P 4

(] [

DO180-0OCP4

For use by d w dwijaya dwijaya@redhat.com Copyright © 2021 Red Hat, Inc.

(] [

DO180-0OCP4

OCP 4.5D0O180

Red Hat OpenShift I: Containers & Kubernetes
Edition 320201217

Publication date 20201217

Authors: Zach Gutterman, Dan Kolepp, Eduardo Ramirez Ronco,
Jordi Sola Alaball, Richard Allred
Editor: Seth Kenlon, Dave Sacco, Connie Petlitzer

Copyright © 2019 Red Hat, Inc.

The contents of this course and all its modules and related materials, including handouts to audience members, are
Copyright © 2019 Red Hat, Inc.

No part of this publication may be stored in a retrieval system, transmitted or reproduced in any way, including, but
not limited to, photocopy, photograph, magnetic, electronic or other record, without the prior written permission of
Red Hat, Inc.

This instructional program, including all material provided herein, is supplied without any guarantees from Red Hat,
Inc. Red Hat, Inc. assumes no liability for damages or legal action arising from the use or misuse of contents or details
contained herein.

If you believe Red Hat training materials are being used, copied, or otherwise improperly distributed, please send
email to training@redhat.com or phone toll-free (USA) +1(866) 626-2994 or +1(919) 754-3700.

Red Hat, Red Hat Enterprise Linux, the Red Hat logo, JBoss, Hibernate, Fedora, the Infinity logo, and RHCE are
trademarks of Red Hat, Inc,, registered in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.
Java® is a registered trademark of Oracle and/or its affiliates.

XFS® is a registered trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or
other countries.

The OpenStack® word mark and the Square O Design, together or apart, are trademarks or registered trademarks
of OpenStack Foundation in the United States and other countries, and are used with the OpenStack Foundation's
permission. Red Hat, Inc. is not affiliated with, endorsed by, or sponsored by the OpenStack Foundation or the
OpenStack community.

All other trademarks are the property of their respective owners.

Contributors: Michael Jarrett, Forrest Taylor, Manuel Aude Morales, James Mighion, and Michael
Phillips

Document Conventions vii

Introduction ix
DO180: Red Hat OpenShift I: Containers & Kubernetesc.occovivviiiiiiiiin i, [
Orientation to the Classroom ENVIrONMENtoooiiiiiiiiii e X
INterNatioNaliZatiON xiii

1. Introducing Container Technology 1
Overview of Container TEChNOIOGYvuiiiiiiii e 2
Quiz: Overview of Container TEChNOIOGYivviiiii e, 5
Overview of Container ArchiteCtUreiiii e 9
Quiz: Overview of Container ArchiteCtureooiiiiiiiiiii e 12
Overview of Kubernetes and OpenShiftooiiiiiiiiiiii e, 14
Quiz: Describing Kubernetes and OpenShiftcooooviiiiiiiiiiii e 17
Guided Exercise: Configuring the Classroom Environmentcoccoeivviiiiiieiieiienin. 19
T T 0= Y/ 25

2. Creating Containerized Services 27
Provisioning Containerized SErVICESoiuiiuiiiiie e 28
Guided Exercise: Creating a MySQL Database Instancecoovviviiiiiiiiiieeeee, 34
Lab: Creating Containerized SErVICESoviiiiiie e 37
T8 T 0= Y/ 42

3. Managing Containers 43
Managing the Life Cycle of CoNtaiNersccooiiiiiiiiiie e 44
Guided Exercise: Managing @ MySQL ContaiNeroiuiiiieiiieiiiie e 52
Attaching Persistent Storage 1o ContaiNersoouiiiiiiieiie e, 55
Guided Exercise: Persisting a MySQL Databasecoooviiiiiiiiiiiiieee e 58
ACCESSING CONTAINEIS ...ttt ea e 61
Guided Exercise: Loading the Databasecc.oiiiiiiiiiie e 65
Lab: Managing CoONtaINEISiviie et 68
T T 0= Y/ 77

4. Managing Container Images 79
ACCESSING REGISTIIES ...ttt 80
Quiz: Working With ReGIStIESiiiiie i 86
Manipulating Container IMAgESuieeiie e 90
Guided Exercise: Creating a Custom Apache Container Imagecocovvvviiiiiiiiiiinininnns 96
Lab: Managing IMagesieii it e 100
SUMIMIAY ettt et e e e e e e e e e et e e e et e et et e et e et e e et e aaaas 108

5. Creating Custom Container Images 109
Designing Custom ContaiNer IMAgES .. .uuvvineiieie e e e 1[0]
Quiz: Approaches to Container IMmage DeSIgNviniiniiiie e na
Building Custom Container Images with Dockerfilesccooiiiiiiiiiiiiii ne
Guided Exercise: Creating a Basic Apache Container Imagecoocvvvvviviiniieiieieein. 121
Lab: Creating Custom Container IMAagESuvvniiiiie e 125
SUMIMIATY ettt et e e e e e e e et e e e et e et et e e et e et et e et e aanas 132

6. Deploying Containerized Applications on OpenShift 133
Describing Kubernetes and OpenShift Architectureo.cooiiiiiiiiiiiiii 134
Quiz: Describing Kubernetes and OpenShiftcoooviiiiiiiiiiii e 140
Creating Kubernetes RESOUICESiviiiiie e 144
Guided Exercise: Deploying a Database Server on OpenShift.............cooovviiiiiiiinin, 155
CreatiNg ROULES ...ttt e e e e e e e 160
Guided Exercise: Exposing a Service as aROUTEviviiiiiiiiiii 164
Creating Applications with Source-to-lImagecooviiiiiiiiiee e 169
Guided Exercise: Creating a Containerized Application with Source-to-Image.................. 179

Creating Applications with the OpenShift Web Consoleccoooeiiiiiiiiiiiiii 185

Guided Exercise: Creating an Application with the Web Consoleccoovviiiiiininnns
Lab: Deploying Containerized Applications on OpenShift.............ccoooovviiiiiiiiiiniin,
T T = Y/ N

7. Deploying Multi-Container Applications
Considerations for Multi-Container Applicationscoooviiiiiiiiiiieiiee e
Guided Exercise: Deploying the Web Application and MySQL Containers.......................
Deploying a Multi-Container Application on OpenShift............coooiiiiiiiiiiiiiii
Guided Exercise: Creating an Application witha Templateccooiiiiiii,
Lab: Deploying Multi-Container AppliCationsccoviiiiiiiiii e
SUMIMIGIY ettt e e e e et e e et e e et e et et et e e e aanas

