Expose a PostgreSQL database to external access by using a secondary network.

Outcomes
• Make a PostgreSQL database accessible outside the cluster on an isolated network by

using an existing node network interface.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your

system for this exercise.

This command ensures that the environment is ready.

[student@workstation ~]$ lab start non-http-multus

Instructions

 1. Deploy a sample database.

1.1. Log in to the OpenShift cluster as the developer user with the developer
password.

[student@workstation ~]$ oc login -u developer -p developer \
 https://api.ocp4.example.com:6443
Login successful.

...output omitted...

1.2. Create a non-http-multus project.

[student@workstation ~]$ oc new-project non-http-multus
...output omitted...

1.3. Create the resources that the ~/DO280/labs/non-http-multus/
deployment.yaml file contains.

[student@workstation ~]$ oc apply -f ~/DO280/labs/non-http-multus/deployment.yaml
secret/database created
persistentvolumeclaim/database created
deployment.apps/database created

1.4. Wait until all resources are ready.

DO280-OCP4.14-en-1-20240215 203

Chapter 5 | Expose non-HTTP/SNI Applications

[student@workstation ~]$ oc get all
NAME READY STATUS RESTARTS AGE
pod/database-654db5f958-8p6m5 1/1 Running 0 3m36s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/database 1/1 1 1 3m36s

NAME DESIRED CURRENT READY AGE
replicaset.apps/database-654db5f958 1 1 1 3m36s

This application contains only a deployment, a persistent volume claim, and a secret.

The application does not contain any services, so the database is not accessible

outside the pod network.

This application uses a database that requires exclusive access to the database data.

On the database deployment, only one pod must be running at a time. To prevent

multiple pods from running at a time, the deployment uses the recreate strategy.

This scenario is part of the scenarios where you assign a network interface exclusively

to a pod. In these scenarios, the host device strategy is suitable. A network

attachment with the host device strategy is suitable only for a single pod.

In other scenarios, you must use more complex network attachments.

 2. Examine the cluster nodes and inspect the network interface that you use in this exercise.

2.1. Log in to the OpenShift cluster as the admin user with the redhatocp password.

[student@workstation ~]$ oc login -u admin -p redhatocp \
 https://api.ocp4.example.com:6443
Login successful.

...output omitted...

2.2. Use the oc get node command to list the cluster nodes.

[student@workstation ~]$ oc get node
NAME STATUS ROLES AGE VERSION
master01 Ready control-plane,master,worker 36d v1.27.6+f67aeb3

The cluster has a single node with the control plane and worker roles.

2.3. Run the ip addr command in the node, by using the oc debug command to

execute commands in the node.

[student@workstation ~]$ oc debug node/master01 -- chroot /host ip addr
Temporary namespace openshift-debug-mrchh is created for debugging node...
Starting pod/master01-debug ...
To use host binaries, run: chroot /host
Pod IP: 192.168.50.10
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default
 qlen 1000
...output omitted...
2: ens3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel master ovs-
system state UP group default qlen 1000

204 DO280-OCP4.14-en-1-20240215

Chapter 5 | Expose non-HTTP/SNI Applications

 link/ether 52:54:00:00:32:0a brd ff:ff:ff:ff:ff:ff
3: ens4: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group
 default qlen 1000
 link/ether 52:54:00:01:33:0a brd ff:ff:ff:ff:ff:ff
 inet 192.168.51.10/24 brd 192.168.51.255 scope global dynamic noprefixroute
 ens4
 valid_lft 461179517sec preferred_lft 461179517sec
 inet6 fe80::b9dd:9436:4fc7:738/64 scope link noprefixroute
 valid_lft forever preferred_lft forever
4: ovs-system: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group default
 qlen 1000
 link/ether 22:31:45:7a:e2:e3 brd ff:ff:ff:ff:ff:ff
5: ovn-k8s-mp0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1400 qdisc noqueue state
 UNKNOWN group default qlen 1000
...output omitted...
6: br-int: <BROADCAST,MULTICAST> mtu 1400 qdisc noop state DOWN group default qlen
 1000
 link/ether 52:db:28:19:51:94 brd ff:ff:ff:ff:ff:ff
8: br-ex: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN
 group default qlen 1000
 link/ether 52:54:00:00:32:0a brd ff:ff:ff:ff:ff:ff
 inet 192.168.50.10/24 brd 192.168.50.255 scope global dynamic noprefixroute
 br-ex
...output omitted...

The ens3 interface is the main network interface of the cluster.

The ens4 interface is an additional network interface for exercises that require

an additional network. This interface is attached to a 192.168.51.0/24 network,

with the 192.168.51.10 IP address.

The system has other interfaces, including bridges and pod network interfaces.

 3. Examine the networking configuration of the workstation machine. The workstation
machine has no access to the 192.168.51.0/24 network, which is the ens4 interface in the

cluster node.

3.1. Use the ip addr command to examine the network interfaces in the workstation
machine.

[student@workstation ~]$ ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default
 qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group
 default qlen 1000
 link/ether 52:54:00:00:fa:09 brd ff:ff:ff:ff:ff:ff
 inet 172.25.250.9/24 brd 172.25.250.255 scope global noprefixroute eth0
 valid_lft forever preferred_lft forever

DO280-OCP4.14-en-1-20240215 205

Chapter 5 | Expose non-HTTP/SNI Applications

 inet6 fe80::5054:ff:fe00:fa09/64 scope link
 valid_lft forever preferred_lft forever
...output omitted...

The workstation machine has a single Ethernet interface. This interface is on

a different network from the ens4 interface in the cluster node.

3.2. Use the route command to view the routing table in the workstation machine.

[student@workstation ~]$ ip route
default via 172.25.250.254 dev eth0 proto static metric 100
10.88.0.0/16 dev podman0 proto kernel scope link src 10.88.0.1
172.25.250.0/24 dev eth0 proto kernel scope link src 172.25.250.9 metric 100
192.168.50.0/24 via 172.25.250.253 dev eth0 proto static metric 100

The workstation routing table does not have a route to the 192.168.51.0/24

network.

3.3. Use the ping command to check connectivity to the ens4 interface in the cluster.

[student@workstation ~]$ ping 192.168.51.10
PING 192.168.51.10 (192.168.51.10) 56(84) bytes of data.
^C
--- 192.168.51.10 ping statistics ---
6 packets transmitted, 0 received, 100% packet loss, time 5137ms

The command does not produce any output after printing the first line. Wait a

few seconds, and then press Ctrl+C to interrupt the ping command. The ping
command prints that after transmitting some packets, no response is received.

The workstation machine cannot connect to the additional cluster network.

 4. Examine the networking configuration of the utility machine. The utility machine has

access to the 192.168.51.0/24 network.

4.1. Use the ssh command to connect to the utility machine.

[student@workstation ~]$ ssh utility
...output omitted...
[student@utility ~]$

4.2. Use the ip addr command to examine the network interfaces in the utility
machine.

[student@utility ~]$ ip addr
...output omitted...
4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group
 default qlen 1000
 link/ether 52:54:00:02:33:fe brd ff:ff:ff:ff:ff:ff
 inet 192.168.51.254/24 brd 192.168.51.255 scope global noprefixroute eth2
...output omitted...

The eth2 interface is attached to the 192.168.51.0/24 network, with the

192.168.51.254 IP address.

206 DO280-OCP4.14-en-1-20240215

Chapter 5 | Expose non-HTTP/SNI Applications

4.3. Use the ping command to check connectivity to the ens4 interface in the cluster.

[student@utility ~]$ ping 192.168.51.10
PING 192.168.51.10 (192.168.51.10) 56(84) bytes of data.
64 bytes from 192.168.51.10: icmp_seq=1 ttl=64 time=0.687 ms
64 bytes from 192.168.51.10: icmp_seq=2 ttl=64 time=0.169 ms
^C
--- 192.168.51.10 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1058ms
rtt min/avg/max/mdev = 0.169/0.428/0.687/0.259 ms

Wait a few seconds, and then press Ctrl+C to interrupt the ping command. The

ping command shows that the utility machine can connect to the additional

cluster network.

4.4. Exit the SSH session to go back to the workstation machine.

[student@utility ~]$ exit
logout
Connection to utility closed.
[student@workstation ~]$

 5. Configure a network attachment definition for the ens4 interface, so that the custom

network can be attached to a pod.

5.1. Edit the ~/DO280/labs/non-http-multus/network-attachment-
definition.yaml file. Use the custom name, the host-device type, and the

ens4 device. Configure IP address management to use the static type, with the

192.168.51.10/24 address.

apiVersion: k8s.cni.cncf.io/v1
kind: NetworkAttachmentDefinition
metadata:
 name: custom
spec:
 config: |-
 {
 "cniVersion": "0.3.1",
 "name": "custom",
 "type": "host-device",
 "device": "ens4",
 "ipam": {
 "type": "static",
 "addresses": [
 {"address": "192.168.51.10/24"}
]
 }
 }

5.2. Use the diff command to compare your network attachment definition with

the solution in the ~/DO280/solutions/non-http-multus/network-
attachment-definition.yaml file. If the files are identical, then the diff
command does not return any output.

DO280-OCP4.14-en-1-20240215 207

Chapter 5 | Expose non-HTTP/SNI Applications

[student@workstation ~]$ diff \
 ~/DO280/labs/non-http-multus/network-attachment-definition.yaml \
 ~/DO280/solutions/non-http-multus/network-attachment-definition.yaml

5.3. Use the oc create command to create the network attachment definition.

[student@workstation ~]$ oc create \
 -f ~/DO280/labs/non-http-multus/network-attachment-definition.yaml
networkattachmentdefinition.k8s.cni.cncf.io/custom created

 6. Edit the deployment to add the k8s.v1.cni.cncf.io/networks annotation with the

custom value.

6.1. Log in to the OpenShift cluster as the developer user with the developer
password.

[student@workstation ~]$ oc login -u developer -p developer \
 https://api.ocp4.example.com:6443
Login successful.

...output omitted...

6.2. Edit the ~/DO280/labs/non-http-multus/deployment.yaml file to add the

k8s.v1.cni.cncf.io/networks annotation with the custom value.

apiVersion: v1
...output omitted...
- apiVersion: apps/v1
 kind: Deployment
 metadata:
 name: database
 spec:
 replicas: 1
 strategy:
 type: Recreate
 selector:
 matchLabels:
 name: database
 app: database
 template:
 metadata:
 labels:
 name: database
 app: database
 annotations:
 k8s.v1.cni.cncf.io/networks: custom
 spec:
...output omitted...

6.3. Use the oc apply command to add the annotation.

208 DO280-OCP4.14-en-1-20240215

Chapter 5 | Expose non-HTTP/SNI Applications

[student@workstation ~]$ oc apply -f ~/DO280/labs/non-http-multus/deployment.yaml
secret/database configured
persistentvolumeclaim/database unchanged
deployment.apps/database configured

6.4. Wait until all resources are ready.

[student@workstation ~]$ oc get all
NAME READY STATUS RESTARTS AGE
pod/database-74d79685f7-8p6m5 1/1 Running 0 3m36s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/database 1/1 1 1 3m36s

NAME DESIRED CURRENT READY AGE
replicaset.apps/database-654db5f958 0 0 0 15m
replicaset.apps/database-74d79685f7 1 1 1 3m36s

6.5. Examine the k8s.v1.cni.cncf.io/network-status annotation in the pod.

[student@workstation ~]$ oc get pod database-74d79685f7-6schp \
 -o jsonpath='{.metadata.annotations.k8s\.v1\.cni\.cncf\.io/network-status}'
[{
 "name": "ovn-kubernetes",
 "interface": "eth0",
 "ips": [
 "10.8.0.92"
],
 "mac": "0a:58:0a:08:00:5c",
 "default": true,
 "dns": {}
},{
 "name": "non-http-multus/custom",
 "interface": "net1",
 "ips": [
 "192.168.51.10"
],
 "mac": "52:54:00:01:33:0a",
 "dns": {}
}]

Note

The period is the JSONPath field access operator. Normally, you use the period to

access parts of the resource, such as in the .metadata.annotations JSONPath

expression. To access fields that contain periods with JSONPath, you must escape

the periods with a backslash (\).

 7. Verify that you can access the database from the utility machine.

7.1. Use the ssh command to connect to the utility machine.

DO280-OCP4.14-en-1-20240215 209

Chapter 5 | Expose non-HTTP/SNI Applications

[student@workstation ~]$ ssh utility
...output omitted...
[student@utility ~]$

7.2. Log in to the classroom container registry for access to an image with database

utilities.

[student@utility ~]$ podman login --tls-verify=false \
 registry.ocp4.example.com:8443 -u developer -p developer
Login Succeeded!

7.3. Run a command to execute a query on the database. Use the IP address on the

custom network to connect to the database. Use password as the password for the

user.

[student@utility ~]$ podman run -it --tls-verify=false \
 --entrypoint=/usr/bin/psql \
 registry.ocp4.example.com:8443/rhel8/postgresql-13:1-7 \
 -h 192.168.51.10 -U user sample -c 'SELECT 1;'
...output omitted...
Password for user user: password
 ?column?

 1
(1 row)

7.4. Exit the SSH session to return to the workstation machine.

[student@utility ~]$ exit
logout
Connection to utility closed.
[student@workstation ~]$

 8. Verify that you cannot use the same process to access the database from the

workstation machine, because the workstation machine cannot access the custom

network.

8.1. Log in to the classroom container registry for access to an image with database

utilities.

[student@workstation ~]$ podman login --tls-verify=false \
 registry.ocp4.example.com:8443 -u developer -p developer
Login Succeeded!

8.2. Run a command to execute a query on the database. Use the IP address on the

custom network to connect to the database.

210 DO280-OCP4.14-en-1-20240215

Chapter 5 | Expose non-HTTP/SNI Applications

[student@workstation ~]$ podman run -it --tls-verify=false \
 --entrypoint=/usr/bin/psql \
 registry.ocp4.example.com:8443/rhel8/postgresql-13:1-7 \
 -h 192.168.51.10 -U user sample -c 'SELECT 1;'
...output omitted...
Storing signatures
psql: error: could not connect to server: Connection refused
 Is the server running on host "192.168.51.10" and accepting
 TCP/IP connections on port 5432?

After the image is downloaded, the command pauses for over a minute, because you

cannot access the custom network from the workstation machine.

The deployment uses the custom network, and you can access the database only

through the custom network.

Finish

On the workstation machine, use the lab command to complete this exercise. This step is

important to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab finish non-http-multus

DO280-OCP4.14-en-1-20240215 211

Chapter 5 | Expose non-HTTP/SNI Applications

Lab

Expose non-HTTP/SNI Applications

Expose applications to external access without using an ingress controller.

Outcomes
• Expose a non-http application to external access by using the LoadBalancer type

service.

• Configure a network attachment definition for an isolated network.

• Make an application accessible outside the cluster on an isolated network by using an

existing node network interface.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your

system for this exercise.

This command ensures that the cluster API is reachable and configures the MetalLB

operator to provide a single IP address, 192.168.50.20, for the load balancer services.

[student@workstation ~]$ lab start non-http-review

Instructions

1. Deploy the virtual-rtsp application to a new non-http-review-rtsp project as the

developer user with the developer password, and verify that the virtual-rtsp pod is

running.

The application consists of the ~/DO280/labs/non-http-review/virtual-
rtsp.yaml file.

2. Expose the virtual-rtsp deployment by using the LoadBalancer service.

3. Access the virtual-rtsp application by using the URL in the media player. Run the totem
rtsp://EXTERNAL-IP:8554/stream command to play the stream in the media player.

4. Deploy the nginx deployment to a new non-http-review-nginx project as the

developer user with the developer password, and verify that the nginx pod is running.

The application consists of the ~/DO280/labs/non-http-review/nginx.yaml file.

Important

The exercise is using an HTTP application as a stand-in for testing connectivity to an

external network.

5. Configure a network attachment definition for the ens4 interface, so that the isolated

network can be attached to a pod.

The master01 node has two Ethernet interfaces. The ens3 interface is the main network

interface of the cluster. The ens4 interface is an additional network interface for exercises

212 DO280-OCP4.14-en-1-20240215

Chapter 5 | Expose non-HTTP/SNI Applications

that require an additional network. The ens4 interface is attached to a 192.168.51.0/24

network, with the 192.168.51.10 IP address.

You can modify the ~/DO280/labs/non-http-review/network-attachment-
definition.yaml file to configure a network attachment definition by using the following

parameters:

Parameter Value

name custom

type host-device

device ens4

ipam.type static

ipam.addresses {"address": "192.168.51.10/24"}

6. The nginx application does not contain any services, so the application is not accessible

outside the pod network.

Assign the ens4 network interface exclusively to the nginx pod, by using the

custom network attachment definition. Edit the nginx deployment to add the

k8s.v1.cni.cncf.io/networks annotation with the custom value as the developer
user with the developer password.

7. Verify that you can access the nginx application from the utility machine by using the

following URL:

http://isolated-network-IP-address:8080

8. Verify that you cannot access the nginx application from the workstation machine,

because the workstation machine cannot access the isolated network.

Evaluation

As the student user on the workstation machine, use the lab command to grade your work.

Correct any reported failures and rerun the command until successful.

[student@workstation ~]$ lab grade non-http-review

Finish

As the student user on the workstation machine, use the lab command to complete this

exercise. This step is important to ensure that resources from previous exercises do not impact

upcoming exercises.

[student@workstation ~]$ lab finish non-http-review

DO280-OCP4.14-en-1-20240215 213

Chapter 5 | Expose non-HTTP/SNI Applications

Solution

Expose non-HTTP/SNI Applications

Expose applications to external access without using an ingress controller.

Outcomes
• Expose a non-http application to external access by using the LoadBalancer type

service.

• Configure a network attachment definition for an isolated network.

• Make an application accessible outside the cluster on an isolated network by using an

existing node network interface.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your

system for this exercise.

This command ensures that the cluster API is reachable and configures the MetalLB

operator to provide a single IP address, 192.168.50.20, for the load balancer services.

[student@workstation ~]$ lab start non-http-review

Instructions

1. Deploy the virtual-rtsp application to a new non-http-review-rtsp project as the

developer user with the developer password, and verify that the virtual-rtsp pod is

running.

The application consists of the ~/DO280/labs/non-http-review/virtual-
rtsp.yaml file.

1.1. Log in to your OpenShift cluster as the developer user with the developer
password.

[student@workstation ~]$ oc login -u developer -p developer \
 https://api.ocp4.example.com:6443
Login successful.
...output omitted...

1.2. Change to the ~/DO280/labs/non-http-review directory.

[student@workstation ~]$ cd ~/DO280/labs/non-http-review

1.3. Create a non-http-review-rtsp project.

214 DO280-OCP4.14-en-1-20240215

Chapter 5 | Expose non-HTTP/SNI Applications

[student@workstation non-http-review]$ oc new-project non-http-review-rtsp
Now using project "non-http-review-rtsp" on server ...
...output omitted...

1.4. Use the oc create command to create the virtual-rtsp deployment by using the

virtual-rtsp.yaml file.

[student@workstation non-http-review]$ oc create -f virtual-rtsp.yaml
deployment.apps/virtual-rtsp created

1.5. List the deployments and pods. Wait for the virtual-rtsp pod to be ready. Press

Ctrl+C to exit the watch command.

[student@workstation non-http-review]$ watch oc get deployments,pods
NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/virtual-rtsp 1/1 1 1 21s

NAME READY STATUS RESTARTS AGE
pod/virtual-rtsp-54d8d6b57d-6jsvm 1/1 Running 0 21s

2. Expose the virtual-rtsp deployment by using the LoadBalancer service.

2.1. Create a load balancer service for the virtual-rtsp deployment.

[student@workstation non-http-review]$ oc expose deployment/virtual-rtsp \
 --name=virtual-rtsp-loadbalancer --type=LoadBalancer
service/virtual-rtsp-loadbalancer exposed

2.2. Retrieve the external IP address of the virtual-rtsp-loadbalancer service.

[student@workstation non-http-review]$ oc get svc/virtual-rtsp-loadbalancer
NAME TYPE ... EXTERNAL-IP PORT(S)
virtual-rtsp-loadbalancer LoadBalancer ... 192.168.50.20 8554:32570/TCP

The virtual-rtsp-loadbalancer has the 192.168.50.20 external IP address.

3. Access the virtual-rtsp application by using the URL in the media player. Run the totem
rtsp://EXTERNAL-IP:8554/stream command to play the stream in the media player.

3.1. Open the URL in the media player to confirm that the video stream is working correctly.

rtsp://192.168.50.20:8554/stream

[student@workstation non-http-review]$ totem rtsp://192.168.50.20:8554/stream
...output omitted...

DO280-OCP4.14-en-1-20240215 215

Chapter 5 | Expose non-HTTP/SNI Applications

Close the media player window after confirming that the video stream works correctly.

4. Deploy the nginx deployment to a new non-http-review-nginx project as the

developer user with the developer password, and verify that the nginx pod is running.

The application consists of the ~/DO280/labs/non-http-review/nginx.yaml file.

Important

The exercise is using an HTTP application as a stand-in for testing connectivity to an

external network.

4.1. Create a non-http-review-nginx project.

[student@workstation non-http-review]$ oc new-project non-http-review-nginx
Now using project "non-http-review-nginx" on server ...
...output omitted...

4.2. Use the oc apply command to create the nginx deployment by using the

nginx.yaml file.

[student@workstation non-http-review]$ oc apply -f nginx.yaml
deployment.apps/nginx created

4.3. List the deployments and pods. Wait for the nginx pod to be ready. Press Ctrl+C to

exit the watch command.

[student@workstation non-http-review]$ watch oc get deployments,pods
NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/nginx 1/1 1 1 53s

NAME READY STATUS RESTARTS AGE
pod/nginx-649779cbd-d6sbv 1/1 Running 0 53s

216 DO280-OCP4.14-en-1-20240215

Chapter 5 | Expose non-HTTP/SNI Applications

5. Configure a network attachment definition for the ens4 interface, so that the isolated

network can be attached to a pod.

The master01 node has two Ethernet interfaces. The ens3 interface is the main network

interface of the cluster. The ens4 interface is an additional network interface for exercises

that require an additional network. The ens4 interface is attached to a 192.168.51.0/24

network, with the 192.168.51.10 IP address.

You can modify the ~/DO280/labs/non-http-review/network-attachment-
definition.yaml file to configure a network attachment definition by using the following

parameters:

Parameter Value

name custom

type host-device

device ens4

ipam.type static

ipam.addresses {"address": "192.168.51.10/24"}

5.1. Log in to your OpenShift cluster as the admin user with the redhatocp password.

[student@workstation non-http-review]$ oc login -u admin -p redhatocp \
 https://api.ocp4.example.com:6443
Login successful.
...output omitted...

5.2. Edit the ~/DO280/labs/non-http-review/network-attachment-
definition.yaml file. Use the custom name, the host-device type, and the

ens4 device. Configure IP address management to use the static type, with the

192.168.51.10/24 address.

apiVersion: k8s.cni.cncf.io/v1
kind: NetworkAttachmentDefinition
metadata:
 name: custom
spec:
 config: |-
 {
 "cniVersion": "0.3.1",
 "name": "custom",
 "type": "host-device",
 "device": "ens4",
 "ipam": {
 "type": "static",
 "addresses": [
 {"address": "192.168.51.10/24"}
]
 }
 }

DO280-OCP4.14-en-1-20240215 217

Chapter 5 | Expose non-HTTP/SNI Applications

5.3. Use the oc create command to create the network attachment definition.

[student@workstation non-http-review]$ oc create -f \
 network-attachment-definition.yaml
networkattachmentdefinition.k8s.cni.cncf.io/custom created

6. The nginx application does not contain any services, so the application is not accessible

outside the pod network.

Assign the ens4 network interface exclusively to the nginx pod, by using the

custom network attachment definition. Edit the nginx deployment to add the

k8s.v1.cni.cncf.io/networks annotation with the custom value as the developer
user with the developer password.

6.1. Log in to the OpenShift cluster as the developer user with the developer password.

[student@workstation non-http-review]$ oc login -u developer -p developer \
 https://api.ocp4.example.com:6443
Login successful.

...output omitted...

6.2. Edit the ~/DO280/labs/non-http-review/nginx.yaml file to add the

k8s.v1.cni.cncf.io/networks annotation with the custom value.

...output omitted...
spec:
 replicas: 1
 selector:
 matchLabels:
 app: nginx
 strategy:
 type: Recreate
 template:
 metadata:
 labels:
 app: nginx
 annotations:
 k8s.v1.cni.cncf.io/networks: custom
 spec:
 containers:
...output omitted...

6.3. Use the oc apply command to add the annotation.

[student@workstation non-http-review]$ oc apply -f nginx.yaml
deployment.apps/nginx configured

6.4. Wait for the nginx pod to be ready. Press Ctrl+C to exit the watch command.

218 DO280-OCP4.14-en-1-20240215

Chapter 5 | Expose non-HTTP/SNI Applications

[student@workstation non-http-review]$ watch oc get deployments,pods
NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/nginx 1/1 1 1 34m

NAME READY STATUS RESTARTS AGE
pod/nginx-6f45d9f89-wp2gg 1/1 Running 0 53s

6.5. Examine the k8s.v1.cni.cncf.io/networks-status annotation in the pod.

[student@workstation ~]$ oc get pod nginx-6f45d9f89-wp2gg \
 -o jsonpath='{.metadata.annotations.k8s\.v1\.cni\.cncf\.io/network-status}'
[{
 "name": "ovn-kubernetes",
 "interface": "eth0",
 "ips": [
 "10.8.0.82"
],
 "mac": "0a:58:0a:08:00:52",
 "default": true,
 "dns": {}
},{
 "name": "non-http-review-nginx/custom",
 "interface": "net1",
 "ips": [
 "192.168.51.10"
],
 "mac": "52:54:00:01:33:0a",
 "dns": {}
}]

Note

The period is the JSONPath field access operator. Normally, you use the period to

access parts of the resource, such as in the .metadata.annotations JSONPath

expression. To access fields that contain periods with JSONPath, you must escape

the periods with a backslash (\).

7. Verify that you can access the nginx application from the utility machine by using the

following URL:

http://isolated-network-IP-address:8080

7.1. Use the ssh command to connect to the utility machine.

[student@workstation non-http-review]$ ssh utility
...output omitted...
[student@utility ~]$

7.2. Verify that the nginx application is accessible. Use the IP address on the isolated

network to access the nginx application.

DO280-OCP4.14-en-1-20240215 219

Chapter 5 | Expose non-HTTP/SNI Applications

[student@utility ~]$ curl 'http://192.168.51.10:8080/'
<html>
 <body>
 <h1>Hello, world from nginx!</h1>
 </body>
</html>

7.3. Exit the SSH session to go back to the workstation machine.

[student@utility ~]$ exit
logout
Connection to utility closed.
[student@workstation non-http-review]$

8. Verify that you cannot access the nginx application from the workstation machine,

because the workstation machine cannot access the isolated network.

8.1. Verify that the nginx application is not accessible from the workstation machine.

[student@workstation non-http-review]$ curl 'http://192.168.51.10:8080/'
curl: (7) Failed to connect to 192.168.51.10 port 8080: Connection timed out

8.2. Change to the student HOME directory.

[student@workstation non-http-review]$ cd
[student@workstation ~]$

Evaluation

As the student user on the workstation machine, use the lab command to grade your work.

Correct any reported failures and rerun the command until successful.

[student@workstation ~]$ lab grade non-http-review

Finish

As the student user on the workstation machine, use the lab command to complete this

exercise. This step is important to ensure that resources from previous exercises do not impact

upcoming exercises.

[student@workstation ~]$ lab finish non-http-review

220 DO280-OCP4.14-en-1-20240215

Chapter 5 | Expose non-HTTP/SNI Applications

Summary

• Kubernetes ingresses and OpenShift routes use the virtual hosting property of the HTTP

protocol to expose web services that are running on the cluster.

• Different providers can implement Kubernetes services, by using the type field of the service

resource.

• When a load balancer component is configured for a cluster, you can create services of the

LoadBalancer type to expose non-HTTP services outside the cluster.

• The Multus CNI (container network interface) plug-in helps to attach pods to custom networks.

• You can configure the additional network by using a network attachment definition resource.

DO280-OCP4.14-en-1-20240215 221

222 DO280-OCP4.14-en-1-20240215

Chapter 6

Enable Developer Self-Service

Goal Configure clusters for safe self-service by
developers from multiple teams, and disallow self-
service if operations staff must provision projects.

Objectives • Configure compute resource quotas and
Kubernetes resource count quotas per project
and cluster-wide.

• Configure default and maximum compute
resource requirements for pods per project.

• Configure default quotas, limit ranges, role
bindings, and other restrictions for new
projects, and the allowed users to self-provision
new projects.

Sections • Project and Cluster Quotas (and Guided
Exercise)

• Per-Project Resource Constraints: Limit
Ranges (and Guided Exercise)

• The Project Template and the Self-Provisioner
Role (and Guided Exercise)

Lab • Enable Developer Self-Service

DO280-OCP4.14-en-1-20240215 223

Chapter 6 | Enable Developer Self-Service

Project and Cluster Quotas

Objectives
• Configure compute resource quotas and Kubernetes resource count quotas per project and

cluster-wide.

Limiting Workloads
Kubernetes clusters can run heterogeneous workloads across many compute nodes. By using

Kubernetes role-based access control (RBAC), cluster administrators can allow users to create

workloads on their own. Although RBAC can limit the kinds of resources that users can create,

administrators might want further measures to ensure correct operation of the cluster.

Clusters have limited resources, such as CPU, RAM, and storage. If workloads on a cluster exceed

the available resources, then workloads might not work correctly. A cluster that is configured

to autoscale might also incur unwanted economic costs if the cluster scales to accommodate

unexpected workloads.

To help with this issue, Kubernetes workloads can reserve resources and declare resource limits.

Workloads can specify the following properties:

Resource limits
Kubernetes can limit the resources that a workload consumes. Workloads can specify an

upper bound of the resources that they expect to use under normal operation. If a workload

malfunctions or has unexpected load, then resource limits prevent the workload from

consuming an excessive amount of resources and impacting other workloads.

Resource requests
Workloads can declare their minimum required resources. Kubernetes tracks requested

resources by workloads, and prevents deployments of new workloads if the cluster has

insufficient resources. Resource requests ensure that workloads get their needed resources.

These measures prevent workloads from affecting other workloads. However, cluster

administrators might need to prevent other risks.

For example, users might mistakenly create unwanted workloads. The resource requests of those

unwanted workloads can prevent legitimate workloads from executing.

By dividing workloads into namespaces, Kubernetes can offer enhanced protection features. The

namespace structure often mirrors the organization that runs the cluster. Kubernetes introduces

resource quotas to limit resource usage by the combined workloads in a namespace.

Resource Quotas
Kubernetes administrators can create resources of the ResourceQuota type in a namespace for

this purpose. When a resource quota exists in a namespace, Kubernetes prevents the creation of

workloads that exceed the quota.

Whereas quota features in other systems often act on users or groups of users, Kubernetes

resource quotas act on namespaces.

224 DO280-OCP4.14-en-1-20240215

Chapter 6 | Enable Developer Self-Service

apiVersion: v1
kind: ResourceQuota
metadata:
 name: memory
 namespace: example
spec:
 hard:
 limits.memory: 4Gi
 requests.memory: 2Gi
 scopes: {}
 scopeSelector: {}

The hard key lists restrictions.

The scopes and scopeSelector keys define which namespace resources the quota applies

to. This course does not cover those keys.

The following sections describe the compute and object count quotas that you can include in the

hard key. Other components can define other quotas and enforce them.

Compute Resource Quotas

You can set the following compute quotas:

• limits.cpu
• limits.memory
• requests.cpu
• requests.memory

Limit quotas interact with resource limits, and request quotas interact with resource requests.

Limit quotas control the maximum compute resources that the workloads in a namespace can

consume. Consider a namespace where all workloads have a memory limit. No individual workload

can consume enough memory to cause a problem. However, because users can create any number

of workloads, the workloads of a namespace can consume enough memory to cause a problem for

workloads in other namespaces. If you set a namespace memory usage limit, then the workloads in

the namespace cannot consume more memory than this limit.

Request quotas control the maximum resources that workloads in a namespace can reserve. If

you do not set namespace request quotas, then a single workload can request any quantity of

resources, such as RAM or CPU. This request can cause further requests in other namespaces

to fail. By setting namespace request quotas, the total requested resources by workloads in a

namespace cannot exceed the quota.

Excessive quotas can cause resource underutilization and can limit workload performance

unnecessarily.

After setting any compute quota, all workloads must define the corresponding request or resource

limit. For example, if you create a limits.cpu quota, then the workloads that you create require

the resources.limits.cpu key.

Object Count Quotas

A quota can also limit the number of resources of a given type in a namespace. For example, you

can create a quota that prevents the creation of more than 10 deployments in a namespace.

DO280-OCP4.14-en-1-20240215 225

Chapter 6 | Enable Developer Self-Service

Clusters store resource definitions in a backing store. Kubernetes backing stores are databases,

and like any other database, the more data that they store, the more resources are needed for

adequate performance. Namespaces with many resources can impact Kubernetes performance.

Additionally, any process that creates cluster resources might malfunction and create unwanted

resources.

Setting object count quotas can limit the damage from accidents, and maintain adequate cluster

performance.

Note

Red Hat validates the performance of OpenShift up to a specific number of objects

in a set of configurations. If you are planning a large cluster, then these results can

help you to size the cluster and to establish object count quotas.

See the references section for more information.

Some Kubernetes resources might affect external systems. For example, creating a persistent

volume might create an entity in the storage provider. Many persistent volumes might cause

issues in the storage provider. Examine the systems that your cluster interacts with to learn about

possible resource constraints, and establish object count quotas to prevent issues.

Use the count/resource_type syntax to set a quota for resources of the core group. Use the

oc api-resources command with an empty api-group parameter to list resources of the core

group.

[user@host ~]$ oc api-resources --api-group="" --namespaced=true
NAME SHORTNAMES APIVERSION NAMESPACED KIND
bindings v1 true Binding
...output omitted...

For resources in other groups, use the count/resource_type.group syntax.

Kubernetes initially supported quotas for a limited set of resource types. These quotas do not

use the count/resource_type syntax. You might find a services quota instead of a count/
services quota. The Resource Quotas reference further describes these quotas.

Applying Project Quotas
Navigate to Administration > ResourceQuotas to create a resource quota from the web console.

The YAML editor loads an example resource quota that you can edit for your needs.

You can also use the oc command to create a resource quota. The oc command can create

resource quotas without requiring a complete resource definition. Execute the oc create
resourcequota --help command to display examples and help for creating resource quotas

without a complete resource definition.

For example, execute the following command to create a resource quota that limits the number of

pods in a namespace:

[user@host ~]$ oc create resourcequota example --hard=count/pods=1
resourcequota/example created

The previous command is equivalent to creating a resource quota with the following definition:

226 DO280-OCP4.14-en-1-20240215

Chapter 6 | Enable Developer Self-Service

apiVersion: v1
kind: ResourceQuota
metadata:
 name: example
spec:
 hard:
 count/pods: "1"

After creating a resource quota, the status key in the resource describes the current values and

limits in the quota.

[user@host ~]$ oc get quota example -o yaml
apiVersion: v1
kind: ResourceQuota
metadata:
 creationTimestamp: "2024-01-30T17:59:52Z"
 name: example
 namespace: default
 resourceVersion: "193658"
 uid: df12b484-4e78-4920-acb4-e04ab286a4a1
spec:
 hard:
 count/pods: "1"
status:
 hard:
 count/pods: "1"
 used:
 count/pods: "0"

The oc get and oc describe commands show resource quota information in a custom format.

The oc get command displays the status of the quota in resource lists:

[user@host ~]$ oc get quota
NAME AGE REQUEST LIMIT
example 9m54s count/pods: 1/1

Resource quotas generate the kube_resourcequota metric. You can examine this metric for

planning and trend analysis.

DO280-OCP4.14-en-1-20240215 227

Chapter 6 | Enable Developer Self-Service

Figure 6.1: The kube_resourcequota metric

Troubleshooting Resource Quotas
Because resource quotas are extensible, Kubernetes cannot verify that a resource quota is correct.

For example, the following command creates a resource quota that has no effect:

[user@host ~]$ oc create resourcequota example --hard=count/deployment=1
resourcequota/example created

The correct syntax for limiting the number of deployments is count/deployments.apps.

To ensure that a resource quota is correct, you can use the following procedures:

• Create a quota with an artificially low value in a testing environment, and ensure that the

resource quota has an effect.

• Review the quota status.

For example, if a namespace contains a deployment, then an incorrectly defined resource quota

shows 0 deployments:

228 DO280-OCP4.14-en-1-20240215

Chapter 6 | Enable Developer Self-Service

[user@host ~]$ oc get resourcequota
NAME AGE REQUEST LIMIT
example 2m47s count/deployment: 0/1

However, a correctly defined resource quota shows the deployment:

[user@host ~]$ oc get resourcequota
NAME AGE REQUEST LIMIT
example 4s count/deployments.apps: 1/1

Exceeding a quota often produces an error immediately. For example, if you create a deployment

that exceeds the deployment quota, then the deployment creation fails.

[user@host ~]$ oc create deployment --image=nginx hello
error: failed to create deployment: deployments.apps "hello" is forbidden:
 exceeded quota: example, requested: count/deployments.apps=1, used: count/
deployments.apps=1, limited: count/deployments.apps=1

However, some quotas do not cause operations to fail immediately. For example, if you set a

resource quota for pods, then creating a deployment appears to succeed, but the deployment

never becomes available. When a resource quota is acting indirectly, namespace events might

provide further information.

[user@host ~]$ oc get event --sort-by .metadata.creationTimestamp
LAST SEEN TYPE REASON OBJECT MESSAGE
...output omitted...
10s Normal ScalingReplicaSet deployment/hello Scaled up
 replica set hello-5cdfd9c858 to 1
9s Warning FailedCreate replicaset/hello-5cdfd9c858 Error
 creating: pods "hello-5cdfd9c858-zsgn9" is forbidden: exceeded quota: example,
 requested: count/pods=1, used: count/pods=1, limited: count/pods=1
5s Warning FailedCreate replicaset/hello-5cdfd9c858 (combined
 from similar events): Error creating: pods "hello-5cdfd9c858-h2dv4" is forbidden:
 exceeded quota: example, requested: count/pods=1, used: count/pods=1, limited:
 count/pods=1

The web console also shows quota information. Navigate to Administration > ResourceQuotas to

view resource quotas and their status. The project pages on both the developer and administrator

perspectives also show the quotas that apply to a specific project.

Creating Quotas Across Multiple Projects
Cluster administrators can use resource quotas to apply restrictions to namespaces.

Resource restrictions often follow organization structure. Although namespaces often reflect

organization structure, cluster administrators might apply restrictions to resources without being

limited to a single namespace.

For example, a group of developers manages many namespaces. Namespace quotas can limit

RAM usage per namespace. However, a cluster administrator cannot limit total RAM usage by all

workloads that the group of developers manages.

DO280-OCP4.14-en-1-20240215 229

Chapter 6 | Enable Developer Self-Service

OpenShift introduces cluster resource quotas for those scenarios.

Cluster resource quotas follow a similar structure to namespace resource quotas. However, cluster

resource quotas use selectors to choose which namespaces the quota applies to.

Cluster resource quotas selectors use set-based requirements.

The following example shows a cluster resource quota:

apiVersion: quota.openshift.io/v1
kind: ClusterResourceQuota
metadata:
 name: example
spec:
 quota:
 hard:
 limits.cpu: 4
 selector:
 annotations: {}
 labels:
 matchLabels:
 kubernetes.io/metadata.name: example

The quota key contains the quota definition. This key follows the structure of the

ResourceQuota specification. The hard key is nested inside the quota key, instead of

being directly nested inside the spec key as in resource quotas.

The selector key defines which namespaces the cluster resource quota applies to. Other

Kubernetes features, such as services and network policies, use the same selectors.

Navigate to Administration > CustomResourceDefinitions to create a cluster resource quota with

the web console.

You can also use the oc command to create a cluster quota. The oc command can

create quotas without requiring a complete resource definition. Execute the oc create
clusterresourcequota --help command to display examples and help about creating

cluster resource quotas without a complete resource definition.

For example, execute the following command to create a resource quota that limits total CPU

requests. The quota limits the total CPU requests on namespaces that have the group label with

the dev value.

[user@host ~]$ oc create clusterresourcequota example
 --project-label-selector=group=dev --hard=requests.cpu=10
clusterresourcequota/example created

Cluster resource quotas collect total resource usage across namespaces and enforce the limits.

The following example shows the status of the previous cluster resource quota:

apiVersion: quota.openshift.io/v1
kind: ClusterResourceQuota
metadata:
 name: example
spec:
 quota:

230 DO280-OCP4.14-en-1-20240215

Chapter 6 | Enable Developer Self-Service

 hard:
 requests.cpu: "10"
 selector:
 annotations: null
 labels:
 matchLabels:
 group: dev
status:
 namespaces:
 - namespace: example-3
 status:
 hard:
 requests.cpu: "10"
 used:
 requests.cpu: 500m
 - namespace: example-2
 status:
 hard:
 requests.cpu: "10"
 used:
 requests.cpu: 250m
...output omitted...
 total:
 hard:
 requests.cpu: "10"
 used:
 requests.cpu: 2250m

The namespaces key lists the namespaces that the quota applies to. For each namespace,

the used key shows the current utilization.

The total key aggregates the data in the namespaces key.

Users might not have read access to cluster resource quotas. OpenShift creates resources

of the AppliedClusterResourceQuota type in namespaces that are affected by

cluster resource quotas. Project administrators can review quota usage by reviewing the

AppliedClusterResourceQuota resources. For example, use the oc describe command to

view the cluster resource quotas that apply to a specific namespace:

[user@host ~]$ oc describe AppliedClusterResourceQuota -n example-2
Name: example
Created: 9 minutes ago
Labels: <none>
Annotations: <none>
Namespace Selector: ["example-3" "example-2" "example-4" "example-1"]
Label Selector: group=dev
AnnotationSelector: map[]
Resource Used Hard
-------- ---- ----
requests.cpu 2250m 10

DO280-OCP4.14-en-1-20240215 231

Chapter 6 | Enable Developer Self-Service

Note

The --all-namespaces argument to oc commands such as the get and

describe commands does not work with AppliedClusterResourceQuota
resources. These resources are listed only when you select a namespace.

Navigate to Administration > ResourceQuotas to view quotas and their status. This page

displays cluster quotas along with namespace quotas. Although you can view resources of the

ClusterResourceQuota type and create resources of the ResourceQuota type in the

ResourceQuotas page, you cannot create objects of the ClusterResourceQuota in this page.

The project pages on both the developer and administrator perspectives also show the cluster

quotas that apply to a specific project.

References

For more information, refer to the Quotas chapter in the Red Hat OpenShift

Container Platform 4.14 Building Applications documentation at

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.14/html-single/building_applications/index#quotas

For more information about object counts, refer to the Planning Your Environment

According to Object Maximums chapter in the Red Hat OpenShift Container

Platform 4.14 Scalability and Performance documentation at

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.14/html-single/scalability_and_performance/

index#planning-your-environment-according-to-object-maximums

Requests and Limits

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

#requests-and-limits

Resource Quotas

https://kubernetes.io/docs/concepts/policy/resource-quotas/

232 DO280-OCP4.14-en-1-20240215

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/building_applications/index#quotas
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/building_applications/index#quotas
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/scalability_and_performance/index#planning-your-environment-according-to-object-maximums
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/scalability_and_performance/index#planning-your-environment-according-to-object-maximums
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/scalability_and_performance/index#planning-your-environment-according-to-object-maximums
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#requests-and-limits
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#requests-and-limits
https://kubernetes.io/docs/concepts/policy/resource-quotas/

Chapter 6 | Enable Developer Self-Service

Guided Exercise

Project and Cluster Quotas

Configure quotas for a project so that applications cannot scale to consume all capacity of a

cluster node.

Outcomes
• Verify that requesting resources in one namespace can prevent creation of workloads in

different namespaces.

• Set a quota to prevent workloads in a namespace from requesting excessive resources.

• Verify that you can continue to create workloads in different namespaces.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your

system for this exercise.

This command ensures that the cluster API is reachable and deletes the namespaces that

you use in this exercise.

[student@workstation ~]$ lab start selfservice-quotas

Instructions

 1. Log in to your OpenShift cluster as the developer user with the developer password.

1.1. Log in to the cluster as the developer user.

[student@workstation ~]$ oc login -u developer -p developer \
 https://api.ocp4.example.com:6443
Login successful.

...output omitted...

 2. Create a selfservice-quotas project.

2.1. Use the oc new-project command to create the project.

[student@workstation ~]$ oc new-project selfservice-quotas
Now using project "selfservice-quotas" on server "https://
api.ocp4.example.com:6443".
...output omitted...

 3. Create a deployment with a container that requests one CPU.

3.1. Use the oc create command to create the deployment.

DO280-OCP4.14-en-1-20240215 233

Chapter 6 | Enable Developer Self-Service

[student@workstation ~]$ oc create deployment test \
 --image registry.ocp4.example.com:8443/redhattraining/hello-world-nginx
deployment.apps/test created

3.2. Use the oc set resources command to request one CPU in the container

specification.

[student@workstation ~]$ oc set resources deployment test --requests=cpu=1
deployment.apps/test resource requirements updated

3.3. Use the oc get command to ensure that the deployment starts a pod correctly.

[student@workstation ~]$ oc get pod,deployment
NAME READY STATUS RESTARTS AGE
pod/test-8b9fdfbd9-bltlc 1/1 Running 0 13s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/test 1/1 1 1 49s

Execute the command until the deployment and the pod are ready.

 4. Try to scale the deployment to eight replicas.

4.1. Use the oc scale command to scale the deployment.

[student@workstation ~]$ oc scale deployment test --replicas=8
deployment.apps/test scaled

4.2. Use the oc get command to view pods and deployments.

[student@workstation ~]$ oc get pod,deployment
NAME READY STATUS RESTARTS AGE
pod/test-6c66b55cb5-2kclt 1/1 Running 0 48m
pod/test-6c66b55cb5-5n58r 0/1 Pending 0 5s
pod/test-6c66b55cb5-8x929 0/1 Pending 0 5s
pod/test-6c66b55cb5-blgms 0/1 Pending 0 5s
pod/test-6c66b55cb5-d6z42 1/1 Running 0 6s
pod/test-6c66b55cb5-fc8bk 0/1 Pending 0 5s
pod/test-6c66b55cb5-t29dh 0/1 Pending 0 6s
pod/test-6c66b55cb5-xqr66 0/1 Pending 0 6s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/test 2/8 8 2 54m

Out of eight pods that the deployment creates, only some of them change to

Running status. The other pods stay in Pending status. Not all replicas of the

deployment are ready and available.

4.3. Use the oc get command to list events. Sort the events by their creation timestamp.

234 DO280-OCP4.14-en-1-20240215

Chapter 6 | Enable Developer Self-Service

[student@workstation ~]$ oc get event --sort-by .metadata.creationTimestamp
LAST SEEN TYPE REASON OBJECT MESSAGE
...output omitted...
3m58s Normal ScalingReplicaSet deployment/test Scaled up
 replica set test-6c66b55cb5 to 8
3m58s Normal Scheduled pod/test-6c66b55cb5-d6z42
 Successfully assigned selfservice-quotas/test-6c66b55cb5-d6z42 to master01
3m57s Warning FailedScheduling pod/test-6c66b55cb5-5n58r 0/1 nodes
 are available: 1 Insufficient cpu. preemption: 0/1 nodes are available: 1 No
 preemption victims found for incoming pod..
...output omitted...

Replicas fail to schedule, because the cluster has insufficient CPU.

 5. Examine the cluster as an administrator.

5.1. Log in to the cluster as the admin user with the redhatocp password.

[student@workstation ~]$ oc login -u admin -p redhatocp
Login successful.

...output omitted...

5.2. Use the oc adm top command to display the resource usage of nodes.

[student@workstation ~]$ oc adm top node
NAME CPU(cores) CPU% MEMORY(bytes) MEMORY%
master01 772m 14% 10185Mi 68%

The cluster does not show high CPU usage.

5.3. Use the oc describe command to view the node details.

[student@workstation ~]$ oc describe node/master01
Name: master01
...output omitted...
Capacity:
 cpu: 6
...output omitted...
Allocatable:
 cpu: 5500m
...output omitted...
Allocated resources:
 (Total limits may be over 100 percent, i.e., overcommitted.)
 Resource Requests Limits
 -------- -------- ------
 cpu 4627m (84%) 0 (0%)
 memory 12102Mi (81%) 0 (0%)
 ephemeral-storage 0 (0%) 0 (0%)
 hugepages-1Gi 0 (0%) 0 (0%)
 hugepages-2Mi 0 (0%) 0 (0%)
...output omitted...

DO280-OCP4.14-en-1-20240215 235

Chapter 6 | Enable Developer Self-Service

The node has a capacity of six CPUs, and has more than five allocatable CPUs.

However, over five CPUs are requested, so less than one CPU is available for new

workloads.

 6. Create a test project as an administrator, and verify that you cannot create new workloads

that request a CPU.

6.1. Use the oc new-project command to create the project.

[student@workstation ~]$ oc new-project test
Now using project "test" on server "https://api.ocp4.example.com:6443".
...output omitted...

6.2. Use the oc create command to create the deployment.

[student@workstation ~]$ oc create deployment test \
 --image registry.ocp4.example.com:8443/redhattraining/hello-world-nginx
deployment.apps/test created

6.3. Use the oc set resources command to request one CPU in the container

specification.

[student@workstation ~]$ oc set resources deployment test --requests=cpu=1
deployment.apps/test resource requirements updated

6.4. Use the oc get command to review the pods and deployments in the test
namespace.

[student@workstation ~]$ oc get pod,deployment
NAME READY STATUS RESTARTS AGE
pod/test-8b9fdfbd9-rrn7t 0/1 Pending 0 8s
pod/test-c454765f-vkt96 1/1 Running 0 100s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/test 1/1 1 1 100s

The deployment created one pod before adding the CPU request. When you updated

the deployment to request a CPU, the deployment tried to replace the pod to add

the CPU request. The new pod is in the Pending state, because the cluster has less

than one CPU available to request.

The workload in the selfservice-quotas namespace prevents the creation of

workloads in other namespaces.

6.5. Use the oc delete command to delete the test namespace.

[student@workstation ~]$ oc delete namespace test
namespace "test" deleted

 7. As an administrator, scale the deployment to one replica.

7.1. Use the oc project command to switch to the selfservice-quotas project.

236 DO280-OCP4.14-en-1-20240215

Chapter 6 | Enable Developer Self-Service

[student@workstation ~]$ oc project selfservice-quotas
Now using project "selfservice-quotas" on server "https://
api.ocp4.example.com:6443".

7.2. Use the oc scale command to scale the test deployment to one replica.

[student@workstation ~]$ oc scale deployment test --replicas=1
deployment.apps/test scaled

 8. Create a quota to prevent workloads in the selfservice-quotas namespace from

requesting more than one CPU.

8.1. Use the oc create command to create the quota.

[student@workstation ~]$ oc create quota one-cpu --hard=requests.cpu=1
resourcequota/one-cpu created

8.2. Use the oc get command to verify the quota.

[student@workstation ~]$ oc get quota one-cpu -o yaml
apiVersion: v1
kind: ResourceQuota
metadata:
 creationTimestamp: "2024-01-30T18:26:49Z"
 name: one-cpu
 namespace: selfservice-quotas
...output omitted...
spec:
 hard:
 requests.cpu: "1"
status:
 hard:
 requests.cpu: "1"
 used:
 requests.cpu: "1"

The test deployment already requests one CPU.

 9. Try to scale the deployment to eight replicas and to create a second deployment.

9.1. Use the oc scale command to scale the deployment.

[student@workstation ~]$ oc scale deployment test --replicas=8
deployment.apps/test scaled

9.2. Use the oc create command to create a second deployment.

[student@workstation ~]$ oc create deployment test2 \
 --image registry.ocp4.example.com:8443/redhattraining/hello-world-nginx
deployment.apps/test2 created

DO280-OCP4.14-en-1-20240215 237

Chapter 6 | Enable Developer Self-Service

9.3. Use the oc get command to review pods and deployments.

[student@workstation ~]$ oc get pod,deployment
NAME READY STATUS RESTARTS AGE
pod/test-6c66b55cb5-mdxjl 1/1 Running 0 2m58s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/test 1/8 1 1 3m20s
deployment.apps/test2 0/1 0 0 14s

The test deployment creates only two pods. The second deployment does not create

any pods.

9.4. Use the oc get command to examine the quota status.

[student@workstation ~]$ oc get quota one-cpu -o yaml
apiVersion: v1
kind: ResourceQuota
metadata:
 name: one-cpu
 namespace: selfservice-quotas
...output omitted...
spec:
 hard:
 requests.cpu: "1"
status:
 hard:
 requests.cpu: "1"
 used:
 requests.cpu: "1"

The used status is kept at 1 because the test2 deployment can't request more

resources in the quota.

9.5. Use the oc get command to list events. Sort the events by their creation timestamp.

[student@workstation ~]$ oc get event --sort-by .metadata.creationTimestamp
LAST SEEN TYPE REASON OBJECT MESSAGE
...output omitted...
4m42s Warning FailedCreate replicaset/test-6c66b55cb5
 (combined from similar events): Error creating: pods "`test`-6c66b55cb5-
djrr9" is forbidden: exceeded quota: one-cpu, requested: requests.cpu=1, used:
 requests.cpu=2, limited: requests.cpu=2
9m3s Warning FailedCreate replicaset/test2-7b9df44445 Error
 creating: pods "test2-7b9df44445-98wxp" is forbidden: failed quota: one-cpu: must
 specify requests.cpu for: hello-world-nginx
...output omitted...

The test deployment cannot create further pods, because the new pods would

exceed the quota. The test2 deployment cannot create pods, because the

deployment does not set a CPU request.

 10. Create a test project to verify that you can create new workloads in other namespaces

that request CPU resources.

238 DO280-OCP4.14-en-1-20240215

Chapter 6 | Enable Developer Self-Service

10.1. Use the oc new-project command to create the project.

[student@workstation ~]$ oc new-project test
Now using project "test" on server "https://api.ocp4.example.com:6443".
...output omitted...

10.2. Use the oc create command to create the deployment.

[student@workstation ~]$ oc create deployment test --image \
 registry.ocp4.example.com:8443/redhattraining/hello-world-nginx
deployment.apps/test created

10.3. Use the oc set resources command to request one CPU in the container

specification.

[student@workstation ~]$ oc set resources deployment test --requests=cpu=1
deployment.apps/test resource requirements updated

10.4. Use the oc get command to review the pods and deployments in the test
namespace.

[student@workstation ~]$ oc get pod,deployment
NAME READY STATUS RESTARTS AGE
pod/test-8b9fdfbd9-447w9 1/1 Running 0 21s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/test 1/1 1 1 51s

Even though you cannot create further workloads in the selfservice-quotas
namespace, you can create workloads that request CPUs in other namespaces when

the node has CPUs and memory available.

Finish

On the workstation machine, use the lab command to complete this exercise. This step is

important to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab finish selfservice-quotas

DO280-OCP4.14-en-1-20240215 239

Chapter 6 | Enable Developer Self-Service

Per-Project Resource Constraints: Limit
Ranges

Objectives
• Configure default and maximum compute resource requirements for pods per project.

Managing Namespace Resources
Cluster administrators can set resource quotas on namespaces. Namespace quotas limit the

resources that workloads in a namespace use. Quotas address resource management at the

cluster level.

Kubernetes users might have further resource management needs within a namespace.

• Users might accidentally create workloads that consume too much of the namespace quota.

These unwanted workloads might prevent other workloads from running.

• Users might forget to set workload limits and requests, or might find it time-consuming to

configure limits and requests. When a namespace has a quota, creating workloads fails if the

workload does not define values for the limits or requests in the quota.

Kubernetes introduces limit ranges to help with these issues. Limit ranges are namespaced objects

that define limits for workloads within the namespace.

Limit Ranges
The following YAML file shows an example limit range:

apiVersion: v1
kind: LimitRange
metadata:
 name: mem-limit-range
 namespace: default
spec:
 limits:
 - default:
 memory: 512Mi
 defaultRequest:
 memory: 256Mi
 type: Container

Limit ranges can specify the following limit types:

Default limit
Use the default key to specify default limits for workloads.

Default request
Use the defaultRequest key to specify default requests for workloads.

Maximum
Use the max key to specify the maximum value of both requests and limits.

240 DO280-OCP4.14-en-1-20240215

Chapter 6 | Enable Developer Self-Service

Minimum
Use the min key to specify the minimum value of both requests and limits.

Limit-to-request ratio
The maxLimitRequestRatio key controls the relationship between limits and requests. If

you set a ratio of two, then the resource limit cannot be more than twice the request.

This course does not cover limit-to-request ratios in detail.

Limit ranges can apply to containers, pods, images, image streams, and persistent volume claims.

Setting Maximum and Minimum Limit Ranges

When you set the max key, users cannot create workloads that declare limits or that make resource

requests over the maximum.

Use maximums to prevent accidentally high resource requests and limits. These situations can

exhaust quotas and cause other issues.

Consider allowing users who create workloads to edit maximum limit ranges. Although maximum

limit ranges act as a convenient safeguard, excessively low limits can prevent users from creating

legitimate workloads.

Minimum limit ranges are useful to ensure that users create workloads with enough requests and

limits. If users create such workloads often, then consider adding minimums.

Setting Defaults

Defaults are convenient in namespaces with quotas, and eliminate a need to declare limits

explicitly in each workload. When a quota is present, all workloads must specify the corresponding

limits and requests. When you set the default and defaultRequest keys, workloads use the

requests and limits from the limit range by default.

Defaults are especially convenient in scenarios where many workloads are created dynamically.

For example, continuous integration tools might run tests for each change to a source code

repository. Each test can create multiple workloads. Because many tests can run concurrently,

the resource usage of testing workloads can be significant. Setting quotas for testing workloads

is often needed to limit resource usage. If you set CPU and RAM quotas for requests and limits,

then the continuous integration tool must set the corresponding limits in every testing workload.

Setting defaults can save time with configuring limits. However, determining appropriate defaults

might be complex for namespaces with varied workloads.

Creating Limit Ranges
Consider a namespace with the following quota:

apiVersion: v1
kind: ResourceQuota
metadata:
 name: example
 namespace: example
spec:
 hard:
 limits.cpu: "8"

DO280-OCP4.14-en-1-20240215 241

Chapter 6 | Enable Developer Self-Service

 limits.memory: 8Gi
 requests.cpu: "4"
 requests.memory: 4Gi

The following command creates a deployment:

[user@host ~]$ oc create deployment example --image=image
deployment.apps/example created

The quota prevents the deployment from creating pods:

[user@host ~]$ oc get event --sort-by .metadata.creationTimestamp
LAST SEEN TYPE REASON OBJECT MESSAGE
...output omitted...
13s Warning FailedCreate replicaset/example-74c57c8dff Error
 creating: pods "example-74c57c8dff-rzl7w" is forbidden: failed quota: example:
 must specify limits.cpu for: hello-world-nginx; limits.memory for: hello-world-
nginx; requests.cpu for: hello-world-nginx; requests.memory for: hello-world-nginx
...output omitted...

The following limit range includes all types of limits:

apiVersion: v1
kind: LimitRange
metadata:
 name: example
 namespace: example
spec:
 limits:
 - default:
 cpu: 500m
 memory: 512Mi
 defaultRequest:
 cpu: 250m
 memory: 256Mi
 max:
 cpu: "1"
 memory: 1Gi
 min:
 cpu: 125m
 memory: 128Mi
 type: Container

Limit ranges do not affect existing pods. If you delete the deployment and run the oc create
command again, then the deployment creates a pod with the applied limit range.

[user@host ~]$ oc describe pod
...output omitted...
Containers:
 hello-world-nginx:
 Limits:
 cpu: 500m

242 DO280-OCP4.14-en-1-20240215

Chapter 6 | Enable Developer Self-Service

 memory: 512Mi
 Requests:
 cpu: 250m
 memory: 256Mi
...output omitted...

The values correspond to the default and defaultRequest keys in the limit range.

The deployment does not contain any limits in the specification. The Kubernetes API server

includes an admission controller that enforces limit ranges. The controller affects pod definitions,

but not deployments, stateful sets, or other workloads.

You can replace the CPU limit, or add other resource specifications, by using the oc set
resources command:

[user@host ~]$ oc set resources deployment example --limits=cpu=new-cpu-limit

You can experiment with different CPU limits.

If you request CPU values outside the range that the min and max keys define, then Kubernetes

does not create the pods, and it logs warnings.

[user@host ~]$ oc get event --sort-by .metadata.creationTimestamp
LAST SEEN TYPE REASON OBJECT MESSAGE
...output omitted...
5m43s Warning FailedCreate replicaset/example-7c4dfc5fb8 Error
 creating: pods "example-7c4dfc5fb8-q7x94" is forbidden: maximum cpu usage per
 Container is 1, but limit is 1200m
...output omitted...
5m26s Warning FailedCreate replicaset/example-798d65c854 Error
 creating: pods "example-798d65c854-b94k8" is forbidden: minimum cpu usage per
 Container is 125m, but request is 100m
...output omitted...

Note

When you experiment with deployments and resource quotas, consider what

happens when you modify a deployment. Modifications create a replacement replica

set, and the existing replica set also continues to run until the rollout completes.

The pods of both replica sets count towards the resource quota.

If the new replica set satisfies the quota, but the combined replica sets exceed the

quota, then the rollout cannot complete.

When creating a limit range, you can specify any combination of the default, defaultRequest,

min, and max keys. However, if you do not specify the default or defaultRequest keys, then

Kubernetes modifies the limit range to add these keys. These keys are copied from the min or max
keys. For more predictable behavior, always specify the default and defaultRequest keys if

you specify the min or max keys.

Also, the values for CPU or memory keys must follow these rules:

• The max value must be higher than or equal to the default value.

DO280-OCP4.14-en-1-20240215 243

Chapter 6 | Enable Developer Self-Service

• The default value must be higher than or equal to the defaultRequest value.

• The defaultRequest value must be higher than or equal to the min value.

Do not create conflicting limit ranges in a namespace. For example, if two default CPU values are

specified, then it would be unclear which one is applied.

References

For more information, refer to the Restrict Resource Consumption with Limit Ranges

section in the Working with Clusters chapter in the Red Hat OpenShift Container

Platform 4.14 Nodes documentation at

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.14/html-single/nodes/index#nodes-cluster-limit-

ranges

Limit Ranges

https://kubernetes.io/docs/concepts/policy/limit-range/

244 DO280-OCP4.14-en-1-20240215

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/nodes/index#nodes-cluster-limit-ranges
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/nodes/index#nodes-cluster-limit-ranges
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/nodes/index#nodes-cluster-limit-ranges
https://kubernetes.io/docs/concepts/policy/limit-range/

Chapter 6 | Enable Developer Self-Service

Guided Exercise

Per-Project Resource Constraints: Limit
Ranges

Configure a project with default compute resource limits so pods do not run unconstrained.

Outcomes
• Verify that workloads have no limits by default.

• Create a limit range.

• Create a workload and inspect the limits that the limit range adds to the containers.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your

system for this exercise.

This command ensures that the cluster API is reachable and deletes the namespace that you

use in this exercise.

[student@workstation ~]$ lab start selfservice-ranges

Instructions

 1. As the admin user, locate and navigate to the OpenShift web console.

1.1. Log in to your OpenShift cluster as the admin user.

[student@workstation ~]$ oc login -u admin -p redhatocp \
 https://api.ocp4.example.com:6443
Login successful.

...output omitted...

1.2. Identify the URL for the web console.

[student@workstation ~]$ oc whoami --show-console
https://console-openshift-console.apps.ocp4.example.com

1.3. Open a web browser and navigate to https://console-openshift-
console.apps.ocp4.example.com.

1.4. Click Red Hat Identity Management and log in as the admin user with the

redhatocp password.

 2. Create a selfservice-ranges project.

DO280-OCP4.14-en-1-20240215 245

Chapter 6 | Enable Developer Self-Service

2.1. Navigate to Home > Projects, and then click Create Project.

2.2. Type selfservice-ranges in the Name field, and then click Create.

 3. Create an example deployment.

3.1. Navigate to Workloads > Deployments, and then click Create Deployment.

3.2. Ensure that Form view is selected, and then type example in the Name field.

246 DO280-OCP4.14-en-1-20240215

Chapter 6 | Enable Developer Self-Service

You create this deployment several times during this exercise. To use the terminal

instead for the exercise, copy the deployment definition from the YAML editor.

3.3. Click Create to create the deployment.

 4. Examine the containers in the deployment.

4.1. Wait a few seconds until the Deployment Details section shows that the deployment

scaled to three pods.

4.2. Click the Pods tab, and then click the name of any of the pods in the example
deployment.

DO280-OCP4.14-en-1-20240215 247

Chapter 6 | Enable Developer Self-Service

The name of the pods might differ from the ones you get.

4.3. Scroll to the Containers section, and then click container.

Figure 6.8: The container link in the pod details page

4.4. Verify that the Resource requests and Resource limits fields show a hyphen.

Containers do not have resource requests nor limits by default.

248 DO280-OCP4.14-en-1-20240215

Chapter 6 | Enable Developer Self-Service

Figure 6.9: Container resources

 5. Create a limit range.

5.1. Navigate to Administration > LimitRanges, and then click Create LimitRange.

5.2. The YAML editor displays a template that defines a limit range for containers. The

limit range sets a default memory request of 256 Mi and a default memory limit of

512 Mi.

DO280-OCP4.14-en-1-20240215 249

Chapter 6 | Enable Developer Self-Service

Click Create to create a limit range with the template definition.

 6. Examine the containers of the original deployment to verify that the limit range did not add

resource requests nor limits.

6.1. Navigate to Workloads > Pods, and then click the name of any of the pods in the

example deployment.

6.2. Scroll to the Containers section, and then click container.

250 DO280-OCP4.14-en-1-20240215

Chapter 6 | Enable Developer Self-Service

6.3. The Resource requests and Resource limits fields continue to show a hyphen.

 7. Delete the deployment.

7.1. Navigate to Workloads > Deployment. Click the vertical ellipsis (⋮) menu at the end

of the example row, and then click Delete Deployment. Click Delete to confirm.

DO280-OCP4.14-en-1-20240215 251

Chapter 6 | Enable Developer Self-Service

 8. Create the example deployment again.

8.1. Navigate to Workloads > Deployments, and then click Create Deployment.

8.2. Ensure that Form view is selected, and then type example in the Name field.

8.3. Click Create to create the deployment.

252 DO280-OCP4.14-en-1-20240215

Chapter 6 | Enable Developer Self-Service

 9. Examine the containers in the deployment.

9.1. Wait a few seconds until the Deployment Details section shows that the deployment

scaled to three pods.

9.2. Click the Pods tab, and then click the name of any of the pods.

9.3. Scroll to the Containers section, and then click container.

9.4. Note that the Resource requests and Resource limits fields now have values that

correspond to the limit range.

DO280-OCP4.14-en-1-20240215 253

Chapter 6 | Enable Developer Self-Service

 10. Examine the deployment.

10.1. Navigate to Workloads > Deployments, and then click example.

10.2. Click YAML to show the YAML editor.

10.3. The YAML editor displays the resource definition of the deployment.

kind: Deployment
apiVersion: apps/v1
metadata:
 name: example
 namespace: selfservice-ranges
...output omitted...
spec:
 replicas: 3

254 DO280-OCP4.14-en-1-20240215

Chapter 6 | Enable Developer Self-Service

 selector:
 matchLabels:
 app: example
 template:
 metadata:
 creationTimestamp: null
 labels:
 app: example
 spec:
 containers:
 - name: container
 image: >-
 image-registry.openshift-image-registry.svc:5000/openshift/
httpd:latest
 ports:
 - containerPort: 8080
 protocol: TCP
 resources: {}
 terminationMessagePath: /dev/termination-log
...output omitted...

Although the containers have resource limits and requests, the resources key in

the deployment is empty. Limit ranges modify containers to add resource limits and

requests, but not deployments.

 11. Evaluate the limit range by examining pod metrics.

11.1. Navigate to Workloads > Pods, and then click the name of any of the pods.

11.2. Click Metrics.

DO280-OCP4.14-en-1-20240215 255

Chapter 6 | Enable Developer Self-Service

Figure 6.25: Pod metrics

The Memory usage graph displays the memory usage of the pod (about 50 MiB), the

request (256 MiB), and the limit (512 MiB).

The template deployment in the web console uses an httpd image that consumes

little memory. In this case, the limit range requests more memory than the container

requires to work. If you create many similar deployments, then the limit range can

cause the deployments to request more memory than they need. If the namespace

has resource quotas, then you might not be able to create workloads even if the

cluster has enough available resources.

Most real workloads have larger memory usage that varies with load. Evaluate the

resource usage of your workloads to decide whether limit ranges can help you to

manage cluster resources, and examine resource usage to find adequate values.

Finish

On the workstation machine, use the lab command to complete this exercise. This step is

important to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab finish selfservice-ranges

256 DO280-OCP4.14-en-1-20240215

Chapter 6 | Enable Developer Self-Service

The Project Template and the Self-
Provisioner Role

Objectives
• Configure default quotas, limit ranges, role bindings, and other restrictions for new projects, and

the allowed users to self-provision new projects.

Project Creation
Kubernetes provides namespaces to isolate workloads.

Namespace metadata has security implications in clusters. For example, policy controllers might

use namespace labels to limit capabilities in a namespace. If users can modify namespaces, then

malicious users can modify namespace metadata to override security measures.

Additionally, namespaces are not namespaced. Therefore, granting granular access to

namespaces poses some challenges. For example, with Kubernetes role-based access control, you

cannot allow users to list a subset of namespaces. However, to allow users to list their namespaces,

you must allow them to list all namespaces.

Note

Listing resources and viewing individual resources are different operations. You

can grant users permissions to view specific namespaces, but listing namespaces

requires a separate permission.

OpenShift introduces projects to improve security and users' experience of working with

namespaces. The OpenShift API server adds the Project resource type. When you make a query

to list projects, the API server lists namespaces, filters the visible namespaces to your user, and

returns the visible namespaces in project format.

Additionally, OpenShift introduces the ProjectRequest resource type. When you create

a project request, the OpenShift API server creates a namespace from a template. By using

a template, cluster administrators can customize namespace creation. For example, cluster

administrators can ensure that new namespaces have specific permissions, resource quotas, or

limit ranges.

These features provide self-service management of namespaces. Cluster administrators can

allow users to create namespaces without allowing users to modify namespace metadata.

Administrators can also customize the creation of namespaces to ensure that namespaces follow

organizational requirements.

Planning a Project Template
You can add any namespaced resource to the project template. For example, you can add

resources of the following types:

Roles and role bindings
Add roles and role bindings to the template to grant specific permissions in new projects.

The default template grants the admin role to the user who requests the project. You can

keep this permission or use another similar permission, such as granting the admin role to

DO280-OCP4.14-en-1-20240215 257

Chapter 6 | Enable Developer Self-Service

a group of users. You can also add different permissions, such as more granular permissions

over specific resource types.

Resource quotas and limit ranges
Add resource quotas to the project template to ensure that all new projects have resource

limits. If you add resource quotas, then creating workloads requires explicit resource limit

declarations. Consider adding limit ranges to reduce the effort for workload creation.

Even with quotas in all namespaces, users can create projects to continue adding workloads

to a cluster. If this scenario is a concern, then consider adding cluster resource quotas to the

cluster.

Network policies
Add network policies to the template to enforce organizational network isolation

requirements.

Creating a Project Template
The oc adm create-bootstrap-project-template command prints a template that you

can use to create your own project template.

This template has the same behavior as the default project creation in OpenShift. The template

adds a role binding that grants the admin cluster role over the new namespace to the user who

requests the project.

Project templates use the same template feature as the oc new-app command.

Execute the following command to create a file with an initial template:

[user@host ~]$ oc adm create-bootstrap-project-template -o yaml > file

This initial template has the following content:

apiVersion: template.openshift.io/v1
kind: Template
metadata:
 creationTimestamp: null
 name: project-request
objects:
- apiVersion: project.openshift.io/v1
 kind: Project
 metadata:
 annotations:
 openshift.io/description: ${PROJECT_DESCRIPTION}
 openshift.io/display-name: ${PROJECT_DISPLAYNAME}
 openshift.io/requester: ${PROJECT_REQUESTING_USER}
 creationTimestamp: null
 name: ${PROJECT_NAME}
 spec: {}
 status: {}
- apiVersion: rbac.authorization.k8s.io/v1
 kind: RoleBinding
 metadata:
 creationTimestamp: null
 name: admin

258 DO280-OCP4.14-en-1-20240215

Chapter 6 | Enable Developer Self-Service

 namespace: ${PROJECT_NAME}
 roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: admin
 subjects:
 - apiGroup: rbac.authorization.k8s.io
 kind: User
 name: ${PROJECT_ADMIN_USER}
parameters:
- name: PROJECT_NAME
- name: PROJECT_DISPLAYNAME
- name: PROJECT_DESCRIPTION
- name: PROJECT_ADMIN_USER
- name: PROJECT_REQUESTING_USER

The resources that OpenShift creates in new namespaces

The project resource

A role binding to grant the admin role to the requesting user

The parameters that are available to the template

When a user requests a project, OpenShift replaces the ${VARIABLE} syntax with the parameters

of the project request, and creates the objects in the objects key.

Modify the object list to add the required resources for new namespaces.

The YAML output of oc commands that return lists of objects is formatted similarly to the

template objects key.

[user@host ~]$ oc get limitrange,resourcequota -o yaml
apiVersion: v1
items:
- apiVersion: v1
 kind: LimitRange
 metadata:
 creationTimestamp: "2024-01-31T17:48:23Z"
 name: example
 namespace: example
 resourceVersion: "881771"
 uid: d0c19c60-00a9-4028-acc5-22680f1ea658
 spec:
 limits:
 - default:
 cpu: 500m
 memory: 512Mi
 defaultRequest:
 cpu: 250m
 memory: 256Mi
 max:
 cpu: "1"
 memory: 1Gi
 min:

DO280-OCP4.14-en-1-20240215 259

Chapter 6 | Enable Developer Self-Service

 cpu: 125m
 memory: 128Mi
 type: Container
- apiVersion: v1
 kind: ResourceQuota
 metadata:
 creationTimestamp: "2024-01-31T17:48:04Z"
 name: example
 namespace: example
 resourceVersion: "881648"
 uid: 108f0771-dc11-4289-ae76-6514d58bbece
 spec:
 hard:
 count/pods: "1"
 status:
...output omitted...
kind: List
metadata:
 resourceVersion: ""

Some common resources in project templates, such as quotas, do not have strict validation. For

example, if the previous template contains the count/pod text instead of the count/pods text,

then the quota does not work. You can create the project template, and new namespaces contain

the quota, but the quota does not have an effect. To define a project template and to reduce the

risk of errors, you can perform the following steps:

• Create a namespace.

• Create your chosen resources and test until you get the intended behavior.

• List the resources in YAML format.

• Edit the resource listing to ensure that the definitions create the correct resources. For example,

remove elements that do not apply to resource creation, such as the creationTimestamp or

status keys.

• Replace the namespace name with the ${PROJECT_NAME} value.

• Add the list of resources to the project template that the oc adm create-bootstrap-
project-template command generates.

Note

Extracting a resource definition from an existing resource might not always produce

correct results. Besides including elements that do not apply to resource creation,

existing definitions might contain attributes that generate unexpected behavior. For

example, a controller might add to resources some annotations that are unsuitable

for template definitions.

Even after testing the resources in a test namespace, always verify that the projects

that are created from your template have only the required behavior.

Use the oc create command to create the template resource in the openshift-config
namespace:

260 DO280-OCP4.14-en-1-20240215

Chapter 6 | Enable Developer Self-Service

[user@host ~]$ oc create -f template -n openshift-config
template.template.openshift.io/project-request created

Configuring the Project Template
Update the projects.config.openshift.io/cluster resource to use the new project

template. Modify the spec section. By default, the name of the project template is project-
request.

apiVersion: config.openshift.io/v1
kind: Project
metadata:
...output omitted...
 name: cluster
...output omitted...
spec:
 projectRequestTemplate:
 name: project-request

A successful update to the projects.config.openshift.io/cluster resource rolls out a

new version of the apiserver deployment in the openshift-apiserver namespace. After

the new apiserver deployment completes, new projects create the resources in the customized

project template.

Note

During the apiserver deployment rollout, API requests can produce unexpected

results.

To revert to the original project template, modify the projects.config.openshift.io/
cluster resource to clear the spec resource to match the spec: {} format.

Managing Self-provisioning Permissions
Users with the self-provisioner cluster role can create projects. By default, the self-

provisioner role is bound to all authenticated users.

Control the binding of the role to limit which users can request new projects.

Important

Remember that users with namespace permissions can create namespaces that do

not use the project template.

Use the oc describe command to view the role bindings.

[user@host ~]$ oc describe clusterrolebinding.rbac self-provisioners
Name: self-provisioners
Labels: <none>
Annotations: rbac.authorization.kubernetes.io/autoupdate: true
Role:

DO280-OCP4.14-en-1-20240215 261

Chapter 6 | Enable Developer Self-Service

 Kind: ClusterRole
 Name: self-provisioner
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 Group system:authenticated:oauth

This role binding has an rbac.authorization.kubernetes.io/autoupdate annotation.

This annotation protects roles and bindings from modifications that can interfere with the working

of clusters. When the API server starts, the cluster restores resources with this annotation

automatically, unless you set the annotation to the false value.

To make changes, disable automatic updates with the annotation, and edit the subjects in the

binding.

Important

The oc adm policy remove-cluster-role-from-group command removes

the cluster role binding when you remove the last subject.

Use extra caution or avoid this command to manage protected role bindings. The

command removes the permission, but only until the API server restarts. Removing

the permission permanently after deleting the binding is a lengthier process than

changing the subjects.

For example, to disable self-provisioning, execute the following commands:

[user@host ~]$ oc annotate clusterrolebinding/self-provisioners \
 --overwrite rbac.authorization.kubernetes.io/autoupdate=false
clusterrolebinding.rbac.authorization.k8s.io/self-provisioners annotated
[user@host ~]$ oc patch clusterrolebinding.rbac self-provisioners \
 -p '{"subjects": null}'
clusterrolebinding.rbac.authorization.k8s.io/self-provisioners patched

You can also use the oc edit command to modify any value of a resource. The command

launches the vi editor to apply your modifications. For example, to change the subject of the role

binding from the system:authenticated:oauth group to the provisioners group, execute

the followign command:

[user@host ~]$ oc edit clusterrolebinding/self-provisioners
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
...output omitted...
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: self-provisioner
subjects:
- apiGroup: rbac.authorization.k8s.io
 kind: Group
 name: provisioners

262 DO280-OCP4.14-en-1-20240215

Chapter 6 | Enable Developer Self-Service

References

For more information, refer to the Configuring Project Creation section in the

Projects chapter in the Red Hat OpenShift Container Platform 4.14 Building

Applications documentation at

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.14/html-single/building_applications/

index#configuring-project-creation

Customizing OpenShift Project Creation

https://developers.redhat.com/blog/2020/02/05/customizing-openshift-project-

creation/

DO280-OCP4.14-en-1-20240215 263

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/building_applications/index#configuring-project-creation
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/building_applications/index#configuring-project-creation
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/building_applications/index#configuring-project-creation
https://developers.redhat.com/blog/2020/02/05/customizing-openshift-project-creation/
https://developers.redhat.com/blog/2020/02/05/customizing-openshift-project-creation/

Chapter 6 | Enable Developer Self-Service

Guided Exercise

The Project Template and the Self-
Provisioner Role

Restrict the ability to self-provision projects to a group of users, and ensure that all users

from that group have write privileges on all projects that any of them creates. Also, ensure

that their new projects are constrained by a limit range that restricts memory usage.

Outcomes
• Limit project creation to a group of users.

• Customize project creation.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your

system for this exercise.

This command performs the following actions:

• Ensure that the cluster API is reachable.

• Create the provisioner1 and provisioner2 users with the redhat password.

[student@workstation ~]$ lab start selfservice-projtemplate

Instructions

In this exercise, you configure the cluster so that only members of the provisioners group can

create projects. Members of the provisioners group have full permissions on new projects.

Users cannot create workloads that request more than 1 GiB of RAM in new projects.

 1. Log in to your OpenShift cluster as the admin user with the redhatocp password.

1.1. Log in to the cluster as the admin user.

[student@workstation ~]$ oc login -u admin -p redhatocp \
 https://api.ocp4.example.com:6443
Login successful.
...output omitted...

 2. Allow only members of the provisioners group to create projects.

2.1. Examine the provisioners group.

264 DO280-OCP4.14-en-1-20240215

Chapter 6 | Enable Developer Self-Service

[student@workstation ~]$ oc describe group provisioners
Name: provisioners
Created: 12 seconds ago
Labels: <none>
Annotations: <none>
Users: provisioner1
 provisioner2

The provisioners group contains the provisioner1 and provisioner2 users.

2.2. Use the oc edit command to edit the self-provisioners cluster role binding.

[student@workstation ~]$ oc edit clusterrolebinding self-provisioners

The oc edit command launches the vi editor to apply your modifications. Change

the subject of the role binding from the system:authenticated:oauth group to

the provisioners group.

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
...output omitted...
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: self-provisioner
subjects:
- apiGroup: rbac.authorization.k8s.io
 kind: Group
 name: provisioners

Note

The rbac.authorization.kubernetes.io/autoupdate annotation protects

this cluster role binding. If the API server restarts, then Kubernetes restores this

cluster role binding.

In this exercise context, you are not required to make the change permanent.

Not in this exercise, but in a real-world context, you would make the change

permanent by using the following command:

[user@host ~]$ oc annotate clusterrolebinding/self-provisioners \
 --overwrite rbac.authorization.kubernetes.io/autoupdate=false

 3. Verify that users outside the provisioners group cannot create projects.

3.1. Log in to the cluster as the developer user with the developer password.

DO280-OCP4.14-en-1-20240215 265

Chapter 6 | Enable Developer Self-Service

[student@workstation ~]$ oc login -u developer -p developer
Login successful.

You don't have any projects. Contact your system administrator to request a
 project.

After the role binding is changed, the oc login command reports that you must

contact your system administrator to request a project, because the developer user

cannot create projects.

3.2. Verify that the developer user cannot create projects.

[student@workstation ~]$ oc new-project test
Error from server (Forbidden): You may not request a new project via this API.

 4. Verify that members of the provisioners group can create projects.

4.1. Log in to the cluster as the provisioner1 user with the redhat password.

[student@workstation ~]$ oc login -u provisioner1 -p redhat
Login successful.

You don't have any projects. You can try to create a new project, by running
...output omitted...

4.2. Create a project by using the oc new-project command.

[student@workstation ~]$ oc new-project test
Now using project "test" on server "https://api.ocp4.example.com:6443".
...output omitted...

4.3. Verify that you can create resources in the test project.

[student@workstation ~]$ oc create configmap test
configmap/test created

 5. Verify that another member of the provisioners group cannot access the test project.

5.1. Log in to the cluster as the provisioner2 user with the redhat password.

[student@workstation ~]$ oc login -u provisioner2 -p redhat
Login successful.

You don't have any projects. You can try to create a new project, by running

 oc new-project <projectname>

The oc login command reports that the provisioner2 user does not have any

projects.

5.2. Try to change to the test project with the oc project command.

266 DO280-OCP4.14-en-1-20240215

Chapter 6 | Enable Developer Self-Service

[student@workstation ~]$ oc project test
error: You are not a member of project "test".
You are not a member of any projects. You can request a project to be created with
 the 'new-project' command.

 6. Log in to the cluster as the admin user with the redhatocp password, to clean up.

6.1. Log in as the admin user.

[student@workstation ~]$ oc login -u admin -p redhatocp
...output omitted...