8. Troubleshooting Containerized Applications
Troubleshooting S2I Builds and Deploymentsooviiiiiiiieeeeeeeeeeee,
Guided Exercise: Troubleshooting an OpenShift Buildcccooiiiiiiiiiiin,
Troubleshooting Containerized AppliCationsoouiiiiiiii e,
Guided Exercise: Configuring Apache Container Logs for Debuggingcocooeevnnen.
Lab: Troubleshooting Containerized Applicationsccoviiiiiiiiie
T 0 0] 0= 1Y/ PP

9. Comprehensive Review
ComMPrehenSsiVE REVIEWt
Lab: Containerizing and Deploying a Software Applicationcccoeiviiiiiiiiiini,

A. Implementing Microservices Architecture
Implementing Microservices ArChiteCtUresc.ovuiiiiiiiie e
Guided Exercise: Refactoring the To Do List Applicationcooiviiiiiiiiiiini,
SUMIMIGIY ettt e e e e e e e e e e e et e e e

B. Creating a GitHub Account
Creating @ GitHUD ACCOUNT ..o

C. Creating a Quay Account
Creating @ QUAY ACCOUNTe e e e e e
RePOSITONIES VISIDIlILY ...neeeee e

D. Useful Git Commands
Gt COMIMIANAS ..o

Document Conventions

]

¥4

References
"References" describe where to find external documentation relevant to a subject.

Note

"Notes" are tips, shortcuts or alternative approaches to the task at hand. Ignoring a
note should have no negative consequences, but you might miss out on a trick that
makes your life easier.

Important

"Important" boxes detail things that are easily missed: configuration changes that
only apply to the current session, or services that need restarting before an update
will apply. Ignoring a box labeled "Important” will not cause data loss, but may cause
irritation and frustration.

AN\

Warning
"Warnings" should not be ignored. Ignoring warnings will most likely cause data loss.

y 2AR(IA

3 n ."'".'"".l
o

A

=

i)

=]
L

LUOD JeUL

—
|
&)]

) ILBILIAL

n

.
[

-
L

—
L

) 1eH pay T

w DO180-OCP4.5-en-3-20201217

Introduction

DO180: Red Hat OpenShift I: Containers &

Kubernetes

DO180: Red Hat OpenShift I: Containers & Kubernetes is a hands-on course
that teaches students how to create, deploy, and manage containers using
Podman, Kubernetes, and the Red Hat OpenShift Container Platform.

One of the key tenants of the DevOps movement is continuous integration
and continuous deployment. Containers have become a key technology

for the configuration and deployment of applications and microservices.

Red Hat OpenShift Container Platform is an implementation of Kubernetes, a
container orchestration system.

L™
, Course
o Objectives
-
Audience

Prerequisites

7

Demonstrate knowledge of the container
ecosystem.

Manage Linux containers using Podman.

Deploy containers on a Kubernetes cluster
using the OpenShift Container Platform.

Demonstrate basic container design and the
ability to build container images.

Implement a container-based architecture

Students should meet one or more of the
following prerequisites:

DO180-0OCP4.5-en-3-20201217

using knowledge of containers, Kubernetes, and
OpenShift.

System Administrators

Developers

IT Leaders and Infrastructure Architects

Be able to use a Linux terminal session and
issue operating system commands. An RHCSA
certification is recommended but not required.
Have experience with web application
architectures and their corresponding
technologies.

Introduction

Orientation to the Classroom
Environment

Internet & Facility workstation

Network

il <
l——

F 3
v

classroom Classroom Network
content 172.25.252.0/24
materials

Figure 0.1: Classroom environment

In this course, the main computer system used for hands-on learning activities isworkstation.
This is a virtual machine (VM) named workstation. lab.example.com.

All student computer systems have a standard user account, student, which has the password
student. The root password on all student systems is redhat.

Classroom Machines

Machine name IP addresses Role

content.example.com, 172.25.252.254, Classroom utility server

materials.example.com, 172.25.253.254,

classroom.example.com 172.25.254.254

workstation.lab.example.com 172.25.250.254, Student graphical workstation
172.25.252.1

Several systems in the classroom provide supporting services. Two servers,
content.example.comand materials.example.com, are sources for software and lab
materials used in hands-on activities. Information on how to use these servers is provided in the
instructions for those activities.

Students use the workstation machine to access a shared OpenShift cluster hosted externally
in AWS. Students do not have cluster administrator privileges on the cluster, but that is not
necessary to complete the DO180 content.

Students are provisioned an account on a shared OpenShift 4 cluster when they provision their
environments in the Red Hat Online Learning interface. Cluster information such as the API
endpoint, and cluster-ID, as well as their username and password are presented to them when they
provision their environment.

' DO180-0OCP4.5-en-3-20201217

Introduction

Students also have access to a MySQL and a Nexus server hosted by either the OpenShift cluster
or by AWS. Hands-on activities in this course provide instructions to access these servers when
required.

Hands-on activities in DO180 also require that students have personal accounts on a two public,
free internet services: GitHub and Quay.io. Students need to create these accounts if they do not
already have them (see Appendix) and verify their access by signing in to these services before
starting the class.

Controlling Your Systems

Students are assigned remote computers in a Red Hat Online Learning classroom. They are
accessed through a web application hosted at rol.redhat.com [http://rol.redhat.com]. Students
should log in to this site using their Red Hat Customer Portal user credentials.

Controlling the Virtual Machines

The virtual machines in your classroom environment are controlled through a web page. The state
of each virtual machine in the classroom is displayed on the page under the Online Lab tab.

Machine States

Virtual Machine Description

State

STARTING The virtual machine is in the process of booting.

STARTED The virtual machine is running and available (or, when booting, soon
will be).

STOPPING The virtual machine is in the process of shutting down.

STOPPED The virtual machine is completely shut down. Upon starting, the virtual

machine boots into the same state as when it was shut down (the disk
will have been preserved).

PUBLISHING The initial creation of the virtual machine is being performed.

WAITING_TO_START | The virtual machine is waiting for other virtual machines to start.
Depending on the state of a machine, a selection of the following actions is available.

Classroom/Machine Actions

Button or Action Description

PROVISION LAB Create the ROL classroom. Creates all of the virtual machines needed
for the classroom and starts them. This can take several minutes to
complete.

DELETE LAB Delete the ROL classroom. Destroys all virtual machines in the

classroom. Caution: Any work generated on the disks is lost.

START LAB Start all virtual machines in the classroom.

http://rol.redhat.com
http://rol.redhat.com

Introduction

Button or Action Description
SHUTDOWN LAB Stop all virtual machines in the classroom.
OPEN CONSOLE Open a new tab in the browser and connect to the console of the

virtual machine. Students can log in directly to the virtual machine
and run commands. In most cases, students should log in to the
workstation virtual machine and use ssh to connect to the other
virtual machines.

ACTION — Start Start (power on) the virtual machine.

ACTION — Gracefully shut down the virtual machine, preserving the contents of
Shutdown its disk.