6.2. Delete the test project.

[student@workstation ~]$ oc delete project test
project.project.openshift.io "test" deleted

 7. Create a namespace to design a project template. Add a limit range that prevents users

from creating workloads that request more than 1 GiB of RAM.

7.1. Use the oc create namespace command to create the template-test
namespace.

[student@workstation ~]$ oc create namespace template-test
namespace/template-test created

7.2. Edit the ~/DO280/labs/selfservice-projtemplate/limitrange.yaml file

to add the limit. The file must match the following content:

apiVersion: v1
kind: LimitRange
metadata:
 name: max-memory
 namespace: template-test
spec:
 limits:
 - max:
 memory: 1Gi
 type: Container

7.3. Use the oc create command to create the limit range that the ~/DO280/labs/
selfservice-projtemplate/limitrange.yaml file defines.

[student@workstation ~]$ oc create \
 -f ~/DO280/labs/selfservice-projtemplate/limitrange.yaml
limitrange/max-memory created

7.4. Examine the ~/DO280/labs/selfservice-projtemplate/deployment.yaml
file. This file defines a deployment that requests 2 GiB of RAM.

DO280-OCP4.14-en-1-20240215 267

Chapter 6 | Enable Developer Self-Service

apiVersion: apps/v1
kind: Deployment
metadata:
...output omitted...
 name: test
spec:
...output omitted...
 template:
...output omitted...
 spec:
 containers:
 - image: registry.ocp4.example.com:8443/redhattraining/hello-world-
nginx:v1.0
 name: hello-world-nginx
 resources:
 limits:
 memory: 2Gi

7.5. Create the deployment by using the ~/DO280/labs/selfservice-
projtemplate/deployment.yaml file.

[student@workstation ~]$ oc create \
 -f ~/DO280/labs/selfservice-projtemplate/deployment.yaml \
 -n template-test
deployment.apps/test created

7.6. Examine the pods and events in the template-test namespace.

[student@workstation ~]$ oc get pod -n template-test
No resources found in template-test namespace.

[student@workstation ~]$ oc get event -n template-test \
 --sort-by=metadata.creationTimestamp
LAST SEEN TYPE REASON OBJECT MESSAGE
...output omitted...
39s Warning FailedCreate replicaset/test-846769884c Error
 creating: pods "test-846769884c-5zjhw" is forbidden: maximum memory usage per
 Container is 1Gi, but limit is 2Gi

The limit range maximum prevents the deployment from creating pods.

 8. Define the project template.

The ~/DO280/solutions/selfservice-projtemplate/template.yaml file

contains a solution.

8.1. Use the oc adm create-bootstrap-project-template command to print an

initial project template. Redirect the output to the template.yaml file.

[student@workstation ~]$ oc adm create-bootstrap-project-template \
 -o yaml >template.yaml

268 DO280-OCP4.14-en-1-20240215

Chapter 6 | Enable Developer Self-Service

8.2. Use the oc command to list the limit range in YAML format. Redirect the output to

append to the template.yaml file.

[student@workstation ~]$ oc get limitrange -n template-test \
 -o yaml >>template.yaml

8.3. Edit the template.yaml file to perform the following operations:

• Apply the following changes to the subjects key in the admin role binding:

– Change the kind key to Group.

– Change the name key to provisioners.

• Move the limit range to immediately after the role binding definition.

• Replace the namespace: template-test text with the namespace:
${PROJECT_NAME} text.

• Remove any left-over content after the parameters block.

• Remove the following keys from the limit range and quota definitions:

– creationTimestamp
– resourceVersion
– uid

If you use the vi editor, then you can use the following procedure to move a block of

text:

• Move to the beginning of the block.

• Press V to enter visual line mode. This mode selects entire lines for manipulation.

• Move to the end of the block. The editor highlights the selected lines.

• Press d to delete the lines and to store them in a register for later use.

• Move to the destination.

• Press P to insert the lines that are stored in the register.

You can also press dd to delete entire lines, and press . to repeat the operation.

The resulting file should match the following content:

apiVersion: template.openshift.io/v1
kind: Template
metadata:
 creationTimestamp: null
 name: project-request
objects:
- apiVersion: project.openshift.io/v1
 kind: Project
 metadata:
 annotations:
 openshift.io/description: ${PROJECT_DESCRIPTION}
 openshift.io/display-name: ${PROJECT_DISPLAYNAME}
 openshift.io/requester: ${PROJECT_REQUESTING_USER}

DO280-OCP4.14-en-1-20240215 269

Chapter 6 | Enable Developer Self-Service

 creationTimestamp: null
 name: ${PROJECT_NAME}
 spec: {}
 status: {}
- apiVersion: rbac.authorization.k8s.io/v1
 kind: RoleBinding
 metadata:
 creationTimestamp: null
 name: admin
 namespace: ${PROJECT_NAME}
 roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: admin
 subjects:
 - apiGroup: rbac.authorization.k8s.io
 kind: Group
 name: provisioners
- apiVersion: v1
 kind: LimitRange
 metadata:
 name: max-memory
 namespace: ${PROJECT_NAME}
 spec:
 limits:
 - default:
 memory: 1Gi
 defaultRequest:
 memory: 1Gi
 max:
 memory: 1Gi
 type: Container
parameters:
- name: PROJECT_NAME
- name: PROJECT_DISPLAYNAME
- name: PROJECT_DESCRIPTION
- name: PROJECT_ADMIN_USER
- name: PROJECT_REQUESTING_USER

Note

The limit range has default and defaultRequest limits, although the definition

does not contain these keys. When creating a limit range, always set the default
and defaultRequest limits for more predictable behavior.

 9. Create and configure the project template.

9.1. Use the oc command to create the project template.

[student@workstation ~]$ oc create -f template.yaml -n openshift-config
template.template.openshift.io/project-request created

9.2. Use the oc edit command to change the global cluster project configuration.

270 DO280-OCP4.14-en-1-20240215

Chapter 6 | Enable Developer Self-Service

[student@workstation ~]$ oc edit projects.config.openshift.io cluster

Edit the resource to match the following content:

apiVersion: config.openshift.io/v1
kind: Project
metadata:
...output omitted...
 name: cluster
...output omitted...
spec:
 projectRequestTemplate:
 name: project-request

9.3. Use the watch command to view the API server pods.

[student@workstation ~]$ watch oc get pod -n openshift-apiserver
NAME READY STATUS RESTARTS AGE
apiserver-6b7b... 2/2 Running 0 2m30s

Wait until new pods are rolled out. The rollout can take a few minutes to start. Press

Ctrl+C to exit the watch command.

 10. Create a project as the provisioner1 user.

10.1. Log in to the cluster as the provisioner1 user with the redhat password.

[student@workstation ~]$ oc login -u provisioner1 -p redhat
Login successful.
...output omitted...

10.2. Create a project by using the oc new-project command.

[student@workstation ~]$ oc new-project test
Now using project "test" on server "https://api.ocp4.example.com:6443".
...output omitted...

 11. Verify that the provisioner2 user can access the test project and create resources.

Verify that the limit range has the intended effect.

11.1. Log in to the cluster as the provisioner2 user with the redhat password.

[student@workstation ~]$ oc login -u provisioner2 -p redhat
Login successful.

You have one project on this server: "test"

Using project "test".

The oc login command reports that the provisioner2 user has the test
project. The command selects the project.

DO280-OCP4.14-en-1-20240215 271

Chapter 6 | Enable Developer Self-Service

11.2. Create a resource on the test project.

[student@workstation ~]$ oc create configmap test
configmap/test created

The provisioner2 user can create resources in a project that the provisioner1
user created.

11.3. Create a deployment that exceeds the limit range by using the ~/DO280/labs/
selfservice-projtemplate/deployment.yaml file.

[student@workstation ~]$ oc create \
 -f ~/DO280/labs/selfservice-projtemplate/deployment.yaml
deployment.apps/test created

11.4. Examine the pods and events in the template-test namespace.

[student@workstation ~]$ oc get pod
No resources found in test namespace.

[student@workstation ~]$ oc get event --sort-by=metadata.creationTimestamp
LAST SEEN TYPE REASON OBJECT MESSAGE
...output omitted...
39s Warning FailedCreate replicaset/test-846769884c Error
 creating: pods "test-846769884c-5zjhw" is forbidden: maximum memory usage per
 Container is 1Gi, but limit is 2Gi

The limit range works as expected.

Finish

On the workstation machine, use the lab command to complete this exercise. This step is

important to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab finish selfservice-projtemplate

272 DO280-OCP4.14-en-1-20240215

Chapter 6 | Enable Developer Self-Service

Lab

Enable Developer Self-Service

Configure a project with restrictions that prevent its users and applications from consuming

all capacity of a cluster.

Outcomes
• Configure project creation to use a custom project template.

• Limit resource usage for new projects.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your

system for this exercise.

This command ensures that the cluster API is reachable.

[student@workstation ~]$ lab start selfservice-review

Instructions

1. Log in to your OpenShift cluster as the admin user with the redhatocp password.

2. Design a project template with the following properties:

• The user who requests the project has the default admin role binding.

• The workloads in the project cannot request a total of more than 2 GiB of RAM, and they

cannot use more than 4 GiB of RAM.

Each workload in the project has the following properties:

• Default memory request of 256 MiB

• Default memory limit of 512 MiB

• Minimum memory request of 128 MiB

• Maximum memory usage of 1 GiB

You can use the oc create quota command to create the resource quota without

creating a YAML definition. A template for the limit range is available at ~/DO280/labs/
selfservice-review/limitrange.yaml.

You can create a template-test namespace to design your project template.

Note

The next steps assume that you design the template in a template-test
namespace. The lab scripts clean and grade the design namespace only if you

create it with the template-test name.

DO280-OCP4.14-en-1-20240215 273

Chapter 6 | Enable Developer Self-Service

3. Verify that the quota and limit range have the intended effect.

For example, create a deployment that uses the registry.ocp4.example.com:8443/
redhattraining/hello-world-nginx:v1.0 image without resource specifications.

Verify that the limit range adds requests and limits to the pods. Scale the deployment to 10

replicas. Examine the deployment and the quota to verify that they have the intended effect.

If you design your template without creating a test namespace, then you must verify your

design by other means.

4. Create a project template definition with the same properties.

Note

The solution for this step assumes that you designed your template in a template-
test namespace. If you do not create a template-test namespace to design the

template, then you must create the project template by other means.

The ~/DO280/solutions/selfservice-review/template.yaml file contains a

solution.

5. Create and configure the project template.

6. Create a project to verify that the template works as intended.

Note

The lab scripts clean up only a template-validate namespace.

Evaluation

As the student user on the workstation machine, use the lab command to grade your work.

Correct any reported failures and rerun the command until successful.

[student@workstation ~]$ lab grade selfservice-review

Finish

As the student user on the workstation machine, use the lab command to complete this

exercise. This step is important to ensure that resources from previous exercises do not impact

upcoming exercises.

[student@workstation ~]$ lab finish selfservice-review

274 DO280-OCP4.14-en-1-20240215

Chapter 6 | Enable Developer Self-Service

Solution

Enable Developer Self-Service

Configure a project with restrictions that prevent its users and applications from consuming

all capacity of a cluster.

Outcomes
• Configure project creation to use a custom project template.

• Limit resource usage for new projects.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your

system for this exercise.

This command ensures that the cluster API is reachable.

[student@workstation ~]$ lab start selfservice-review

Instructions

1. Log in to your OpenShift cluster as the admin user with the redhatocp password.

1.1. Log in to the cluster as the admin user.

[student@workstation ~]$ oc login -u admin -p redhatocp \
 https://api.ocp4.example.com:6443
Login successful.

...output omitted...

2. Design a project template with the following properties:

• The user who requests the project has the default admin role binding.

• The workloads in the project cannot request a total of more than 2 GiB of RAM, and they

cannot use more than 4 GiB of RAM.

Each workload in the project has the following properties:

• Default memory request of 256 MiB

• Default memory limit of 512 MiB

• Minimum memory request of 128 MiB

• Maximum memory usage of 1 GiB

DO280-OCP4.14-en-1-20240215 275

Chapter 6 | Enable Developer Self-Service

You can use the oc create quota command to create the resource quota without

creating a YAML definition. A template for the limit range is available at ~/DO280/labs/
selfservice-review/limitrange.yaml.

You can create a template-test namespace to design your project template.

Note

The next steps assume that you design the template in a template-test
namespace. The lab scripts clean and grade the design namespace only if you

create it with the template-test name.

2.1. Use the oc command to create a template-test namespace.

[student@workstation ~]$ oc create namespace template-test
namespace/template-test created

2.2. Use the oc create quota command to create the memory quota in the template-
test namespace.

[student@workstation ~]$ oc create quota memory \
 --hard=requests.memory=2Gi,limits.memory=4Gi \
 -n template-test
resourcequota/memory created

2.3. Edit the limit range definition at ~/DO280/labs/selfservice-review/
limitrange.yaml. Replace the CHANGE_ME text to match the following file:

apiVersion: v1
kind: LimitRange
metadata:
 name: memory
 namespace: template-test
spec:
 limits:
 - min:
 memory: 128Mi
 defaultRequest:
 memory: 256Mi
 default:
 memory: 512Mi
 max:
 memory: 1Gi
 type: Container

2.4. Use the oc command to create the limit range.

[student@workstation ~]$ oc create \
 -f ~/DO280/labs/selfservice-review/limitrange.yaml
limitrange/memory created

3. Verify that the quota and limit range have the intended effect.

276 DO280-OCP4.14-en-1-20240215

Chapter 6 | Enable Developer Self-Service

For example, create a deployment that uses the registry.ocp4.example.com:8443/
redhattraining/hello-world-nginx:v1.0 image without resource specifications.

Verify that the limit range adds requests and limits to the pods. Scale the deployment to 10

replicas. Examine the deployment and the quota to verify that they have the intended effect.

If you design your template without creating a test namespace, then you must verify your

design by other means.

3.1. Use the oc create deployment command to create a deployment without resource

specifications.

[student@workstation ~]$ oc create deployment -n template-test test-limits \
 --image registry.ocp4.example.com:8443/redhattraining/hello-world-nginx:v1.0
deployment.apps/test-limits created

3.2. Use the oc command to view the resources key of the container specification.

Optionally, use the jq command to indent the output.

[student@workstation ~]$ oc get pod -n template-test \
 -o jsonpath='{.items[0].spec.containers[0].resources}'
{"limits":{"memory":"512Mi"},"requests":{"memory":"256Mi"}}

Although you create the deployment without specifying resources, the limit range

applies RAM requests and limits.

3.3. Use the oc scale command to scale the deployment to verify that the quota has an

effect.

[student@workstation ~]$ oc scale deployment -n template-test test-limits \
 --replicas=10
deployment.apps/test-limits scaled

3.4. Examine the deployment and the quota.

[student@workstation ~]$ oc get deployment -n template-test
NAME READY UP-TO-DATE AVAILABLE AGE
test-limits 8/10 8 8 8m41s

[student@workstation ~]$ oc describe resourcequota -n template-test memory
Name: memory
Namespace: template-test
Resource Used Hard
-------- ---- ----
limits.memory 4Gi 4Gi
requests.memory 2Gi 2Gi

The deployment uses the quota completely, and scales only to eight pods. Each pod

requests 256 MiB of RAM, and eight pods request 2 GiB of RAM. Each pod has a

512 MiB RAM limit, and eight pods have a 4 GiB RAM limit.

4. Create a project template definition with the same properties.

DO280-OCP4.14-en-1-20240215 277

Chapter 6 | Enable Developer Self-Service

Note

The solution for this step assumes that you designed your template in a template-
test namespace. If you do not create a template-test namespace to design the

template, then you must create the project template by other means.

The ~/DO280/solutions/selfservice-review/template.yaml file contains a

solution.

4.1. Use the oc adm create-bootstrap-project-template to print an initial project

template. Redirect the output to the template.yaml file.

[student@workstation ~]$ oc adm create-bootstrap-project-template \
 -o yaml >template.yaml

4.2. Use the oc command to list the limit ranges and quotas in YAML format. Redirect the

output to append to the template.yaml file.

[student@workstation ~]$ oc get limitrange,quota -n template-test \
 -o yaml >>template.yaml

4.3. Edit the template.yaml file to perform the following operations:

• Move the limit range and quota definitions immediately after the role binding

definition.

• Remove any left-over content after the parameters block.

• Remove the following keys from the limit range and quota definitions:

– creationTimestamp
– resourceVersion
– uid
– status

• Replace the namespace: template-test text with the namespace:
${PROJECT_NAME} text.

If you use the vi editor, then you can use the following procedure to move a block of

text:

• Move to the beginning of the block.

• Press V to enter visual line mode. This mode selects entire lines for manipulation.

• Move to the end of the block. The editor highlights the selected lines.

• Press d to delete the lines and to store them in a register for later usage.

• Move to the destination.

• Press P to insert the lines that are stored in the register.

You can also press dd to delete entire lines, and . to repeat the operation.

The resulting file should match the following content:

278 DO280-OCP4.14-en-1-20240215

Chapter 6 | Enable Developer Self-Service

apiVersion: template.openshift.io/v1
kind: Template
metadata:
 creationTimestamp: null
 name: project-request
objects:
- apiVersion: project.openshift.io/v1
 kind: Project
 metadata:
 annotations:
 openshift.io/description: ${PROJECT_DESCRIPTION}
 openshift.io/display-name: ${PROJECT_DISPLAYNAME}
 openshift.io/requester: ${PROJECT_REQUESTING_USER}
 creationTimestamp: null
 name: ${PROJECT_NAME}
 spec: {}
 status: {}
- apiVersion: rbac.authorization.k8s.io/v1
 kind: RoleBinding
 metadata:
 creationTimestamp: null
 name: admin
 namespace: ${PROJECT_NAME}
 roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: admin
 subjects:
 - apiGroup: rbac.authorization.k8s.io
 kind: User
 name: ${PROJECT_ADMIN_USER}
- apiVersion: v1
 kind: LimitRange
 metadata:
 name: memory
 namespace: ${PROJECT_NAME}
 spec:
 limits:
 - default:
 memory: 512Mi
 defaultRequest:
 memory: 256Mi
 max:
 memory: 1Gi
 min:
 memory: 128Mi
 type: Container
- apiVersion: v1
 kind: ResourceQuota
 metadata:
 name: memory
 namespace: ${PROJECT_NAME}
 spec:

DO280-OCP4.14-en-1-20240215 279

Chapter 6 | Enable Developer Self-Service

 hard:
 limits.memory: 4Gi
 requests.memory: 2Gi
parameters:
- name: PROJECT_NAME
- name: PROJECT_DISPLAYNAME
- name: PROJECT_DESCRIPTION
- name: PROJECT_ADMIN_USER
- name: PROJECT_REQUESTING_USER

5. Create and configure the project template.

5.1. Use the oc command to create the project template.

[student@workstation ~]$ oc create -f template.yaml -n openshift-config
template.template.openshift.io/project-request created

5.2. Use the oc edit command to change the cluster project configuration.

[student@workstation ~]$ oc edit projects.config.openshift.io cluster

Edit the resource to match the following content:

apiVersion: config.openshift.io/v1
kind: Project
metadata:
...output omitted...
 name: cluster
spec:
 projectRequestTemplate:
 name: project-request

To edit the file, you use the default vi editor.

5.3. Use the watch command to view the API server pods.

[student@workstation ~]$ watch oc get pod -n openshift-apiserver
NAME READY STATUS RESTARTS AGE
apiserver-5cfd... 2/2 Running 0 2m50s

Wait until new pods are rolled out. Press Ctrl+C to exit the watch command.

6. Create a project to verify that the template works as intended.

Note

The lab scripts clean up only a template-validate namespace.

6.1. Use the oc new-project command to create a template-validate project.

280 DO280-OCP4.14-en-1-20240215

Chapter 6 | Enable Developer Self-Service

[student@workstation ~]$ oc new-project template-validate
Now using project "template-validate" on server "https://
api.ocp4.example.com:6443".
...output omitted...

6.2. Describe the quotas in the current namespace.

[student@workstation ~]$ oc describe quota
Name: memory
Namespace: template-validate
Resource Used Hard
-------- ---- ----
limits.memory 0 4Gi
requests.memory 0 2Gi

6.3. Describe the limit ranges in the current namespace.

[student@workstation ~]$ oc describe limitrange
Name: memory
Namespace: template-validate
Type Resource Min Max Default Request Default Limit ...
---- -------- --- --- --------------- ------------- ...
Container memory 128Mi 1Gi 256Mi 512Mi ...

6.4. Optionally, execute again the commands that you used earlier to create a deployment.

Scale the deployment, and verify the limits.

Evaluation

As the student user on the workstation machine, use the lab command to grade your work.

Correct any reported failures and rerun the command until successful.

[student@workstation ~]$ lab grade selfservice-review

Finish

As the student user on the workstation machine, use the lab command to complete this

exercise. This step is important to ensure that resources from previous exercises do not impact

upcoming exercises.

[student@workstation ~]$ lab finish selfservice-review

DO280-OCP4.14-en-1-20240215 281

Chapter 6 | Enable Developer Self-Service

Summary

• Cluster administrators can create quotas to limit resource usage by namespace.

• Cluster resource quotas implement resource limits across groups of namespaces that

namespace selectors define.

• Limit ranges provide resource defaults, minimums, and maximums for workloads in a

namespace.

• Cluster administrators can configure project templates to add resources to all new projects.

These resources can implement permissions, quotas, network policies, and others.

• The self-provisioner role grants permissions to create projects. By default, this role is

bound to all authenticated users.

282 DO280-OCP4.14-en-1-20240215

Chapter 7

Manage Kubernetes Operators

Goal Install and update operators that the Operator
Lifecycle Manager and the Cluster Version
Operator manage.

Objectives • Explain the operator pattern and different
approaches for installing and updating
Kubernetes operators.

• Install and update operators by using the web
console and the Operator Lifecycle Manager.

• Install and update operators by using the
Operator Lifecycle Manager APIs.

Sections • Kubernetes Operators and the Operator
Lifecycle Manager (and Matching Quiz)

• Install Operators with the Web Console (and
Guided Exercise)

• Install Operators with the CLI (and Guided
Exercise)

Lab • Manage Kubernetes Operators

DO280-OCP4.14-en-1-20240215 283

Chapter 7 | Manage Kubernetes Operators

Kubernetes Operators and the Operator
Lifecycle Manager

Objectives
• Describe the operator pattern and different approaches for installing and updating Kubernetes

operators.

The Operator Pattern
You can deploy workloads to Kubernetes with resources such as deployments, replica sets, stateful

sets, daemon sets, jobs, and cron jobs. All of these resources create a workload that runs software

that is packaged as a container image, in different modalities. For example, jobs execute a one-

off task; cron jobs execute tasks periodically; and the other resources create persistent workloads.

Resources such as deployments, stateful sets, or daemon sets differ on how the workload is

distributed in a cluster.

These resources are sufficient to deploy many workloads. However, more complex workloads

might require significant work to deploy with only these resources. For example, a workload can

involve different component workloads, such as a database server, a back-end service, and a

front-end service.

A workload might have maintenance tasks that can be automated, such as backing up data or

updating the workload.

The operator pattern is a way to implement reusable software to manage such complex workloads.

An operator typically defines custom resources (CRs). The operator CRs contain the needed

information to deploy and manage the workload. For example, an operator that deploys

database servers defines a database resource where you can specify the database name, sizing

requirements, and other parameters.

The operator watches the cluster for instances of the CRs, and then creates the Kubernetes

resources to deploy the custom workload. For example, when you create a database resource, the

database operator creates a stateful set and a persistent volume that provide the database that

is described in the database resource. If the database resource describes a backup schedule and

target, then the operator creates a cron job that backs up the database to the target according to

the schedule.

By using operators, cluster administrators create CRs that describe a complex workload, and the

operator creates and manages the workload.

Deploying Operators
Many pieces of software implement the operator pattern, in different ways.

Cluster operators
Cluster operators provide the platform services of OpenShift, such as the web console and

the OAuth server.

284 DO280-OCP4.14-en-1-20240215

Chapter 7 | Manage Kubernetes Operators

Add-on operators
OpenShift includes the Operator Lifecycle Manager (OLM). The OLM helps users to install

and update operators in a cluster. Operators that the OLM manages are also known as add-on

operators, in contrast with cluster operators that implement platform services.

Other operators
Software providers can create software that follows the operator pattern, and then distribute

the software as manifests, Helm charts, or any other software distribution mechanism.

Cluster Operators

The Cluster Version Operator (CVO) installs and updates cluster operators as part of the

OpenShift installation and update processes.

The CVO provides cluster operator status information as resources of the ClusterOperator
type. Inspect the cluster operator resources to examine cluster health.

[user@host ~]$ oc get clusteroperator
NAME VERSION AVAILABLE PROGRESSING DEGRADED ... MESSAGE
authentication 4.14.0 True False False ...
baremetal 4.14.0 True False False ...
cloud-controller-manager 4.14.0 True False False ...
...output omitted...

The status of cluster operator resources includes conditions to help with identifying cluster issues.

The oc command shows the message that is associated with the latest condition. This message

can provide further information about cluster issues.

To view cluster operator resources in the web console, navigate to Administration > Cluster
Settings, and then click the ClusterOperators tab.

The Operator Lifecycle Manager and the OperatorHub

Administrators can use the OLM to install, update, and remove operators.

You can use the web console to interact with the OLM. The OLM also follows the operator

pattern, and so the OLM provides CRs to manage operators with the Kubernetes API.

The OLM uses operator catalogs to find available operators to install. Operator catalogs are

container images that provide information about available operators, such as descriptions and

available versions.

OpenShift includes several default catalogs:

Red Hat
Red Hat packages, ships, and supports operators in this catalog.

Certified
Independent software vendors support operators in this catalog.

Community
Operators without official support.

Marketplace
Commercial operators that you can buy from Red Hat Marketplace.

You can also create your own catalogs, or mirror catalogs for offline clusters.

DO280-OCP4.14-en-1-20240215 285

Chapter 7 | Manage Kubernetes Operators

Note

The lab environment includes a single catalog with the operators you use in the

course. The lab environment hosts the contents of this catalog, so that the course

can be completed without internet access.

The OLM creates a resource of the PackageManifest type for each available operator. The web

console also displays available operators and provides a wizard to install operators. You can also

install operators by using the Subscription CR and other CRs.

Note

Operators that are installed with the OLM have a different lifecycle from cluster

operators. The CVO installs and updates cluster operators in lockstep with the

cluster. Administrators use the OLM to install, update, and remove operators

independently from cluster updates.

Some operators might require additional steps to install, update, or remove.

Implementing Operators
An operator is composed of a set of custom resource definitions and a Kubernetes workload. The

operator workload uses the Kubernetes API to watch instances of the CRs and to create matching

workloads.

Note

A cluster contains two workload sets for each operator.

• The operator workload, which the OLM manages

• The workloads that are associated with the custom resources, and which the

operator manages

You can implement operators to automate any manual Kubernetes task that fits the operator

pattern. You can use most software development platforms to create operators. The following

SDKs provide components and frameworks to help with developing operators:

The Operator SDK
The Operator SDK contains tools to develop operators with the Go programming language,

and Ansible. The Operator SDK also contains tools to package Helm charts as operators.

The Java Operator SDK
The Java Operator SDK contains tools to develop operators with the Java programming

language. The Java Operator SDK has a Quarkus extension to develop operators with the

Quarkus framework.

286 DO280-OCP4.14-en-1-20240215

Chapter 7 | Manage Kubernetes Operators

References

For more information, refer to the Operators guide in the Red Hat OpenShift

Container Platform 4.14 documentation at

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.14/html-single/operators/index

Operator SDK

https://sdk.operatorframework.io/

Java Operator SDK

https://javaoperatorsdk.io/

Quarkus Operator SDK

https://github.com/quarkiverse/quarkus-operator-sdk

DO280-OCP4.14-en-1-20240215 287

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index
https://sdk.operatorframework.io/
https://javaoperatorsdk.io/
https://github.com/quarkiverse/quarkus-operator-sdk

Chapter 7 | Manage Kubernetes Operators

Quiz

Kubernetes Operators and the Operator
Lifecycle Manager

Match the following items to their counterparts in the table.

A component that manages add-on operators

A component that manages cluster operators

A component that provides cluster platform services

A component that the Operator Lifecycle Manager installs

A way to implement reusable software to manage complex workloads

Term Definition

Operator pattern

Cluster operator

Add-on operator

Cluster Version Operator

Operator Lifecycle

Manager

288 DO280-OCP4.14-en-1-20240215

Chapter 7 | Manage Kubernetes Operators

Solution

Kubernetes Operators and the Operator
Lifecycle Manager

Match the following items to their counterparts in the table.

Term Definition

Operator pattern A way to implement reusable software to manage

complex workloads

Cluster operator A component that provides cluster platform services

Add-on operator A component that the Operator Lifecycle Manager installs

Cluster Version Operator A component that manages cluster operators

Operator Lifecycle

Manager

A component that manages add-on operators

DO280-OCP4.14-en-1-20240215 289

Chapter 7 | Manage Kubernetes Operators

Install Operators with the Web Console

Objectives
• Install and update operators by using the web console and the Operator Lifecycle Manager.

Installing Operators with the Web Console
The OpenShift web console provides a graphical interface to the Operator Lifecycle Manager

(OLM). The OperatorHub page lists available operators and provides an interface for installing

them. The Installed Operators page lists installed operators. You can inspect and uninstall

operators from the Installed Operators page.

The Install Operator Wizard
Navigate to Operators > OperatorHub to display the list of available operators. The OperatorHub
page displays operators, and has filters to locate operators by category, source, provider,

subscription required, and other criteria.

Figure 7.1: Available operators

Click an operator to display further information.

Important

Before installing an operator, review the operator information and consult the

operator documentation. You might need to configure the operator further for

successful deployment.

290 DO280-OCP4.14-en-1-20240215

Chapter 7 | Manage Kubernetes Operators

Click Install to begin the Install Operator wizard.

You can choose installation options in the Install Operator wizard.

Update channel
You can choose the most suitable operator update channel for your requirements. For more

information, refer to Operator Update Channels.

Installation mode
The default All namespaces on the cluster (default) installation mode should be suitable for

most operators. This mode configures the operator to monitor all namespaces for custom

resources.

For example, an operator that deploys database servers defines a custom resource that

describes a database server. When using the All namespaces on the cluster (default)
installation mode, users can create those custom resources in their namespaces. Then, the

operator deploys database servers in the same namespaces, along with other user workloads.

Cluster administrators can combine this mode with self-service features and other

namespace-based features, such as role-based access control and network policies, to control

user usage of operators.

Installed namespace
The OLM installs the operator workload to the selected namespace in this option. Some

operators install by default to the openshift-operators namespace. Other operators

suggest creating a namespace.

Although users might require access to the workloads that the operator manages, typically

only cluster administrators require access to the operator workload.

Update approval
The OLM updates operators automatically when new versions are available. Choose manual

updates to prevent automatic updates.

For an operator that includes monitoring in its definition, the wizard displays a further option to

enable the monitoring. Adding monitoring from non-Red Hat operators is not supported.

The installation mode and installed namespace options are related. Review the documentation of

the operator to learn the supported options.

After you configure the installation, click Install. The web console creates subscription and

operator group resources according to the selected options in the wizard. After the installation

starts, the web console displays progress information.

Viewing Installed Operators
When the OLM finishes installing an operator, click View Operator to display the Operator details
page. You can also view information about installed operators by navigating to Operators >

Installed Operators.

The Installed Operators page lists the installed cluster service version (CSV) resources that

correspond to installed operators.

Every version of an operator has a CSV. The OLM uses information from the CSV to install the

operator. The OLM updates the status key of the CSV with installation information.

DO280-OCP4.14-en-1-20240215 291

Chapter 7 | Manage Kubernetes Operators

CSVs are namespaced, so the Installed Operator page has a similar namespace filter to other web

console pages. Operators that were installed with the "all namespaces" mode have a CSV in all

namespaces.

Note

The operator installation mode determines which namespaces the operator

monitors for custom resources. This mode is a distinct option from the installed

namespace option, which determines the operator workload namespace.

The Installed Operators page shows information such as the operator status and available

updates. Click an operator to navigate to the Operator details page.

The Operator details page contains the following tabs, where you can view further details and

perform other actions.

Details
Displays information about the CSV.

YAML
Displays the CSV in YAML format.

Subscription
In this tab, you can change installation options, such as the update channel and update

approval. This tab also links to the install plans of the operator. When you configure an

operator for manual updates, you approve install plans for updates in this tab.

Events
Lists events that are related to the operator.

The Operator details page also has tabs for custom resources. For each custom resource that the

operator defines, a web console tab lists all resources of that type. Additionally, the All instances
tab aggregates all resources of types that the operator defines.

Using Operators
Custom resources are the most common way to interact with operators. You can create custom

resources by using the custom resource tabs on the Installed Operators page. Select the tab to

correspond to the custom resource type to create, and then click the create button.

Custom resources use the same creation page as other Kubernetes resources. You can choose

either the YAML view or the form view to configure the new resource.

In the YAML view, you use the YAML editor to compose the custom resource. The editor provides

a starting template that you can customize. The YAML view also displays documentation about the

custom resource schema. The oc explain command provides the same documentation.

The form view presents a set of fields in a resource. Instead of composing a full YAML definition,

you can edit the fields individually. When complete, OpenShift creates a resource from the values

in the form.

Fields might provide help text and further configuration help. For example, fields with a limited set

of values might provide a drop-down list with the possible values. The form view might provide

more guidance, but might not contain fields to customize all possible options of a custom resource.

292 DO280-OCP4.14-en-1-20240215

Chapter 7 | Manage Kubernetes Operators

Troubleshooting Operators
The OLM might fail to install or update operators, or operators might not work correctly.

To identify operator installation issues, examine the status and conditions of the CSV, subscription,

and install plan resources.

Note

Installation issues can be operator-specific, so consult the documentation of

malfunctioning operators to determine support options.

To troubleshoot further issues that cause operators to work incorrectly, first identify the operator

workload. The Operator Deployments field in the Operator details page shows operator

workloads. Operators might create further workloads, including workloads that follow the

definitions that you provide in custom resources.

Figure 7.2: Operator deployments

Identify and troubleshoot the operator workload as with any other Kubernetes workload. The

following resources are common starting points when troubleshooting:

• The status of Kubernetes workload resources, such as deployments or stateful sets

• Pod logs and their status

• Events

DO280-OCP4.14-en-1-20240215 293

Chapter 7 | Manage Kubernetes Operators

References

For more information, refer to the Installing from OperatorHub Using the Web

Console section in the Administrator Tasks chapter in the Red Hat OpenShift

Container Platform 4.14 Operators documentation at

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.14/html-single/operators/index#olm-installing-

from-operatorhub-using-web-console_olm-adding-operators-to-a-cluster

For more information about monitoring configuration, refer to the Maintenance and

Support for Monitoring section in the Configuring the Monitoring Stack chapter in

the Red Hat OpenShift Container Platform 4.14 Monitoring documentation at

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.14/html-single/monitoring/index#maintenance-

and-support_configuring-the-monitoring-stack

294 DO280-OCP4.14-en-1-20240215

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index#olm-installing-from-operatorhub-using-web-console_olm-adding-operators-to-a-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index#olm-installing-from-operatorhub-using-web-console_olm-adding-operators-to-a-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index#olm-installing-from-operatorhub-using-web-console_olm-adding-operators-to-a-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/monitoring/index#maintenance-and-support_configuring-the-monitoring-stack
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/monitoring/index#maintenance-and-support_configuring-the-monitoring-stack
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/monitoring/index#maintenance-and-support_configuring-the-monitoring-stack

Chapter 7 | Manage Kubernetes Operators

Guided Exercise

Install Operators with the Web Console

Install an operator by using the web console.

Outcomes
• Install and uninstall an operator with the web console.

• Examine the resources that the web console creates for the installation, and the operator

workloads.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your

system for this exercise.

This command ensures that the environment is ready.

[student@workstation ~]$ lab start operators-web

Instructions

 1. As the admin user, locate and navigate to the OpenShift web console.

1.1. Log in to your OpenShift cluster as the admin user.

[student@workstation ~]$ oc login -u admin -p redhatocp \
 https://api.ocp4.example.com:6443
Login successful.

...output omitted...

1.2. Identify the URL for the web console.

[student@workstation ~]$ oc whoami --show-console
https://console-openshift-console.apps.ocp4.example.com

1.3. Open a web browser and navigate to https://console-openshift-
console.apps.ocp4.example.com.

1.4. Click Red Hat Identity Management and log in as the admin user with the

redhatocp password.

 2. Install the File Integrity operator.

2.1. Click Operators > OperatorHub. In the Filter by keyword field, type integrity to

locate the File Integrity operator, and then click File Integrity Operator.

DO280-OCP4.14-en-1-20240215 295

Chapter 7 | Manage Kubernetes Operators

2.2. The web console displays information about the File Integrity operator. Click Install to

proceed to the Install Operator page.

2.3. The Install Operator page contains installation options. You can use the default

options.

The lab environment cluster is a disconnected cluster to ensure that exercises are

reproducible. The Operator Lifecycle Manager is configured to use a mirror registry

with only the required operators for the course. In this registry, the File Integrity

operator has a single available update channel.

By default, the File Integrity operator installs to all namespaces and creates the

openshift-file-integrity namespace. The operator workload resides in this

namespace.

296 DO280-OCP4.14-en-1-20240215

Chapter 7 | Manage Kubernetes Operators

Do not enable monitoring, which this exercise does not cover.

For more information about the File Integrity operator, refer to the File Integrity

Operator chapter in the Red Hat OpenShift Container Platform 4.14 Security and

Compliance documentation at https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.14/html-single/security_and_compliance/index#file-

integrity-operator

2.4. Click Install to install the operator.

The web console displays some progress information. Click View Operator.

Note

The web console might display the View Operator button briefly before the OLM

finishes the installation. The web console can also display errors briefly.

Wait until the web console displays View Operator for more than a few seconds.

DO280-OCP4.14-en-1-20240215 297

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/security_and_compliance/index#file-integrity-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/security_and_compliance/index#file-integrity-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/security_and_compliance/index#file-integrity-operator

Chapter 7 | Manage Kubernetes Operators

Ensure that the openshift-file-integrity project is selected in the Project list.

298 DO280-OCP4.14-en-1-20240215

Chapter 7 | Manage Kubernetes Operators

 3. The web console displays details about the installed operator.

The Details tab displays information about the operator and the related cluster service

version resource.

Scroll down to the Conditions section to review the evolution of the installation process.

The last condition is for the Succeeded phase, because the installation completed

correctly.

The YAML tab displays the cluster service version resource API resource in YAML format.

Click the Subscription tab to view information about the operator subscription resource. In

this tab, you can change the update channel and the update approval configuration. The

tab also links to the install plan. The install plan further describes the operator installation

process. When the OLM finds an update for an operator that is configured for manual

updates, then the OLM creates an install plan for the update. You approve the update in the

install plan details page.

 4. Optionally, test the File Integrity operator.

The File Integrity operator watches resources of the FileIntegrity type. When

you create a file integrity resource, the operator creates a workload that verifies the

file integrity of nodes. The results of the verification are presented as resources of the

FileIntegrityNodeStatus type.

4.1. Click the File Integrity tab, and click Create FileIntegrity.

DO280-OCP4.14-en-1-20240215 299

Chapter 7 | Manage Kubernetes Operators

4.2. Use YAML view and modify the gracePeriod to 60. Then, click Create to create a

file integrity resource.

4.3. Click the FileIntegrityNodeStatus tab. After a few minutes, the list shows a new

example-fileintegrity-master01 resource.

300 DO280-OCP4.14-en-1-20240215

Chapter 7 | Manage Kubernetes Operators

Note

The first file integrity resource that you create might not work correctly.

If the operator does not create the FileIntegrityNodeStatus resource in a few

minutes, then delete and create again the FileIntegrity resource.

The exercise outcome does not depend on obtaining a

FileIntegrityNodeStatus resource.

4.4. After FileIntegrityNodeStatus has successfully been created, run

this as the admin user to modify the node's filesystem: oc debug node/
master01 — touch /host/etc/foobar

[student@workstation ~]$ oc debug node/master01 -- touch /host/etc/foobar
Starting pod/master01-debug-l92pd ...
To use host binaries, `run chroot /host`

Removing debug pod ...

4.5. Click Workloads > ConfigMaps to list configmaps in the openshift-file-
integrity namespace.

DO280-OCP4.14-en-1-20240215 301

Chapter 7 | Manage Kubernetes Operators

4.6. Select aide-example-fileintegrity-master01-failed and view the report

below Data

 5. Examine and differentiate the File Integrity operator workloads from the operator-

managed workloads.

5.1. Click Workloads > Deployments to list deployments in the openshift-file-
integrity namespace.

302 DO280-OCP4.14-en-1-20240215

Chapter 7 | Manage Kubernetes Operators

The file-integrity-operator deployment is the operator workload that the

OLM creates. This deployment watches file integrity resources, and creates the

workloads to verify file integrity.

5.2. Click Workloads > DaemonSets to list daemon sets in the openshift-file-
integrity namespace.

If you create a file integrity resource, then the operator creates an aide-example-
fileintegrity daemon set to verify file integrity.

 6. Uninstall the File Integrity operator.

6.1. Click Operators > Installed Operators.

DO280-OCP4.14-en-1-20240215 303

Chapter 7 | Manage Kubernetes Operators

6.2. In the list of installed operators, click File Integrity Operator.

6.3. Select Uninstall Operator from the Actions list, and then click Uninstall.

 7. Delete the openshift-file-integrity namespace.

The OLM creates the openshift-file-integrity namespace when installing the File

Integrity operator.

Before deleting an operator, always review the operator documentation to learn specific

deletion actions.

7.1. Click Home > Projects.

7.2. Type integrity in the Name filter field.

7.3. Click openshift-file-integrity.

7.4. Select Delete Project from the Actions list. Then, type openshift-file-
integrity and click Delete.

304 DO280-OCP4.14-en-1-20240215

Chapter 7 | Manage Kubernetes Operators

Finish

On the workstation machine, use the lab command to complete this exercise. This step is

important to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab finish operators-web

DO280-OCP4.14-en-1-20240215 305

Chapter 7 | Manage Kubernetes Operators

Install Operators with the CLI

Objectives
• Install and update operators by using the Operator Lifecycle Manager APIs.

Installing Operators
To install an operator, you must perform the following steps:

• Locate the operator to install.

• Review the operator and its documentation for installation options and requirements.

– Decide the update channel to use.

– Decide the installation mode. For most operators, you should make them available to all

namespaces.

– Decide to deploy the operator workload to an existing namespace or to a new namespace.

– Decide whether the Operator Lifecycle Manager (OLM) applies updates automatically, or

requires an administrator to approve updates.

• Create an operator group if needed for the installation mode.

• Create a namespace for the operator workload if needed.

• Create the operator subscription.

• Review and test the operator installation.

Operator Resources
The OLM uses the following resource types:

Catalog source
Each catalog source resource references an operator repository. Periodically, the OLM

examines the catalog sources in the cluster and retrieves information about the operators in

each source.

Package manifest
The OLM creates a package manifest for each available operator. The package manifest

contains the required information to install an operator, such as the available channels.

Operator group
Operator groups define how the OLM presents operators across namespaces.

Subscription
Cluster administrators create subscriptions to install operators.

Operator
The OLM creates operator resources to store information about installed operators.

306 DO280-OCP4.14-en-1-20240215

Chapter 7 | Manage Kubernetes Operators

Install plan
The OLM creates install plan resources as part of the installation and update process. When

requiring approvals, administrators must approve install plans.

Cluster service version (CSV)
Each version of an operator has a corresponding CSV. The CSV contains the information that

the OLM requires to install the operator.

When installing an operator, an administrator must create only the subscription and the operator

group. The OLM generates all other resources automatically.

Examining Available Operators
Examine catalog sources in the openshift-marketplace namespace to know which catalog

sources are available in a cluster.

[user@host ~]$ oc get catalogsource -n openshift-marketplace
NAME DISPLAY TYPE ... AGE
do280-catalog-cs do280 Operator Catalog Cs grpc ... 7d6h

The OLM creates a package manifest for each available operator that a catalog source references.

List the package manifests to know which operators are available for installation.

[user@host ~]$ oc get packagemanifests
NAME CATALOG AGE
lvms-operator do280 Operator Catalog Cs 7d6h
kubevirt-hyperconverged do280 Operator Catalog Cs 7d6h
file-integrity-operator do280 Operator Catalog Cs 7d6h
compliance-operator do280 Operator Catalog Cs 7d6h
metallb-operator do280 Operator Catalog Cs 7d6h

To gather the required information to install an operator, view the details of a specific package

manifest. Use the oc describe command on a package manifest to view details about an

operator.

[user@host ~]$ oc describe packagemanifest lvms-operator -n openshift-marketplace
Name: lvms-operator
...output omitted...
Spec:
Status:
 Catalog Source: do280-catalog-cs
 Catalog Source Display Name: do280 Operator Catalog Cs
 Catalog Source Namespace: openshift-marketplace
 Catalog Source Publisher:
 Channels:
 Current CSV: lvms-operator.v4.14.1
 Current CSV Desc:
 Annotations:
 ...output omitted...
 Capabilities: Seamless Upgrades
 Categories: Storage
 Container Image: registry.redhat.io/lvms4/lvms-
rhel9-operator@sha256:545a...67e9

DO280-OCP4.14-en-1-20240215 307

Chapter 7 | Manage Kubernetes Operators

 Description: Logical volume manager storage
 provides dynamically provisioned local storage for container workloads
 ...output omitted...
 operatorframework.io/suggested-namespace: openshift-storage
 operators.openshift.io/infrastructure-features: ["csi", "disconnected"]
 operators.openshift.io/valid-subscription: ["OpenShift Container
 Platform", "OpenShift Platform Plus"]
 operators.operatorframework.io/builder: operator-sdk-v1.23.0
 ...output omitted...
 Apiservicedefinitions:
 Customresourcedefinitions:
 Owned:
 Kind: LogicalVolume
 Name: logicalvolumes.topolvm.io
 Version: v1
 Description: LVMCluster is the Schema for the lvmclusters API
 Display Name: LVMCluster
 Kind: LVMCluster
 Name: lvmclusters.lvm.topolvm.io
 Version: v1alpha1
 Kind: LVMVolumeGroupNodeStatus
 Name: lvmvolumegroupnodestatuses.lvm.topolvm.io
 Version: v1alpha1
 Kind: LVMVolumeGroup
 Name: lvmvolumegroups.lvm.topolvm.io
 Version: v1alpha1
 Description: Logical volume manager storage provides dynamically
 provisioned local storage.
 Display Name: LVM Storage
 Install Modes:
 Supported: true
 Type: OwnNamespace
 Supported: true
 Type: SingleNamespace
 Supported: false
 Type: MultiNamespace
 Supported: false
 Type: AllNamespaces
 ...output omitted...
 Links:
 Name: Source Repository
 URL: https://github.com/openshift/lvm-operator
 ...output omitted...
 Maturity: alpha
 Provider:
 Name: Red Hat
 ...output omitted...
 Version: 4.14.1
 Name: stable-4.14
 Default Channel: stable-4.14
 Package Name: lvms-operator
 Provider:
 Name: Red Hat
Events: <none>

308 DO280-OCP4.14-en-1-20240215

Chapter 7 | Manage Kubernetes Operators

The catalog source and namespace for the operator, which are required to identify the

operator when creating the subscription.

Examine the available channels and CSVs to decide which upgrade path to use.

The description and links provide useful information and documentation for installation and

uninstallation procedures.

The install modes provide information about supported namespace operation modes.

Installing Operators
After you examine the package manifest, review the operator documentation. Operators might

require specific installation procedures.

If you decide to deploy the operator workload to a new namespace, then create the namespace.

Many operators recommend to use the existing openshift-operators namespace, or require

specific namespaces.

Determine whether you need to create an operator group. Operators use the operator group in

their namespace. Operators monitor custom resources in the namespaces that the operator group

targets.

The openshift-operators namespace contains a global-operators operator group.

Operators that are installed in the openshift-operators namespace use this operator group

and monitor all namespaces.

If the global-operators operator group is not suitable, then create another operator group.

The following YAML definition describes the structure of an operator group:

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: name
 namespace: namespace
spec:
 targetNamespaces:
 - namespace

Operators follow the operator group in the namespace that they are deployed in.

List the namespaces that the operator monitors for custom resources. You can also use the

spec.selector field to select namespaces by using labels.

After creating the necessary namespaces or operator groups, you create a subscription. The

following YAML file is an example of a subscription:

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: lvms-operator
 namespace: openshift-storage
spec:
 channel: stable-4.14
 name: lvms-operator

DO280-OCP4.14-en-1-20240215 309

Chapter 7 | Manage Kubernetes Operators

 source: do280-catalog-cs
 installPlanApproval: Automatic
 sourceNamespace: openshift-marketplace

The namespace for the operator workload

The update channel, from the discovered information from the oc describe
packagemanifest command

The package manifest to subscribe to

The source catalog, from the discovered information from the oc describe
packagemanifest command

The install plan approval mode, either Automatic or Manual

Install Plans

The OLM creates an install plan resource to represent the required process to install or update

an operator. The OLM updates the operator resource to reference the install plan in the

status.components.refs field. You can view the reference by using the oc describe
command on the operator resource.

[user@host ~]$ oc describe operator file-integrity-operator
Name: file-integrity-operator.openshift-file-integrity
Namespace:
Labels: <none>
Annotations: <none>
API Version: operators.coreos.com/v1
Kind: Operator
...output omitted...
Status:
 Components:
 ...output omitted...
 Refs:
 API Version: operators.coreos.com/v1alpha1
 Kind: InstallPlan
 Name: install-pmh78
 Namespace: openshift-file-integrity
 API Version: operators.coreos.com/v1alpha1
 Conditions:
 Last Transition Time: 2024-01-26T17:53:27Z
 Message: all available catalogsources are healthy
 Reason: AllCatalogSourcesHealthy
 Status: False
 Type: CatalogSourcesUnhealthy
 Last Transition Time: 2024-01-26T17:53:49Z
 Reason: RequiresApproval
 Status: True
 Type: InstallPlanPending
 Kind: Subscription
 Name: file-integrity-operator
 Namespace: openshift-file-integrity
Events: <none>

310 DO280-OCP4.14-en-1-20240215

Chapter 7 | Manage Kubernetes Operators

If the install plan mode is set to Manual in the subscription, then you must manually approve the

install plan. To approve an install plan, change the spec.approved field to true. For example,

you can use the oc patch command to approve an install plan:

[user@host ~]$ oc patch installplan install-pmh78 --type merge -p \
 '{"spec":{"approved":true}}' -n openshift-file-integrity
installplan.operators.coreos.com/install-pmh78 patched

With an Automatic install plan mode, the OLM applies updates as soon as they are available.

Using Operators
Typically, operators create custom resource definitions. You create instances of those custom

resources to use the operator. Review the operator documentation to learn how to use an

operator.

Additionally, you can learn about the available custom resource definitions by examining

the operator. The CSV contains a list of the custom resource definitions in the

spec.customresourcedefinitions field. For example, use the following command to list the

custom resource definitions:

[user@host ~]$ oc get csv metallb-operator.v4.14.0-202401151553 \
 -o jsonpath="{.spec.customresourcedefinitions.owned[*].name}{'\n'}"
addresspools.metallb.io addresspools.metallb.io bfdprofiles.metallb.io
 bgpadvertisements.metallb.io bgppeers.metallb.io bgppeers.metallb.io
 communities.metallb.io ipaddresspools.metallb.io l2advertisements.metallb.io
 metallbs.metallb.io

You can also use the oc explain command to view the description of individual custom resource

definitions.

Troubleshooting Operators
Some operators require additional steps to install or update. Review the documentation to validate

whether you performed all necessary steps, and to learn about support options.

You can examine the status of the operator, install plan, and CSV resources. When installing or

updating operators, the OLM updates those resources with progress information.

Even if the OLM installs an operator correctly, the operator might not function correctly.

Operators typically contain two kinds of workloads:

• The operator workload, which monitors custom resources.

• The workloads that individual instances of the custom resources created.

The spec.install.spec.deployments in the CSV contains the deployments that the

OLM creates when installing an operator. These deployments often correspond to the operator

workload. However, the operator might create further deployments either for its own workload, or

for the workloads that are associated with custom resources.

DO280-OCP4.14-en-1-20240215 311

Chapter 7 | Manage Kubernetes Operators

References

For more information about operators, refer to the Operators Overview chapter in

the Red Hat OpenShift Container Platform 4.14 Operators documentation at

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.14/html-single/operators/index#operators-

overview

For more information about installing operators, refer to the Installing from

OperatorHub Using the CLI section in the Administrator Tasks chapter in the Red Hat

OpenShift Container Platform 4.14 Operators documentation at

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.14/html-single/operators/index#olm-installing-

operator-from-operatorhub-using-cli_olm-adding-operators-to-a-cluster

For more information about operator groups, refer to the Operator Groups section

in the Understanding Operators chapter in the Red Hat OpenShift Container

Platform 4.14 Operators documentation at

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.14/html-single/operators/index#olm-

operatorgroups-about_olm-understanding-olm

312 DO280-OCP4.14-en-1-20240215

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index#operators-overview
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index#operators-overview
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index#operators-overview
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index#olm-installing-operator-from-operatorhub-using-cli_olm-adding-operators-to-a-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index#olm-installing-operator-from-operatorhub-using-cli_olm-adding-operators-to-a-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index#olm-installing-operator-from-operatorhub-using-cli_olm-adding-operators-to-a-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index#olm-operatorgroups-about_olm-understanding-olm
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index#olm-operatorgroups-about_olm-understanding-olm
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index#olm-operatorgroups-about_olm-understanding-olm

Chapter 7 | Manage Kubernetes Operators

Guided Exercise

Install Operators with the CLI

Install an operator by using the command-line interface and Kubernetes manifests.

Outcomes
• Install operators from the CLI with manual updates.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your

system for this exercise.

This command ensures that the cluster is ready, and removes the openshift-file-
integrity namespace and File Integrity operator if they exist.

[student@workstation ~]$ lab start operators-cli

Instructions

In this exercise, you install the File Integrity operator with manual updates. The documentation of

the File Integrity operator contains specific installation instructions.

For more information, refer to the Installing the File Integrity Operator Using the CLI section

in the File Integrity Operator chapter in the Red Hat OpenShift Container Platform 4.14

Security and Compliance documentation at https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.14/html-single/security_and_compliance/index#installing-file-

integrity-operator-using-cli_file-integrity-operator-installation

 1. Log in to the OpenShift cluster as the admin user with the redhatocp password.

[student@workstation ~]$ oc login -u admin -p redhatocp \
 https://api.ocp4.example.com:6443
Login successful.

...output omitted...

 2. Find the details of the File Integrity operator within the OpenShift package manifests.

2.1. View the available operators within the OpenShift Marketplace by using the oc get
command.

DO280-OCP4.14-en-1-20240215 313

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/security_and_compliance/index#installing-file-integrity-operator-using-cli_file-integrity-operator-installation
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/security_and_compliance/index#installing-file-integrity-operator-using-cli_file-integrity-operator-installation
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/security_and_compliance/index#installing-file-integrity-operator-using-cli_file-integrity-operator-installation

Chapter 7 | Manage Kubernetes Operators

[student@workstation ~]$ oc get packagemanifests
NAME CATALOG AGE
file-integrity-operator do280 Operator Catalog Cs 37h
lvms-operator do280 Operator Catalog Cs 37h
compliance-operator do280 Operator Catalog Cs 37h
metallb-operator do280 Operator Catalog Cs 37h
kubevirt-hyperconverged do280 Operator Catalog Cs 37h

2.2. Examine the File Integrity operator package manifest by using the oc describe
command.

[student@workstation ~]$ oc describe packagemanifest file-integrity-operator
Name: file-integrity-operator
...output omitted...
Spec:
Status:
 Catalog Source: do280-catalog-cs
 Catalog Source Display Name: do280 Operator Catalog Cs
 Catalog Source Namespace: openshift-marketplace
 Catalog Source Publisher:
 Channels:
...output omitted...
 Install Modes:
 Supported: true
 Type: OwnNamespace
 Supported: true
 Type: SingleNamespace
 Supported: false
 Type: MultiNamespace
 Supported: true
 Type: AllNamespaces
...output omitted...
 Name: stable
 Default Channel: stable
 Package Name: file-integrity-operator
...output omitted...

The operator is in the do280-catalog-cs catalog source in the openshift-
marketplace namespace. The operator has a single channel with the v1 name. The

operator has the file-integrity-operator name.

 3. Install the File Integrity operator. By following the operator installation instructions, you

must install the operator in the openshift-file-integrity namespace. Also, you must

make the operator available only in that namespace. The File Integrity operator requires you

to create a namespace with specific labels.

3.1. The operator documentation provides a YAML definition of the required

namespace. The definition is available in the ~/DO280/labs/operators-cli/
namespace.yaml path. Examine the definition and create the namespace.

314 DO280-OCP4.14-en-1-20240215

Chapter 7 | Manage Kubernetes Operators

apiVersion: v1
kind: Namespace
metadata:
 labels:
 openshift.io/cluster-monitoring: "true"
 pod-security.kubernetes.io/enforce: privileged
 name: openshift-file-integrity

[student@workstation ~]$ oc create -f ~/DO280/labs/operators-cli/namespace.yaml
namespace/openshift-file-integrity created

3.2. Create an operator group in the operator namespace. The operator group targets the

same namespace. You can use the template in the ~/DO280/labs/operators-
cli/operator-group.yaml path. Edit the file and configure the namespaces.

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: file-integrity-operator
 namespace: openshift-file-integrity
spec:
 targetNamespaces:
 - openshift-file-integrity

Create the operator group.

[student@workstation ~]$ oc create \
 -f ~/DO280/labs/operators-cli/operator-group.yaml
operatorgroup.operators.coreos.com/file-integrity-operator created

3.3. Create the subscription in the operator namespace. You can use the template in the

~/DO280/labs/operators-cli/subscription.yaml path. Edit the file with

the data that you obtained in a previous step. Set the approval policy to Manual.

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: file-integrity-operator
 namespace: openshift-file-integrity
spec:
 channel: "stable"
 installPlanApproval: Manual
 name: file-integrity-operator
 source: do280-catalog-cs
 sourceNamespace: openshift-marketplace

Create the subscription.

[student@workstation ~]$ oc create -f ~/DO280/labs/operators-cli/subscription.yaml
subscription.operators.coreos.com/file-integrity-operator created

DO280-OCP4.14-en-1-20240215 315

Chapter 7 | Manage Kubernetes Operators

 4. Approve the install plan.

4.1. Examine the operator resource that the OLM created.

[student@workstation ~]$ oc describe operator file-integrity-operator
Name: file-integrity-operator.openshift-file-integrity
...output omitted...
Status:
 Components:
 Label Selector:
 Match Expressions:
 Key: operators.coreos.com/file-integrity-operator.openshift-file-
integrity
 Operator: Exists
 Refs:
...output omitted...
 Kind: InstallPlan
 Name: install-4wsq6
 Namespace: openshift-file-integrity
 API Version: operators.coreos.com/v1alpha1
 Conditions:
 Last Transition Time: 2024-01-26T10:38:22Z
 Message: all available catalogsources are healthy
 Reason: AllCatalogSourcesHealthy
 Status: False
 Type: CatalogSourcesUnhealthy
 Last Transition Time: 2024-01-26T10:38:21Z
 Reason: RequiresApproval
 Status: True
 Type: InstallPlanPending
 Kind: Subscription
 Name: file-integrity-operator
 Namespace: openshift-file-integrity
Events: <none>

Verify that the operator has a condition of the InstallPlanPending type. The

operator can have other conditions, and they do not indicate a problem. The operator

references the install plan. You use the install plan name in a later step. If the install

plan is not generated, then wait a few moments and run the oc describe command

again.

4.2. View the install plan specification with the oc get command. Replace the name with

the install plan name that you obtained in a previous step.

[student@workstation ~]$ oc get installplan -n openshift-file-integrity \
 install-4wsq6 -o jsonpath='{.spec}{"\n"}'
{"approval":"Manual","approved":false,"clusterServiceVersionNames":["file-
integrity-operator.v1.3.3","file-integrity-operator.v1.3.3"],"generation":1}

The install plan is set to manual approval, and the approved field is set to false.

4.3. Approve the install plan with the oc patch command. Replace the name with the

install plan name that you obtained in a previous step.

316 DO280-OCP4.14-en-1-20240215

Chapter 7 | Manage Kubernetes Operators

[student@workstation ~]$ oc patch installplan install-4wsq6 --type merge -p \
 '{"spec":{"approved":true}}' -n openshift-file-integrity
installplan.operators.coreos.com/install-4wsq6 patched

4.4. Verify that the operator installs successfully, by using the oc describe command.

Check the latest transaction for the current status. The installation might not

complete immediately. If the installation is not complete, then wait a few minutes and

view the status again.

[student@workstation ~]$ oc describe operator file-integrity-operator
...output omitted...
Status:
 Components:
 Label Selector:
 Match Expressions:
 Key: operators.coreos.com/file-integrity-operator.openshift-file-
integrity
 Operator: Exists
 Refs:
 ...output omitted...
 Conditions:
 Last Transition Time: 2024-01-26T18:21:03Z
 Last Update Time: 2024-01-26T18:21:03Z
 Message: install strategy completed with no errors
 Reason: InstallSucceeded
 Status: True
 Type: Succeeded
 Kind: ClusterServiceVersion
 Name: file-integrity-operator.v1.0.0
 Namespace: openshift-file-integrity
 ...output omitted...

4.5. Examine the workloads in the openshift-file-integrity namespace.

[student@workstation ~]$ oc get all -n openshift-file-integrity
Warning: apps.openshift.io/v1 DeploymentConfig is deprecated in v4.14+,
 unavailable in v4.10000+
NAME READY STATUS RESTARTS AGE
pod/file-integrity-operator-6985588576-x2k49 1/1 Running 1 (50s ago) 56s

...output omitted...

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/file-integrity-operator 1/1 1 1 56s

NAME DESIRED CURRENT READY
 AGE
replicaset.apps/file-integrity-operator-6985588576 1 1 1
 56s

The namespace has a ready deployment.

DO280-OCP4.14-en-1-20240215 317

Chapter 7 | Manage Kubernetes Operators

 5. Test the operator to ensure that it is functional. The operator watches FileIntegrity
resources, runs file integrity checks on nodes, and creates FileIntegrityNodeStatus
with the results of the checks.

5.1. Create a FileIntegrity custom resource by applying the file at ~/DO280/labs/
operators-cli/worker-fileintegrity.yaml with the oc apply command.

[student@workstation ~]$ oc apply -f \
 ~/DO280/labs/operators-cli/worker-fileintegrity.yaml
fileintegrity.fileintegrity.openshift.io/worker-fileintegrity created

5.2. Verify that the operator functions, by viewing the worker-fileintegrity object

with the oc describe command.

[student@workstation ~]$ oc describe fileintegrity worker-fileintegrity \
 -n openshift-file-integrity
Name: worker-fileintegrity
Namespace: openshift-file-integrity
Labels: <none>
Annotations: <none>
API Version: fileintegrity.openshift.io/v1alpha1
Kind: FileIntegrity
...output omitted...
Spec:
 Config:
 Grace Period: 900
 Max Backups: 5
 Node Selector:
 node-role.kubernetes.io/worker:
 Tolerations:
 Effect: NoSchedule
 Key: node-role.kubernetes.io/master
 Operator: Exists
 Effect: NoSchedule
 Key: node-role.kubernetes.io/infra
 Operator: Exists
Events: <none>

5.3. Use oc edit to edit the Grace Period to 60 in the FileIntegrity custom

resource to trigger a failure.

[student@workstation ~]$ oc edit fileintegrity worker-fileintegrity \
 -n openshift-file-integrity
Name: worker-fileintegrity
Namespace: openshift-file-integrity
Labels: <none>
Annotations: <none>
API Version: fileintegrity.openshift.io/v1alpha1
Kind: FileIntegrity
...output omitted...
Spec:
 Config:
 Grace Period: 60
 Max Backups: 5

318 DO280-OCP4.14-en-1-20240215

Chapter 7 | Manage Kubernetes Operators

 Node Selector:
 node-role.kubernetes.io/worker:
 Tolerations:
 Effect: NoSchedule
 Key: node-role.kubernetes.io/master
 Operator: Exists
 Effect: NoSchedule
 Key: node-role.kubernetes.io/infra
 Operator: Exists
Events: <none>

5.4. Verify that the operator automatically creates a FileIntegrityNodeStatus
object, by using the oc get command. You might need to wait a few minutes for the

object to generate.

Note

The first file integrity resource that you create might not work correctly.

If the operator does not create the FileIntegrityNodeStatus resource in a few

minutes, then delete the FileIntegrity resource and create it again.

The exercise outcome does not depend on obtaining a

FileIntegrityNodeStatus resource.

[student@workstation ~]$ oc get fileintegritynodestatuses \
 -n openshift-file-integrity
NAME NODE STATUS
worker-fileintegrity-master01 master01 Succeeded

5.5. After FileIntegrityNodeStatus has successfully been created, run

this as the admin user to modify the node's filesystem: oc debug node/
master01 — touch /host/etc/foobar

[student@workstation ~]$ oc debug node/master01 -- touch /host/etc/foobar
Starting pod/master01-debug-l92pd ...
To use host binaries, `run chroot /host`

Removing debug pod ...

5.6. Run oc get configmaps -n openshift-file-integrity to list configmaps

in the openshift-file-integrity namespace.

[student@workstation ~]$ oc get configmaps -n openshift-file-integrity --watch
NAME DATA AGE
aide-pause 1 109m
aide-reinit 1 109m
aide-worker-fileintegrity-master01-failed 1 108m
kube-root-ca.crt 1 117m
openshift-service-ca.crt 1 117m
worker-fileintegrity 1 109m

DO280-OCP4.14-en-1-20240215 319

Chapter 7 | Manage Kubernetes Operators

Note

It may take several minutes for aide-worker-fileintegrity-master01-
failed to show. Use the --watch flag and wait a few minutes until the failed

configmap shows to move on to the next step. Press Ctrl+C to exit.

5.7. Run oc describe to view the report in aide-worker-fileintegrity-
master01-failed configmap in the openshift-file-integrity namespace.

[student@workstation ~]$ oc describe \
 configmap/aide-worker-fileintegrity-master01-failed \
 -n openshift-file-integrity
Name: aide-worker-fileintegrity-master01-failed
Namespace: openshift-file-integrity
Labels: file-integrity.openshift.io/node=master01
 file-integrity.openshift.io/owner=worker-fileintegrity
 file-integrity.openshift.io/result-log=
Annotations: file-integrity.openshift.io/files-added: 1
 file-integrity.openshift.io/files-changed: 0
 file-integrity.openshift.io/files-removed: 0

Data
\====
integritylog:
\----
Start timestamp: 2024-01-26 18:31:16 +0000 (AIDE 0.16)
AIDE found differences between database and filesystem!!

Summary:
 Total number of entries: 32359
 Added entries: 1
 Removed entries: 0
 Changed entries: 0

Added entries:

f++++++++++++++++: /hostroot/etc/cni/multus/certs/multus-
client-2024-01-26-15-14-01.pem
f++++++++++++++++: /hostroot/etc/foobar

The attributes of the (uncompressed) database(s):

/hostroot/etc/kubernetes/aide.db.gz
 MD5 : UswXQiVa/VpjlXF1rCP0vA==
 SHA1 : s6t06MCRrDgc4xOWnX6vk5rflGU=
 RMD160 : jvDdvAOC7/tI0TjDe7Kzmy5nUk8=
 TIGER : TjW192YTQBmG4oGza7siI6CBRnztgrp6
 SHA256 : E8rWurdI9HgGP6402qWY+lDAaLoGiyNs
 PEka/siI1F0=

320 DO280-OCP4.14-en-1-20240215

Chapter 7 | Manage Kubernetes Operators

 SHA512 : JPDhgoEnNiTaDLqawkGtHplRW8f6zm3g
 jDB3E6X6XM4+13yhjwh/pokFAp5BhRSc
 0C4XXibXsS4OYxYiE5hBaw==

End timestamp: 2024-01-26 18:31:45 +0000 (run time: 0m 29s)

BinaryData
\====

Events: <none>

Finish

On the workstation machine, use the lab command to complete this exercise. This step is

important to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab finish operators-cli

DO280-OCP4.14-en-1-20240215 321

Chapter 7 | Manage Kubernetes Operators

Lab

Manage Kubernetes Operators

Install an operator and verify that it is healthy.

Outcomes
• Install the Compliance operator on the command line.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your

system for this exercise.

This command ensures that the cluster API is reachable and that the operator that is used in

this exercise is not present.

[student@workstation ~]$ lab start operators-review

Instructions

In this exercise, you install the Compliance operator. For more information, refer to the

Compliance Operator chapter in the Red Hat OpenShift Container Platform 4.14 Security

and Compliance documentation at https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.14/html-single/security_and_compliance/index#compliance-

operator.

1. Log in to your OpenShift cluster as the admin user with the redhatocp password.

2. Examine the package manifest for the Compliance operator to discover the operator name,

catalog name, suggested namespace, and channel.

3. Create the recommended openshift-compliance namespace.

4. Create an operator group with the compliance-operator name in the openshift-
compliance namespace. The target namespace of the operator group is the openshift-
compliance namespace. You can use the ~/DO280/labs/operators-review/
operator-group.yaml file as a template.

5. Create a compliance-operator subscription in the openshift-compliance
namespace. The subscription has the following parameters:

Field Value

channel stable

spec.name compliance-operator

source do280-catalog-cs

sourceNamespace openshift-marketplace

322 DO280-OCP4.14-en-1-20240215

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/security_and_compliance/index#compliance-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/security_and_compliance/index#compliance-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/security_and_compliance/index#compliance-operator

Chapter 7 | Manage Kubernetes Operators

You can use the ~/DO280/labs/operators-review/subscription.yaml file as a

template.

You can configure automatic install plan approvals.

6. Wait until the operator is installed.

The Operator Lifecycle Manager creates a cluster service version in the openshift-
compliance namespace. Wait until the cluster service version resource (CSV) is in the

Succeeded phase.

Although the CSV defines a single compliance-operator deployment, the operator has

two additional deployments. Wait until the compliance-operator, ocp4-openshift-
compliance-pp, and rhcos4-openshift-compliance-pp deployments are ready.

7. Verify that the operator works correctly.

This operator watches custom resources of the ScanSettingBinding type and runs file

integrity checks on cluster nodes. The operator reports results with custom resources of the

ComplianceSuite type.

Create a scan setting binding in the openshift-compliance namespace. You can use the

~/DO280/labs/operators-review/scan-setting-binding.yaml file as a template.

You can also use the web console to create the scan setting binding. The YAML editor in the

web console provides the same scan setting binding resource as an example.

Wait until a resource of the ComplianceSuite type in the DONE phase is present in the

openshift-compliance namespace.

Evaluation

As the student user on the workstation machine, use the lab command to grade your work.

Correct any reported failures and rerun the command until successful.

[student@workstation ~]$ lab grade operators-review

Finish

As the student user on the workstation machine, use the lab command to complete this

exercise. This step is important to ensure that resources from previous exercises do not impact

upcoming exercises.

[student@workstation ~]$ lab finish operators-review

DO280-OCP4.14-en-1-20240215 323

Chapter 7 | Manage Kubernetes Operators

Solution

Manage Kubernetes Operators

Install an operator and verify that it is healthy.

Outcomes
• Install the Compliance operator on the command line.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your

system for this exercise.

This command ensures that the cluster API is reachable and that the operator that is used in

this exercise is not present.

[student@workstation ~]$ lab start operators-review

Instructions

In this exercise, you install the Compliance operator. For more information, refer to the

Compliance Operator chapter in the Red Hat OpenShift Container Platform 4.14 Security

and Compliance documentation at https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.14/html-single/security_and_compliance/index#compliance-

operator.

1. Log in to your OpenShift cluster as the admin user with the redhatocp password.

1.1. Log in to the cluster as the admin user.

[student@workstation ~]$ oc login -u admin -p redhatocp \
 https://api.ocp4.example.com:6443
Login successful.

...output omitted...

2. Examine the package manifest for the Compliance operator to discover the operator name,

catalog name, suggested namespace, and channel.

2.1. Use the oc command to list the package manifest resources.

[student@workstation ~]$ oc get packagemanifest
NAME CATALOG AGE
lvms-operator do280 Operator Catalog Cs 2d5h
file-integrity-operator do280 Operator Catalog Cs 2d5h
metallb-operator do280 Operator Catalog Cs 2d5h
compliance-operator do280 Operator Catalog Cs 2d5h
kubevirt-hyperconverged do280 Operator Catalog Cs 2d5h

324 DO280-OCP4.14-en-1-20240215

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/security_and_compliance/index#compliance-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/security_and_compliance/index#compliance-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/security_and_compliance/index#compliance-operator

Chapter 7 | Manage Kubernetes Operators

2.2. Examine the compliance-operator package manifest.

[student@workstation ~]$ oc get packagemanifest compliance-operator -o yaml
apiVersion: packages.operators.coreos.com/v1
kind: PackageManifest
metadata:
 creationTimestamp: "2024-01-24T14:05:27Z"
 labels:
 catalog: do280-catalog-cs
 catalog-namespace: openshift-marketplace
...output omitted...
 name: compliance-operator
 namespace: default
spec: {}
status:
...output omitted...
 channels:
 - currentCSV: compliance-operator.v1.4.0
 currentCSVDesc:
 annotations:
 alm-examples: |-
...output omitted...
 operatorframework.io/suggested-namespace: openshift-compliance
...output omitted...
 version: 1.4.0
 name: stable
 defaultChannel: stable
 packageName: compliance-operator
...output omitted...

The package manifest contains the following information:

Field Value

catalog do280-catalog-cs

catalog-namespace openshift-marketplace

suggested-namespace openshift-compliance

defaultChannel stable

packageName compliance-operator

3. Create the recommended openshift-compliance namespace.

3.1. Use the oc command to create the namespace.

[student@workstation ~]$ oc create namespace openshift-compliance
namespace/openshift-compliance created

4. Create an operator group with the compliance-operator name in the openshift-
compliance namespace. The target namespace of the operator group is the openshift-
compliance namespace. You can use the ~/DO280/labs/operators-review/
operator-group.yaml file as a template.

DO280-OCP4.14-en-1-20240215 325

Chapter 7 | Manage Kubernetes Operators

4.1. Create an operator-group.yaml file with the following content:

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: compliance-operator
 namespace: openshift-compliance
spec:
 targetNamespaces:
 - openshift-compliance

4.2. Use the oc command to create the operator group:

[student@workstation ~]$ oc create -f operator-group.yaml
operatorgroup.operators.coreos.com/compliance-operator created

5. Create a compliance-operator subscription in the openshift-compliance
namespace. The subscription has the following parameters:

Field Value

channel stable

spec.name compliance-operator

source do280-catalog-cs

sourceNamespace openshift-marketplace

You can use the ~/DO280/labs/operators-review/subscription.yaml file as a

template.

You can configure automatic install plan approvals.

5.1. Create a subscription.yaml file with the following content:

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: compliance-operator
 namespace: openshift-compliance
spec:
 channel: stable
 installPlanApproval: Automatic
 name: compliance-operator
 source: do280-catalog-cs
 sourceNamespace: openshift-marketplace

5.2. Use the oc command to create the operator group:

[student@workstation ~]$ oc create -f subscription.yaml
subscription.operators.coreos.com/compliance-operator created

6. Wait until the operator is installed.

326 DO280-OCP4.14-en-1-20240215

Chapter 7 | Manage Kubernetes Operators

The Operator Lifecycle Manager creates a cluster service version in the openshift-
compliance namespace. Wait until the cluster service version resource (CSV) is in the

Succeeded phase.

Although the CSV defines a single compliance-operator deployment, the operator has

two additional deployments. Wait until the compliance-operator, ocp4-openshift-
compliance-pp, and rhcos4-openshift-compliance-pp deployments are ready.

6.1. Select the openshift-compliance project.

[student@workstation ~]$ oc project openshift-compliance
Now using project "openshift-compliance" on server "https://
api.ocp4.example.com:6443".

6.2. Wait until the CSV is in the Succeeded phase.

[student@workstation ~]$ oc get csv
NAME DISPLAY VERSION ... PHASE
compliance-operator.v1.4.0 Compliance Operator 1.4.0 ... Succeeded
...output omitted...

The available CSV version in the lab might change. Commands in the following steps

require you to replace the available version in the lab.

6.3. Inspect the CSV to view the operator deployment. Replace the version that you

obtained in a previous step. The .spec.install.spec.deployments JSONPath

expression describes the location of the operator deployments in the CSV resource.

Optionally, use the jq command to indent the output.

[student@workstation ~]$ oc get csv compliance-operator.v1.4.0 \
 -o jsonpath={.spec.install.spec.deployments} | jq
[
 {
 "name": "compliance-operator",
 "spec": {
...output omitted...

The Compliance operator describes a single deployment with the compliance-
operator name.

6.4. Use the oc command to list the workloads in the operator namespace.

[student@workstation ~]$ oc get all
NAME ...
pod/compliance-operator-... ...
pod/ocp4-openshift-compliance-pp-... ...
pod/rhcos4-openshift-compliance-pp-... ...

...output omitted...

NAME READY ...
deployment.apps/compliance-operator 1/1 ...
deployment.apps/ocp4-openshift-compliance-pp 1/1 ...

DO280-OCP4.14-en-1-20240215 327

Chapter 7 | Manage Kubernetes Operators

deployment.apps/rhcos4-openshift-compliance-pp 1/1 ...

...output omitted...

Besides the compliance-operator deployment, the Compliance operator creates

two other deployments.

Wait until all deployments are ready.

7. Verify that the operator works correctly.

This operator watches custom resources of the ScanSettingBinding type and runs file

integrity checks on cluster nodes. The operator reports results with custom resources of the

ComplianceSuite type.

Create a scan setting binding in the openshift-compliance namespace. You can use the

~/DO280/labs/operators-review/scan-setting-binding.yaml file as a template.

You can also use the web console to create the scan setting binding. The YAML editor in the

web console provides the same scan setting binding resource as an example.

Wait until a resource of the ComplianceSuite type in the DONE phase is present in the

openshift-compliance namespace.

7.1. Examine the alm-examples annotation in the CSV. Replace the version that you

obtained in a previous step.

[student@workstation ~]$ oc get csv compliance-operator.v1.4.0 \
 -o jsonpath={.metadata.annotations.alm-examples} | jq
[
...output omitted...
 {
 "apiVersion": "compliance.openshift.io/v1alpha1",
 "kind": "ScanSettingBinding",
 "metadata": {
 "name": "nist-moderate"
 },
 "profiles": [
 {
 "apiGroup": "compliance.openshift.io/v1alpha1",
 "kind": "Profile",
 "name": "rhcos4-moderate"
 }
],
 "settingsRef": {
 "apiGroup": "compliance.openshift.io/v1alpha1",
 "kind": "ScanSetting",
 "name": "default"
 }
 },
...output omitted...
]

The annotation contains an example scan setting binding that you can use. The

example is in JSON format. When creating a scan setting binding in the web console,

the YAML editor loads the same example.

You can also use the oc explain command to describe the scan setting binding

resource.

328 DO280-OCP4.14-en-1-20240215

Chapter 7 | Manage Kubernetes Operators

7.2. Create the scan setting binding resource by using the example file in the ~/DO280/
labs/operators-review/scan-setting-binding.yaml path.

[student@workstation ~]$ oc create \
 -f ~/DO280/labs/operators-review/scan-setting-binding.yaml
scansettingbinding.compliance.openshift.io/nist-moderate created

7.3. Use the oc command to list compliance suite and pod resources. Execute the

command repeatedly until the compliance suite resource is in the DONE phase.

[student@workstation ~]$ oc get compliancesuite,pod
NAME PHASE RESULT
compliancesuite.compliance.openshift.io/nist-moderate DONE NON-COMPLIANT

NAME ...
pod/compliance-operator-... ...
pod/ocp4-openshift-compliance-pp-... ...
pod/rhcos4-openshift-compliance-pp-... ...

To execute the scan, the compliance operator creates extra pods. The pods disappear

when the scan completes.

Evaluation

As the student user on the workstation machine, use the lab command to grade your work.

Correct any reported failures and rerun the command until successful.

[student@workstation ~]$ lab grade operators-review

Finish

As the student user on the workstation machine, use the lab command to complete this

exercise. This step is important to ensure that resources from previous exercises do not impact

upcoming exercises.

[student@workstation ~]$ lab finish operators-review

DO280-OCP4.14-en-1-20240215 329

Chapter 7 | Manage Kubernetes Operators

Summary

• Operators extend the capabilities of a Kubernetes cluster.

• Cluster operators provide the platform services of OpenShift, such as the web console.

• The Operator Lifecycle Manager manages add-on operators, which are sourced from catalogs

such as the OperatorHub.

• Most operators create and manage complex workloads based on declarative custom resources.

• Users can view, install, update, and troubleshoot add-on operators by using the web console.

• Users can use the package manifest, subscription, operator group, and install plan resources to

manage add-on operators from the command line or from the API.

330 DO280-OCP4.14-en-1-20240215

Chapter 8

Application Security

Goal Run applications that require elevated or special
privileges from the host operating system or
Kubernetes.

Objectives • Create service accounts and apply permissions,
and manage security context constraints.

• Run an application that requires access to the
Kubernetes API of the application's cluster.

• Automate regular cluster and application
management tasks by using Kubernetes cron
jobs.

Sections • Control Application Permissions with Security
Context Constraints (and Guided Exercise)

• Allow Application Access to Kubernetes
APIs (and Guided Exercise)

• Cluster and Node Maintenance with Kubernetes
Cron Jobs (and Guided Exercise)

Lab • Application Security

DO280-OCP4.14-en-1-20240215 331

Chapter 8 | Application Security

Control Application Permissions with
Security Context Constraints

Objectives
• Create service accounts and apply permissions, and manage security context constraints.

Security Context Constraints (SCCs)
Red Hat OpenShift provides security context constraints (SCCs), a security mechanism that limits

the access from a running pod in OpenShift to the host environment. SCCs control the following

host resources:

• Running privileged containers

• Requesting extra capabilities for a container

• Using host directories as volumes

• Changing the SELinux context of a container

• Changing the user ID

Some community-developed containers might require relaxed security context constraints to

access resources that are forbidden by default, such as file systems or sockets, or to access an

SELinux context.

Cluster administrators can run the following command to list the SCCs that OpenShift defines:

[user@host ~]$ oc get scc

OpenShift provides the following default SCCs:

• anyuid
• hostaccess
• hostmount-anyuid
• hostnetwork
• hostnetwork-v2
• lvms-topolvm-node
• lvms-vgmanager
• machine-api-termination-handler
• node-exporter
• nonroot
• nonroot-v2
• privileged
• restricted
• restricted-v2

For additional information about an SCC, use the oc describe command:

332 DO280-OCP4.14-en-1-20240215

Chapter 8 | Application Security

[user@host ~]$ oc describe scc anyuid
Name: anyuid
Priority: 10
Access:
 Users: <none>
 Groups: system:cluster-admins
Settings:
...output omitted...

Most pods that OpenShift creates use the restricted-v2 SCC, which provides limited access

to resources that are external to OpenShift. Use the oc describe command to view the security

context constraint that a pod uses.

[user@host ~]$ oc describe pod console-5df4fcbb47-67c52 \
 -n openshift-console | grep scc
 openshift.io/scc: restricted-v2

Container images that are downloaded from public container registries, such as Docker Hub, might

fail to run when using the restricted-v2 SCC. For example, a container image that requires

running as a specific user ID can fail because the restricted-v2 SCC runs the container by

using a random user ID. A container image that listens on port 80 or on port 443 can fail for a

related reason. The random user ID that the restricted-v2 SCC uses cannot start a service

that listens on a privileged network port (port numbers that are less than 1024). Use the scc-
subject-review subcommand to list all the security context constraints that can overcome the

limitations that hinder the container:

[user@host ~]$ oc get deployment deployment-name -o yaml | \
 oc adm policy scc-subject-review -f -

The anyuid SCC defines the run as user strategy to be RunAsAny, which means that the

pod can run as any available user ID in the container. With this strategy, containers that require a

specific user can run the commands by using a specific user ID.