ACTION — Power Forcefully shut down the virtual machine, preserving the contents of its
Off disk. This is equivalent to removing the power from a physical machine.
ACTION — Reset Forcefully shut down the virtual machine and reset the disk to its initial

state. Caution: Any work generated on the disk is lost.

At the start of an exercise, if instructed to reset a single virtual machine node, click ACTION —
Reset for only the specific virtual machine.

At the start of an exercise, if instructed to reset all virtual machines, click ACTION — Reset

If you want to return the classroom environment to its original state at the start of the course,
you can click DELETE LAB to remove the entire classroom environment. After the lab has been
deleted, click PROVISION LAB to provision a new set of classroom systems.

Warning
The DELETE LAB operation cannot be undone. Any work you have completed in the
classroom environment up to that point will be lost.

The Autostop Timer

The Red Hat Online Learning enrollment entitles students to a certain amount of computer time.
To help conserve allotted computer time, the ROL classroom has an associated countdown timer,
which shuts down the classroom environment when the timer expires.

To adjust the timer, click MODIFY to display the New Autostop Time dialog box. Set the number
of hours and minutes until the classroom should automatically stop. Note that there is a maximum
time of ten hours. Click ADJUST TIME to apply this change to the timer settings.

Introduction

Internationalization

Per-user Language Selection

Your users might prefer to use a different language for their desktop environment than the
system-wide default. They might also want to use a different keyboard layout or input method for
their account.

Language Settings

In the GNOME desktop environment, the user might be prompted to set their preferred language
and input method on first login. If not, then the easiest way for an individual user to adjust their
preferred language and input method settings is to use the Region & Language application.

You can start this application in two ways. You can run the command gnome-control-center
region from a terminal window, or on the top bar, from the system menu in the right corner,
select the settings button (which has a crossed screwdriver and wrench for an icon) from the
bottom left of the menu.

In the window that opens, select Region & Language. Click the Language box and select the
preferred language from the list that appears. This also updates the Formats setting to the default
for that language. The next time you log in, these changes will take full effect.

These settings affect the GNOME desktop environment and any applications such as gnome -
terminal that are started inside it. However, by default they do not apply to that account if
accessed through an ssh login from a remote system or a text-based login on a virtual console
(such as tty5).

E Note
You can make your shell environment use the same LANG setting as your graphical
environment, even when you log in through a text-based virtual console or over
ssh. One way to do this is to place code similar to the following in your ~/ . bashrc
file. This example code will set the language used on a text login to match the one
currently set for the user's GNOME desktop environment:

i=$(grep 'Language=' /var/lib/AccountsService/users/${USER} \
| sed 's/Language=//")
if ["$i" 1= ""]; then
export LANG=$i
fi

Japanese, Korean, Chinese, and other languages with a non-Latin character set
might not display properly on text-based virtual consoles.

Individual commands can be made to use another language by setting the LANG variable on the
command line:

Introduction

[user@host ~]$ LANG=fr_FR.utf8 date
jeu. avril 25 17:55:01 CET 2019

Subsequent commands will revert to using the system's default language for output. The locale
command can be used to determine the current value of LANG and other related environment
variables.

Input Method Settings

GNOME 3 in Red Hat Enterprise Linux 7 or later automatically uses the IBus input method
selection system, which makes it easy to change keyboard layouts and input methods quickly.

The Region & Language application can also be used to enable alternative input methods. In the
Region & Language application window, the Input Sources box shows what input methods are
currently available. By default, English (US) may be the only available method. Highlight English
(US) and click the keyboard icon to see the current keyboard layout.

To add another input method, click the + button at the bottom left of the Input Sources window.
An Add an Input Source window will open. Select your language, and then your preferred input
method or keyboard layout.

When more than one input method is configured, the user can switch between them quickly by
typing Super+Space (sometimes called Windows+Space). A status indicator will also appear in
the GNOME top bar, which has two functions: It indicates which input method is active, and acts
as a menu that can be used to switch between input methods or select advanced features of more
complex input methods.

Some of the methods are marked with gears, which indicate that those methods have advanced
configuration options and capabilities. For example, the Japanese Japanese (Kana Kanji) input
method allows the user to pre-edit text in Latin and use Down Arrow and Up Arrow keys to
select the correct characters to use.

US English speakers may also find this useful. For example, under English (United States) is the
keyboard layout English (international AltGr dead keys), which treats A1tGr (or the right Alt)
on a PC 104/105-key keyboard as a "secondary shift" modifier key and dead key activation key for
typing additional characters. There are also Dvorak and other alternative layouts available.

Note

E Any Unicode character can be entered in the GNOME desktop environment if you
know the character's Unicode code point. Type Ctr 1+Shift+U, followed by the
code point. After Ctr 1+Shift+U has been typed, an underlined u will be displayed
to indicate that the system is waiting for Unicode code point entry.

For example, the lowercase Greek letter lambda has the code point U+0O3BB, and
can be entered by typing Ctr 1+Shift+U, then 03BB, then Enter.

System-wide Default Language Settings

The system's default language is set to US English, using the UTF-8 encoding of Unicode as its
character set (en_US . utf8), but this can be changed during or after installation.

From the command line, the root user can change the system-wide locale settings with the
localect1 command. If localect Lis run with no arguments, it displays the current system-
wide locale settings.

Introduction

To set the system-wide default language, run the command localectl set-locale
LANG=1ocale, where locale is the appropriate value for the LANG environment variable from the
"Language Codes Reference" table in this chapter. The change will take effect for users on their
next login, and is stored in /etc/locale.conf.

[root@host ~]# localectl set-locale LANG=fr_FR.utf8

In GNOME, an administrative user can change this setting from Region & Language by clicking
the Login Screen button at the upper-right corner of the window. Changing the Language of the
graphical login screen will also adjust the system-wide default language setting stored in the /
etc/locale.conf configuration file.

i~ | Important

Text-based virtual consoles such as tty4 are more limited in the fonts they can
display than terminals in a virtual console running a graphical environment, or
pseudo-terminals for ssh sessions. For example, Japanese, Korean, and Chinese
characters may not display as expected on a text-based virtual console. For

this reason, you should consider using English or another language with a Latin
character set for the system-wide default.

Likewise, text-based virtual consoles are more limited in the input methods they
support, and this is managed separately from the graphical desktop environment.
The available global input settings can be configured through localect1 for both
text-based virtual consoles and the graphical environment. See the localect 1(1)
and vconsole.conf(5) man pages for more information.

Language Packs

Special RPM packages called langpacks install language packages that add support for specific
languages. These langpacks use dependencies to automatically install additional RPM packages
containing localizations, dictionaries, and translations for other software packages on your system.

To list the langpacks that are installed and that may be installed, use yum 1ist langpacks-*:

[root@host ~]# yum list langpacks-*

Updating Subscription Management repositories.
Updating Subscription Management repositories.
Installed Packages

langpacks-en.noarch 1.0-12.e18 @AppStream
Available Packages

langpacks-af.noarch 1.0-12.e18 rhel-8-for-x86_64-appstream-rpms
langpacks-am.noarch 1.0-12.e18 rhel-8-for-x86_64-appstream-rpms
langpacks-ar.noarch 1.0-12.el8 rhel-8-for-x86_64-appstream-rpms
langpacks-as.noarch 1.0-12.el8 rhel-8-for-x86_64-appstream-rpms
langpacks-ast.noarch 1.0-12.el8 rhel-8-for-x86_64-appstream-rpms

...output omitted. ..

To add language support, install the appropriate langpacks package. For example, the following
command adds support for French:

[root@host ~]# yum install langpacks-fr

Introduction

Use yum repoquery --whatsupplements to determine what RPM packages may be installed
by a langpack:

[root@host ~]# yum repoquery --whatsupplements langpacks-fr
Updating Subscription Management repositories.

Updating Subscription Management repositories.

Last metadata expiration check: 0:01:33 ago on Wed 06 Feb 2019 10:47:24 AM CST.
glibc-langpack-fr-0:2.28-18.e18.x86_64
gnome-getting-started-docs-fr-0:3.28.2-1.el8.noarch
hunspell-fr-0:6.2-1.el8.noarch

hyphen-fr-0:3.0-1.el8.noarch
libreoffice-langpack-fr-1:6.0.6.1-9.e18.x86_64
man-pages-fr-0:3.70-16.el8.noarch
mythes-fr-0:2.3-10.el8.noarch

i~ | Important
Langpacks packages use RPM weak dependencies in order to install supplementary
packages only when the core package that needs it is also installed.

For example, when installing langpacks-fr as shown in the preceding examples, the
mythes-fr package will only be installed if the mythes thesaurus is also installed on
the system.

If mythes is subsequently installed on that system, the mythes-fr package will also
automatically be installed due to the weak dependency from the already installed
langpacks-fr package.

D References
locale(7), localect1(l), Llocale.conf(5), vconsole.conf(5), unicode(7),
and utf-8(7) man pages

Conversions between the names of the graphical desktop environment's X11 layouts
and their names in localect1 can be found in the file /usr/share/X11/xkb/
rules/base. lst.

Language Codes Reference

Note
E This table might not reflect all langpacks available on your system. Use yum info
langpacks-SUFFIX to get more information about any particular langpacks

package.
Language Codes
Language Langpacks Suffix $LANG value
English (US) en en_US.utf8

Introduction

Language Langpacks Suffix $LANG value
Assamese as as_IN.utf8
Bengali bn bn_IN.utf8
Chinese (Simplified) zh_CN zh_CN.utf8
Chinese (Traditional) zh_ TW zh_TW.utf8
French fr fr_FR.utf8
German de de_DE.utf8
Guijarati gu gu_IN.utf8
Hindi hi hi_IN.utf8
[talian it it_IT.utf8
Japanese ja ja_JP.utf8
Kannada kn kn_IN.utf8
Korean ko ko_KR.utf8
Malayalam ml ml_IN.utf8
Marathi mr mr_IN.utf8
Odia or or_IN.utf8
Portuguese (Brazilian) pt_BR pt_BR.utf8
Punjabi pa pa_IN.utf8
Russian ru ru_RU.utf8
Spanish es es ES.utf8
Tamil ta ta_IN.utf8
Telugu te te_IN.utf8

DO180-0OCP4.5-en-3-20201217

y 2AR(IA

3 n ."'".'"".l
o

A

=

i)

=]
L

LUOD JeUL

—
|
&)]

) ILBILIAL

n

.
[

-
L

—
L

) 1eH pay T

W DO180-OCP4.5-en-3-20201217

Chapter1

Introducing Container
Technology

Goal Describe how applications run in containers ¢
orchestrated by Red Hat OpenShift Container
Platform.
.
Objectives + Describe the difference between container “
applications and traditional deployments.
Describe the basics of container architecture. P-
- Describe the benefits of orchestrating
‘ applications and OpenShift Container Platform.
e
" Sections + Overview of Container Technology (and Quiz)

Overview of Container Architecture (and Quiz)

Overview of Kubernetes and OpenShift (and
Quiz)

r/

DO180-0OCP4.5-en-3-20201217

Chapter1 | Introducing Container Technology

Overview of Container Technology

Objectives

After completing this section, students should be able to describe the difference between
container applications and traditional deployments.

Containerized Applications

Software applications typically depend on other libraries, configuration files, or services that

are provided by the runtime environment. The traditional runtime environment for a software
application is a physical host or virtual machine, and application dependencies are installed as part
of the host.

For example, consider a Python application that requires access to a common shared library that
implements the TLS protocol. Traditionally, a system administrator installs the required package
that provides the shared library before installing the Python application.

The major drawback to traditionally deployed software application is that the application's
dependencies are entangled with the runtime environment. An application may break when any
updates or patches are applied to the base operating system (OS).

For example, an OS update to the TLS shared library removes TLS 1.0 as a supported protocol.
This breaks the deployed Python application because it is written to use the TLS 1.0 protocol for
network requests. This forces the system administrator to roll back the OS update to keep the
application running, preventing other applications from using the benefits of the updated package.
Therefore, a company developing traditional software applications may require a full set of tests to
guarantee that an OS update does not affect applications running on the host.

Furthermore, a traditionally deployed application must be stopped before updating the associated
dependencies. To minimize application downtime, organizations design and implement complex
systems to provide high availability of their applications. Maintaining multiple applications on a
single host often becomes cumbersome, and any deployment or update has the potential to break
one of the organization's applications.

Figure 1.1 describes the difference between applications running as containers and applications
running on the host operating system.

vy ll
APP A APPB

LIBS A LIBS B
LIBS A LIBS B LIBS LIBS CONTAINER CONTAINER
HOST 0S HOST 0S
HARDWARE HARDWARE
TRADITIONAL 0S CONTAINERS

Figure 1.1: Container versus operating system differences

' DO180-0OCP4.5-en-3-20201217

Chapter1 | Introducing Container Technology

Alternatively, a software application can be deployed using a container. A container is a set of one
or more processes that are isolated from the rest of the system. Containers provide many of the
same benefits as virtual machines, such as security, storage, and network isolation. Containers
require far fewer hardware resources and are quick to start and terminate. They also isolate the
libraries and the runtime resources (such as CPU and storage) for an application to minimize the
impact of any OS update to the host OS, as described in Figure 1.1.

The use of containers not only helps with the efficiency, elasticity, and reusability of the hosted
applications, but also with application portability. The Open Container Initiative provides a

set of industry standards that define a container runtime specification and a container image
specification. The image specification defines the format for the bundle of files and metadata that
form a container image. When you build an application as a container image, which complies with
the OCl standard, you can use any OCl-compliant container engine to execute the application.