To change the container to run with a different SCC, you must create a service account that is

bound to a pod. Use the oc create serviceaccount command to create the service account,

and use the -n option if the service account must be created in a different namespace from the

current one:

[user@host ~]$ oc create serviceaccount service-account-name

To associate the service account with an SCC, use the oc adm policy command. Identify a

service account by using the -z option, and use the -n option if the service account exists in a

different namespace from the current one:

[user@host ~]$ oc adm policy add-scc-to-user SCC -z service-account

Important

Only cluster administrators can assign an SCC to a service account or remove an

SCC from a service account. Allowing pods to run with a less restrictive SCC can

make your cluster less secure. Use with caution.

DO280-OCP4.14-en-1-20240215 333

Chapter 8 | Application Security

Change an existing deployment or deployment configuration to use the service account by using

the oc set serviceaccount command:

[user@host ~]$ oc set serviceaccount deployment/deployment-name \
 service-account-name

If the command succeeds, then the pods that are associated with the deployment or deployment

configuration redeploy.

Privileged Containers
Some containers might need to access the runtime environment of the host. For example, the

S2I builder class of privileged containers requires access beyond the limits of its own containers.

These containers can pose security risks, because they can use any resources on an OpenShift

node. Use SCCs to enable access for privileged containers by creating service accounts with

privileged access.

References

For more information, refer to the Managing Security Context Constraints chapter

in the Red Hat OpenShift Container Platform 4.14 Authentication and Authorization

documentation at

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.14/html-single/authentication_and_authorization/

index#managing-pod-security-policies

334 DO280-OCP4.14-en-1-20240215

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/authentication_and_authorization/index#managing-pod-security-policies
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/authentication_and_authorization/index#managing-pod-security-policies
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/authentication_and_authorization/index#managing-pod-security-policies

Chapter 8 | Application Security

Guided Exercise

Control Application Permissions with
Security Context Constraints

Deploy applications that require pods with extended permissions.

Outcomes
• Create service accounts and assign security context constraints (SCCs) to them.

• Assign a service account to a deployment configuration.

• Run applications that need root privileges.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your

system for this exercise.

This command ensures that the cluster API is reachable and creates some HTPasswd users

for the exercise.

[student@workstation ~]$ lab start appsec-scc

Instructions

 1. Log in to the OpenShift cluster and create the appsec-scc project.

1.1. Log in to the cluster as the developer user with the developer password.

[student@workstation ~]$ oc login -u developer -p developer \
 https://api.ocp4.example.com:6443
Login successful.
...output omitted...

1.2. Create the appsec-scc project.

[student@workstation ~]$ oc new-project appsec-scc
Now using project "appsec-scc" on server ...
...output omitted...

 2. Deploy an application named gitlab by using the container image at

registry.ocp4.example.com:8443/redhattraining/gitlab-ce:8.4.3-ce.0.

This image is a copy of the container image at docker.io/gitlab/gitlab-ce:8.4.3-
ce.0. Verify that the reason for the pod failure is because the container image needs root
privileges.

2.1. Deploy the gitlab application.

DO280-OCP4.14-en-1-20240215 335

Chapter 8 | Application Security

[student@workstation ~]$ oc new-app --name gitlab \
 --image registry.ocp4.example.com:8443/redhattraining/gitlab-ce:8.4.3-ce.0
...output omitted...
--> Creating resources ...
 imagestream.image.openshift.io "gitlab" created
 deployment.apps "gitlab" created
 service "gitlab" created
--> Success
...output omitted...

2.2. Determine whether the application is successfully deployed. It should give an error,

because this image needs root privileges to deploy.

[student@workstation ~]$ oc get pods
NAME READY STATUS RESTARTS AGE
gitlab-d89cd88f8-jwqbp 0/1 Error 0 36s

Note

It might take some time for the image to reach the Error state. You might also see

the CrashLoopBackOff status when you validate the health of the pod.

2.3. Review the application logs to confirm that insufficient privileges caused the failure.

[student@workstation ~]$ oc logs pod/gitlab-d89cd88f8-jwqbp
...output omitted...
==
Recipe Compile Error in /opt/gitlab/embedded/cookbooks/cache/cookbooks/gitlab/
recipes/default.rb
==

Chef::Exceptions::InsufficientPermissions

directory[/etc/gitlab] (gitlab::default line 26) had an error:
 Chef::Exceptions::InsufficientPermissions: Cannot create directory[/etc/gitlab]
 at /etc/gitlab due to insufficient permissions
...output omitted...

The application tries to write to the /etc directory. To allow the application to write

to the /etc directory, you can make the application run as the root user. To run the

application as the root user, you can grant the anyuid SCC to a service account.

 3. Create a service account and assign the anyuid SCC to it.

3.1. Log in as the admin user with the redhatocp password.

[student@workstation ~]$ oc login -u admin -p redhatocp \
 https://api.ocp4.example.com:6443
Login successful.
...output omitted...

3.2. Verify the appropriate SCC to use with this deployment.

336 DO280-OCP4.14-en-1-20240215

Chapter 8 | Application Security

[student@workstation]$ oc get deploy
NAME READY UP-TO-DATE AVAILABLE AGE
gitlab 0/1 1 0 109s

[student@workstation]$ oc get deploy/gitlab -o yaml | oc adm policy \
 scc-subject-review -f -
RESOURCE ALLOWED BY
Deployment/gitlab anyuid

The output confirms that the anyuid SCC allows the gitlab deployment to create

and update pods.

3.3. Create a service account named gitlab-sa.

[student@workstation ~]$ oc create sa gitlab-sa
serviceaccount/gitlab-sa created

3.4. Assign the anyuid SCC to the gitlab-sa service account.

[student@workstation ~]$ oc adm policy add-scc-to-user anyuid -z gitlab-sa
clusterrole.rbac.authorization.k8s.io/system:openshift:scc:anyuid added: "gitlab-
sa"

 4. Modify the gitlab application to use the newly created service account. Verify that the

new deployment succeeds.

4.1. Log in as the developer user.

[student@workstation ~]$ oc login -u developer -p developer
Login successful.
...output omitted...

4.2. Assign the gitlab-sa service account to the gitlab deployment.

[student@workstation ~]$ oc set serviceaccount deployment/gitlab gitlab-sa
deployment.apps/gitlab serviceaccount updated

4.3. Verify that the gitlab redeployment succeeds. You might need to run the oc get
pods command multiple times until you see a running application pod.

[student@workstation ~]$ oc get pods
NAME READY STATUS RESTARTS AGE
gitlab-86d6d65-zm2fd 1/1 Running 0 55s

 5. Verify that the gitlab application works.

5.1. Expose the gitlab application. Because the gitlab service listens on ports 22, 80,

and 443, you must use the --port option.

DO280-OCP4.14-en-1-20240215 337

Chapter 8 | Application Security

[student@workstation ~]$ oc expose service/gitlab --port 80 \
 --hostname gitlab.apps.ocp4.example.com
route.route.openshift.io/gitlab exposed

5.2. Get the exposed route.

[student@workstation ~]$ oc get routes
NAME HOST/PORT PATH SERVICES PORT ...
gitlab gitlab.apps.ocp4.example.com gitlab 80 ...

5.3. Verify that the gitlab application is answering HTTP queries.

[student@workstation ~]$ curl -sL http://gitlab.apps.ocp4.example.com/ | \
 grep '<title>'
<title>Sign in · GitLab</title>

 6. Delete the appsec-scc project.

[student@workstation ~]$ oc delete project appsec-scc
project.project.openshift.io "appsec-scc" deleted

Finish

On the workstation machine, use the lab command to complete this exercise. This step is

important to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab finish appsec-scc

338 DO280-OCP4.14-en-1-20240215

Chapter 8 | Application Security

Allow Application Access to Kubernetes
APIs

Objectives
• Run an application that requires access to the Kubernetes API of the application's cluster.

Securing Kubernetes APIs
With the Kubernetes APIs, a user or an application can query and modify the cluster state.

To protect your cluster from malicious interactions, you must grant access to the different

Kubernetes APIs.

Role-based access control (RBAC) authorization is preconfigured in OpenShift. An application

requires explicit RBAC authorization to access restricted Kubernetes APIs.

Application Authorization with Service Accounts
A service account is a Kubernetes object within a project. The service account represents the

identity of an application that runs in a pod.

To grant an application access to a Kubernetes API, take these actions:

• Create an application service account.

• Grant the service account access to the Kubernetes API.

• Assign the service account to the application pods.

If the pod definition does not specify a service account, then the pod uses the default service

account. OpenShift grants no rights to the default service account, which is expected for

business workloads. It is not recommended to grant additional permissions to the default
service account, because it grants those additional permissions to all pods in the project, which

might not be intended.

Use Cases for Kubernetes API Access
Regular business applications can successfully use the default service account, without requiring

access to the Kubernetes APIs. On the contrary, infrastructure applications need access to

monitor or to modify the cluster resources. These infrastructure applications might be classified

into the following use cases:

Monitoring Applications
Applications in this category need read access to watch cluster resources or to verify cluster

health. For example, a service such as Red Hat Advanced Cluster Security (ACS) needs read

access to scan your cluster containers for vulnerabilities.

Controllers
Controllers are applications that constantly watch and try to reach the intended state of a

resource.

For example, GitOps tools, such as ArgoCD, have controllers that watch cluster resources that

are stored in a repository, and update the cluster to react to changes in that repository.

DO280-OCP4.14-en-1-20240215 339

Chapter 8 | Application Security

Operators
Operators automate creating, configuring, and managing instances of Kubernetes-native

applications. Therefore, operators need permissions for configuration and maintenance tasks.

For example, a database operator might create a deployment when it detects a CR that

defines a new database.

Application Kubernetes API Authorization with Roles

To provide the application with the needed permissions only, you can create roles or cluster roles

that describe the application requirements. Roles grant permissions to Kubernetes API resources

within a single namespace. Cluster roles grant permissions, either within one or more namespaces,

or to all the cluster.

For example, you can create a cluster role for an application to read secrets.

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: secret-reader
rules:
- apiGroups: [""]
 resources: ["secrets"]
 verbs: ["get", "watch", "list"]

The API groups, where an empty string represents the core API

The resources that the role refers to

The verbs or actions that the role allows the application to perform on the resource

You can also use the default cluster roles that OpenShift defines, which have wider permissions.

For example, you can use the edit cluster role to get read access on secrets, as in the previous

secret-reader cluster role.

The edit cluster role is less restrictive, and allows the application to create or update most

objects.

Binding Roles to Service Accounts

For an application to use the role permissions, you must bind the role or cluster role to the

application service account.

To bind a role or cluster role to a service account in a namespace, you can use the oc adm
policy command with the add-role-to-user subcommand.

This command assigns a cluster role to a service account that exists in the current project:

[user@host ~]$ oc adm policy add-role-to-user cluster-role -z service-account

You can optionally use -z to avoid specifying the system:serviceaccount:project prefix

when you assign the role to a service account that exists in the current project.

To create a cluster role binding, you can use the oc adm policy command with the add-
cluster-role-to-user subcommand.

340 DO280-OCP4.14-en-1-20240215

Chapter 8 | Application Security

The following command assigns a cluster role to a service account with a cluster scope:

[user@host ~]$ oc adm policy add-cluster-role-to-user cluster-role service-account

Assigning an Application Service Account to Pods

OpenShift uses RBAC authorization by using the roles that are associated to the service

account to grant or deny access to the resource. You specify the service account name in the

spec.serviceAccountName pod definition field.

Applications must use the service account token internally when accessing a Kubernetes API. In

earlier OpenShift versions than 4.11, OpenShift generated a secret with a token when creating a

service account. Starting from OpenShift 4.11, tokens are no longer generated automatically. You

must use the TokenRequest API to generate the service account token. You must mount the token

as a pod volume for the application to access it.

Scoping Application Access to Kubernetes API
Resources
An application might require access to a resource in the same namespace, or in a different

namespace, or in all namespaces.

Accessing API Resources in the Same Namespace

To grant an application access to resources in the same namespace, you need a role or a cluster

role and a service account in that namespace. You then create a role binding that associates to the

service account the actions that the role grants on the resource. Using a role binding with a cluster

role grants access only to the resource within the namespace.

Accessing API Resources in a Different Namespace

To give an application access to a resource in a different namespace, you must create the role

binding in the project with the resource. The subject for the binding references the application

service account that is in a different namespace from the binding.

You can use the following syntax to refer to service accounts from other projects:

system:serviceaccount:project:service-account

For example, if you have an application pod in the project-1 project that requires access to

project-2 secrets, then you must take these actions:

• Create an app-sa service account in the project-1 project.

• Assign the app-sa service account to your application pod.

• Create a role binding on the project-2 project that references the app-sa service account

and the secret-reader role or cluster role.

DO280-OCP4.14-en-1-20240215 341

Chapter 8 | Application Security

Figure 8.1: Grant access to a service account to a different project

In this way, you restrict an application's access to a Kubernetes API to specified namespaces.

Accessing API Resources in All Namespaces

Grant your application service account the cluster role by using a cluster role binding. The cluster

role binding grants the application cluster access to the API.

342 DO280-OCP4.14-en-1-20240215

Chapter 8 | Application Security

References

For more information, refer to the Using RBAC to Define and Apply Permissions

chapter in the Red Hat OpenShift Container Platform 4.14 Authentication and

Authorization documentation at

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.14/html-single/authentication_and_authorization/

index#using-rbac

For more information, refer to the Understanding and Creating Service Accounts

chapter in the Red Hat OpenShift Container Platform 4.14 Authentication and

Authorization documentation at

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.14/html-single/authentication_and_authorization/

index#understanding-and-creating-service-accounts

For more information, refer to the Using Service Accounts in Applications chapter in

the Red Hat OpenShift Container Platform 4.14 Authentication and Authorization

documentation at

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.14/html-single/authentication_and_authorization/

index#using-service-accounts

For more information, refer to the About Automatically-generated Service

Account Token Secrets section in the Red Hat OpenShift Container Platform 4.14

Authentication and Authorization documentation at

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.14/html-single/authentication_and_authorization/

index#auto-generated-sa-token-secrets_using-service-accounts

DO280-OCP4.14-en-1-20240215 343

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/authentication_and_authorization/index#using-rbac
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/authentication_and_authorization/index#using-rbac
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/authentication_and_authorization/index#using-rbac
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/authentication_and_authorization/index#understanding-and-creating-service-accounts
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/authentication_and_authorization/index#understanding-and-creating-service-accounts
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/authentication_and_authorization/index#understanding-and-creating-service-accounts
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/authentication_and_authorization/index#using-service-accounts
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/authentication_and_authorization/index#using-service-accounts
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/authentication_and_authorization/index#using-service-accounts
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/authentication_and_authorization/index#auto-generated-sa-token-secrets_using-service-accounts
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/authentication_and_authorization/index#auto-generated-sa-token-secrets_using-service-accounts
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/authentication_and_authorization/index#auto-generated-sa-token-secrets_using-service-accounts

Chapter 8 | Application Security

Guided Exercise

Allow Application Access to Kubernetes
APIs

Configure an application with limited access to Kubernetes API resources.

Outcomes
You should be able to grant Kubernetes API access to an application by using a service

account that has a role with the required privileges.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your

system for this exercise.

The lab command copies the following files to the lab directory:

• The deployment manifest to install the Stakater Reloader application, at https://

github.com/stakater/Reloader. This application is a controller that watches for changes in

configuration maps and does rolling upgrades on associated deployments.

• The manifests to install the config-app API, which has an endpoint to show its

internal configuration. The deployment manifest mounts the API configuration from a

configuration map.

In this exercise, you grant permissions on the appsec-api project to the Reloader

application, for read access to the configuration map API and edit access to the deployment

API.

Warning

Using a controller to update a Kubernetes resource by reacting to changes is

an alternative to, and might conflict with, using GitOps.

[student@workstation ~]$ lab start appsec-api

Instructions

 1. Change to the lab directory.

1.1. Change to the ~/DO280/labs/appsec-api directory.

[student@workstation ~]$ cd ~/DO280/labs/appsec-api

 2. Log in as the admin user and change to the configmap-reloader project.

2.1. Open a terminal window and log in as the admin user with the redhatocp password.

344 DO280-OCP4.14-en-1-20240215

https://github.com/stakater/Reloader
https://github.com/stakater/Reloader

Chapter 8 | Application Security

[student@workstation appsec-api]$ oc login -u admin -p redhatocp \
 https://api.ocp4.example.com:6443
Login successful.
...output omitted...

2.2. Use the oc project command to change to the configmap-reloader
namespace.

[student@workstation appsec-api]$ oc project configmap-reloader
Now using project "configmap-reloader" on server ...

 3. Create the configmap-reloader service account to hold the permissions for the

Reloader application. Then, assign the configmap-reloader service account to the

configmap-reloader deployment.

3.1. Create the configmap-reloader service account.

[student@workstation appsec-api]$ oc create sa configmap-reloader-sa
serviceaccount/configmap-reloader-sa created

3.2. Add the configmap-reloader-sa service account to the deployment in the

reloader-deployment.yaml file.

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 app: configmap-reloader
 name: configmap-reloader
 namespace: configmap-reloader
spec:
 selector:
 matchLabels:
 app: configmap-reloader
 release: "reloader"
 template:
 metadata:
 labels:
 app: configmap-reloader
 spec:
 serviceAccountName: configmap-reloader-sa
 containers:
...output omitted...

3.3. Use the oc command to create the configmap-reloader deployment from the

reloader-deployment.yaml file.

[student@workstation appsec-api]$ oc apply -f reloader-deployment.yaml
deployment.apps/configmap-reloader created

 4. As the developer user, create the appsec-api project.

DO280-OCP4.14-en-1-20240215 345

Chapter 8 | Application Security

4.1. Log in to the cluster as the developer user with the developer password.

[student@workstation appsec-api]$ oc login -u developer -p developer \
 https://api.ocp4.example.com:6443
Login successful.
...output omitted...

4.2. Use the oc new-project command to create the appsec-api project.

[student@workstation appsec-api]$ oc new-project appsec-api
Now using project "appsec-api" on server ...

 5. Grant permissions to the configmap-reloader-sa service account to watch

configuration map resources and roll out deployments on the appsec-api project.

5.1. Assign the edit`cluster role to the `configmap-reloader-sa service

account in the appsec-api project. To assign the cluster role, create a local role

binding by using the oc policy add-role-to-user command with the following

options:

• The edit default cluster role.

• The system:serviceaccount:configmap-reloader:configmap-
reloader-sa username to reference the configmap-reloader-sa service

account in the configmap-reloader project.

• The --rolebinding-name option to use the reloader-edit name for the role

binding.

• The -n appsec-api, which is optional because you are already in the appsec-
api project.

[student@workstation appsec-api]$ oc policy add-role-to-user edit \
 system:serviceaccount:configmap-reloader:configmap-reloader-sa \
 --rolebinding-name=reloader-edit \
 -n appsec-api
clusterrole.rbac.authorization.k8s.io/edit added:
 "system:serviceaccount:configmap-reloader:configmap-reloader-sa"

Note

The edit cluster role with the local role binding allows the configmap-
reloader-sa service account to modify most objects in the appsec-api project.

In a production scenario, it is best to grant access only to the APIs that your

application requires.

 6. Install the config-app API by using the manifest files in the config-app directory.

6.1. Use the oc apply command with the -f option to create all the manifests in the

config-app directory.

346 DO280-OCP4.14-en-1-20240215

Chapter 8 | Application Security

[student@workstation appsec-api]$ oc apply -f ./config-app
configmap/config-app created
deployment.apps/config-app created
route.route.openshift.io/config-app created
service/config-app created

6.2. Read the config.yaml content from the config-app configuration map by

running the oc get command.

[student@workstation appsec-api]$ oc get configmap config-app \
 --output="jsonpath={.data.config\.yaml}"
application:
 name: "config-app"
 description: "config-app"

6.3. Run the curl command to verify that the exposed route, https://config-app-
appsec-api.apps.ocp4.example.com/config, shows the config-app
configuration map content.

[student@workstation appsec-api]$ curl -s \
 https://config-app-appsec-api.apps.ocp4.example.com/config | jq
{
 "application": {
 "description": "config-app",
 "name": "config-app"
 }
}

 7. Configure the config-app deployment with the

configmap.reloader.stakater.com/reload: "config-app" annotation so that

the controller can roll out deployments automatically when the config-app configuration

map changes.

7.1. Add the configmap.reloader.stakater.com/reload: "config-app"
annotation to the deployment in the config-app/deployment.yaml file.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: config-app
 namespace: appsec-api
 annotations:
 configmap.reloader.stakater.com/reload: "config-app"
spec:
...output omitted...

7.2. Use the oc apply command to update the resource.

[student@workstation appsec-api]$ oc apply -f config-app/deployment.yaml
deployment.apps/config-app configured

DO280-OCP4.14-en-1-20240215 347

Chapter 8 | Application Security

7.3. Verify that the configmap.reloader.stakater.com/reload: "config-app"
annotation is present in the config-app deployment object.

[student@workstation appsec-api]$ oc get deployment config-app -o yaml
apiVersion: apps/v1
kind: Deployment
metadata:
 annotations:
 configmap.reloader.stakater.com/reload: config-app
spec:
...output omitted...

 8. Update the config-app configuration map description key and query /config
endpoint to verify that the Reloader controller upgrades the config-app deployment.

8.1. Update the description data in the configuration map in the config-app/
configmap.yaml file to the API that exposes its configuration value.

apiVersion: v1
kind: ConfigMap
metadata:
 name: config-app
 namespace: appsec-api
data:
 config.yaml: |
 application:
 name: "config-app"
 description: "API that exposes its configuration"

8.2. Use the oc command to apply the changes to the config-app/configmap.yaml
file.

[student@workstation appsec-api]$ oc apply -f config-app/configmap.yaml
configmap/config-app configured

8.3. Use the watch command to query the API /config endpoint by using the curl
command to verify that the API configuration changes. Press Ctrl+C to exit.

[student@workstation appsec-api]$ watch \
 "curl -s https://config-app-appsec-api.apps.ocp4.example.com/config | jq"
Every 2.0s: curl -s https://config-app-appsec-api.apps.ocp4.example.com/config |
 jq
workstation: ...

{
 "application": {
 "description": "API that exposes its configuration",
 "name": "config-app"
 }
}

Wait until the controller application upgrades the deployment.

348 DO280-OCP4.14-en-1-20240215

Chapter 8 | Application Security

 9. Change to the home directory to complete the exercise.

9.1. Change to the home directory.

[student@workstation appsec-api]$ cd

Finish

On the workstation machine, use the lab command to complete this exercise. This step is

important to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab finish appsec-api

DO280-OCP4.14-en-1-20240215 349

Chapter 8 | Application Security

Cluster and Node Maintenance with
Kubernetes Cron Jobs

Objectives
• Automate regular cluster and application management tasks with Kubernetes cron jobs.

Maintenance Tasks
Cluster administrators can use scheduled tasks to automate maintenance tasks in the cluster.

Other users can create scheduled tasks for regular application maintenance.

Maintenance tasks vary in the privileges that they require. Cluster maintenance tasks require

privileged pods, whereas most applications might not require elevated privileges.

Kubernetes Batch API Resources
You can automate tasks in OpenShift by using standard Kubernetes jobs and cron jobs. The

automated tasks can be configured to run once or on a regular schedule.

Job
Kubernetes jobs specify a task that is executed once.

Cron Job
Kubernetes cron jobs have a schedule to execute a task regularly.

When a cron job is due for execution, Kubernetes creates a job resource. Kubernetes creates these

jobs from a template in the cron job definition. Other than this relationship, Kubernetes jobs and

cron jobs are workload resource types, such as deployments or daemon sets.

Kubernetes Jobs

The job resource includes a pod template that describes the task to execute. You can use the oc
create job --dry-run=client command to get the YAML representation of the Kubernetes

job resource:

[user@host ~]$ oc create job --dry-run=client -o yaml test \
 --image=registry.access.redhat.com/ubi8/ubi:8.6 \
 -- curl https://example.com

A job contains a pod template, and this pod template must specify at least one container. You can

add metadata such as labels or annotations to the job definition and pod template.

apiVersion: batch/v1
kind: Job
metadata:
 creationTimestamp: null
 name: test
spec:
 template:
 metadata:

350 DO280-OCP4.14-en-1-20240215

Chapter 8 | Application Security

 creationTimestamp: null
 spec:
 containers:
 - command:
 - curl
 - https://example.com
 image: registry.access.redhat.com/ubi8/ubi:8.6
 name: test
 resources: {}
 restartPolicy: Never
status: {}

Job specification

Pod template

Pod specification

Pod containers

Command

Container image

Kubernetes Cron Jobs

The cron job resource includes a job template that describes the task and a schedule. You can use

the oc create cronjob --dry-run=client command to get the YAML representation of

the Kubernetes cron job resource:

[user@host ~]$ oc create cronjob --dry-run=client -o yaml test \
 --image=registry.access.redhat.com/ubi8/ubi:8.6 \
 --schedule='0 0 * * *' \
 -- curl https://example.com

In Kubernetes, cron job resources are similar to job resources. The jobTemplate key follows the

same structure as a job. The schedule key describes when the task runs.

apiVersion: batch/v1
kind: CronJob
metadata:
 creationTimestamp: null
 name: test
spec:
 jobTemplate:
 metadata:
 creationTimestamp: null
 name: test
 spec:
 template:
 metadata:
 creationTimestamp: null
 spec:
 containers:

DO280-OCP4.14-en-1-20240215 351

Chapter 8 | Application Security

 - command:
 - curl
 - https://example.com
 image: registry.access.redhat.com/ubi8/ubi:8.6
 name: test
 resources: {}
 restartPolicy: OnFailure
 schedule: 0 0 * * *
status: {}

Cron job specification

Job template

Job specification

Pod template

Pod specification

Command

Container image

Cron job schedule specification

Linux Cron Jobs

The schedule specification for Kubernetes cron jobs is derived from the specification in Linux

cron jobs. The crontab file specifies the scheduled tasks for the current user. The schedule

specification has five fields to define the date and time when the job is executed. The /etc/
crontab file comments include a syntax diagram:

Example cron job definition:
┌───────────────── minute (0 - 59)
│ ┌────────────── hour (0 - 23)
│ │ ┌────────── day of month (1 - 31)
│ │ │ ┌────── month (1 - 12) or jan,feb,mar,apr ...
│ │ │ │ ┌── day of week (0 - 7) or sun,mon,tue,wed,thu,fri,sat
│ │ │ │ │ (Sunday is 0 or 7)
m h dom mon dow command
 0 */2 * * * /path/to/task_executable arguments

Some examples of cron job specifications are as follows:

Schedule specification Description

0 0 * * * Run the specified task every day at midnight

0 0 * * 7 Run the specified task every Sunday at midnight

0 * * * * Run the specified task every hour

0 */4 * * * Run the specified task every four hours

352 DO280-OCP4.14-en-1-20240215

Chapter 8 | Application Security

Note

Refer to the crontab(5) manual page for more information about the cron job

schedule specification.

Automate Maintenance Tasks with Cron Jobs
You can automate the maintenance tasks for applications that run inside the cluster, and also

execute low-level commands inside privileged debug pods to apply cluster maintenance tasks.

Automating Application Maintenance Tasks

Regular maintenance tasks might need to run for applications that run in the cluster.

For example, consider creating periodic backups for an application. This application requires the

following steps to create the backup:

• Activate maintenance mode.

• Create a compressed database backup.

• Deactivate maintenance mode.

• Copy the database backup to an external location.

The following cron job definition shows a possible implementation of these steps:

apiVersion: batch/v1
kind: CronJob
metadata:
 name: wordpress-backup
spec:
 schedule: 0 2 * * 7
 jobTemplate:
 spec:
 template:
 spec:
 dnsPolicy: ClusterFirst
 restartPolicy: Never
 containers:
 - name: wp-cli
 image: registry.io/wp-maintenance/wp-cli:2.7
 resources: {}
 command:
 - bash
 - -xc
 args:
 - >
 wp maintenance-mode activate ;
 wp db export | gzip > database.sql.gz ;
 wp maintenance-mode deactivate ;
 rclone copy database.sql.gz s3://bucket/backups/ ;
 rm -v database.sql.gz ;

Schedule for every Sunday at 2 AM

The Kubernetes job template

DO280-OCP4.14-en-1-20240215 353

Chapter 8 | Application Security

The Kubernetes pod template

The Kubernetes pod specification

The pod container configuration

The container image that runs the maintenance task

The command to execute inside the pod

Maintenance commands to execute

Note

The > symbol uses the YAML folded style, which converts all newlines to spaces

when parsing. Each command is separated with a semicolon (;), because the string

in the args key is passed as a single argument to the bash -xc command.

This combination of the command and args keys has the same effect as executing

the commands in a single line inside the container:

[user@host ~]$ bash -xc 'wp maintenance-mode activate ; wp db export |
 gzip > database.sql.gz ; wp maintenance-mode deactivate ; rclone copy
 database.sql.gz s3://bucket/backups/ ; rm -v database.sql.gz ;'

For more information about the YAML folded style, refer to https://yaml.org/

spec/1.2.2/#folded-style

Automating Cluster Maintenance Tasks

Cluster maintenance might require executing complex scripts in privileged pods. You can create a

shell script with the commands to execute the maintenance task, and mount the script in the pod

by using a configuration map.

For example, when images are updated, clusters might accumulate unused images. These images

might occupy much space. Executing the crictl rmi --prune command on all nodes of the

cluster frees this space.

The following configuration map contains a shell script that cleans images in all cluster nodes by

executing a debug pod and running the crictl command with the chroot command to access

the root file system of the node:

apiVersion: v1
kind: ConfigMap
metadata:
 name: maintenance
 app: crictl
data:
 maintenance.sh: |
 #!/bin/bash
 NODES=$(oc get nodes -o=name)
 for NODE in ${NODES}
 do
 echo ${NODE}
 oc debug ${NODE} -- \

354 DO280-OCP4.14-en-1-20240215

https://yaml.org/spec/1.2.2/#folded-style
https://yaml.org/spec/1.2.2/#folded-style

Chapter 8 | Application Security

 chroot /host \
 /bin/bash -xc 'crictl images ; crictl rmi --prune'
 echo $?
 done

List the nodes in the cluster.

Iterate over the nodes.

Run a debug pod on the node.

Prune the images.

This task can be scheduled regularly by using a cron job. The quay.io/openshift/origin-
cli:4.14 container provides the oc command that runs the debug pod. The pod mounts the

configuration map and executes the maintenance script.

apiVersion: batch/v1
kind: CronJob
metadata:
 name: image-pruner
spec:
 schedule: 0 * * * *
 jobTemplate:
 spec:
 template:
 spec:
 dnsPolicy: ClusterFirst
 restartPolicy: Never
 containers:
 - name: image-pruner
 image: quay.io/openshift/origin-cli:4.14
 resources: {}
 command:
 - /opt/scripts/maintenance.sh
 volumeMounts:
 - name: scripts
 mountPath: /opt
 volumes:
 - name: scripts
 configMap:
 name: maintenance
 defaultMode: 0555

Path to the script

Mounting the configuration map as a volume

Cluster maintenance tasks might require elevated privileges. Administrators can assign service

accounts to any workload, including Kubernetes jobs and cron jobs.

You can create a service account with the required privileges, and specify the service account

with the serviceAccountName key in the pod definition. You can also use the oc set
serviceaccount command to change the service account of an existing workload.

DO280-OCP4.14-en-1-20240215 355

Chapter 8 | Application Security

References

Kubernetes Job

https://kubernetes.io/docs/concepts/workloads/controllers/job/

Kubernetes Cron Job

https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/

How to Delete Exited Containers and Dangling Images with crictl?

https://access.redhat.com/solutions/5610941

356 DO280-OCP4.14-en-1-20240215

https://kubernetes.io/docs/concepts/workloads/controllers/job/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://access.redhat.com/solutions/5610941

Chapter 8 | Application Security

Guided Exercise

Cluster and Node Maintenance with
Kubernetes Cron Jobs

Automate periodic cluster node cleaning for a development environment.

Outcomes
• Manually delete unused images from the nodes.

• Automate the image pruning by using a cron job.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your

system for this exercise.

[student@workstation ~]$ lab start appsec-prune

Instructions

 1. Log in to the OpenShift cluster and switch to the appsec-prune project.

1.1. Log in to the cluster as the admin user.

[student@workstation ~]$ oc login -u admin -p redhatocp \
 https://api.ocp4.example.com:6443
Login successful.

...output omitted...

1.2. Create the appsec-prune project.

[student@workstation ~]$ oc new-project appsec-prune
Now using project "appsec-prune" on server "https://api.ocp4.example.com:6443".

...output omitted...

1.3. Change to the ~/DO280/labs/appsec-prune directory.

[student@workstation ~]$ cd ~/DO280/labs/appsec-prune
[student@workstation appsec-prune]$

 2. Clean up the unused container images in the node.

2.1. List the deployments and pods in the prune-apps namespace. Each deployment

has a pod that uses a different image.

DO280-OCP4.14-en-1-20240215 357

Chapter 8 | Application Security

[student@workstation appsec-prune]$ oc get deployments -n prune-apps -o wide
NAME ... IMAGES ...
nginx-ubi7 ... registry.ocp4.example.com:8443/ubi7/nginx-118:latest ...
nginx-ubi8 ... registry.ocp4.example.com:8443/ubi8/nginx-118:latest ...
nginx-ubi9 ... registry.ocp4.example.com:8443/ubi9/nginx-120:latest ...

[student@workstation appsec-prune]$ oc get pods -n prune-apps
NAME READY STATUS RESTARTS AGE
pod/nginx-ubi7-594f548665-qvfq6 1/1 Running 0 5m
pod/nginx-ubi8-855f6959b-jvs6h 1/1 Running 0 5m
pod/nginx-ubi9-dd4c566d7-7vrrv 1/1 Running 0 5m

2.2. List the container images in the node. The node has three httpd images and three

nginx images.

[student@workstation appsec-prune]$ oc debug node/master01 -- \
 chroot /host crictl images | egrep '^IMAGE|httpd|nginx'
...output omitted...
Starting pod/master01-debug ...
To use host binaries, run `chroot /host`
IMAGE TAG IMAGE ID ...
registry.ocp4.example.com:8443/rhscl/httpd-24-rhel7 latest c19a96fc0b019 ...
registry.ocp4.example.com:8443/ubi8/httpd-24 latest e54df115d5f0c ...
registry.ocp4.example.com:8443/ubi9/httpd-24 latest 4afe283d911ab ...
registry.ocp4.example.com:8443/ubi7/nginx-118 latest 3adc6d109b363 ...
registry.ocp4.example.com:8443/ubi8/nginx-118 latest 90f91167f6d1d ...
registry.ocp4.example.com:8443/ubi9/nginx-120 latest 0227435f34784 ...

Removing debug pod ...
...output omitted...

2.3. Remove the unused images in the node. Only the httpd container images are

deleted, because no other container uses them.

[student@workstation appsec-prune]$ oc debug node/master01 -- \
 chroot /host crictl rmi --prune
...output omitted...
Starting pod/master01-debug ...
To use host binaries, run `chroot /host`
E1213 00:43:40.788951 166213 remote_image.go:266] "RemoveImage from image service
 failed" err="rpc error: code = Unknown desc = Image used by 5027ebb4...: image is
 in use by a container" image="c464e04f..."
Deleted: registry.ocp4.example.com:8443/rhscl/httpd-24-rhel7:latest
Deleted: registry.ocp4.example.com:8443/ubi8/httpd-24:latest
Deleted: registry.ocp4.example.com:8443/ubi9/httpd-24:latest

Removing debug pod ...
...output omitted...

You can ignore the error that a container is using the image.

358 DO280-OCP4.14-en-1-20240215

Chapter 8 | Application Security

2.4. Delete the deployments in the prune-apps namespace to remove the pods that use

the nginx images.

[student@workstation appsec-prune]$ oc delete deployment nginx-ubi{7,8,9} \
 -n prune-apps
deployment.apps "nginx-ubi7" deleted
deployment.apps "nginx-ubi8" deleted
deployment.apps "nginx-ubi9" deleted

Note

The cron job removes the unused container images in a later step.

 3. Create a cron job to automate the image pruning process.

3.1. Edit the ~/DO280/labs/appsec-prune/configmap-prune.yaml file to match

the following specification:

apiVersion: v1
kind: ConfigMap
metadata:
 name: maintenance
 labels:
 ge: appsec-prune
 app: crictl
data:
 maintenance.sh: |
 #!/bin/bash -eu
 NODES=$(oc get nodes -o=name)
 for NODE in ${NODES}
 do
 echo ${NODE}
 oc debug ${NODE} -- \
 chroot /host \
 /bin/bash -euxc 'crictl images ; crictl rmi --prune'
 done

Note

The ~/DO280/solutions/appsec-prune/configmap-prune.yaml file

contains the correct configuration and can be used for comparison.

3.2. Create the configuration map:

[student@workstation appsec-prune]$ oc apply -f configmap-prune.yaml
configmap/maintenance created

3.3. Edit the ~/DO280/labs/appsec-prune/cronjob-prune.yaml file to match the

following specification:

DO280-OCP4.14-en-1-20240215 359

Chapter 8 | Application Security

apiVersion: batch/v1
kind: CronJob
metadata:
 name: image-pruner
 labels:
 ge: appsec-prune
 app: crictl
spec:
 schedule: '*/4 * * * *'
 jobTemplate:
 spec:
 template:
 spec:
 dnsPolicy: ClusterFirst
 restartPolicy: Never
 containers:
 - name: crictl
 image: registry.ocp4.example.com:8443/openshift/origin-cli:4.14
 resources: {}
 command:
 - /opt/maintenance.sh
 volumeMounts:
 - name: scripts
 mountPath: /opt
 volumes:
 - name: scripts
 configMap:
 name: maintenance
 defaultMode: 0555

The registry.ocp4.example.com:8443/openshift/origin-cli:4.14
container image is a copy of the official quay.io/openshift/origin-
cli:4.14 image that contains the oc command.

Note

The ~/DO280/solutions/appsec-prune/cronjob-prune.yaml file contains

the correct configuration and can be used for comparison.

3.4. Apply the changes to the image pruner resource.

[student@workstation appsec-prune]$ oc apply -f cronjob-prune.yaml
cronjob.batch/image-pruner created

Note

A warning indicates that the pod would violate several policies. The pod fails when

the cron job is executed, because it lacks permissions to execute the maintenance

task. A fix for this issue is implemented in a later step.

360 DO280-OCP4.14-en-1-20240215

Chapter 8 | Application Security

3.5. Wait until the cron job is scheduled, and get the name of the associated job. The job

completion status is 0/1, and the pod has an error status. Press Ctrl+C to exit the

watch command.

[student@workstation appsec-prune]$ watch oc get cronjobs,jobs,pods
Every 2.0s: oc get cronjobs,jobs,pods workstation: Mon Feb 13 13:00:47 2024

NAME SCHEDULE SUSPEND ACTIVE LAST SCHEDULE AGE
cronjob.batch/image-pruner */4 * * * * False 1 53s 6m

NAME COMPLETIONS DURATION AGE
job.batch/image-pruner-27883800 0/1 30s 30s

NAME READY STATUS RESTARTS AGE
pod/image-pruner-27950092-g76lb 0/1 Error 0 15s

3.6. Get the logs of the pod. A permission error is displayed.

[student@workstation appsec-prune]$ oc logs pod/image-pruner-27950092-g76lb
Error from server (Forbidden): nodes is forbidden: User
 "system:serviceaccount:appsec-prune:default" cannot list resource "nodes" in API
 group "" at the cluster scope

3.7. Delete the failed cron job. This action deletes the failed job and pod resources.

[student@workstation appsec-prune]$ oc delete cronjob/image-pruner
cronjob.batch "image-pruner" deleted

 4. Set the appropriate permissions to run the image pruner cron job.

4.1. Add the privileged SCC to the default service account of the namespace.

[student@workstation ~]$ oc adm policy add-scc-to-user -z default privileged
clusterrole.rbac.authorization.k8s.io/system:openshift:scc:privileged added:
 "default"

4.2. Add the cluster-admin role to the default service account of the namespace.

[student@workstation ~]$ oc adm policy add-cluster-role-to-user \
 cluster-admin -z default
clusterrole.rbac.authorization.k8s.io/cluster-admin added: "default"

4.3. Create the cron job resource again.

[student@workstation appsec-prune]$ oc apply -f cronjob-prune.yaml
cronjob.batch/image-pruner created

4.4. Wait until the new job and the pod are created. Press Ctrl+C to exit the watch
command when the job and the pod are marked as completed.

DO280-OCP4.14-en-1-20240215 361

Chapter 8 | Application Security

[student@workstation appsec-prune]$ watch oc get cronjobs,jobs,pods
Every 2.0s: oc get cronjobs,jobs,pods workstation: Mon Feb 13 11:58:44 2024

NAME SCHEDULE SUSPEND ACTIVE LAST SCHEDULE AGE
cronjob.batch/image-pruner */4 * * * * False 0 30s 2m

NAME COMPLETIONS DURATION AGE
job.batch/image-pruner-27883660 1/1 9s 30s

NAME READY STATUS RESTARTS AGE
pod/image-pruner-27883660-2ghvv 0/1 Completed 0 30s

4.5. Get the logs of the pod that executed the maintenance task.

[student@workstation appsec-prune]$ oc logs pod/image-pruner-27883660-2ghvv | tail
...output omitted...
+ crictl rmi --prune
E0106 18:08:31.686489 374926 remote_image.go:266] "RemoveImage from image service
 failed" err="rpc error: code = Unknown desc = Image used by 0c9ab998...: image is
 in use by a container" image="c464e04f..."
Deleted: registry.ocp4.example.com:8443/ubi7/nginx-118:latest
Deleted: registry.ocp4.example.com:8443/ubi8/nginx-118:latest
Deleted: registry.ocp4.example.com:8443/ubi9/nginx-120:latest

Removing debug pod ...
...output omitted...