There are many container engines available to manage and execute individual containers,
including Rocket, Drawbridge, LXC, Docker, and Podman. Podman is available in Red Hat
Enterprise Linux 7.6 and later, and is used in this course to start, manage, and terminate individual
containers.

The following are other major advantages to using containers:

Low hardware footprint
Containers use OS internal features to create an isolated environment where resources are
managed using OS facilities such as namespaces and cgroups. This approach minimizes the
amount of CPU and memory overhead compared to a virtual machine hypervisor. Running an
application in a VM is a way to create isolation from the running environment, but it requires
a heavy layer of services to support the same low hardware footprint isolation provided by
containers.

Environment isolation
Containers work in a closed environment where changes made to the host OS or other
applications do not affect the container. Because the libraries needed by a container are self-
contained, the application can run without disruption. For example, each application can exist
in its own container with its own set of libraries. An update made to one container does not
affect other containers.

Quick deployment
Containers deploy quickly because there is no need to install the entire underlying operating
system. Normally, to support the isolation, a new OS installation is required on a physical host
or VM, and any simple update might require a full OS restart. A container restart does not
require stopping any services on the host OS.

Multiple environment deployment
In a traditional deployment scenario using a single host, any environment differences
could break the application. Using containers, however, all application dependencies and
environment settings are encapsulated in the container image.

Reusability
The same container can be reused without the need to set up a full OS. For example, the
same database container that provides a production database service can be used by
each developer to create a development database during application development. Using
containers, there is no longer a need to maintain separate production and development
database servers. A single container image is used to create instances of the database service.

Often, a software application with all of its dependent services (databases, messaging, file
systems) are made to run in a single container. This can lead to the same problems associated

Chapter1 | Introducing Container Technology

with traditional software deployments to virtual machines or physical hosts. In these instances, a
multicontainer deployment may be more suitable.

Furthermore, containers are an ideal approach when using microservices for application
development. Each service is encapsulated in a lightweight and reliable container environment
that can be deployed to a production or development environment. The collection of
containerized services required by an application can be hosted on a single machine, removing the
need to manage a machine for each service.

In contrast, many applications are not well suited for a containerized environment. For example,
applications accessing low-level hardware information, such as memory, file systems, and devices
may be unreliable due to container limitations.

References

Home - Open Containers Initiative
https://www.opencontainers.org/

' DO180-0OCP4.5-en-3-20201217

https://www.opencontainers.org/

Chapter1 | Introducing Container Technology

» Quiz

Overview of Container Technology

Choose the correct answers to the following questions:

P 1. Which two options are examples of software applications that might run in a container?

(Choose two.)

a. A database-driven Python application accessing services such as a MySQL database, a
file transfer protocol (FTP) server, and a web server on a single physical host.

b. A Java Enterprise Edition application, with an Oracle database, and a message broker
running on a single VM.

c. An I/O monitoring tool responsible for analyzing the traffic and block data transfer.

d. A memory dump application tool capable of taking snapshots from all the memory CPU
caches for debugging purposes.

P 2. Which two of the following use cases are best suited for containers? (Choose two.)

a. A software provider needs to distribute software that can be reused by other companies in
a fast and error-free way.

b. A company is deploying applications on a physical host and would like to improve its
performance by using containers.

c. Developers at a company need a disposable environment that mimics the production
environment so that they can quickly test the code they develop.

d. A financial company is implementing a CPU-intensive risk analysis tool on their own
containers to minimize the number of processors needed.

P 3. A company is migrating their PHP and Python applications running on the same host to
a new architecture. Due to internal policies, both are using a set of custom made shared
libraries from the OS, but the latest update applied to them as a result of a Python
development team request broke the PHP application. Which two architectures would
provide the best support for both applications? (Choose two.)

a. Deploy each application to different VMs and apply the custom made shared libraries
individually to each VM host.

b. Deploy each application to different containers and apply the custom made shared
libraries individually to each container.

c. Deploy each application to different VMs and apply the custom made shared libraries to
all VM hosts.

d. Deploy each application to different containers and apply the custom made shared
libraries to all containers.

DO180-0OCP4.5-en-3-20201217 ‘

Chapter1 | Introducing Container Technology

P 4. Which three kinds of applications can be packaged as containers for immediate
consumption? (Choose three.)
a. A virtual machine hypervisor
b. A blog software, such as WordPress
c. A database
d. Alocal file system recovery tool
e. Aweb server

' DO180-0OCP4.5-en-3-20201217

Chapter1 | Introducing Container Technology

» Solution

Overview of Container Technology

Choose the correct answers to the following questions:

P 1. Which two options are examples of software applications that might run in a container?

(Choose two.)

a. A database-driven Python application accessing services such as a MySQL database, a
file transfer protocol (FTP) server, and a web server on a single physical host.

b. A Java Enterprise Edition application, with an Oracle database, and a message broker
running on a single VM.

¢. An I/O monitoring tool responsible for analyzing the traffic and block data transfer.

d. A memory dump application tool capable of taking snapshots from all the memory CPU

caches for debugging purposes.

P 2. Which two of the following use cases are best suited for containers? (Choose two.)

a. A software provider needs to distribute software that can be reused by other companies in
a fast and error-free way.

b. A company is deploying applications on a physical host and would like to improve its
performance by using containers.

c. Developers at a company need a disposable environment that mimics the production
environment so that they can quickly test the code they develop.

d. A financial company is implementing a CPU-intensive risk analysis tool on their own

containers to minimize the number of processors needed.

P 3. A company is migrating their PHP and Python applications running on the same host to
a new architecture. Due to internal policies, both are using a set of custom made shared
libraries from the OS, but the latest update applied to them as a result of a Python
development team request broke the PHP application. Which two architectures would
provide the best support for both applications? (Choose two.)

a. Deploy each application to different VMs and apply the custom made shared libraries
individually to each VM host.

b. Deploy each application to different containers and apply the custom made shared
libraries individually to each container.

c. Deploy each application to different VMs and apply the custom made shared libraries to
all VM hosts.

d. Deploy each application to different containers and apply the custom made shared

libraries to all containers.

DO180-0OCP4.5-en-3-20201217 ‘

Chapter 1 | Introducing Container Technology

P 4. Which three kinds of applications can be packaged as containers for immediate
consumption? (Choose three.)
a. Avirtual machine hypervisor
b. A blog software, such as WordPress
c. A database
d. Alocal file system recovery tool

e. Aweb server

' DO180-0OCP4.5-en-3-20201217

Chapter1 | Introducing Container Technology

Overview of Container Architecture

Objectives

After completing this section, students should be able to:
+ Describe the architecture of Linux containers.

+ Install the podman utility to manage containers.

Introducing Container History

Containers have quickly gained popularity in recent years. However, the technology behind
containers has been around for a relatively long time. In 2001, Linux introduced a project named
VServer. VServer was the first attempt at running complete sets of processes inside a single server
with a high degree of isolation.

From VServer, the idea of isolated processes further evolved and became formalized around the
following features of the Linux kernel:

Namespaces
The kernel can isolate specific system resources, usually visible to all processes, by placing
the resources within a namespace. Inside a namespace, only processes that are members of
that namespace can see those resources. Namespaces can include resources like network
interfaces, the process ID list, mount points, IPC resources, and the system's host name
information.

Control groups (cgroups)
Control groups partition sets of processes and their children into groups to manage and
limit the resources they consume. Control groups place restrictions on the amount of system
resources processes might use. Those restrictions keep one process from using too many
resources on the host.

Seccomp
Developed in 2005 and introduced to containers circa 2014, Seccomp limits how processes
could use system calls. Seccomp defines a security profile for processes, whitelisting the
system calls, parameters and file descriptors they are allowed to use.

SELinux
SELinux (Security-Enhanced Linux) is a mandatory access control system for processes.
Linux kernel uses SELinux to protect processes from each other and to protect the host
system from its running processes. Processes run as a confined SELinux type that has limited
access to host system resources.

All of these innovations and features focus around a basic concept: enabling processes to run
isolated while still accessing system resources. This concept is the foundation of container
technology and the basis for all container implementations. Nowadays, containers are processes
in Linux kernel making use of those security features to create an isolated environment. This
environment forbids isolated processes from misusing system or other container resources.

A common use case of containers is having several replicas of the same service (for example,
a database server) in the same host. Each replica has isolated resources (file system, ports,

Chapter1 | Introducing Container Technology

memory), so there is no need for the service to handle resource sharing. Isolation guarantees that
a malfunctioning or harmful service does not impact other services or containers in the same host,
nor in the underlying system.

Describing Linux Container Architecture

From the Linux kernel perspective, a container is a process with restrictions. However, instead

of running a single binary file, a container runs an image. An image is a file-system bundle that
contains all dependencies required to execute a process: files in the file system, installed packages,
available resources, running processes, and kernel modules.

Like executable files are the foundation for running processes, images are the foundation for
running containers. Running containers use an immutable view of the image, allowing multiple
containers to reuse the same image simultaneously. As images are files, they can be managed by
versioning systems, improving automation on container and image provisioning.

Container images need to be locally available for the container runtime to execute them, but the
images are usually stored and maintained in an image repository. An image repository is just a
service - public or private - where images can be stored, searched and retrieved. Other features
provided by image repositories are remote access, image metadata, authorization or image version
control.

There are many different image repositories available, each one offering different features:
+ Red Hat Container Catalog [https://registry.redhat.io]

+ Docker Hub [https://hub.docker.com]

+ Red Hat Quay [https://quay.io/]

+ Google Container Registry [https://cloud.google.com/container-registry/]

+ Amazon Elastic Container Registry [https://aws.amazon.com/ecr/]

This course uses the public image registry Quay, so students can operate with images without
worrying about interfering with each other.

Managing Containers with Podman

Containers, images, and image registries need to be able to interact with each other. For example,
you need to be able to build images and put them into image registries. You also need to be able
to retrieve an image from the image registry and build a container from that image.

Podman is an open source tool for managing containers and container images and interacting with
image registries. It offers the following key features:

+ It uses image format specified by the Open Container Initiative [https://
www.opencontainers.org] (OC/). Those specifications define an standard, community-driven,

non-proprietary image format.

« Podman stores local images in local file-system. Doing so avoids unnecessary client/server
architecture or having daemons running on local machine.

+ Podman follows the same command patterns as the Docker CLI, so there is no need to learn a
new toolset.

+ Podman is compatible with Kubernetes. Kubernetes can use Podman to manage its containers.

w DO180-0OCP4.5-en-3-20201217

https://registry.redhat.io
https://registry.redhat.io
https://hub.docker.com
https://hub.docker.com
https://quay.io/
https://quay.io/
https://cloud.google.com/container-registry/
https://cloud.google.com/container-registry/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://www.opencontainers.org
https://www.opencontainers.org
https://www.opencontainers.org

Chapter1 | Introducing Container Technology

Currently, Podman is only available on Linux systems. To install Podman in Red Hat
Enterprise Linux, Fedora or similar RPM-based systems, run sudo yum install podman or
sudo dnf install podman.

D References

Red Hat Quay Container Registry
https://quay.io
Podman site
https://podman.io/

Open Container Initiative
https://www.opencontainers.org

DO180-0OCP4.5-en-3-20201217 ‘

https://quay.io
https://podman.io/
https://www.opencontainers.org

Chapter1 | Introducing Container Technology

» Quiz

Overview of Container Architecture

Choose the correct answers to the following questions:

P 1. Which three of the following Linux features are used for running containers? (Choose
three.)
a. Namespaces
b. Integrity Management
c. Security-Enhanced Linux
d. Control Groups

P 2. Which of the following best describes a container image?
a. Avirtual machine image from which a container will be created.
b. A container blueprint from which a container will be created.
c. Aruntime environment where an application will run.
d. The container's index file used by a registry.

P 3. Which three of the following components are common across container architecture
implementations? (Choose three.)
a. Container runtime
b. Container permissions
c. Containerimages
d. Container registries

P 4. Whatis a container in relation to the Linux kernel?
a. Avirtual machine.
b. Anisolated process with regulated resource access.
c. A set of file-system layers exposed by UnionFS.
d. An external service providing container images.

w DO180-0OCP4.5-en-3-20201217

Chapter1 | Introducing Container Technology

» Solution

Overview of Container Architecture

Choose the correct answers to the following questions:

P 1. Which three of the following Linux features are used for running containers? (Choose
three.)
a. Namespaces
b. Integrity Management
c. Security-Enhanced Linux
d. Control Groups

P 2. Which of the following best describes a container image?
a. A virtual machine image from which a container will be created.
b. A container blueprint from which a container will be created.
¢. Aruntime environment where an application will run.

d. The container's index file used by a registry.

P 3. Which three of the following components are common across container architecture
implementations? (Choose three.)
a. Container runtime
b. Container permissions
c. Containerimages
d. Container registries

P 4. Whatis a container in relation to the Linux kernel?
a. Avirtual machine.
b. Anisolated process with regulated resource access.
¢. A set of file-system layers exposed by UnionFS.

d. An external service providing container images.

DO180-0OCP4.5-en-3-20201217 “

Chapter1 | Introducing Container Technology

Overview of Kubernetes and OpenShift

Objectives

After completing this section, students should be able to:
+ ldentify the limitations of Linux containers and the need for container orchestration.
+ Describe the Kubernetes container orchestration tool.