You can ignore the error that a container is using the image.

 5. Clean up resources.

5.1. Change to the student user home directory.

[student@workstation appsec-prune]$ cd
[student@workstation ~]$

5.2. Ensure that you are working on the appsec-prune project.

[student@workstation ~]$ oc project
Using project "appsec-prune" on server "https://api.ocp4.example.com:6443".

5.3. Remove the cron job resource and the configuration map.

[student@workstation ~]$ oc delete cronjob/image-pruner configmap/maintenance
cronjob.batch "image-pruner" deleted
configmap "maintenance" deleted

5.4. Remove the security constraint from the service account.

362 DO280-OCP4.14-en-1-20240215

Chapter 8 | Application Security

[student@workstation ~]$ oc adm policy remove-scc-from-user \
 -z default privileged
clusterrole.rbac.authorization.k8s.io/system:openshift:scc:privileged removed:
 "default"

5.5. Remove the role from the service account.

[student@workstation ~]$ oc adm policy remove-cluster-role-from-user \
 cluster-admin -z default
clusterrole.rbac.authorization.k8s.io/cluster-admin removed: "default"

5.6. Delete the appsec-prune project.

[student@workstation ~]$ oc delete project appsec-prune prune-apps
project.project.openshift.io "appsec-prune" deleted
project.project.openshift.io "prune-apps" deleted

Finish

On the workstation machine, use the lab command to complete this exercise. This step is

important to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab finish appsec-prune

DO280-OCP4.14-en-1-20240215 363

Chapter 8 | Application Security

Lab

Application Security

Deploy an application that requires additional operating system privileges to run.

Deploy an application that requires access to the Kubernetes APIs to perform cluster

maintenance tasks.

Outcomes
• Deploy a cluster maintenance application that must be executed regularly.

• Grant application access to Kubernetes APIs.

• Run an application with a security context constraint (SCC).

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your

system for this exercise.

[student@workstation ~]$ lab start appsec-review

In this exercise, you deploy two applications:

• A legacy payroll application that must run as the fixed 0 UID to open the TCP 80 port.

• A project cleaner deletes projects with the appsec-review-cleaner label and that are

longer than 10 seconds. This short expiration time is deliberate for the lab purposes.

You must deploy the project cleaner application to delete obsolete projects every minute.

The lab start command copies the required files for the exercise to the lab directory:

• A deployment manifest with the payroll application.

• A pod manifest that contains a project cleaner application. You can use this pod to test the

project cleaner application and copy the pod specification into the cron job to complete

the exercise.

• A manifest with the project-cleaner cluster role that grants the application access to

find and delete namespaces.

• A cron job template file that you can edit to create cron jobs.

• A script that generates projects to verify that the project cleaner application works.

Instructions

1. Log in to your OpenShift cluster as the developer user with the developer password and

create the appsec-review project.

2. Change to the ~/DO280/labs/appsec-review directory and deploy the payroll

application in the payroll-app.yaml file. Verify that the application cannot run.

364 DO280-OCP4.14-en-1-20240215

Chapter 8 | Application Security

3. As the admin user, look for an SCC that allows the workload in the payroll-app.yaml
deployment to run.

4. Create the payroll-sa service account and assign to it the SCC that the application

requires. Then, assign the payroll-sa service account to the payroll-api deployment.

5. Verify that the payroll API is accessible by running the curl command from the payroll-
api deployment. Use the http://localhost/payments/status URL to verify that the

API is working.

6. Create the project-cleaner-sa service account and assign it to the project-
cleaner.yaml pod manifest to configure the application permissions.

7. Create the project-cleaner role in the cluster-role.yaml file and assign it to the

project-cleaner-sa service account.

8. Edit the cron-job.yaml file to create the appsec-review-cleaner cron job by using

the project-cleaner.yaml pod manifest as the job template. Create the cron job and

configure it to run every minute. You can use the solution file in the ~/DO280/solutions/
appsec-review/cron-job.yaml path.

9. Optionally, verify that the project cleaner executed correctly. Use the generate-
projects.sh script from the lab directory to generate projects for deletion. Wait for the

next job execution and print the logs from that job's pod.

Evaluation

As the student user on the workstation machine, use the lab command to grade your work.

Correct any reported failures and rerun the command until successful.

[student@workstation ~]$ lab grade appsec-review

Finish

As the student user on the workstation machine, use the lab command to complete this

exercise. This step is important to ensure that resources from previous exercises do not impact

upcoming exercises.

[student@workstation ~]$ lab finish appsec-review

DO280-OCP4.14-en-1-20240215 365

Chapter 8 | Application Security

Solution

Application Security

Deploy an application that requires additional operating system privileges to run.

Deploy an application that requires access to the Kubernetes APIs to perform cluster

maintenance tasks.

Outcomes
• Deploy a cluster maintenance application that must be executed regularly.

• Grant application access to Kubernetes APIs.

• Run an application with a security context constraint (SCC).

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your

system for this exercise.

[student@workstation ~]$ lab start appsec-review

In this exercise, you deploy two applications:

• A legacy payroll application that must run as the fixed 0 UID to open the TCP 80 port.

• A project cleaner deletes projects with the appsec-review-cleaner label and that are

longer than 10 seconds. This short expiration time is deliberate for the lab purposes.

You must deploy the project cleaner application to delete obsolete projects every minute.

The lab start command copies the required files for the exercise to the lab directory:

• A deployment manifest with the payroll application.

• A pod manifest that contains a project cleaner application. You can use this pod to test the

project cleaner application and copy the pod specification into the cron job to complete

the exercise.

• A manifest with the project-cleaner cluster role that grants the application access to

find and delete namespaces.

• A cron job template file that you can edit to create cron jobs.

• A script that generates projects to verify that the project cleaner application works.

Instructions

1. Log in to your OpenShift cluster as the developer user with the developer password and

create the appsec-review project.

366 DO280-OCP4.14-en-1-20240215

Chapter 8 | Application Security

1.1. Log in as the developer user.

[student@workstation ~]$ oc login -u developer -p developer \
 https://api.ocp4.example.com:6443
Login successful.

...output omitted...

1.2. Create the appsec-review project.

[student@workstation ~]$ oc new-project appsec-review
Now using project "appsec-review" on server ...
...output omitted...

2. Change to the ~/DO280/labs/appsec-review directory and deploy the payroll

application in the payroll-app.yaml file. Verify that the application cannot run.

2.1. Change to the ~/DO280/labs/appsec-review directory to access the lab files.

[student@workstation ~]$ cd ~/DO280/labs/appsec-review

2.2. Run the oc apply command to create the payroll deployment.

[student@workstation appsec-review]$ oc apply -f payroll-app.yaml
deployment.apps/payroll-api created

2.3. Verify that the application fails to run by reading the deployment logs.

[student@workstation appsec-review]$ oc logs deployment/payroll-api
[2023-03-13 08:13:30 +0000] [1] [INFO] Starting gunicorn 20.1.0
[2023-03-13 08:13:30 +0000] [1] [ERROR] Retrying in 1 second.
[2023-03-13 08:13:31 +0000] [1] [ERROR] Retrying in 1 second.
[2023-03-13 08:13:32 +0000] [1] [ERROR] Retrying in 1 second.
[2023-03-13 08:13:33 +0000] [1] [ERROR] Retrying in 1 second.
[2023-03-13 08:13:34 +0000] [1] [ERROR] Retrying in 1 second.
[2023-03-13 08:13:35 +0000] [1] [ERROR] Can't connect to ('', 80)

The container in the pod runs as root to listen on port 80.

3. As the admin user, look for an SCC that allows the workload in the payroll-app.yaml
deployment to run.

3.1. Log in as the admin user with the redhatocp password.

[student@workstation appsec-review]$ oc login -u admin -p redhatocp \
 https://api.ocp4.example.com:6443
Login successful.
...output omitted...

3.2. Run the oc adm policy scc-subject-review command to get an SCC that

allows the application to run.

DO280-OCP4.14-en-1-20240215 367

Chapter 8 | Application Security

[student@workstation appsec-review]$ oc adm policy scc-subject-review \
 -f payroll-app.yaml
RESOURCE ALLOWED BY
Deployment/payroll-api anyuid

4. Create the payroll-sa service account and assign to it the SCC that the application

requires. Then, assign the payroll-sa service account to the payroll-api deployment.

4.1. Run the oc create command to create the payroll-sa service account.

[student@workstation appsec-review]$ oc create sa payroll-sa
serviceaccount/payroll-sa created

4.2. Assign the anyuid SCC to the payroll-sa service account.

[student@workstation appsec-review]$ oc adm policy \
 add-scc-to-user anyuid -z payroll-sa
clusterrole.rbac.authorization.k8s.io/system:openshift:scc:anyuid added: "payroll-
sa"

4.3. Use the oc set serviceaccount command to add the payroll-sa service

account to the payroll-api deployment.

[student@workstation appsec-review]$ oc set serviceaccount deployment \
 payroll-api payroll-sa
deployment.apps/payroll-api serviceaccount updated

5. Verify that the payroll API is accessible by running the curl command from the payroll-
api deployment. Use the http://localhost/payments/status URL to verify that the

API is working.

5.1. Use the oc exec command with the payroll-api deployment to run the curl
command. Provide the -sS option to hide progress output and show errors.

[student@workstation appsec-review]$ oc exec deployment/payroll-api \
 -- curl -sS http://localhost/payments/status
[{"id":240,"status":"Paid","userId":1003},
{"id":241,"status":"Pending","userId":1003}]

6. Create the project-cleaner-sa service account and assign it to the project-
cleaner.yaml pod manifest to configure the application permissions.

6.1. Create the project-cleaner-sa service account.

[student@workstation appsec-review]$ oc create sa project-cleaner-sa
serviceaccount/project-cleaner-sa created

6.2. Edit the project-cleaner.yaml pod manifest file to use the project-cleaner-
sa service account.

368 DO280-OCP4.14-en-1-20240215

Chapter 8 | Application Security

apiVersion: v1
kind: Pod
metadata:
 name: project-cleaner
 namespace: appsec-review
spec:
 restartPolicy: Never
 serviceAccountName: project-cleaner-sa
 containers:
 - name: project-cleaner
...output omitted...

7. Create the project-cleaner role in the cluster-role.yaml file and assign it to the

project-cleaner-sa service account.

7.1. Create the project-cleaner cluster role by applying the cluster-role.yaml
manifest file.

[student@workstation appsec-review]$ oc apply -f cluster-role.yaml
clusterrole.rbac.authorization.k8s.io/project-cleaner created

7.2. Use the oc adm policy add-clusterrole-to-user command to add the

project-cleaner role to the project-cleaner-sa service account.

[student@workstation appsec-review]$ oc adm policy add-cluster-role-to-user \
 project-cleaner -z project-cleaner-sa
clusterrole.rbac.authorization.k8s.io/project-cleaner added: "project-cleaner-sa"

8. Edit the cron-job.yaml file to create the appsec-review-cleaner cron job by using

the project-cleaner.yaml pod manifest as the job template. Create the cron job and

configure it to run every minute. You can use the solution file in the ~/DO280/solutions/
appsec-review/cron-job.yaml path.

8.1. Edit the cron-job.yaml file to replace the CHANGE_ME string with the "*/1 * * *
*" schedule to execute the job every minute.

apiVersion: batch/v1
kind: CronJob
metadata:
 name: appsec-review-cleaner
 namespace: appsec-review
spec:
 schedule: "*/1 * * * *"
 concurrencyPolicy: Forbid
 jobTemplate:
 ...output omitted...

8.2. Replace the CHANGE_ME label in the jobTemplate definition with the spec definition

from the project-cleaner.yaml pod manifest. Although the long image name

might show across two lines, you must add it as one line.

DO280-OCP4.14-en-1-20240215 369

Chapter 8 | Application Security

apiVersion: batch/v1
kind: CronJob
metadata:
 name: appsec-review-cleaner
 namespace: appsec-review
spec:
 schedule: "*/1 * * * *"
 concurrencyPolicy: Forbid
 jobTemplate:
 spec:
 template:
 spec:
 restartPolicy: Never
 serviceAccountName: project-cleaner-sa
 containers:
 - name: project-cleaner
 image: registry.ocp4.example.com:8443/redhattraining/do280-project-
cleaner:v1.1
 imagePullPolicy: Always
 env:
 - name: "PROJECT_TAG"
 value: "appsec-review-cleaner"
 - name: "EXPIRATION_SECONDS"
 value: "10"

8.3. Create the cron job.

[student@workstation appsec-review]$ oc apply -f cron-job.yaml
cronjob.batch/appsec-review-cleaner created

9. Optionally, verify that the project cleaner executed correctly. Use the generate-
projects.sh script from the lab directory to generate projects for deletion. Wait for the

next job execution and print the logs from that job's pod.

9.1. Run the generate-projects.sh script to create test projects that the project

cleaner will delete the next time that it runs.

[student@workstation appsec-review]$./generate-projects.sh
obsolete-appsec-review-1 created at 15:29:14
obsolete-appsec-review-2 created at 15:29:15
obsolete-appsec-review-3 created at 15:29:16
namespace/obsolete-appsec-review-1 labeled
namespace/obsolete-appsec-review-2 labeled
namespace/obsolete-appsec-review-3 labeled
Last appsec-review-cleaner label applied at 15:29:20
...output omitted...

9.2. List the pods in the appsec-review project until you see a pod with the Completed
status that is later than the last label that the script applied.

370 DO280-OCP4.14-en-1-20240215

Chapter 8 | Application Security

[student@workstation appsec-review]$ oc get pods
NAME READY STATUS RESTARTS AGE
appsec-review-cleaner-27909204-g49gr 0/1 Completed 0 2m37s
appsec-review-cleaner-27909205-q2f2t 0/1 Completed 0 97s
appsec-review-cleaner-27909206-xcswb 0/1 Completed 0 37s

9.3. Print the logs from the last completed job, to verify that it deleted the obsolete

projects.

[student@workstation appsec-review]$ oc logs pod/appsec-review-cleaner-27909206-
xcswb
...output omitted...
Namespace 'obsolete-appsec-review-1' deleted
Namespace 'obsolete-appsec-review-2' deleted
Namespace 'obsolete-appsec-review-3' deleted

9.4. Change to the home directory to prepare for the next exercise.

[student@workstation appsec-review]$ cd

Evaluation

As the student user on the workstation machine, use the lab command to grade your work.

Correct any reported failures and rerun the command until successful.

[student@workstation ~]$ lab grade appsec-review

Finish

As the student user on the workstation machine, use the lab command to complete this

exercise. This step is important to ensure that resources from previous exercises do not impact

upcoming exercises.

[student@workstation ~]$ lab finish appsec-review

DO280-OCP4.14-en-1-20240215 371

Chapter 8 | Application Security

Summary

• Security context constraints (SCCs) limit the access from a running pod in OpenShift to the

host environment.

• An application can assign an SCC to the application service account to use it.

• With the Kubernetes APIs, a user or an application can query and modify the cluster state.

• To give an application access to the Kubernetes APIs, you can create roles or cluster roles that

describe the application requirements, and assign those roles to the application service account.

• You can automate cluster and application management tasks by creating Kubernetes cron jobs

that run periodic management jobs.

372 DO280-OCP4.14-en-1-20240215

Chapter 9

OpenShift Updates

Goal Update an OpenShift cluster and minimize
disruption to deployed applications.

Objectives • Describe the cluster update process.

• Identify applications that use deprecated
Kubernetes APIs.

• Update OLM-managed operators by using the
web console and CLI.

Sections • The Cluster Update Process (and Quiz)

• Detect Deprecated Kubernetes API Usage (and
Quiz)

• Update Operators with the OLM (and Quiz)

• OpenShift Updates (Quiz)

DO280-OCP4.14-en-1-20240215 373

Chapter 9 | OpenShift Updates

The Cluster Update Process

Objectives
• Describe the cluster update process.

Introducing Cluster Updates
Red Hat OpenShift Container Platform 4 adds many new features by using Red Hat Enterprise

Linux CoreOS. Red Hat released a new software distribution system that provides the upgrade

path to update your cluster and the underlying operating system. With this new distribution

system, OpenShift clusters can perform Over-the-Air updates (OTA).

This software distribution system for OTA manages the controller manifests, cluster roles, and

any other resources to update a cluster to a particular version. With this feature, a cluster can run

the 4.14.x version seamlessly. With OTA, a cluster can use new features as they become available,

including the latest bug fixes and security patches. OTA substantially decreases downtime due to

upgrades.

Red Hat hosts and manages this service at https://console.redhat.com/openshift, and hosts

cluster images at https://quay.io. You use a single interface to manage the lifecycle of all your

OpenShift clusters. With OTA, you can update faster by skipping intermediate versions. For

example, you can update from 4.14.1 to 4.14.3, and thus bypass 4.14.2.

Important

Starting with OpenShift 4.10, the OTA system requires a persistent connection to

the internet. For more information about how to update disconnected clusters,

consult the Updating a Restricted Network Cluster chapter in the references section.

Figure 9.1: Managing clusters at cloud.redhat.com

374 DO280-OCP4.14-en-1-20240215

https://console.redhat.com/openshift
https://quay.io

Chapter 9 | OpenShift Updates

The service defines upgrade paths that correspond to cluster eligibility for certain updates.

Upgrade paths belong to update channels. Consider a channel as a representation of the upgrade

path. The channel controls the frequency and stability of updates. The OTA policy engine

represents channels as a series of pointers to particular versions within the upgrade path.

A channel name consists of the following parts: the tier (release candidate, fast, stable, and

extended update support), the major version (4), and the minor version (.12). Example channel

names include: candidate-4.14, fast-4.14, stable-4.14, and eus-4.14. Each channel

delivers patches for a given cluster version.

The Candidate Channel

The candidate channel delivers updates for testing feature acceptance in the next version of

OpenShift Container Platform. The release candidate versions are subject to further checks, and

are promoted to the fast or stable channels when they meet the quality standards.

Important

Red Hat does not support the updates that are listed only in the candidate channel.

The Fast Channel

The fast channel delivers updates as soon as Red Hat declares the given version as a general

availability release. Red Hat supports the updates that are released in this channel, and it is best

suited to development and QA environments.

Note

Customers can help to improve OpenShift by joining the Red Hat connected

customers program. If you join this program, then your cluster is registered to the

fast channel.

The Stable Channel

Red Hat support and site reliability engineering (SRE) teams monitor operational clusters with the

updates from the fast channel. If operational clusters pass additional testing and validation, then

updates in the fast channel are enabled in the stable channel. Red Hat supports the updates that

are released in this channel, and it is best suited to production environments.

If Red Hat observes operational issues from a fast channel update, then that update is skipped in

the stable channel. The stable channel delay provides time to observe any unforeseen problems in

OpenShift clusters that testing did not reveal.

The Extended Update Support Channel

Starting with OpenShift Container Platform 4.8, Red Hat denotes all even-numbered minor

releases (for example, 4.8, 4.10, 4.12, and 4.14) as Extended Update Support (EUS) releases.

EUS releases have no difference between stable-4.x and eus-4.x channels (where x denotes

the even-numbered minor release) until OpenShift Container Platform moves to the EUS phase.

You can switch to the EUS channel as soon as it becomes available.

DO280-OCP4.14-en-1-20240215 375

Chapter 9 | OpenShift Updates

Support Status for Update Channels

Red Hat offers support for all released updates in the fast, stable, and eus update channels.

Red Hat supports the released updates in the candidate channel only if they are also listed in the

fast or stable channels.

Update channel Support status

candidate-4.x Supported if the update is also listed in the fast or stable channels.

fast-4.x Supported

stable-4.x Supported

eus-4.x Supported

Note

The x in the channel name denotes the minor version.

Upgrade Paths
You can apply each of the upgrade channels to a Red Hat OpenShift Container Platform version

4.14 cluster in different environments. The following paragraphs describe an example scenario

where the 4.14.3 version has a defect.

Stable channel
When using the stable-4.14 channel, you can upgrade your cluster from 4.14.0 to 4.14.1

or to 4.14.2. If an issue is discovered in the 4.14.3 release, then you cannot upgrade to that

version. When a patch becomes available in the 4.14.4 release, you can update your cluster to

that version.

This channel is suited to production environments, because the Red Hat SRE teams and

support services test the releases in that channel.

Fast channel
The fast-4.14 channel can deliver 4.14.1 and 4.14.2 updates but not 4.14.3. Red Hat also

supports this channel, and you can apply it to development, QA, or production environments.

Administrators must specifically choose a different minor version channel, such as

fast-4.14, to upgrade to a new release in a new minor version when it becomes available.

Candidate channel
You can use the candidate-4.14 channel to install the latest features of OpenShift. With

this channel, you can upgrade to all z-stream releases, such as 4.14.1, 4.14.2, and 4.14.3.

You use this channel to access the latest features of the product as they get released. This

channel is suited to development and pre-production environments.

EUS channel
When switching to the eus-4.14 channel, the stable-4.14 channel does not receive z-

stream updates until the next EUS version becomes available.

376 DO280-OCP4.14-en-1-20240215

Chapter 9 | OpenShift Updates

Note

Starting with OpenShift Container Platform 4.8, Red Hat denotes all even-

numbered minor releases as Extended Update Support (EUS) releases.

The following graphic describes the update graphs for the stable and candidate channels:

Figure 9.2: Update graphs for stable and candidate channels

Red Hat provides support for the General Availability (GA) updates that are released in the stable

and fast channels. Red Hat does not support updates that are listed only in the candidate channel.

To ensure the stability of the cluster and the proper level of support, switch only from a stable

channel to a fast channel. Although it is possible to switch from a stable channel or a fast channel

to a candidate channel, it is not recommended. The candidate channel is best suited to testing

feature acceptance and to assist in qualifying the next version of OpenShift Container Platform.

Note

The release of updates for patch and security fixes ranges from several hours to

a day. This delay provides time to assess any operational impacts to OpenShift

clusters.

Changing the Update Channel
You can change the update channel to eus-4.14, stable-4.14, fast-4.14, or

candidate-4.14 by using the web console or the OpenShift CLI client:

Web console
Navigate to the Administration > Cluster Settings page on the details tab, and then click the

pencil icon.

DO280-OCP4.14-en-1-20240215 377

Chapter 9 | OpenShift Updates

Figure 9.3: Current update channel in the web console

A window displays options to select an update channel.

Figure 9.4: Changing the update channel in the web console

Command line
Execute the following command to switch to another update channel by using the oc client.

You can also switch to another update channel, such as stable-4.14, to update to the next

minor version of OpenShift Container Platform.

[user@host ~]$ oc patch clusterversion version --type="merge" \
 --patch '{"spec":{"channel":"fast-4.14"}}'
clusterversion.config.openshift.io/version patched

Pausing the Machine Health Check Resource
During the upgrade process, nodes in the cluster might become temporarily unavailable. In the

case of worker nodes, the machine health check might identify such nodes as unhealthy and

reboot them. To avoid rebooting such nodes, pause all the machine health check resources before

updating the cluster.

Note

The prerequisite to pause the machine health check resources is not required on

single-node installations.

378 DO280-OCP4.14-en-1-20240215

Chapter 9 | OpenShift Updates

Run the following command to list all the available machine health check resources.

[user@host ~]$ oc get machinehealthcheck -n openshift-machine-api
NAME MAXUNHEALTHY EXPECTEDMACHINES CURRENTHEALTHY
machine-api-termination-handler 100%

Add the cluster.x-k8s.io/paused annotation to the machine health check resource to pause

it before updating the cluster.

[user@host ~]$ oc annotate machinehealthcheck -n openshift-machine-api \
 machine-api-termination-handler cluster.x-k8s.io/paused=""
machinehealthcheck.machine.openshift.io/machine-api-termination-handler annotated

Remove the annotation after the cluster is updated.

[user@host ~]$ oc annotate machinehealthcheck -n openshift-machine-api \
 machine-api-termination-handler cluster.x-k8s.io/paused-
machinehealthcheck.machine.openshift.io/machine-api-termination-handler annotated

Over-the-air Updates
OTA follows a client-server approach. Red Hat hosts the cluster images and the update

infrastructure. OTA generates all possible update paths for your cluster. OTA also gathers

information about the cluster and your entitlement to determine the available upgrade paths. The

web console sends a notification when a new update is available.

The following diagram describes the updates architecture: Red Hat hosts both the cluster images

and a "watcher", which automatically detects new images that are pushed to Quay. The Cluster

Version Operator (CVO) receives its update status from that watcher. The CVO starts by updating

the cluster components via their operators, and then updates any extra components that the

Operator Lifecycle Manager (OLM) manages.

Figure 9.5: OpenShift Container Platform updates architecture

DO280-OCP4.14-en-1-20240215 379

Chapter 9 | OpenShift Updates

With telemetry, Red Hat can determine the update path. The cluster uses a Prometheus-based

Telemeter component to report on the state of each cluster operator. The data is anonymized and

sent back to Red Hat servers that advise cluster administrators about potential new releases.

Note

Red Hat values customer privacy. For a complete list of the data that Telemeter

gathers, consult the Data Collection and Telemeter Sample Metrics documents in

the references section.

In the future, Red Hat intends to extend the list of updated operators that are included in the

upgrade path to include independent software vendor (ISV) operators.

Figure 9.6: Managing cluster updates by using telemetry

The Update Process
The following components are involved in the cluster update process:

Machine Config Operator
The Machine Config Operator applies the desired machine state to each of the nodes. This

component also handles the rolling upgrade of nodes in the cluster, and uses CoreOS Ignition

as the configuration format.

Operator Lifecycle Manager
The OLM orchestrates updates to any operators that are running in the cluster.

Updating the Cluster
You can update the cluster via the web console or from the command line. The Administration
> Cluster Settings page displays an update status of Available updates when a new update is

available. From this page, click Select a version, and then select the version and the cluster update

option that you want to install:

380 DO280-OCP4.14-en-1-20240215

Chapter 9 | OpenShift Updates

Figure 9.7: Update the cluster by using the web console

Important

Rolling back your cluster to an earlier version is not supported. If your update is
failing to complete, contact Red Hat support.

The update process also updates the underlying operating system when updates are available.

The updates use the rpm-ostree technology for managing transactional upgrades. Updates are

delivered via container images and are part of the OpenShift update process. When the update

deploys, the nodes pull the new image, extract it, write the packages to the disk, and then modify

the bootloader to boot into the new version. The machine reboots and implements a rolling update

to ensure that the cluster capacity is minimally impacted.

Update the Cluster by Using the Command Line

The following steps describe the procedure for updating a cluster as a cluster administrator by

using the command-line interface:

• Be sure to update all operators that are installed through the OLM to the 4.14 version before

updating the OpenShift cluster.

• Retrieve the cluster version and review the current update channel information. If you are

running the cluster in production, then ensure that the channel reads stable.

[user@host ~]$ oc get clusterversion
NAME VERSION AVAILABLE PROGRESSING SINCE STATUS
version 4.14.0 True False 2d Cluster version is 4.14.0

[user@host ~]$ oc get clusterversion -o jsonpath='{.items[0].spec.channel}{"\n"}'
stable-4.14

• View the available updates and note the version number of the update to apply.

[user@host ~]$ oc adm upgrade
Cluster version is 4.14.0

Upstream is unset, so the cluster will use an appropriate default.

DO280-OCP4.14-en-1-20240215 381

Chapter 9 | OpenShift Updates

Channel: stable-4.14 (available channels: candidate-4.14, candidate-4.15,
 eus-4.14, fast-4.14, stable-4.14)

Recommended updates:

VERSION IMAGE
4.14.10 quay.io/openshift-release-dev/ocp-release@sha256:...
...output omitted...

• Apply the latest update to your cluster, or update to a specific version:

– Run the following command to install the latest available update for your cluster.

[user@host ~]$ oc adm upgrade --to-latest=true

– Run the following command to install a specific version. VERSION corresponds to one of the

available versions that the oc adm upgrade command returns.

[user@host ~]$ oc adm upgrade --to=VERSION

• The previous command initializes the update process. Run the following command to review the

status of the Cluster Version Operator (CVO) and the installed cluster operators.

[user@host ~]$ oc get clusterversion
NAME VERSION AVAILABLE PROGRESSING SINCE STATUS
version 4.14.0 True True 1m Working towards 4.14.10 ...

[user@host ~]$ oc get clusteroperators
NAME VERSION AVAILABLE PROGRESSING DEGRADED ...
authentication 4.14.0 True False False ...
baremetal 4.14.10 False True False ...
cloud-controller-manager 4.14.10 True False True ...
...output omitted...

• Use the following command to review the cluster version history and monitor the status of the

update. It might take some time for all the objects to finish updating.

The history contains a list of the most recent versions that were applied to the cluster. This list is

updated when the CVO applies an update. The list is ordered by date, where the newest update

is first in the list.

If the rollout completed successfully, then updates in the history have a Completed state.

Otherwise, the update has a Partial state if it failed or did not complete.

[user@host ~]$ oc describe clusterversion
...output omitted...
 History:
 Completion Time: 2024-02-10T04:38:12Z
 Image: quay.io/openshift-release-dev/ocp-release@sha256:...
 Started Time: 2024-02-10T03:35:05Z
 State: Partial
 Verified: true
 Version: 4.14.10

382 DO280-OCP4.14-en-1-20240215

Chapter 9 | OpenShift Updates

 Completion Time: 2024-02-10T12:39:02Z
 Image: quay.io/openshift-release-dev/ocp-release@sha256:...
 Started Time: 2024-02-10T12:23:14Z
 State: Completed
 Verified: false
 Version: 4.14.10

Important

When an update is failing to complete, the Cluster Version Operator (CVO) reports

the status of any blocking components and attempts to reconcile the update.

Rolling back your cluster to a previous version is not supported. If your update is
failing to complete, contact Red Hat support.

• After the process completes, you can confirm that the cluster is updated to the new version.

[user@host ~]$ oc get clusterversion
NAME VERSION AVAILABLE PROGRESSING SINCE STATUS
version 4.14.10 True False 30m Cluster version is 4.14.10

DO280-OCP4.14-en-1-20240215 383

Chapter 9 | OpenShift Updates

References

For more information about update channels, update prerequisites, and updating

clusters in disconnected environments, refer to the Updating a Restricted Network

Cluster and Updating a Cluster Between Minor Versions chapters in the Red Hat

OpenShift Container Platform 4.14 Updating Clusters documentation at

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.14/html-single/updating_clusters/index#updating-

restricted-network-cluster

For more information about updating operators that are installed through the

Operator Lifecycle Manager, refer to the Upgrading Installed Operators section in

the Administrator Tasks chapter in the Red Hat OpenShift Container Platform 4.14

Working with Operators documentation at

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.14/html-single/operators/index#olm-upgrading-

operators

For more information about performing an EUS-to-EUS update, refer to the

Preparing to Perform an EUS-to-EUS Update chapter in the Red Hat OpenShift

Container Platform 4.14 Updating Clusters documentation at

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.14/html-single/updating_clusters/index#updating-

eus-to-eus-upgrade_eus-to-eus-upgrade

For more information about the OpenShift Container Platform upgrade paths, visit

the following page in the customer portal:

https://access.redhat.com/solutions/4583231

For more information about the OpenShift Container Platform update graph, visit

the following page in the customer portal:

https://access.redhat.com/labs/ocpupgradegraph/update_path

For more information about OpenShift Extended Update Support (EUS), visit the

following page in the customer portal:

https://access.redhat.com/support/policy/updates/openshift-eus

For more information about the OpenShift Container Platform lifecycle policy, visit

the following page in the customer portal:

https://access.redhat.com/support/policy/updates/openshift

OpenShift 4 Data Collection

https://github.com/openshift/cluster-monitoring-operator/blob/master/

Documentation/data-collection.md

OpenShift 4 Telemeter Sample Metrics

https://github.com/openshift/cluster-monitoring-operator/blob/master/

Documentation/sample-metrics.md

384 DO280-OCP4.14-en-1-20240215

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/updating_clusters/index#updating-restricted-network-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/updating_clusters/index#updating-restricted-network-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/updating_clusters/index#updating-restricted-network-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index#olm-upgrading-operators
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index#olm-upgrading-operators
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index#olm-upgrading-operators
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/updating_clusters/index#updating-eus-to-eus-upgrade_eus-to-eus-upgrade
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/updating_clusters/index#updating-eus-to-eus-upgrade_eus-to-eus-upgrade
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/updating_clusters/index#updating-eus-to-eus-upgrade_eus-to-eus-upgrade
https://access.redhat.com/solutions/4583231
https://access.redhat.com/labs/ocpupgradegraph/update_path
https://access.redhat.com/support/policy/updates/openshift-eus
https://access.redhat.com/support/policy/updates/openshift
https://github.com/openshift/cluster-monitoring-operator/blob/master/Documentation/data-collection.md
https://github.com/openshift/cluster-monitoring-operator/blob/master/Documentation/data-collection.md
https://github.com/openshift/cluster-monitoring-operator/blob/master/Documentation/sample-metrics.md
https://github.com/openshift/cluster-monitoring-operator/blob/master/Documentation/sample-metrics.md

Chapter 9 | OpenShift Updates

Quiz

The Cluster Update Process

Choose the correct answers to the following questions:

 1. Which component retrieves the updated cluster images from Quay.io?

a. Cluster Monitoring (Prometheus)

b. Operator Lifecycle Manager (OLM)

c. Cluster Version Operator (CVO)

d. Telemetry client (Telemeter)

 2. Which component manages the updates of operators that are not cluster operators?

a. Operator Lifecycle Manager (OLM)

b. Telemetry client (Telemeter)

c. Cluster Version Operator (CVO)

 3. Which two commands can retrieve the currently running cluster version? (Choose two.)

a. oc get updatechannels
b. oc adm upgrade
c. oc get clusterchannel
d. oc get clusterversion
e. oc get clusterupgrades

 4. Which two channels are classified as general availability? (Choose two.)

a. candidate-4.14
b. fast-4.14
c. stable-4.14
d. eus-4.14

 5. Which statement is true regarding the OTA feature?

a. The stable channel is classified as General Availability (GA), whereas the fast channel is

classified as a Release Candidate (RC).

b. When using the stable channel, you cannot skip intermediary versions. For example, when

updating from 4.14.8 to 4.14.10, OpenShift must install the 4.14.9 version first.

c. It is not recommended to switch from a stable channel or a fast channel to a candidate

channel. However, you can switch from a fast channel to a stable channel and vice versa.

d. Red Hat supports rolling back a failed update only when it was performed on z-stream

versions of the same minor version (for example, from 4.14.2 to 4.14.3, but not from 4.12.3

to 4.14.1).

DO280-OCP4.14-en-1-20240215 385

Chapter 9 | OpenShift Updates

Solution

The Cluster Update Process

Choose the correct answers to the following questions:

 1. Which component retrieves the updated cluster images from Quay.io?

a. Cluster Monitoring (Prometheus)

b. Operator Lifecycle Manager (OLM)

c. Cluster Version Operator (CVO)

d. Telemetry client (Telemeter)

 2. Which component manages the updates of operators that are not cluster operators?

a. Operator Lifecycle Manager (OLM)

b. Telemetry client (Telemeter)

c. Cluster Version Operator (CVO)

 3. Which two commands can retrieve the currently running cluster version? (Choose two.)

a. oc get updatechannels
b. oc adm upgrade
c. oc get clusterchannel
d. oc get clusterversion
e. oc get clusterupgrades

 4. Which two channels are classified as general availability? (Choose two.)

a. candidate-4.14
b. fast-4.14
c. stable-4.14
d. eus-4.14

 5. Which statement is true regarding the OTA feature?

a. The stable channel is classified as General Availability (GA), whereas the fast channel is

classified as a Release Candidate (RC).

b. When using the stable channel, you cannot skip intermediary versions. For example, when

updating from 4.14.8 to 4.14.10, OpenShift must install the 4.14.9 version first.

c. It is not recommended to switch from a stable channel or a fast channel to a candidate

channel. However, you can switch from a fast channel to a stable channel and vice versa.

d. Red Hat supports rolling back a failed update only when it was performed on z-stream

versions of the same minor version (for example, from 4.14.2 to 4.14.3, but not from 4.12.3

to 4.14.1).

386 DO280-OCP4.14-en-1-20240215

Chapter 9 | OpenShift Updates

Detect Deprecated Kubernetes API
Usage

Objectives
• Identify applications that use deprecated Kubernetes APIs.

OpenShift Versions
Kubernetes is an open source container orchestration engine for automating the deployment,

scaling, and management of containerized applications. The OpenShift Container Platform

foundation is based on Kubernetes and therefore shares the underlying technology. The following

table lists the OpenShift version and the Kubernetes version that it is based on:

OpenShift version Kubernetes version

4.12 1.25

4.13 1.26

4.14 1.27

Kubernetes API Deprecation Policy
The Kubernetes API versions are categorized based on feature maturity (experimental, pre-

release, and stable).

API version Category Description

v1alpha1 Alpha Experimental features

v1beta1 Beta Pre-release features

v1 Stable Stable features, generally available

Use the following command to view the current version of a resource:

[user@host ~]$ oc api-resources | egrep '^NAME|cronjobs'
NAME SHORTNAMES APIVERSION NAMESPACED KIND
cronjobs cj batch/v1 true CronJob

When a stable version of a feature is released, the beta versions are marked as deprecated and are

removed after three Kubernetes releases. If a request uses a deprecated API version, then the API

server returns a deprecation warning that includes the name of the current version of the cluster.

DO280-OCP4.14-en-1-20240215 387

Chapter 9 | OpenShift Updates

[user@host ~]$ egrep 'kind|apiVersion' cronjob-beta.yaml
kind: CronJob
apiVersion: batch/v1beta1

[user@host ~]$ oc create -f cronjob-beta.yaml
Warning: batch/v1beta1 CronJob is deprecated in v1.21+, unavailable in v1.25+;
 use batch/v1 CronJob
cronjob.batch/hello created

If a request uses an API version that Kubernetes removed, then the API server returns an error,

because that API version is not supported in the cluster.

[user@host ~]$ egrep 'kind|apiVersion' cronjob-alpha.yaml
apiVersion: batch/v1alpha1
kind: CronJob

[user@host ~]$ oc create -f cronjob-alpha.yaml
error: resource mapping not found for name: "hello" namespace: "" from "cronjob-
alpha.yaml": no matches for kind "CronJob" in version "batch/v1beta1"
ensure CRDs are installed first

Deprecated and Removed Features in Kubernetes

The Kubernetes 1.27 release stopped serving some API versions that were marked as deprecated

in previous releases. The following table contains a short list of the deprecated and removed API

versions.

Resource Removed API Group Current API Group

CSIStorageCapacity storage.k8s.io/v1beta1 storage.k8s.io/v1

Note

For more information about the API versions that are deprecated and removed in

Kubernetes, consult Kubernetes Deprecated API Migration Guide in the references

section.

Identifying Deprecated APIs

You can identify from the API request count whether a workload uses a deprecated API version.

The API request count output contains four columns. A value in the REMOVEDINRELEASE column

indicates that the API version is deprecated and specifies the Kubernetes version that will remove

it.

[user@host ~]$ oc get apirequestcounts | awk '{if(NF==4){print $0}}'
NAME
 REMOVEDINRELEASE REQUESTSINCURRENTHOUR REQUESTSINLAST24H
...output omitted...
cronjobs.v1beta1.batch
 1.25 15 44
horizontalpodautoscalers.v2beta2.autoscaling
 1.26 6 30

388 DO280-OCP4.14-en-1-20240215

Chapter 9 | OpenShift Updates

podsecuritypolicies.v1beta1.policy
 1.25 28 77
...output omitted...

If the REMOVEDINRELEASE column is blank, then it indicates that the current API version is not

deprecated, and that version will be kept in future releases.

Note

You can use a JSONPath filter to retrieve the results. The FILTER variable is written

on a single line.

[user@host ~]$ FILTER='{range .items[?(@.status.removedInRelease!="")]}
{.status.removedInRelease}{"\t"}{.status.requestCount}{"\t"}{.metadata.name}
{"\n"}{end}'
[user@host ~]$ oc get apirequestcounts -o jsonpath="${FILTER}" | \
 column -t -N "RemovedInRelease,RequestCount,Name"
RemovedInRelease RequestCount Name
1.25 44 cronjobs.v1beta1.batch
...output omitted...

If the command does not retrieve any information, then it indicates that none of the

installed APIs are deprecated.

You can use a JSONPath filter for a list of actions for that resource and who did them.

[user@host ~]$ FILTER='{range .status.currentHour..byUser[*]}{..byVerb[*].verb}
{","}{.username}{","}{.userAgent}{"\n"}{end}'
[user@host ~]$ TYPE=apirequestcount.apiserver.openshift.io/cronjobs.v1.batch
[user@host ~]$ echo ${TYPE} ; oc get ${TYPE} -o jsonpath="${FILTER}" | \
 column -t -s ',' -N "Verbs,Username,UserAgent"

apirequestcount.apiserver.openshift.io/cronjobs.v1.batch
Verbs Username UserAgent
get update system:serviceaccount:kube-system:cronj... kube-controller-manager/
v1...
watch system:kube-controller-manager kube-controller-manager/
v1...
...output omitted...

Deprecated and Removed Features in OpenShift
Red Hat OpenShift Container Platform (RHOCP) is a set of modular components and services

that are built on top of a Kubernetes container infrastructure.

Some features that were available in previous OpenShift releases are deprecated or removed.

A deprecated feature is not recommended for new deployments, because a future release will

remove it. The following table contains a short list of the deprecated and removed features in

OpenShift.

DO280-OCP4.14-en-1-20240215 389

Chapter 9 | OpenShift Updates

OpenShift

4.12

OpenShift

4.13

OpenShift

4.14

Feature

General

Availability

General

Availability

Deprecated Operator lifecycle and development deprecated

Deprecated Deprecated Deprecated CoreDNS wildcard queries for the

cluster.local domain

Deprecated Deprecated Deprecated Persistent storage that uses FlexVolume

Not

Available

General

Availability

Removed --include-local-oci-catalogs parameter

for oc-mirror

General

Availability

General

Availability

Deprecated DeploymentConfig objects

Note

For more information about the deprecated and removed API versions in

Kubernetes, consult the OpenShift Container Platform 4.14 release notes in the

references section.