+ Describe Red Hat OpenShift Container Platform (RHOCP).

Limitations of Containers

Containers provide an easy way to package and run services. As the number of containers
managed by an organization grows, the work of manually starting them rises exponentially along
with the need to quickly respond to external demands.

When using containers in a production environment, enterprises often require:

+ Easy communication between a large number of services.

+ Resource limits on applications regardless of the number of containers running them.
+ Respond to application usage spikes to increase or decrease running containers.

+ React to service deterioration.

+ Gradually roll out a new release to a set of users.

Enterprises often require a container orchestration technology because container runtimes (such
as Podman) do not adequately address the above requirements.

Kubernetes Overview

Kubernetes is an orchestration service that simplifies the deployment, management, and scaling of
containerized applications.

The smallest unit manageable in Kubernetes is a pod. A pod consists of one or more containers
with its storage resources and IP address that represent a single application. Kubernetes also uses
pods to orchestrate the containers inside it and to limit its resources as a single unit.

Kubernetes Features

Kubernetes offers the following features on top of a container infrastructure:

Service discovery and load balancing
Kubernetes enables inter-service communication by assigning a single DNS entry to each set
of containers. This way, the requesting service only needs to know the target's DNS name,
allowing the cluster to change the container's location and IP address, leaving the service
unaffected. This permits load-balancing the request across the pool of containers providing
the service. For example, Kubernetes can evenly split incoming requests to a MySQL service
taking into account the availability of the pods.

Chapter1 | Introducing Container Technology

Horizontal scaling
Applications can scale up and down manually or automatically with configuration set either
with the Kubernetes command-line interface or the web Ul.

Self-healing
Kubernetes can use user-defined health checks to monitor containers to restart and
reschedule them in case of failure.

Automated rollout
Kubernetes can gradually roll updates out to your application's containers while checking their
status. If something goes wrong during the rollout, Kubernetes can roll back to the previous
iteration of the deployment.

Secrets and configuration management
You can manage configuration settings and secrets of your applications without rebuilding
containers. Application secrets can be user names, passwords, and service endpoints; any
configuration settings that need to be kept private.

Operators
Operators are packaged Kubernetes applications that also bring the knowledge of the
application's life cycle into the Kubernetes cluster. Applications packaged as Operators use
the Kubernetes API to update the cluster's state reacting to changes in the application state.

OpenShift Overview

Red Hat OpenShift Container Platform (RHOCP) is a set of modular components and services
built on top of a Kubernetes container infrastructure. RHOCP adds the capabilities to provide
a production PaaS platform such as remote management, multitenancy, increased security,
monitoring and auditing, application life-cycle management, and self-service interfaces for
developers.

Beginning with Red Hat OpenShift v4, hosts in an OpenShift cluster all use Red Hat
Enterprise Linux CoreOS as the underlying operating system.

Throughout this course, the terms RHOCP and OpenShift are used to refer to the Red Hat
OpenShift Container Platform.

OpenShift Features

OpenShift adds the following features to a Kubernetes cluster:

Integrated developer workflow
RHOCP integrates a built-in container registry, Cl/CD pipelines, and S2I; a tool to build
artifacts from source repositories to container images.

Routes
Easily expose services to the outside world.

Metrics and logging
Include built-in and self-analyzing metrics service and aggregated logging.

Unified Ul
OpenShift brings unified tools and a Ul to manage all the different capabilities.

Chapter1 | Introducing Container Technology

References

Production-Grade Container Orchestration - Kubernetes
https://kubernetes.io/

OpenShift: Container Application Platform by Red Hat, Built on Docker and
Kubernetes
https://www.openshift.com/

W DO180-0OCP4.5-en-3-20201217

https://kubernetes.io/
https://www.openshift.com/

Chapter1 | Introducing Container Technology

» Quiz

Describing Kubernetes and OpenShift

Choose the correct answers to the following questions:

P 1. Which three of the following statements are correct regarding container limitations?
(Choose three.)
a. Containers are easily orchestrated in large numbers.
b. Lack of automation increases response time to problems.
c. Containers do not manage application failure inside them.
d. Containers are not load-balanced.
e. Containers are heavily isolated packaged applications.

P 2. Which two of the following statements are correct regarding Kubernetes? (Choose
two.)
a. Kubernetes is a container.
b. Kubernetes can only use Docker containers.
c. Kubernetes is a container orchestration system.
d. Kubernetes simplifies management, deployment, and scaling of containerized
applications.
e. Applications managed in a Kubernetes cluster are harder to maintain.

P 3. Which three of the following statements are true regarding Red Hat OpenShift v4?
(Choose three.)
a. OpenShift provides additional features to a Kubernetes infrastructure.
b. Kubernetes and OpenShift are mutually exclusive.
c. OpenShift hosts use Red Hat Enterprise Linux as the base operating system.
d. OpenShift simplifies development incorporating a Source-to-Image technology and Cl/
CD pipelines.
e. OpenShift simplifies routing and load balancing.

P 4. What features does OpenShift offer that extend Kubernetes capabilities? (choose
two.)
a. Operators and the Operator Framework.
b. Routes to expose services to the outside world.
¢. Anintegrated development workflow.
d. Self-healing and health checks.

DO180-0OCP4.5-en-3-20201217 ‘

Chapter1 | Introducing Container Technology

» Solution

Describing Kubernetes and OpenShift

Choose the correct answers to the following questions:

P 1. Which three of the following statements are correct regarding container limitations?
(Choose three.)
a. Containers are easily orchestrated in large numbers.
b. Lack of automation increases response time to problems.
c. Containers do not manage application failure inside them.
d. Containers are not load-balanced.

e. Containers are heavily isolated packaged applications.

P 2. Which two of the following statements are correct regarding Kubernetes? (Choose
two.)
a. Kubernetes is a container.
b. Kubernetes can only use Docker containers.
c. Kubernetes is a container orchestration system.
d. Kubernetes simplifies management, deployment, and scaling of containerized
applications.

e. Applications managed in a Kubernetes cluster are harder to maintain.

P 3. Which three of the following statements are true regarding Red Hat OpenShift v4?
(Choose three.)
a. OpenShift provides additional features to a Kubernetes infrastructure.
b. Kubernetes and OpenShift are mutually exclusive.
¢. OpenShift hosts use Red Hat Enterprise Linux as the base operating system.
d. OpenShift simplifies development incorporating a Source-to-Image technology and Cl/
CD pipelines.
e. OpenShift simplifies routing and load balancing.

P 4. What features does OpenShift offer that extend Kubernetes capabilities? (choose
two.)
a. Operators and the Operator Framework.
b. Routes to expose services to the outside world.
¢. Anintegrated development workflow.

d. Self-healing and health checks.

w DO180-0OCP4.5-en-3-20201217

Chapter1 | Introducing Container Technology

» Guided Exercise

Configuring the Classroom Environment

In this exercise, you will configure the workstation to access all infrastructure used by this
course.