Deprecated API Alerts in OpenShift

OpenShift includes two alerts that are triggered when a workload uses a deprecated API version:

APIRemovedInNextReleaseInUse
This alert is triggered for APIs that OpenShift Container Platform will remove in the next

release.

APIRemovedInNextEUSReleaseInUse
This alert is triggered for APIs that OpenShift Container Platform Extended Update Support

(EUS) will remove in the next release.

The alert describes the situation with context to identify the affected workload.

Figure 9.8: Deprecated API alert

You can extract the alerts in JSON format from the Prometheus stateful set, and then filter the

result to retrieve the deprecated API alerts.

[user@host ~]$ oc exec -it statefulset/prometheus-k8s -c prometheus \
 -n openshift-monitoring -- \
 curl -fsSL 'http://localhost:9090/api/v1/alerts' | jq . > alerts.json

[user@host ~]$ jq '[.data.alerts[] |
 select(.labels.alertname=="APIRemovedInNextReleaseInUse" or
 .labels.alertname=="APIRemovedInNextEUSReleaseInUse")]' < alerts.json
[
 {
 "labels": {
 "alertname": "APIRemovedInNextReleaseInUse",
...output omitted...

390 DO280-OCP4.14-en-1-20240215

Chapter 9 | OpenShift Updates

 },
 "state": "firing",
...output omitted...
 },
 {
 "labels": {
 "alertname": "APIRemovedInNextEUSReleaseInUse",
...output omitted...
 },
 "state": "firing",
...output omitted...
 }
]

Note

If the output of the jq command is an empty JSON array [], then the alerts were

not reported.

Explicit Acknowledgment Before Cluster Updates

OpenShift Container Platform 4.14 uses Kubernetes 1.27, which removed deprecated v1beta1
APIs.

OpenShift Container Platform requires an administrator to provide a manual acknowledgment

before the cluster can be upgraded from version 4.13 to 4.14. This requirement helps to prevent

issues after upgrading to OpenShift Container Platform 4.14, where workloads, tools, or other

components that run on or interact with the cluster still use removed APIs.

Administrators must evaluate their cluster for workloads that use removed APIs, and migrate the

affected components to the appropriate new API version. After migration, the administrator can

provide an acknowledgment.

[user@host ~]$ oc patch configmap admin-acks -n openshift-config --type=merge \
 --patch '{"data":{"ack-4.13-kube-1.27-api-removals-in-4.14":"true"}}'
configmap/admin-acks patched

DO280-OCP4.14-en-1-20240215 391

Chapter 9 | OpenShift Updates

References

For more information about the removed features in OpenShift, refer to the

Deprecated and Removed Features section in the Red Hat OpenShift Container

Platform 4.14 release notes at

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.14/html-single/release_notes/index#ocp-4-14-

deprecated-removed-features

For more information about what version of the Kubernetes API is included with

each OpenShift 4.x release, visit the following page in the customer portal:

https://access.redhat.com/solutions/4870701

For more information about the Kubernetes API deprecations and removals, visit the

following page in the customer portal:

https://access.redhat.com/articles/6955985

For more information about the deprecated APIs in OpenShift Container Platform

4.14, visit the following page in the customer portal:

https://access.redhat.com/articles/6955381

For more information about how to get fired alerts on OpenShift by using the

command-line, visit the following page in the customer portal:

https://access.redhat.com/solutions/4250221

What's New in Red Hat OpenShift 4.14

https://www.redhat.com/en/whats-new-red-hat-openshift

Preparing to Update to OpenShift Container Platform 4.14

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.14/html-single/updating_clusters/index#updating-

cluster-prepare

Kubernetes Deprecation Policy

https://kubernetes.io/docs/reference/using-api/deprecation-policy/

Kubernetes Deprecated API Migration Guide

https://kubernetes.io/docs/reference/using-api/deprecation-guide/

Kubernetes Removals and Deprecations in 1.27

https://kubernetes.io/blog/2023/03/17/upcoming-changes-in-kubernetes-v1-27/

Kubernetes 1.27 release announcement

https://kubernetes.io/blog/2023/04/11/kubernetes-v1-27-release/

392 DO280-OCP4.14-en-1-20240215

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/release_notes/index#ocp-4-14-deprecated-removed-features
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/release_notes/index#ocp-4-14-deprecated-removed-features
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/release_notes/index#ocp-4-14-deprecated-removed-features
https://access.redhat.com/solutions/4870701
https://access.redhat.com/articles/6955985
https://access.redhat.com/articles/6955381
https://access.redhat.com/solutions/4250221
https://www.redhat.com/en/whats-new-red-hat-openshift
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/updating_clusters/index#updating-cluster-prepare
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/updating_clusters/index#updating-cluster-prepare
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/updating_clusters/index#updating-cluster-prepare
https://kubernetes.io/docs/reference/using-api/deprecation-policy/
https://kubernetes.io/docs/reference/using-api/deprecation-guide/
https://kubernetes.io/blog/2023/03/17/upcoming-changes-in-kubernetes-v1-27/
https://kubernetes.io/blog/2023/04/11/kubernetes-v1-27-release/

Chapter 9 | OpenShift Updates

Quiz

Detect Deprecated Kubernetes API
Usage

Choose the correct answers to the following questions:

 1. Red Hat OpenShift Container Platform 4.14 is based on which version of Kubernetes?

a. Kubernetes 1.24

b. Kubernetes 1.27

c. Kubernetes 1.26

d. OpenShift Container Platform is not based on Kubernetes.

 2. What is the feature maturity status for Kubernetes resources with the v1beta1 API

version?

a. Experimental

b. Pre-release

c. Stable

 3. Which command can the cluster administrator use to identify deprecated API

resources?

a. oc get apirequestcounts
b. oc get deprecatedapis -n openshift-config
c. oc get apis --deprecated
d. oc get configmap deprecated-apis -n openshift-config

 4. Which two alerts identify the use of deprecated API versions in the OpenShift cluster?

(Choose two.)

a. APIRemovedInNextReleaseInUse
b. APIRequestCounts
c. APIRemovedInNextEUSReleaseInUse
d. DeprecatedAPIRequestCountsInUse

 5. True or False: OpenShift Container Platform requires administrators to provide a

manual acknowledgement before applying an update that removes deprecated API

versions.

a. True

b. False

DO280-OCP4.14-en-1-20240215 393

Chapter 9 | OpenShift Updates

Solution

Detect Deprecated Kubernetes API
Usage

Choose the correct answers to the following questions:

 1. Red Hat OpenShift Container Platform 4.14 is based on which version of Kubernetes?

a. Kubernetes 1.24

b. Kubernetes 1.27

c. Kubernetes 1.26

d. OpenShift Container Platform is not based on Kubernetes.

 2. What is the feature maturity status for Kubernetes resources with the v1beta1 API

version?

a. Experimental

b. Pre-release

c. Stable

 3. Which command can the cluster administrator use to identify deprecated API

resources?

a. oc get apirequestcounts
b. oc get deprecatedapis -n openshift-config
c. oc get apis --deprecated
d. oc get configmap deprecated-apis -n openshift-config

 4. Which two alerts identify the use of deprecated API versions in the OpenShift cluster?

(Choose two.)

a. APIRemovedInNextReleaseInUse
b. APIRequestCounts
c. APIRemovedInNextEUSReleaseInUse
d. DeprecatedAPIRequestCountsInUse

 5. True or False: OpenShift Container Platform requires administrators to provide a

manual acknowledgement before applying an update that removes deprecated API

versions.

a. True

b. False

394 DO280-OCP4.14-en-1-20240215

Chapter 9 | OpenShift Updates

Update Operators with the OLM

Objectives
• Update OLM-managed operators by using the web console and CLI.

Operator Updates
For operators that are installed in an OpenShift cluster, operator providers can release new

versions. These new versions can contain bug fixes and new features. The Operator Lifecycle

Manager (OLM) can update these operators.

However, new operator versions can introduce bugs and incompatibilities.

Cluster administrators should define operator update policies to ensure that bug fixes and new

functions are adopted, with the cluster continuing to operate correctly.

OpenShift provides features to help to implement such policies.

• For each installed operator, you can decide whether the OLM automatically applies updates, or

whether the updates require administrator approval.

• Operator providers can create multiple channels for an operator. The provider can follow

different policies to push updates to each channel, so that each channel contains different

versions of the operator. When installing an operator, you choose the channel to follow for

updates.

• You can create custom catalogs, and decide which versions of operators to include in the

catalog. For example, in a multicluster environment, you configure operators to update

automatically, but add only tested versions to the catalog.

Providers can publish operators by other means than the OLM and operator catalogs. For

example, a provider can publish operators as Helm charts or YAML resource files. The OLM does

not manage operators that are installed by other means.

Operator Update Channels
Each operator provider can create multiple channels for an operator.

For example, a provider can create stable and preview channels for an operator. The provider

publishes each new version of the operator to the preview channel. You can use the preview

channel to test new features and to validate that the new versions fix bugs. If the provider receives

feedback for preview versions of the operator and finds no serious issues with the latest version,

then the provider publishes the version to the stable channel. You can use the stable channel for

environments with higher reliability requirements, and trade off slower adoption of new features

for improved stability.

Additionally, operators might have new features that introduce significant changes or

incompatibilities with earlier versions. Operator providers might adopt a versioning scheme for the

operator that separates major updates from minor updates, depending on the adoption cost of

the new version. In this scenario, providers can create channels for different major versions of the

operator.

DO280-OCP4.14-en-1-20240215 395

Chapter 9 | OpenShift Updates

For example, a provider creates an operator that installs an application. The provider creates

version-1 and version-2 channels, to correspond to different major versions of the

application. Users of the operator can stay on the version-1 channel in the production

environment, and test and design an update process to adopt the version-2 channel in a staging

environment.

When you install an operator, determine the most suitable channel for your requirements. Clusters

with varying reliability requirements might use different channels.

You can edit an operator subscription to switch channels. Switching channels does not cause any

operator update, unless switching channel makes a later version available and the operator is

configured for automatic updates. Switching channels might cause unwanted results; always refer

to the operator documentation to learn about possible issues.

Automatic and Manual Updates
When you install an operator, you can decide whether the OLM automatically applies updates, or

whether the OLM requires an administrator to approve the update. On the operator installation

wizard, you can choose between automatic or manual approval. When you create a subscription by

using the oc command, the resource specification contains an installPlanApproval property

that requires an Automatic or Manual value.

If the publishing policies of an operator suit your requirements, then you can configure automatic

approvals. Click Operators > Installed Operators on the web console, or examine cluster service

versions with the oc command, to review the version of installed operators.

If you install an operator and configure manual approvals, then you must approve updates before

the OLM updates the operator.

The Installed Operators page in the web console displays available upgrades.

Figure 9.9: The Installed Operators page with an available upgrade

396 DO280-OCP4.14-en-1-20240215

Chapter 9 | OpenShift Updates

The subscription resources and the install plan resources contain information about upgrades. You

can use the oc command to examine those resources to find available upgrades.

[user@host ~]$ oc get sub -n openshift-operators web-terminal -o yaml
...output omitted...
spec:
 channel: fast
 installPlanApproval: Manual
 name: web-terminal
 source: do280-catalog-redhat
 sourceNamespace: openshift-marketplace
 startingCSV: web-terminal.v1.5.1
status:
...output omitted...
 conditions:
...output omitted...
 - lastTransitionTime: "2022-11-24T13:46:21Z"
 reason: RequiresApproval
 status: "True"
 type: InstallPlanPending
 currentCSV: web-terminal.v1.6.0
 installPlanGeneration: 2
 installPlanRef:
 apiVersion: operators.coreos.com/v1alpha1
 kind: InstallPlan
 name: install-72vnw
 namespace: openshift-operators
 resourceVersion: "194989"
 uid: 8dc979fe-936f-475a-8977-36d210c4da98
 installedCSV: web-terminal.v1.5.1
...output omitted...
 state: UpgradePending

The currentCSV key shows the latest available version in the channel.

The installPlanRef section contains a reference to the install plan resource.

The installedCSV key shows the current version.

The OLM also creates an install plan resource when the operator channel contains a later version

of an operator.

[user@host ~]$ oc get installplan -n openshift-operators install-72vnw -o yaml
apiVersion: operators.coreos.com/v1alpha1
kind: InstallPlan
...output omitted...
spec:
 approval: Manual
 approved: false
 clusterServiceVersionNames:
 - web-terminal.v1.6.0
 generation: 2
status:

DO280-OCP4.14-en-1-20240215 397

Chapter 9 | OpenShift Updates

...output omitted...
 phase: RequiresApproval
...output omitted...

The approval key indicates whether updates must be approved.

The approved key shows whether the update is approved.

The clusterServiceVersionNames shows the updated version.

To install the update, edit the specification of the install plan to change the approved key value to

true.

[user@host ~]$ oc patch installplan install-72vnw --type merge \
 --patch '{"spec":{"approved":true}}'
installplan.operators.coreos.com/install-72vnw patched

You can also use the web console to approve an update. In the Installed Operators, click Upgrade
available, and then click Preview InstallPlan to view the install plan. Review the install plan, and

then click Approve to update the operator.

Figure 9.10: Reviewing an install plan

Operator Updates and Cluster Updates
Operators might be incompatible with later versions of OpenShift. For example, an operator that

uses an API that is removed from later versions of OpenShift does not work correctly when the

cluster is updated. Operators can define a list of compatible OpenShift versions.

398 DO280-OCP4.14-en-1-20240215

Chapter 9 | OpenShift Updates

When updating a cluster, you might need to update operators if the installed version of the

operator is not compatible with the updated OpenShift version. Before you update a cluster,

review and install any operator updates that are needed for compatibility fixes. If no compatible

updates are available, then you must update the cluster by uninstalling incompatible operators.

Uninstalling Operators

You can uninstall operators by using the web console or the oc command.

In the console, click Operators > Installed operators and locate the operator. Click the vertical

ellipsis (⋮) menu, and then click Uninstall Operator.

Figure 9.11: The uninstall operator button

After confirming the operation by clicking Uninstall, the OLM uninstalls the operator.

Alternatively, delete the subscription and cluster service versions by using the oc command.

Important

Uninstalling an operator can leave operator resources on the cluster. Always review

the operator documentation to learn about cleanup processes that you must follow

to completely remove an operator.

References

Refer to the Upgrading Installed Operators section in the Administrator

Tasks chapter in the Red Hat OpenShift Container Platform 4.14 Operators

documentation at

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.14/html-single/operators/index#olm-upgrading-

operators

Refer to the Deleting Operators from a Cluster section in the Administrator

Tasks chapter in the Red Hat OpenShift Container Platform 4.14 Operators

documentation at

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.14/html-single/operators/index#olm-deleting-

operators-from-a-cluster

For more information about creating custom catalogs with controlled operator

versions, refer to the Managing Custom Catalogs section in the Administrator

Tasks chapter in the Red Hat OpenShift Container Platform 4.14 Operators

documentation at

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.14/html-single/operators/index#olm-managing-

custom-catalogs

DO280-OCP4.14-en-1-20240215 399

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index#olm-upgrading-operators
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index#olm-upgrading-operators
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index#olm-upgrading-operators
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index#olm-deleting-operators-from-a-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index#olm-deleting-operators-from-a-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index#olm-deleting-operators-from-a-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index#olm-managing-custom-catalogs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index#olm-managing-custom-catalogs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/operators/index#olm-managing-custom-catalogs

Chapter 9 | OpenShift Updates

Quiz

Update Operators with the OLM

Choose the correct answers to the following questions:

 1. Which component manages the updates of operators that are not cluster operators?

a. Operator Lifecycle Manager (OLM)

b. Cluster Version Operator (CVO)

c. Telemetry client (Telemeter)

 2. In which two ways can you configure operator updates? (Choose two.)

a. With automatic updates, the OLM updates an operator as soon as the configured channel

has a later version of the operator.

b. With automatic updates, the OLM switches the update channel automatically to the

channel with the latest version of the operator, and updates to this version.

c. With manual updates, the OLM does not monitor channels, and you apply updates

manually.

d. With manual updates, the OLM updates an operator when the configured channel has a

later version of the operator, and an administrator approves the update.

 3. In which two ways can you approve updates of an operator? (Choose two.)

a. Update the subscription resource with the intended version.

b. Use the web console to review and approve the install plan resource.

c. Modify the install plan resource by using the Kubernetes API to approve the update.

d. Update the CVO resource specification with the intended version.

 4. Which statement is true about update channels?

a. The OLM restricts changes to the update channel to a set of supported changes.

b. You can change to any update channel.

c. The OLM can change the update channel automatically.

d. You cannot change the update channel of an installed operator. You must uninstall the

operator to use a different update channel.

 5. In which two ways can you uninstall an operator? (Choose two.)

a. Delete the subscription and cluster service versions by using the Kubernetes API.

b. Change the install field of the subscription resource to the false value.

c. Use the web console to uninstall the operator.

d. Remove the operator from the CVO resource specification.

400 DO280-OCP4.14-en-1-20240215

Chapter 9 | OpenShift Updates

Solution

Update Operators with the OLM

Choose the correct answers to the following questions:

 1. Which component manages the updates of operators that are not cluster operators?

a. Operator Lifecycle Manager (OLM)

b. Cluster Version Operator (CVO)

c. Telemetry client (Telemeter)

 2. In which two ways can you configure operator updates? (Choose two.)

a. With automatic updates, the OLM updates an operator as soon as the configured channel

has a later version of the operator.

b. With automatic updates, the OLM switches the update channel automatically to the

channel with the latest version of the operator, and updates to this version.

c. With manual updates, the OLM does not monitor channels, and you apply updates

manually.

d. With manual updates, the OLM updates an operator when the configured channel has a

later version of the operator, and an administrator approves the update.

 3. In which two ways can you approve updates of an operator? (Choose two.)

a. Update the subscription resource with the intended version.

b. Use the web console to review and approve the install plan resource.

c. Modify the install plan resource by using the Kubernetes API to approve the update.

d. Update the CVO resource specification with the intended version.

 4. Which statement is true about update channels?

a. The OLM restricts changes to the update channel to a set of supported changes.

b. You can change to any update channel.

c. The OLM can change the update channel automatically.

d. You cannot change the update channel of an installed operator. You must uninstall the

operator to use a different update channel.

 5. In which two ways can you uninstall an operator? (Choose two.)

a. Delete the subscription and cluster service versions by using the Kubernetes API.

b. Change the install field of the subscription resource to the false value.

c. Use the web console to uninstall the operator.

d. Remove the operator from the CVO resource specification.

DO280-OCP4.14-en-1-20240215 401

Chapter 9 | OpenShift Updates

Quiz

OpenShift Updates

Choose the correct answers to the following questions:

 1. Which component retrieves the updated cluster images from Quay.io?

a. Cluster Version Operator (CVO)

b. Operator Lifecycle Manager (OLM)

c. Telemetry client (Telemeter)

d. Cluster Monitoring (Prometheus)

 2. Which component manages the updates of operators that are not cluster operators?

a. Telemetry client (Telemeter)

b. Operator Lifecycle Manager (OLM)

c. Cluster Version Operator (CVO)

 3. Which statement is true about deprecated APIs?

a. Beta versions of features are maintained indefinitely.

b. When a stable version of a feature is released, the beta versions are marked as

deprecated and are removed in the next Kubernetes release.

c. When a stable version of a feature is released, the beta versions are marked as

deprecated. When a deprecated API can no longer be maintained, the API is removed.

d. When a stable version of a feature is released, the beta versions are marked as

deprecated and are removed after three Kubernetes releases.

 4. In which three ways can you discover usage of deprecated APIs? (Choose three.)

a. You can disable deprecated APIs, so that usage of deprecated APIs fails.

b. APIRequestCount objects count API requests. Review the request count for deprecated

APIs.

c. OpenShift monitoring includes alerts that notify administrators when the cluster receives

a request that uses a deprecated API.

d. OpenShift annotates workloads that use deprecated APIs.

e. If a request uses a deprecated API version, then the API server returns a deprecation

warning.

f. Cluster updates are not possible if deprecated APIs are in use.

402 DO280-OCP4.14-en-1-20240215

Chapter 9 | OpenShift Updates

 5. Which resource do you edit to approve an operator update?

a. PackageManifest
b. Subscription
c. InstallPlan
d. ClusterServiceVersion

DO280-OCP4.14-en-1-20240215 403

Chapter 9 | OpenShift Updates

Solution

OpenShift Updates

Choose the correct answers to the following questions:

 1. Which component retrieves the updated cluster images from Quay.io?

a. Cluster Version Operator (CVO)

b. Operator Lifecycle Manager (OLM)

c. Telemetry client (Telemeter)

d. Cluster Monitoring (Prometheus)

 2. Which component manages the updates of operators that are not cluster operators?

a. Telemetry client (Telemeter)

b. Operator Lifecycle Manager (OLM)

c. Cluster Version Operator (CVO)

 3. Which statement is true about deprecated APIs?

a. Beta versions of features are maintained indefinitely.

b. When a stable version of a feature is released, the beta versions are marked as

deprecated and are removed in the next Kubernetes release.

c. When a stable version of a feature is released, the beta versions are marked as

deprecated. When a deprecated API can no longer be maintained, the API is removed.

d. When a stable version of a feature is released, the beta versions are marked as

deprecated and are removed after three Kubernetes releases.

 4. In which three ways can you discover usage of deprecated APIs? (Choose three.)

a. You can disable deprecated APIs, so that usage of deprecated APIs fails.

b. APIRequestCount objects count API requests. Review the request count for deprecated

APIs.

c. OpenShift monitoring includes alerts that notify administrators when the cluster receives

a request that uses a deprecated API.

d. OpenShift annotates workloads that use deprecated APIs.

e. If a request uses a deprecated API version, then the API server returns a deprecation

warning.

f. Cluster updates are not possible if deprecated APIs are in use.

404 DO280-OCP4.14-en-1-20240215

Chapter 9 | OpenShift Updates

 5. Which resource do you edit to approve an operator update?

a. PackageManifest
b. Subscription
c. InstallPlan
d. ClusterServiceVersion

DO280-OCP4.14-en-1-20240215 405

Chapter 9 | OpenShift Updates

Summary

• A major benefit of OpenShift 4 architectural changes is that you can update your clusters Over-

the-Air (OTA).

• Red Hat provides a software distribution system that ensures the best path for updating your

OpenShift 4 cluster and the underlying operating system.

• Red Hat maintains several distribution channels:

– The fast channel delivers updates as soon as they are available.

– The stable channel delivers updates that passed additional testing and validation in

operational clusters.

– The candidate channel delivers updates for testing feature acceptance in the next version of

OpenShift Container Platform.

– The eus channel (which is available only for Extended Updated Support releases) extends the

maintenance phase.

• Red Hat does not support reverting your cluster to an earlier version.

• The Kubernetes API versions are categorized based on feature maturity.

• When a stable version of an API is released, the beta versions are marked as deprecated and are

removed after three Kubernetes releases.

• Requests to a deprecated API display warnings and trigger alerts. You can track deprecated API

usage by using APIRequestCount objects.

• The Operator Lifecycle Manager (OLM) can update operators that are installed in an OpenShift

cluster.

• For each installed operator, you can decide whether the OLM automatically applies updates, or

whether the updates require administrator approval.

• Operator providers can create multiple channels for an operator with different release policies.

406 DO280-OCP4.14-en-1-20240215

Chapter 10

Comprehensive Review

Goal Review tasks from Red Hat OpenShift
Administration II: Configuring a Production Cluster.

Sections • Comprehensive Review

Lab • Cluster Self-service Setup

• Secure Applications

• Deploy Packaged Applications

DO280-OCP4.14-en-1-20240215 407

Chapter 10 | Comprehensive Review

Comprehensive Review

Objectives
After completing this section, you should have reviewed and refreshed the knowledge and skills

that you learned in Red Hat OpenShift Administration II: Configuring a Production Cluster.

Reviewing Red Hat OpenShift Administration II:
Configuring a Production Cluster
Before beginning the comprehensive review for this course, you should be comfortable with

the topics covered in each chapter. Do not hesitate to ask the instructor for extra guidance or

clarification on these topics.

Chapter 1, Declarative Resource Management

Deploy and update applications from resource manifests that are parameterized for different

target environments.

• Deploy and update applications from resource manifests that are stored as YAML files.

• Deploy and update applications from resource manifests that are augmented by Kustomize.

Chapter 2, Deploy Packaged Applications

Deploy and update applications from resource manifests that are packaged for sharing and

distribution.

• Deploy an application and its dependencies from resource manifests that are stored in an

OpenShift template.

• Deploy and update applications from resource manifests that are packaged as Helm charts.

Chapter 3, Authentication and Authorization

Configure authentication with the HTPasswd identity provider and assign roles to users and

groups.

• Configure the HTPasswd identity provider for OpenShift authentication.

• Define role-based access controls and apply permissions to users.

Chapter 4, Network Security

Protect network traffic between applications inside and outside the cluster.

• Allow and protect network connections to applications inside an OpenShift cluster.

• Restrict network traffic between projects and pods.

• Configure and use automatic service certificates.

408 DO280-OCP4.14-en-1-20240215

Chapter 10 | Comprehensive Review

Chapter 5, Expose non-HTTP/SNI Applications

Expose applications to external access without using an ingress controller.

• Expose applications to external access by using load balancer services.

• Expose applications to external access by using a secondary network.

Chapter 6, Enable Developer Self-Service

Configure clusters for safe self-service by developers from multiple teams, and disallow self-

service if operations staff must provision projects.

• Configure compute resource quotas and Kubernetes resource count quotas per project and

cluster-wide.

• Configure default and maximum compute resource requirements for pods per project.

• Configure default quotas, limit ranges, role bindings, and other restrictions for new projects, and

the allowed users to self-provision new projects.

Chapter 7, Manage Kubernetes Operators

Install and update operators that the Operator Lifecycle Manager and the Cluster Version

Operator manage.

• Explain the operator pattern and different approaches for installing and updating Kubernetes

operators.

• Install and update operators by using the web console and the Operator Lifecycle Manager.

• Install and update operators by using the Operator Lifecycle Manager APIs.

Chapter 8, Application Security

Run applications that require elevated or special privileges from the host operating system or

Kubernetes.

• Create service accounts and apply permissions, and manage security context constraints.

• Run an application that requires access to the Kubernetes API of the application's cluster.

• Automate regular cluster and application management tasks by using Kubernetes cron jobs.

Chapter 9, OpenShift Updates

Update an OpenShift cluster and minimize disruption to deployed applications.

• Describe the cluster update process.

• Identify applications that use deprecated Kubernetes APIs.

• Update OLM-managed operators by using the web console and CLI.

DO280-OCP4.14-en-1-20240215 409

Chapter 10 | Comprehensive Review

Lab

Cluster Self-service Setup

Configure a cluster with default settings for self-service projects.

Outcomes
• Create a project template that sets quotas, ranges, and network policies.

• Restrict access to the self-provisioners cluster role.

• Create groups and assign users to groups.

• Use role-based access control (RBAC) to grant permissions to groups.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your

system for this exercise.

[student@workstation ~]$ lab start compreview-review

The lab command copies the exercise files to the ~/DO280 directory and creates the

following users:

• do280-support
• do280-platform
• do280-presenter
• do280-attendee

The goal, as the cluster administrator, is to configure a dedicated cluster to host workshops

on different topics.

Each workshop requires a project, so that workshops are isolated from each other.

You must set up the cluster so that when the presenter creates a workshop project, the

project gets a base configuration.

The presenter must be mostly self-sufficient to administer a workshop with little help from

the workshop support team.

The workshop support team must deploy applications that administer workshops and that

enhance the workshop experience. You set up a project and the applications for this purpose

on a second lab.

Specifications

Use the following values to access the OpenShift cluster:

Item Value

Dev user/password developer/developer

410 DO280-OCP4.14-en-1-20240215

Chapter 10 | Comprehensive Review

Item Value

Admin user/password admin/redhatocp

API URL https://api.ocp4.example.com:6443

The following workshop groups are required:

• Create the groups with the specified users in the following table:

Group User

platform do280-platform

presenters do280-presenter

workshop-support do280-support

The lab start command creates the users with the redhat password.

• The platform group administers the cluster.

• The presenters group consists of the people who deliver the workshops.

• The workshop-support group maintains the needed applications to support the workshops

and the workshop presenters.

• Ensure that only users from the following groups can create projects:

Group

platform

presenters

workshop-support

• An attendee must not be able to create projects. Because this exercise requires steps that

restart the Kubernetes API server, this configuration must persist across API server restarts.

• The workshop-support group requires the following roles in the cluster:

– The admin role to administer projects

– A custom role that is provided in the groups-role.yaml file You must create this custom

role to enable support members to create workshop groups and to add workshop attendees.

• The platform group must be able to administer the cluster without restrictions.

• The workshop-support group must perform the following tasks for the workshop project:

– Create a workshop-specific attendees group.

– Assign the edit role to the attendees group.

– Add users to the attendees group.

• Each workshop must be hosted in an independent project.

• All the resources that the cluster creates with a new workshop project must use workshop as

the name for grading purposes.

DO280-OCP4.14-en-1-20240215 411

Chapter 10 | Comprehensive Review

• Each workshop must enforce the following maximum constraints:

– The project uses up to 2 CPUs.

– The project uses up to 1 Gi of RAM.

– The project requests up to 1.5 CPUs.

– The project requests up to 750 Mi of RAM.

• Each workshop must enforce constraints to prevent an attendee's workload from consuming all

the allocated resources for the workshop:

– A workload uses up to 750m CPUs.

– A workload uses up to 750 Mi.

• Each workshop must have a resource specification for workloads:

– A default limit of 500m CPUs.

– A default limit of 500 Mi of RAM.

– A default request of 0.1 CPUs.

– A default request of 250 Mi of RAM.

You can use the templates that are provided in the quota.yaml, limitrange.yaml, and

networkpolicy.yaml files.

• Each workshop project must have this additional default configuration:

– A local binding for the presenter user to the admin cluster role with the workshop name

– The workshop=project_name label to help to identify the workshop workload

– Must accept traffic only from within the same workshop or from the ingress controller.

• Use the registry.ocp4.example.com:8443/redhattraining/hello-world-
nginx:v1.0 image, which listens on the 8080 port, to simulate a workshop workload.

• As the do280-presenter user, you must create a workshop with the do280 name.

• As the do280-support user, you must create the do280-attendees group with the do280-
attendee user, and assign the edit cluster role to the do280-attendees group.

Evaluation

As the student user on the workstation machine, use the lab command to grade your work.

Correct any reported failures and rerun the command until successful.

[student@workstation ~]$ lab grade compreview-review

Finish

As the student user on the workstation machine, use the lab command to complete this

exercise. This step is important to ensure that resources from previous exercises do not impact

upcoming exercises.

[student@workstation ~]$ lab finish compreview-review

412 DO280-OCP4.14-en-1-20240215

Chapter 10 | Comprehensive Review

Solution

Cluster Self-service Setup

Configure a cluster with default settings for self-service projects.

Outcomes
• Create a project template that sets quotas, ranges, and network policies.

• Restrict access to the self-provisioners cluster role.

• Create groups and assign users to groups.

• Use role-based access control (RBAC) to grant permissions to groups.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your

system for this exercise.

[student@workstation ~]$ lab start compreview-review

The lab command copies the exercise files to the ~/DO280 directory and creates the

following users:

• do280-support
• do280-platform
• do280-presenter
• do280-attendee

The goal, as the cluster administrator, is to configure a dedicated cluster to host workshops

on different topics.

Each workshop requires a project, so that workshops are isolated from each other.

You must set up the cluster so that when the presenter creates a workshop project, the

project gets a base configuration.

The presenter must be mostly self-sufficient to administer a workshop with little help from

the workshop support team.

The workshop support team must deploy applications that administer workshops and that

enhance the workshop experience. You set up a project and the applications for this purpose

on a second lab.

1. Change to the ~/DO280/labs/compreview-review directory and log in to the cluster as

the admin user.

1.1. Change to the lab directory.

[student@workstation ~]$ cd ~/DO280/labs/compreview-review

DO280-OCP4.14-en-1-20240215 413

Chapter 10 | Comprehensive Review

1.2. Open a terminal window and log in as the admin user with the redhatocp password.

[student@workstation compreview-review]$ oc login -u admin -p redhatocp \
 https://api.ocp4.example.com:6443
Login successful.
...output omitted...

2. Create the following groups and add a user as specified in the following table.

Group User

workshop-support do280-support

presenters do280-presenter

platform do280-platform

2.1. Create the workshop-support group.

[student@workstation compreview-review]$ oc adm groups new workshop-support
group.user.openshift.io/workshop-support created

2.2. Add the do280-support user to the workshop-support group.

[student@workstation compreview-review]$ oc adm groups add-users \
 workshop-support do280-support
group.user.openshift.io/workshop-support added: "do280-support"

2.3. Create the presenters group.

[student@workstation compreview-review]$ oc adm groups new presenters
group.user.openshift.io/presenters created

2.4. Add the do280-presenter user to the presenters group.

[student@workstation compreview-review]$ oc adm groups add-users \
 presenters do280-presenter
group.user.openshift.io/presenters added: "do280-presenter"

2.5. Create the platform group.

[student@workstation compreview-review]$ oc adm groups new platform
group.user.openshift.io/platform created

2.6. Add the do280-platform user to the platform group.

[student@workstation compreview-review]$ oc adm groups add-users \
 platform do280-platform
group.user.openshift.io/platform added: "do280-platform"

414 DO280-OCP4.14-en-1-20240215

Chapter 10 | Comprehensive Review

2.7. Use the oc get groups command to verify that the group configuration is correct.

[student@workstation compreview-review]$ oc get groups
NAME USERS
...output omitted...
platform do280-platform
presenters do280-presenter
workshop-support do280-support

3. Grant to the workshop-support group the admin and the custom manage-groups
cluster roles. You must create the manage-groups custom cluster role from the

groups-role.yaml file.

3.1. Grant the admin cluster role to the workshop-support group.

[student@workstation compreview-review]$ oc adm policy \
 add-cluster-role-to-group admin workshop-support
clusterrole.rbac.authorization.k8s.io/admin added: "workshop-support"

3.2. Run the oc create command to create the manage-groups cluster role in the

groups-role.yaml file.

[student@workstation compreview-review]$ oc create -f groups-role.yaml
clusterrole.rbac.authorization.k8s.io/manage-groups created

3.3. Grant the manage-groups cluster role to the workshop-support group.

[student@workstation compreview-review]$ oc adm policy \
 add-cluster-role-to-group manage-groups workshop-support
clusterrole.rbac.authorization.k8s.io/manage-groups added: "workshop-support"

4. Create a cluster role binding to assign the cluster-admin cluster role to the platform
group.

[student@workstation compreview-review]$ oc adm policy \
 add-cluster-role-to-group cluster-admin platform
clusterrole.rbac.authorization.k8s.io/cluster-admin added: "platform"

5. Allow only the platform, workshop-support and presenters groups to create

projects, by editing the self-provisioner cluster role. Enforce that only users from

these groups can create projects. Also, make this change permanent by setting the

rbac.authorization.kubernetes.io/autoupdate annotation with the false value.

5.1. Use the oc edit command to edit the self-provisioners cluster role binding.

[student@workstation compreview-review]$ oc edit clusterrolebinding \
 self-provisioners

Replace the subject of the role binding for the system:authenticated:oauth
group with the platform, workshop-support, and presenters groups.

DO280-OCP4.14-en-1-20240215 415

Chapter 10 | Comprehensive Review

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 annotations:
 rbac.authorization.kubernetes.io/autoupdate: "false"
 creationTimestamp: "2023-01-24T23:31:00Z"
 name: self-provisioners
 resourceVersion: "250330"
 uid: a6053896-f68f-41ff-9bb3-5da579a701bc
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: self-provisioner
subjects:
- apiGroup: rbac.authorization.k8s.io
 kind: Group
 name: platform
- apiGroup: rbac.authorization.k8s.io
 kind: Group
 name: workshop-support
- apiGroup: rbac.authorization.k8s.io
 kind: Group
 name: presenters

5.2. As the do280-attendee user, verify that you cannot create a project.

Log in as the do280-attendee user with the redhat password.

[student@workstation compreview-review]$ oc login -u do280-attendee -p redhat
Login successful.

You don't have any projects. Contact your system administrator to request a
 project.

Use the oc new-project command to try to create a template-test project.

[student@workstation compreview-review]$ oc new-project template-test
Error from server (Forbidden): You may not request a new project via this API.

6. As the admin user, create a template-test namespace to design the project template.

6.1. Log in as the admin user with the redhatocp password.

[student@workstation compreview-review]$ oc login -u admin -p redhatocp
Login successful.
...output omitted...

6.2. Use the oc new-project command to create the template-test project.

[student@workstation compreview-review]$ oc new-project template-test
Now using project "template-test" on server...
...output omitted...

416 DO280-OCP4.14-en-1-20240215

Chapter 10 | Comprehensive Review

7. Create a template resource quota with the following specification.

Quota Value

limits.cpu 2

limits.memory 1Gi

requests.cpu 1500m

requests.memory 750Mi

7.1. Edit the quota.yaml file and replace the CHANGE_ME label to match the following

definition.

apiVersion: v1
kind: ResourceQuota
metadata:
 name: workshop
 namespace: template-test
spec:
 hard:
 limits.cpu: 2
 limits.memory: 1Gi
 requests.cpu: 1500m
 requests.memory: 750Mi

7.2. Use the oc create command to create the quota in the template-test project.

[student@workstation compreview-review]$ oc create -f quota.yaml
resourcequota/workshop created

8. Create the workshop limit range with the following specification.

Limit type Value

max.cpu 750m

max.mem 750Mi

default.cpu 500m

default.memory 500Mi

defaulRequest.cpu 100m

defaulRequest.memory 250Mi

8.1. Edit the limitrange.yaml file and replace the CHANGE_ME label to match the

following definition.

DO280-OCP4.14-en-1-20240215 417

Chapter 10 | Comprehensive Review

apiVersion: v1
kind: LimitRange
metadata:
 name: workshop
 namespace: template-test
spec:
 limits:
 - max:
 cpu: 750m
 memory: 750Mi
 default:
 cpu: 500m
 memory: 500Mi
 defaultRequest:
 cpu: 100m
 memory: 250Mi
 type: Container

8.2. Use the oc create command to create the limit range in the template-test
project.

[student@workstation compreview-review]$ oc create -f limitrange.yaml
limitrange/workshop created

9. Create a network policy to accept traffic from within the workshop project or from outside

the cluster. To identify the workshop project traffic, label the template-test namespace

with the workshop=template-test label.

9.1. Use the oc create deployment command to create a deployment without resource

specifications.

[student@workstation compreview-review]$ oc create deployment test-workload \
 --image registry.ocp4.example.com:8443/redhattraining/hello-world-nginx:v1.0
deployment.apps/test-workload created

9.2. Get the IP address of one of the NGINX pods.

[student@workstation compreview-review]$ oc get pod -o wide
NAME READY STATUS ... IP ...
test-workload-56bf7dc6fc-mshn9 1/1 Running ... 10.8.0.138 ...

9.3. Use the oc debug command to run the curl command from a pod in the default
project.

Use the curl command from the default namespace to query the NGINX server

that runs in the test workload.

[student@workstation compreview-review]$ oc debug --to-namespace="default" \
 -- curl -s http://10.8.0.138:8080
Starting pod/image-debug ...
<html>
 <body>

418 DO280-OCP4.14-en-1-20240215

Chapter 10 | Comprehensive Review

 <h1>Hello, world from nginx!</h1>
 </body>
</html>

Removing debug pod ...

9.4. Use the oc label command to add the label to the template-test namespace.

[student@workstation compreview-review]$ oc label ns template-test \
 workshop=template-test
namespace/template-test labeled

9.5. Edit the network policy from the networkpolicy.yaml file. Replace the CHANGE_ME
labels according to the following specification.

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: workshop
 namespace: template-test
spec:
 podSelector: {}
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 workshop: template-test
 - namespaceSelector:
 matchLabels:
 policy-group.network.openshift.io/ingress: ""

9.6. Run the oc create command to create the policy in the template-test project.

[student@workstation compreview-review]$ oc create -f networkpolicy.yaml
networkpolicy.networking.k8s.io/workshop created

9.7. Verify that you cannot connect to the workshop pod from the default project.

[student@workstation compreview-review]$ oc debug --to-namespace="default" \
 -- curl -sS --connect-timeout 5 http://10.8.0.138:8080
Starting pod/image-debug ...
curl: (28) Connection timed out after 5000 milliseconds

Removing debug pod ...

9.8. Verify that you can connect to the workshop pod from the workshop project.

[student@workstation compreview-review]$ oc debug \
 --to-namespace="template-test" \
 -- curl -sS http://10.8.0.138:8080
Warning: would violate PodSecurity "restricted:latest": ...output omitted...
Starting pod/image-debug ...

DO280-OCP4.14-en-1-20240215 419

Chapter 10 | Comprehensive Review

<html>
 <body>
 <h1>Hello, world from nginx!</h1>
 </body>
</html>

Removing debug pod ...

10. Create the workshop project template by using the previously created template resources.

10.1. Run the oc adm create-bootstrap-project-template command to create the

project-template.yaml file to use as the template for new projects.

[student@workstation compreview-review]$ oc adm \
 create-bootstrap-project-template \
 -o yaml > project-template.yaml

10.2. Use the oc get command to create a YAML list with the following resources:

• resourcequota/workshop
• limitrange/workshop
• networkpolicy/workshop

Redirect the output to append to the project-template.yaml file.

[student@workstation compreview-review]$ oc get resourcequota/workshop \
 limitrange/workshop \
 networkpolicy/workshop \
 -o yaml >> project-template.yaml

10.3. Edit the project-template.yaml file to perform the following operations:

• Cut the contents of the items stanza and paste them immediately before the

parameters stanza. Keep the original indentation, because every YAML item of the

list must appear at the beginning of the line.

• Remove any left-over content after the parameters block.

• Remove the following keys from the limit range and quota definitions:

– creationTimestamp
– resourceVersion
– uid
– status
– generation

• Replace the template-test text with the ${PROJECT_NAME} text.

• Add the workshop=${PROJECT_NAME} label.

• Rename the admin role binding with the workshop name.

Use the search-and-replace editor function to replace the template-test string

with the ${PROJECT_NAME} template parameter. Optionally, you can use the sed
command if it is available.

420 DO280-OCP4.14-en-1-20240215

Chapter 10 | Comprehensive Review

The solution file is in the ~/DO280/solutions/compreview-review/project-
template.yaml path.

[student@workstation compreview-review]$ sed -i \
 's/template-test/${PROJECT_NAME}/g' project-template.yaml

Then, move the resource list to the objects key. The project-template.yaml file

has the following expected content.

apiVersion: template.openshift.io/v1
kind: Template
metadata:
 name: project-request
objects:
- apiVersion: project.openshift.io/v1
 kind: Project
 metadata:
 annotations:
 openshift.io/description: ${PROJECT_DESCRIPTION}
 openshift.io/display-name: ${PROJECT_DISPLAYNAME}
 openshift.io/requester: ${PROJECT_REQUESTING_USER}
 name: ${PROJECT_NAME}
 labels:
 workshop: ${PROJECT_NAME}
 spec: {}
- apiVersion: rbac.authorization.k8s.io/v1
 kind: RoleBinding
 metadata:
 name: workshop
 namespace: ${PROJECT_NAME}
 roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: admin
 subjects:
 - apiGroup: rbac.authorization.k8s.io
 kind: User
 name: ${PROJECT_ADMIN_USER}
- apiVersion: v1
 kind: ResourceQuota
 metadata:
 annotations:
 name: workshop
 namespace: ${PROJECT_NAME}
 spec:
 hard:
 limits.cpu: "2"
 limits.memory: 1Gi
 requests.cpu: 1500m
 requests.memory: 750Mi
- apiVersion: v1
 kind: LimitRange
 metadata:
 annotations:

DO280-OCP4.14-en-1-20240215 421

Chapter 10 | Comprehensive Review

 name: workshop
 namespace: ${PROJECT_NAME}
 spec:
 limits:
 - default:
 cpu: 500m
 memory: 500Mi
 defaultRequest:
 cpu: 100m
 memory: 250Mi
 max:
 cpu: 750m
 memory: 750Mi
 type: Container
- apiVersion: networking.k8s.io/v1
 kind: NetworkPolicy
 metadata:
 annotations:
 name: workshop
 namespace: ${PROJECT_NAME}
 spec:
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 workshop: ${PROJECT_NAME}
 - namespaceSelector:
 matchLabels:
 policy-group.network.openshift.io/ingress: ""
 podSelector: {}
 policyTypes:
 - Ingress
parameters:
- name: PROJECT_NAME
- name: PROJECT_DISPLAYNAME
- name: PROJECT_DESCRIPTION
- name: PROJECT_ADMIN_USER
- name: PROJECT_REQUESTING_USER

10.4. Create the project template in the project-template.yaml file by using the oc
create command in the openshift-config namespace.

[student@workstation compreview-review]$ oc create -f project-template.yaml \
 -n openshift-config
template.template.openshift.io/project-request created

10.5. Use the oc edit command to change the cluster project configuration.

[student@workstation compreview-review]$ oc edit \
 projects.config.openshift.io cluster

Edit the resource to match the following content:

422 DO280-OCP4.14-en-1-20240215

Chapter 10 | Comprehensive Review

apiVersion: config.openshift.io/v1
kind: Project
metadata:
...output omitted...
 name: cluster
...output omitted...
spec:
 projectRequestTemplate:
 name: project-request

To edit the file, you use the default vi editor.

10.6. Use the watch command to view the API server pods.

[student@workstation compreview-review]$ watch oc get \
 pod -n openshift-apiserver

Wait until new pods are created. Press Ctrl+C to exit the watch command.

11. As the do280-presenter, create the do280 workshop project.

11.1. Log in as the do280-presenter user with the redhat password.

[student@workstation compreview-review]$ oc login -u do280-presenter -p redhat
Login successful.
...output omitted...

11.2. Use the oc new-project command to create the do280 project.

[student@workstation compreview-review]$ oc new-project do280
Now using project "do280" on server ...
...output omitted...

11.3. Verify that the oc new-project command creates the following resources from the

template:

• Quota

• Limit range

• Network policy

[student@workstation compreview-review]$ oc get resourcequota/workshop \
 limitrange/workshop \
 networkpolicy/workshop
NAME AGE REQUEST LIMIT
resourcequota/workshop 95s requests.cpu: 0/1500m ... limits.cpu: 0/2 ...
NAME CREATED AT
limitrange/workshop 2023-03-03T10:37:28Z
NAME POD-SELECTOR AGE
networkpolicy.networking.k8s.io/workshop <none> 95s

11.4. Verify that the do280 project definition has the workshop=do280 label.

DO280-OCP4.14-en-1-20240215 423

Chapter 10 | Comprehensive Review

[student@workstation compreview-review]$ oc get project do280 -o yaml
apiVersion: project.openshift.io/v1
kind: Project
metadata:
...output omitted...
 labels:
 workshop: do280
...output omitted...
 name: do280
 resourceVersion: "1293438"
...output omitted...

12. As the do280-support user, create the do280-attendees group. Then, assign the edit
cluster role to the do280-attendees group, and add the do280-attendee user to the

group.

12.1. Log in as the do280-support user with the redhat password.

[student@workstation compreview-review]$ oc login -u do280-support -p redhat
Login successful.
...output omitted...

12.2. Create the do280-attendees group.

[student@workstation compreview-review]$ oc adm groups new do280-attendees
group.user.openshift.io/do280-attendees created

12.3. Assign the edit role to the do280-attendees group in the do280-workshop
project.

Add the edit cluster role to the do280-attendees group in the do280 project.

[student@workstation compreview-review]$ oc adm policy \
 add-role-to-group edit do280-attendees -n do280
clusterrole.rbac.authorization.k8s.io/edit added: "do280-attendees"

12.4. As the do280-attendee user, verify that you cannot access the do280 project.

Log in as the do280-attendee user with the redhat password.

[student@workstation compreview-review]$ oc login -u do280-attendee -p redhat
Login successful.
You don't have any projects. ...

12.5. As the do280-support user, add the do280-attendee user to the do280-
attendees group.

Log in as the do280-support user with the redhat password.

[student@workstation compreview-review]$ oc login -u do280-support -p redhat
Login successful.
...output omitted...

424 DO280-OCP4.14-en-1-20240215

Chapter 10 | Comprehensive Review

Use the oc adm groups command to add the do280-attendee user to the

workshop-do280-attendees group.

[student@workstation compreview-review]$ oc adm groups add-users \
 do280-attendees do280-attendee
group.user.openshift.io/do280-attendees added: "do280-attendee"

12.6. As the do280-attendee user, verify that you can create workloads in the do280
project.

Log in as the do280-attendee user with the redhat password.

[student@workstation compreview-review]$ oc login -u do280-attendee -p redhat
Login successful.
You have one project on this server: "do280"
Using project "do280".

Use the oc create deployment command to create a deployment without resource

specifications.

[student@workstation compreview-review]$ oc create deployment \
 attendee-workload \
 --image registry.ocp4.example.com:8443/redhattraining/hello-world-nginx:v1.0
deployment.apps/attendee-workload created

13. Change to the home directory to prepare for the next exercise.

[student@workstation appsec-review]$ cd

Evaluation

As the student user on the workstation machine, use the lab command to grade your work.

Correct any reported failures and rerun the command until successful.

[student@workstation ~]$ lab grade compreview-review

Finish

As the student user on the workstation machine, use the lab command to complete this

exercise. This step is important to ensure that resources from previous exercises do not impact

upcoming exercises.

[student@workstation ~]$ lab finish compreview-review

DO280-OCP4.14-en-1-20240215 425

Chapter 10 | Comprehensive Review

Lab

Secure Applications

Configure a project that requires custom settings.

Secure applications by encrypting and restricting network traffic.

Automate cluster maintenance tasks.

Outcomes
• Create a project quota.

• Create a limit range.

• Use role-based access control to grant permissions to service accounts and groups.

• Encrypt the traffic end-to-end with TLS by using a signed certificate.

• Restrict cluster internal traffic to pods by using network policies.

• Grant application access to Kubernetes APIs.

• Configure a cluster maintenance application to run periodically.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your

system for this exercise.

[student@workstation ~]$ lab start compreview-apps

The lab command copies the exercise files into the ~/DO280/labs/compreview-apps
directory and creates the workshop-support group with the do280-support user. The

lab command also restores the project template configuration from the previous exercise.

The goal, as a cluster administrator, is to prepare the workshop-support namespace

for the support team. Create a namespace instead of a project to avoid using the project

template. The project template applies a default configuration for workshop projects,

and does not apply the configuration to the workshop-support namespace. Then, as a

support team member, you configure and deploy the applications that maintain the cluster

and support the workshop experience.

You must set up an application that automatically deletes completed workshops, and set up

a social media API that attendees from all workshops use.

Specifications

• Create the workshop-support namespace with the category: support label.

• Grant to the workshop-support group the admin role in the cluster.

• Workloads from the workshop-support namespace must enforce the following constraints:

426 DO280-OCP4.14-en-1-20240215

Chapter 10 | Comprehensive Review

– The project uses up to 4 CPUs.

– The project uses up to 4 Gi of RAM.

– The project requests up to 3.5 CPUs.

– The project requests up to 3 Gi of RAM.

• Define the default resource specification for workloads:

– A default limit of 300m CPUs.

– A default limit of 400 Mi of RAM.

– A default request of 100m CPUs.

– A default request of 250 Mi of RAM.

• Any quota or limit range must have the workshop-support name for grading purposes.

• As the do280-support user, deploy the project-cleaner application from the project-
cleaner/example-pod.yaml file to the workshop-support namespace by using a

project-cleaner cron job that runs every minute.

The project cleaner deletes projects with the workshop label that exist for more than 10

seconds. This short expiration time is deliberate for this lab.

• You must create a project-cleaner-sa service account to use in the project cleaner

application.

• The role that the project cleaner needs is defined in the project-cleaner/cluster-
role.yaml file.

• Deploy the beeper-db database in the beeper-api/beeper-db.yaml file to the

workshop-support namespace.

• Deploy the beeper-api application in the beeper-api/deployment.yaml file to the

workshop-support namespace.

• You must configure this application to use TLS end-to-end by using the following specification:

– Use the beeper-api.pem certificate and the beeper-api.key in the certs directory.

– Configure the /etc/pki/beeper-api/ path as the mount point for the certificate and key.

– Set the TLS_ENABLED environment variable to the true value.

• Update the startup, readiness, and liveness probes to use TLS.

• Create a passthrough route with the beeper-api.apps.ocp4.example.com hostname.

• The database pods, which are pods in the workshop-support namespace with the

app=beeper-db label, must accept only TCP traffic from the beeper-api pods in the

workshop-support namespace on the 5432 port. You can use the category=support label

to identify the pods that belong to the workshop-support namespace.

• Configure the cluster network so that the workshop-support namespace accepts only

external ingress traffic to pods that listen on the 8080 port, and blocks traffic from other

projects.

Evaluation

As the student user on the workstation machine, use the lab command to grade your work.

Correct any reported failures and rerun the command until successful.

[student@workstation ~]$ lab grade compreview-apps

DO280-OCP4.14-en-1-20240215 427

Chapter 10 | Comprehensive Review

Finish

As the student user on the workstation machine, use the lab command to complete this

exercise. This step is important to ensure that resources from previous exercises do not impact

upcoming exercises.

[student@workstation ~]$ lab finish compreview-apps

428 DO280-OCP4.14-en-1-20240215

Chapter 10 | Comprehensive Review

Solution

Secure Applications

Configure a project that requires custom settings.

Secure applications by encrypting and restricting network traffic.

Automate cluster maintenance tasks.

Outcomes
• Create a project quota.

• Create a limit range.

• Use role-based access control to grant permissions to service accounts and groups.

• Encrypt the traffic end-to-end with TLS by using a signed certificate.

• Restrict cluster internal traffic to pods by using network policies.

• Grant application access to Kubernetes APIs.

• Configure a cluster maintenance application to run periodically.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your

system for this exercise.

[student@workstation ~]$ lab start compreview-apps

The lab command copies the exercise files into the ~/DO280/labs/compreview-apps
directory and creates the workshop-support group with the do280-support user. The

lab command also restores the project template configuration from the previous exercise.

The goal, as a cluster administrator, is to prepare the workshop-support namespace

for the support team. Create a namespace instead of a project to avoid using the project

template. The project template applies a default configuration for workshop projects,

and does not apply the configuration to the workshop-support namespace. Then, as a

support team member, you configure and deploy the applications that maintain the cluster

and support the workshop experience.

You must set up an application that automatically deletes completed workshops, and set up

a social media API that attendees from all workshops use.

1. Change to the ~/DO280/labs/compreview-apps directory and log in to the cluster as the

admin user.

1.1. Open a terminal window and change to the lab directory.

[student@workstation ~]$ cd ~/DO280/labs/compreview-apps

DO280-OCP4.14-en-1-20240215 429

Chapter 10 | Comprehensive Review

1.2. Log in as the admin user with the redhatocp password.

[student@workstation compreview-apps]$ oc login -u admin -p redhatocp \
 https://api.ocp4.example.com:6443
Login successful.
...output omitted...

2. Create and prepare the workshop-support namespace with the following actions:

• Add the category=support label.

• Grant the admin cluster role to the workshop-support group.

2.1. Create the workshop-support namespace.

[student@workstation compreview-apps]$ oc create namespace workshop-support
namespace/workshop-support created

2.2. Use the oc label command to add the category=support label to the

workshop-support namespace.

[student@workstation beeper-api]$ oc label namespace \
 workshop-support category=support
namespace/workshop-support labeled

2.3. Change to the workshop-support namespace by using the oc project command.

[student@workstation beeper-api]$ oc project workshop-support
Now using project "workshop-support" on server...

2.4. Create a cluster role binding to assign the admin cluster role to the workshop-
support group.

[student@workstation compreview-apps]$ oc adm policy \
 add-cluster-role-to-group admin workshop-support
clusterrole.rbac.authorization.k8s.io/admin added: "workshop-support"

3. Create the resource quota for the workshop-support namespace with the following

specification.

Quota Value

limits.cpu 4

limits.memory 4Gi

requests.cpu 3500m

requests.memory 3Gi

3.1. Run the oc create quota command to create the quota.

430 DO280-OCP4.14-en-1-20240215

Chapter 10 | Comprehensive Review

[student@workstation compreview-apps]$ oc create quota workshop-support \
 --hard=limits.cpu=4,limits.memory=4Gi,requests.cpu=3500m,requests.memory=3Gi
resourcequota/workshop-support created

4. Create the workshop limit range with the following specification.

Limit type Value

default.cpu 300m

default.memory 400Mi

defaulRequest.cpu 100m

defaulRequest.memory 250Mi

4.1. Edit the limitrange.yaml file and replace the CHANGE_ME label to match the

following definition.

apiVersion: v1
kind: LimitRange
metadata:
 name: workshop-support
 namespace: workshop-support
spec:
 limits:
 - default:
 cpu: 300m
 memory: 400Mi
 defaultRequest:
 cpu: 100m
 memory: 250Mi
 type: Container

4.2. Use the oc apply command to create the limit range in the workshop-support
project.

[student@workstation compreview-apps]$ oc apply -f limitrange.yaml
limitrange/workshop-support created

5. Create the project-cleaner-sa service account in the workshop-support namespace.

Then, assign the role from the project-cleaner/cluster-role.yaml file to the

project-cleaner-sa service account.

5.1. Create the project-cleaner-sa service account.

[student@workstation compreview-apps]$ oc create sa project-cleaner-sa
serviceaccount/project-cleaner-sa created

5.2. Change to the ~/DO280/labs/compreview-apps/project-cleaner directory to

access the application files.

DO280-OCP4.14-en-1-20240215 431

Chapter 10 | Comprehensive Review

[student@workstation compreview-apps]$ cd \
 ~/DO280/labs/compreview-apps/project-cleaner

5.3. Create the project-cleaner cluster role by applying the cluster-role.yaml
manifest file.

[student@workstation project-cleaner]$ oc apply -f cluster-role.yaml
clusterrole.rbac.authorization.k8s.io/project-cleaner created

5.4. Use the oc adm policy add-cluster-role-to-user command to add the

project-cleaner role to the project-cleaner-sa service account.

[student@workstation project-cleaner]$ oc adm policy add-cluster-role-to-user \
 project-cleaner -z project-cleaner-sa
clusterrole.rbac.authorization.k8s.io/project-cleaner added: "project-cleaner-sa"

6. As the do280-support user, create the project-cleaner cron job by editing the

cron-job.yaml file and by using the example-pod.yaml pod manifest as the job

template. Configure the cron job to run every minute.

6.1. Log in as the do280-support user with the redhat password.

[student@workstation project-cleaner]$ oc login -u do280-support -p redhat
Login successful.
...output omitted...

6.2. Edit the cron-job.yaml file:

• Replace the CHANGE_ME label with the "*/1 * * * *" schedule to execute the job

every minute.

• Replace the CHANGE_ME label in the jobTemplate definition with the spec
definition from the example-pod.yaml pod manifest.

• Replace the CHANGE_ME label in the serviceAccountName key with the project-
cleaner-sa service account.

Although the long image name might show across two lines, you must add it as one

line.

A solution file is in the ~/DO280/solutions/compreview-apps/project-
cleaner/cron-job.yaml path.

apiVersion: batch/v1
kind: CronJob
metadata:
 name: project-cleaner
 namespace: workshop-support
spec:
 schedule: "*/1 * * * *"
 concurrencyPolicy: Forbid
 jobTemplate:

432 DO280-OCP4.14-en-1-20240215

Chapter 10 | Comprehensive Review

 spec:
 template:
 spec:
 restartPolicy: Never
 serviceAccountName: project-cleaner-sa
 containers:
 - name: project-cleaner
 image: registry.ocp4.example.com:8443/redhattraining/do280-project-
cleaner:v1.1
 imagePullPolicy: Always
 env:
 - name: "PROJECT_TAG"
 value: "workshop"
 - name: "EXPIRATION_SECONDS"
 value: "10"
 resources:
 limits:
 cpu: 100m
 memory: 200Mi

6.3. Create the cron job.

[student@workstation project-cleaner]$ oc apply -f cron-job.yaml
cronjob.batch/project-cleaner created

Note

It is safe to ignore pod security warnings for exercises in this course. OpenShift uses

the Security Context Constraints controller to provide safe defaults for pod security.

6.4. Verify that the project cleaner application is deployed correctly, by creating a

clean-test project.

[student@workstation project-cleaner]$ oc new-project clean-test
Now using project "clean-test" on server...
...output omitted...

Change to the workshop-support namespace.

[student@workstation project-cleaner]$ oc project workshop-support
Now using project "workshop-support" on server...

Wait for a successful job run. Then, get the pod name from the last job run.

[student@workstation project-cleaner]$ oc get jobs,pods
NAME COMPLETIONS DURATION AGE
job.batch/project-cleaner-27949859 1/1 7s 2m40s
job.batch/project-cleaner-27949860 1/1 7s 100s
job.batch/project-cleaner-27949861 1/1 6s 40s

NAME READY STATUS RESTARTS AGE

DO280-OCP4.14-en-1-20240215 433

Chapter 10 | Comprehensive Review

pod/project-cleaner-27949859-f98vj 0/1 Completed 0 2m40s
pod/project-cleaner-27949860-j8td5 0/1 Completed 0 100s
pod/project-cleaner-27949861-p262t 0/1 Completed 0 40s

Read the logs of the pod that completed the job.

[student@workstation project-cleaner]$ oc logs \
 pod/project-cleaner-27949861-p262t
Listing namespaces with label workshop:
 - namespace: clean-test, created 55.327453 seconds ago...
Deleting namespaces: clean-test
Namespace 'clean-test' deleted

Note

You might see deleted projects from other exercises in the course.

6.5. Verify that the cron job deletes the clean-test project, by using the oc get
project command.

[student@workstation project-cleaner]$ oc get project clean-test
Error from server (NotFound): namespaces "clean-test" not found

7. Create the beeper database by applying the beeper-api/beeper-db.yaml file.

7.1. Change to the ~/DO280/labs/compreview/beeper-api directory to access the

application files.

[student@workstation project-cleaner]$ cd ~/DO280/labs/compreview-apps/beeper-api

7.2. Use the oc apply command to create the database in the workshop-support
namespace.

[student@workstation beeper-api]$ oc apply -f beeper-db.yaml
secret/beeper-db created
service/beeper-db created
persistentvolumeclaim/beeper-db created
deployment.apps/beeper-db created

7.3. Verify that the database pod is running by using the oc get pod command to get the

pods with the app=beeper-db label.

[student@workstation beeper-api]$ oc get pod -l app=beeper-db
NAME READY STATUS RESTARTS AGE
beeper-db-688756744f-rgxpg 1/1 Running 0 3m51s

8. Configure TLS on the beeper-api deployment by using a signed certificate by a corporate

CA to accept TLS connections from outside the cluster.

You have the CA certificate and the signed certificate for the beeper-
api.apps.ocp4.example.com domain in the beeper-api/certs directory of the lab.

434 DO280-OCP4.14-en-1-20240215

Chapter 10 | Comprehensive Review

Use the following settings in the deployment to configure TLS:

• Set the path for the certificate and key to /etc/pki/beeper-api/.

• Set the TLS_ENABLED environment variable to the true value.

• Update the startup, readiness, and liveness probes to use TLS.

8.1. Create the beeper-api-cert secret by using the beeper-api.pem certificate and

the beeper-api.key key from the lab directory.

[student@workstation beeper-api]$ oc create secret tls beeper-api-cert \
 --cert certs/beeper-api.pem --key certs/beeper-api.key
secret/beeper-api-cert created

8.2. Edit the beeper-api deployment in the deployment.yaml file to mount the

beeper-api-cert secret on the /etc/pki/beeper-api/ path.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: beeper-api
 namespace: workshop-support
spec:
...output omitted...
 spec:
 containers:
 - name: beeper-api
...output omitted...
 env:
 - name: TLS_ENABLED
 value: "false"
 volumeMounts:
 - name: beeper-api-cert
 mountPath: /etc/pki/beeper-api/
 volumes:
 - name: beeper-api-cert
 secret:
 defaultMode: 420
 secretName: beeper-api-cert

8.3. Edit the beeper-api deployment in the deployment.yaml file to configure TLS for

the application and for the startup, readiness, and liveness probes.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: beeper-api
 namespace: workshop-support
spec:
...output omitted...
 spec:
 containers:
 - name: beeper-api
...output omitted...

DO280-OCP4.14-en-1-20240215 435

Chapter 10 | Comprehensive Review

 ports:
 - containerPort: 8080
 readinessProbe:
 httpGet:
 port: 8080
 path: /readyz
 scheme: HTTPS
 livenessProbe:
 httpGet:
 port: 8080
 path: /livez
 scheme: HTTPS
 startupProbe:
 httpGet:
 path: /readyz
 port: 8080
 scheme: HTTPS
 failureThreshold: 30
 periodSeconds: 3
 env:
 - name: TLS_ENABLED
 value: "true"
...output omitted...

8.4. Use the oc apply command to create the beeper-api deployment.

[student@workstation beeper-api]$ oc apply -f deployment.yaml
deployment.apps/beeper-api created

8.5. Edit the service.yaml file to configure the beeper-api service to listen on

the standard HTTPS 443 port and to forward connections to pods with the app:
beeper-api label on port 8080.

apiVersion: v1
kind: Service
metadata:
 name: beeper-api
 namespace: workshop-support
spec:
 selector:
 app: beeper-api
 ports:
 - port: 443
 targetPort: 8080
 name: https

8.6. Use the oc apply command to create the beeper-api service.

[student@workstation beeper-api]$ oc apply -f service.yaml
service/beeper-api created

9. Expose the beeper API to outer cluster access by using the FQDN in the signed certificate by

the corporate CA.

436 DO280-OCP4.14-en-1-20240215

Chapter 10 | Comprehensive Review

9.1. Create a passthrough route for the beeper-api service by using the beeper-
api.apps.ocp4.example.com hostname.

[student@workstation beeper-api]$ oc create route \
 passthrough beeper-api-https \
 --service beeper-api \
 --hostname beeper-api.apps.ocp4.example.com
route.route.openshift.io/beeper-api-https created

9.2. Use the curl command to the https://beeper-api.apps.ocp4.example.com/
api/beeps URL to verify that the beeper API is accessible from outside the cluster.

Add the --cacert option to accept the certs/ca.pem CA.

[student@workstation beeper-api]$ curl -s --cacert \
 certs/ca.pem https://beeper-api.apps.ocp4.example.com/api/beeps; echo
[]

10. Optionally, open a web browser and verify that you can access the API by navigating to the

https://beeper-api.apps.ocp4.example.com/swagger-ui.html URL. When you

see the warning about the security risk, click Advanced… and then click Accept the Risk and
Continue.

11. Configure network policies to allow only TCP ingress traffic on port 5432 to database pods

from the beeper-api pods.

11.1. Verify that you can access the beeper-db service from the workshop-support
namespace by testing TCP connectivity to the database service. Use the oc debug
command to create a pod with the nc command with the -z option to test TCP access.

[student@workstation beeper-api]$ oc debug --to-namespace="workshop-support" -- \
 nc -z -v beeper-db.workshop-support.svc.cluster.local 5432
Starting pod/image-debug ...
Ncat: Version 7.70 (https://nmap.org/ncat)
Ncat: Connected to 172.30.219.94:5432.
Ncat: 0 bytes sent, 0 bytes received in 0.02 seconds.

Removing debug pod ...

11.2. Create an entry in the database by using the following curl command.

[student@workstation beeper-api]$ curl -s --cacert certs/ca.pem -X 'POST' \
 'https://beeper-api.apps.ocp4.example.com/api/beep' \
 -H 'Content-Type: application/json' \
 -d '{ "username": "user1", "content": "first message" }'

11.3. Edit the db-networkpolicy.yaml file so that only pods with the app: beeper-
api label can connect to database pods.

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: database-policy

DO280-OCP4.14-en-1-20240215 437

Chapter 10 | Comprehensive Review

 namespace: workshop-support
spec:
 podSelector:
 matchLabels:
 app: beeper-db
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 category: support
 podSelector:
 matchLabels:
 app: beeper-api
 ports:
 - protocol: TCP
 port: 5432

11.4. Create the network policy.

[student@workstation beeper-api]$ oc apply -f db-networkpolicy.yaml
networkpolicy.networking.k8s.io/beeper-api-ingresspolicy created

11.5. Verify that you cannot connect to the database, by running the previous nc command.

[student@workstation beeper-api]$ oc debug --to-namespace="workshop-support" -- \
 nc -z -v beeper-db.workshop-support.svc.cluster.local 5432
Starting pod/image-debug ...
Ncat: Version 7.70 (https://nmap.org/ncat)
Ncat: Connection timed out.

Removing debug pod ...

11.6. Verify that the API pods have access to the database pods, by running the curl
command to query the API by using the external route.

[student@workstation beeper-api]$ curl -s --cacert \
 certs/ca.pem https://beeper-api.apps.ocp4.example.com/api/beeps; echo
[{"id":1,"username":"user1","content":"first message","votes":0}]

12. Configure network policies in the workshop-support namespace to accept only ingress

connections from the OpenShift router pods to port 8080.

12.1. Verify that you can access the API service from the workshop-support namespace

by testing TCP connectivity. Use the oc debug command to create a pod with the nc
command with the -z option to test TCP access.

438 DO280-OCP4.14-en-1-20240215

Chapter 10 | Comprehensive Review

[student@workstation beeper-api]$ oc debug --to-namespace="workshop-support" -- \
 nc -z -v beeper-api.workshop-support.svc.cluster.local 443
Starting pod/image-debug ...
Ncat: Version 7.70 (https://nmap.org/ncat)
Ncat: Connected to 172.30.32.28:443.
Ncat: 0 bytes sent, 0 bytes received in 0.02 seconds.

Removing debug pod ...

12.2. Edit the beeper-api-ingresspolicy.yaml file to accept ingress

connections from router pods by adding a namespace selector with the policy-
group.network.openshift.io/ingress label.

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: beeper-api-ingresspolicy
 namespace: workshop-support
spec:
 podSelector: {}
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 policy-group.network.openshift.io/ingress: ""
 ports:
 - protocol: TCP
 port: 8080

12.3. Create the network policy.

[student@workstation beeper-api]$ oc apply -f beeper-api-ingresspolicy.yaml
networkpolicy.networking.k8s.io/beeper-api created

12.4. Verify that you cannot access the API service from the workshop-support
namespace. Use the oc debug command to create a pod with the nc command with

the -z option to test TCP access.

[student@workstation beeper-api]$ oc debug --to-namespace="workshop-support" -- \
 nc -z -v beeper-api.workshop-support.svc.cluster.local 443
Starting pod/image-debug ...
Ncat: Version 7.70 (https://nmap.org/ncat)
Ncat: Connection timed out.

Removing debug pod ...

12.5. Verify that the API pods are accessible from outside the cluster by running the curl
command to query the API external route.

DO280-OCP4.14-en-1-20240215 439

Chapter 10 | Comprehensive Review

[student@workstation beeper-api]$ curl -s --cacert \
 certs/ca.pem https://beeper-api.apps.ocp4.example.com/livez; echo
{"status":"UP"}

13. Change to the home directory.

[student@workstation appsec-review]$ cd

Evaluation

As the student user on the workstation machine, use the lab command to grade your work.

Correct any reported failures and rerun the command until successful.

[student@workstation ~]$ lab grade compreview-apps

Finish

As the student user on the workstation machine, use the lab command to complete this

exercise. This step is important to ensure that resources from previous exercises do not impact

upcoming exercises.

[student@workstation ~]$ lab finish compreview-apps

440 DO280-OCP4.14-en-1-20240215

Chapter 10 | Comprehensive Review

Lab

Deploy Packaged Applications

Deploy a Helm chart

Deploy an application with Kustomize

Expose a service using MetalLB

Outcomes
• Deploy an application from a chart.

• Deploy an application from a Kustomize layer.

• Configure an application to connect to the MySQL database.

Before You Begin
If you did not previously reset your workstation and server machines, then save any

work that you want to keep from earlier exercises on those machines, and reset them now.

Use the lab command to prepare your system for this exercise.

This command ensures that the cluster API is reachable and prepares the environment for

the exercise.

[student@workstation ~]$ lab start compreview-package

Specifications

Deploy an application that uses a database by using a Helm chart and Kustomization files. Access

the application by using a route.

• Use the developer user with the developer password for this exercise.

• Use a compreview-package project for all the resources.

• Deploy a MySQL database by using the mysql-persistent Helm chart in the http://

helm.ocp4.example.com/charts repository. Use the latest version in the repository, and the

default resource names that the chart generates.

• Use Kustomize in the /home/student/DO280/labs/compreview-package/roster/ path

to deploy the application. Add a new Kustomize production overlay that adds probes to the

application.

The /home/student/DO280/solutions/compreview-package/roster/overlays/
production/ directory contains the solution kustomization.yaml file and the patch-
roster-prod.yaml file.

• Deploy the overlay.

• Verify that the application creates a route, and that the application is available through the route

by using the TLS/SSL protocol (HTTPS).

DO280-OCP4.14-en-1-20240215 441

Chapter 10 | Comprehensive Review

Evaluation

As the student user on the workstation machine, use the lab command to grade your work.

Correct any reported failures and rerun the command until successful.

[student@workstation ~]$ lab grade compreview-package

Finish

As the student user on the workstation machine, use the lab command to complete this

exercise. This step is important to ensure that resources from previous exercises do not impact

upcoming exercises.

[student@workstation ~]$ lab finish compreview-package

442 DO280-OCP4.14-en-1-20240215

Chapter 10 | Comprehensive Review

Solution

Deploy Packaged Applications

Deploy a Helm chart

Deploy an application with Kustomize

Expose a service using MetalLB

Outcomes
• Deploy an application from a chart.

• Deploy an application from a Kustomize layer.

• Configure an application to connect to the MySQL database.

Before You Begin
If you did not previously reset your workstation and server machines, then save any

work that you want to keep from earlier exercises on those machines, and reset them now.

Use the lab command to prepare your system for this exercise.

This command ensures that the cluster API is reachable and prepares the environment for

the exercise.

[student@workstation ~]$ lab start compreview-package

1. Add the classroom Helm repository at http://helm.ocp4.example.com/charts and

examine its contents.

1.1. Use the helm repo list command to list the repositories that are configured for the

student user.

[student@workstation ~]$ helm repo list
Error: no repositories to show

If the do280-repo repository is present, then continue to the next step. Otherwise,

add the repository.

[student@workstation ~]$ helm repo add \
 do280-repo http://helm.ocp4.example.com/charts
"do280-repo" has been added to your repositories

1.2. Use the helm search command to list all the charts in the repository.

DO280-OCP4.14-en-1-20240215 443

Chapter 10 | Comprehensive Review

[student@workstation ~]$ helm search repo
NAME CHART VERSION APP VERSION DESCRIPTION
do280-repo/mysql-persistent 0.0.2 0.0.2 This content is...
...output omitted...

The mysql-persistent chart is in the classroom repository. This chart is a copy of a

chart from the https://github.com/openshift-helm-charts/charts/ repository.

2. Create a compreview-package project.

2.1. Log in to the cluster as the developer user with the developer password.

[student@workstation ~]$ oc login -u developer -p developer \
 https://api.ocp4.example.com:6443
Login successful.
...output omitted...

2.2. Create the compreview-package project.

[student@workstation ~]$ oc new-project compreview-package
Now using project "compreview-package" on server "https://
api.ocp4.example.com:6443".
...output omitted...

3. Deploy the do280-repo/mysql-persistent chart.

3.1. Use the helm install command to create a release of the do280-repo/mysql-
persistent chart.

[student@workstation ~]$ helm install roster-database do280-repo/mysql-persistent
...output omitted...

3.2. Use the watch command to verify that the pods are running. Wait for the mysql-1-
deploy pod to show a Completed status.

[student@workstation ~]$ watch oc get pods
NAME READY STATUS RESTARTS AGE
mysql-1-7w5bn 1/1 Running 0 150m
mysql-1-deploy 0/1 Completed 0 150m

Press Ctrl+C to exit the watch command.

4. Examine the provided Kustomize configuration and the deployed chart, and verify that

the production overlay generates a deployment, service, route, configuration map, and

a secret. Verify that the patch-roster-prod.yaml patch file applies the liveness and

readiness probes to the roster deployment.

4.1. Change to the /home/student/DO280/labs/compreview-package/ directory.

[student@workstation ~]$ cd DO280/labs/compreview-package/

4.2. Use the tree command to examine the directory structure.

444 DO280-OCP4.14-en-1-20240215

https://github.com/openshift-helm-charts/charts/

Chapter 10 | Comprehensive Review

[student@workstation compreview-package]$ tree
.
└── roster
 ├── base
 │ ├── configmap.yaml
 │ ├── kustomization.yaml
 │ ├── roster-deployment.yaml
 │ ├── roster-route.yaml
 │ ├── roster-service.yaml
 │ └── secret.yaml
 └── overlays
 └── production
 ├── kustomization.yaml
 └── patch-roster-prod.yaml

4 directories, 8 files

The Kustomization configuration includes a deployment, a route, and a service.

4.3. Examine the roster/base/roster-deployment.yaml file.

apiVersion: apps/v1
kind: Deployment
metadata:
...output omitted...
spec:
 replicas: 1
 selector:
 matchLabels:
 app: roster
 template:
...output omitted...
 spec:
 containers:
 - image: registry.ocp4.example.com:8443/redhattraining/do280-roster:v1
 name: do280-roster
 envFrom:
 - configMapRef:
 name: roster
 - secretRef:
 name: roster
...output omitted...

The deployment does not set any configuration to access the database. The

deployment extracts environment variables from a roster configuration map and a

roster secret.

4.4. Use the oc kustomize command to verify that the production overlay generates

a deployment, service, route, configuration map, and a secret, and configures the

liveness and readiness probes to the roster deployment.

[student@workstation compreview-package]$ oc kustomize roster/overlays/production/
apiVersion: v1
data:

DO280-OCP4.14-en-1-20240215 445

Chapter 10 | Comprehensive Review

...output omitted...
kind: ConfigMap
...output omitted...

apiVersion: v1
kind: Secret
...output omitted...

apiVersion: v1
kind: Service
...output omitted...

apiVersion: apps/v1
kind: Deployment
metadata:
...output omitted...
spec:
...output omitted...
 template:
...output omitted...
 spec:
 containers:
...output omitted...
 livenessProbe:
 initialDelaySeconds: 20
 periodSeconds: 30
 tcpSocket:
 port: 9090
 timeoutSeconds: 3
 name: roster
 ports:
 - containerPort: 9090
 protocol: TCP
 readinessProbe:
 initialDelaySeconds: 3
 periodSeconds: 10
 tcpSocket:
 port: 9090
 timeoutSeconds: 3

apiVersion: route.openshift.io/v1
kind: Route
...output omitted...

5. Deploy the Kustomize files.

5.1. Use the oc apply -k command to deploy the production overlay.

[student@workstation compreview-package]$ oc apply -k roster/overlays/production/
configmap/roster created
secret/roster created
service/roster created
deployment.apps/roster created
route.route.openshift.io/roster unchanged

446 DO280-OCP4.14-en-1-20240215

Chapter 10 | Comprehensive Review

5.2. Use the watch command to verify that the pods are running. Wait for the roster pod

to show the Running status.

[student@workstation compreview-package]$ watch oc get pods
NAME READY STATUS RESTARTS AGE
...output omitted...
roster-5d4888dc6f-4rp4n 1/1 Running 0 166m

Press Ctrl+C to exit the watch command.

5.3. Use the oc get route command to obtain the application URL.

[student@workstation compreview-package]$ oc get route
NAME HOST/PORT ...
roster roster-compreview-package.apps.ocp4.example.com ...

5.4. Open a web browser and navigate to https://roster-compreview-
package.apps.ocp4.example.com. Use the TLS/SSL protocol (HTTPS). The

application is displayed.

5.5. Change to the home directory.

[student@workstation compreview-package]$ cd

Evaluation

As the student user on the workstation machine, use the lab command to grade your work.

Correct any reported failures and rerun the command until successful.

[student@workstation ~]$ lab grade compreview-package

Finish

As the student user on the workstation machine, use the lab command to complete this

exercise. This step is important to ensure that resources from previous exercises do not impact

upcoming exercises.

[student@workstation ~]$ lab finish compreview-package

DO280-OCP4.14-en-1-20240215 447

448 DO280-OCP4.14-en-1-20240215

	Red Hat OpenShift Administration II: Configuring a Production Cluster
	Table of Contents
	Document Conventions
	Admonitions
	Inclusive Language

	Introduction
	Red Hat OpenShift Administration II: Configuring a Production Cluster
	Orientation to the Classroom Environment
	Performing Lab Exercises

	Chapter 1. Declarative Resource Management
	Resource Manifests
	Guided Exercise: Resource Manifests
	Kustomize Overlays
	Guided Exercise: Kustomize Overlays
	Lab: Declarative Resource Management
	Summary

	Chapter 2. Deploy Packaged Applications
	OpenShift Templates
	Guided Exercise: OpenShift Templates
	Helm Charts
	Guided Exercise: Helm Charts
	Lab: Deploy Packaged Applications
	Summary

	Chapter 3. Authentication and Authorization
	Configure Identity Providers
	Guided Exercise: Configure Identity Providers
	Define and Apply Permissions with RBAC
	Guided Exercise: Define and Apply Permissions with RBAC
	Lab: Authentication and Authorization
	Summary

	Chapter 4. Network Security
	Protect External Traffic with TLS
	Guided Exercise: Protect External Traffic with TLS
	Configure Network Policies
	Guided Exercise: Configure Network Policies
	Protect Internal Traffic with TLS
	Guided Exercise: Protect Internal Traffic with TLS
	Lab: Network Security
	Summary

	Chapter 5. Expose non-HTTP/SNI Applications
	Load Balancer Services
	Guided Exercise: Load Balancer Services
	Multus Secondary Networks
	Guided Exercise: Multus Secondary Networks
	Lab: Expose non-HTTP/SNI Applications
	Summary

	Chapter 6. Enable Developer Self-Service
	Project and Cluster Quotas
	Guided Exercise: Project and Cluster Quotas
	Per-Project Resource Constraints: Limit Ranges
	Guided Exercise: Per-Project Resource Constraints: Limit Ranges
	The Project Template and the Self-Provisioner Role
	Guided Exercise: The Project Template and the Self-Provisioner Role
	Lab: Enable Developer Self-Service
	Summary

	Chapter 7. Manage Kubernetes Operators
	Kubernetes Operators and the Operator Lifecycle Manager
	Quiz: Kubernetes Operators and the Operator Lifecycle Manager
	Install Operators with the Web Console
	Guided Exercise: Install Operators with the Web Console
	Install Operators with the CLI
	Guided Exercise: Install Operators with the CLI
	Lab: Manage Kubernetes Operators
	Summary

	Chapter 8. Application Security
	Control Application Permissions with Security Context Constraints
	Guided Exercise: Control Application Permissions with Security Context Constraints
	Allow Application Access to Kubernetes APIs
	Guided Exercise: Allow Application Access to Kubernetes APIs
	Cluster and Node Maintenance with Kubernetes Cron Jobs
	Guided Exercise: Cluster and Node Maintenance with Kubernetes Cron Jobs
	Lab: Application Security
	Summary

	Chapter 9. OpenShift Updates
	The Cluster Update Process
	Quiz: The Cluster Update Process
	Detect Deprecated Kubernetes API Usage
	Quiz: Detect Deprecated Kubernetes API Usage
	Update Operators with the OLM
	Quiz: Update Operators with the OLM
	Quiz: OpenShift Updates
	Summary

	Chapter 10. Comprehensive Review
	Comprehensive Review
	Lab: Cluster Self-service Setup
	Lab: Secure Applications
	Lab: Deploy Packaged Applications