Outcomes
You should be able to:

- Configure your workstation to access an OpenShift cluster, a container image registry, and

a Git repository used throughout the course.

+ Fork this course's sample applications repository to your personal GitHub account.

+ Clone this course's sample applications repository from your personal GitHub account to

your workstation VM.

Before You Begin

To perform this exercise, ensure you have:

+ Access to the DO180 course in the Red Hat Training's Online Learning Environment.

+ The connection parameters and a developer user account to access an OpenShift cluster

managed by Red Hat Training.

+ A personal, free GitHub account. If you need to register to GitHub, see the instructions in

Appendix B, Creating a GitHub Account.

+ A personal, free Quay.io account. If you need to register to Quay.io, see the instructions in

b1

Appendix C, Creating a Quay Account.

Before starting any exercise, you need to configure your workstation VM.

For the following steps, use the values the Red Hat Training Online Learning environment
provides to you when you provision your online lab environment:

Chapter1 | Introducing Container Technology

Table of Contents

P Lab Controls

Click CREATE to build all of the virtual machines needed for the classroom lab environment. This may take several minutes to complete. Once created
the environment can then be stopped and restarted to pause your experience.

Course Lab Environment * e

If you DELETE your lab, you will remove all of the virtual machines in your classroom and lose all of your progress.

B -}

OpenShift Details
Username RHT_OCP4_DEV_USER youruser
Password RHT_OCP4_DEV_PASSWORD yourpassword
API Endpoint RHT_OCP4_MASTER_API https://api.cluster.domain.example.com:6443
Console Web Application https://console-openshift-console.apps.cluster.domain.example.com
Cluster Id your-cluster-id
workstation

classroom

active ACTION ~ OPEN CONSOLE
active ACTION ~ OPEN CONSOLE

Open a terminal on your workstation VM and execute the following command. Answer
its interactive prompts to configure your workstation before starting any other exercise in
this course.

If you make a mistake, you can interrupt the command at any time using Ctr 1+C and start

over.

[student@workstation ~]$ lab-configure

11

The lab-configure command starts by displaying a series of interactive prompts,
and will try to find some sensible defaults for some of them.

This script configures the connection parameters to access the OpenShift cluster
for your lab scripts

Enter
Enter
Enter
Enter
Enter

the
the
the
the
the

API Endpoint: https://api.cluster.domain.example.com:6443 o
Username: youruser

Password: yourpassword (3]

GitHub Account Name: yourgituser (4]

Quay.io Account Name: yourquayuser ‘3

.output omitted. ..

The URL to your OpenShift cluster's Master API. Type the URL as a single line,
without spaces or line breaks. Red Hat Training provides this information to you
when you provision your lab environment. You need this information to log in to
the cluster and also to deploy containerized applications.

©© Your OpenShift developer user name and password. Red Hat Training provides

this information to you when you provision your lab environment. You need
to use this user name and password to log in to OpenShift. You will also use
your user name as part of the identifiers, such as route host names and project

DO180-0OCP4.5-en-3-20201217

Chapter1 | Introducing Container Technology

names, to avoid collision with identifiers from other students who share the same
OpenShift cluster with you.

OO Your personal GitHub and Quay.io account names. You need valid, free accounts
on these online services to perform this course's exercises. If you have never
used any of these online services, refer to Appendix B, Creating a GitHub
Account and Appendix C, Creating a Quay Account for instructions about how to
register.

S Note
If you use two-factor authentication with your GitHub account you may want to
create a personal access token for use from the workstation VM during the
course. Refer to the following documentation on how to setup a personal access
on your account: Creating a personal access token for the command line [https://
help.github.com/en/articles/creating-a-personal-access-token-for-the-command-
line]

12. The lab-configure command prints all the information that you entered and tries
to connect to your OpenShift cluster:

...output omitted...

You entered:

- API Endpoint: https://api.cluster.domain.example.com:6443
- Username: youruser

- Password: yourpassword

+ GitHub Account Name: yourgituser

+ Quay.io Account Name: yourquayuser

..output omitted. ..

1.3. If lab-configure finds any issues, it displays an error message and exits. You will
need to verify your information and run the lab-configure command again. The
following listing shows an example of a verification error:

..output omitted...
Verifying your Master API URL...

ERROR:

Cannot connect to an OpenShift 4.5 API using your URL.

Please verify your network connectivity and that the URL does not point to an
Openshift 3.x nor to a non-OpenShift Kubernetes API.

No changes made to your lab configuration.

14. If everything is OK so far, the lab-configure tries to access your public GitHub and
Quay.io accounts:

https://help.github.com/en/articles/creating-a-personal-access-token-for-the-command-line
https://help.github.com/en/articles/creating-a-personal-access-token-for-the-command-line
https://help.github.com/en/articles/creating-a-personal-access-token-for-the-command-line
https://help.github.com/en/articles/creating-a-personal-access-token-for-the-command-line

Chapter1 | Introducing Container Technology

...output omitted...
Verifying your GitHub account name...
Verifying your Quay.io account name...

...output omitted...

15. Again, lab-configure displays an error message and exits if it finds any issues. You
will need to verify your information and run the lab-configure command again.
The following listing shows an example of a verification error:
...output omitted. ..
Verifying your GitHub account name...
ERROR:

Cannot find a GitHub account named: invalidusername.
No changes made to your lab configuration.

1.6. Finally, the lab-configure command verifies that your OpenShift cluster reports
the expected wildcard domain.

...output omitted...

Verifying your cluster configuration...

...output omitted...

17. If all checks pass, the lab-configure command saves your configuration:
...output omitted. ..
Saving your lab configuration file...

All fine, lab config saved. You can now proceed with your exercises.

1.8. If there were no errors saving your configuration, you are almost ready to start any of
this course's exercises. If there were any errors, do not try to start any exercise until
you can execute the lab-configure command successfully.

) 2. Before starting any exercise, you need to fork this course's sample applications into your
personal GitHub account. Perform the following steps:

21. Openaweb browser and navigate to https://github.com/RedHatTraining/

D0180-apps. If you are not logged in to GitHub, click Signin in the upper-right
corner.

Chapter 1 | Introducing Container Technology

O Why GitHub? Enterprise Explore Ma lace Pricing Signin | Signup |
£l RedHatTraining / DO180-apps @Wwatch | 4 | dStar 0 YFork 0
<» Code Issues 0 Pull requests 0 Projects 0 Security Insights

2.2. Login to GitHub using your personal user name and password.

O

Sign in to GitHub

Username or email address

yourgituser

Password Forgot password?

o

2.3. Returnto the RedHatTraining/D0180-apps repository and click Fork in the
upper-right corner.

1 RedHatTraining / DO180-apps ©@Watch~ 4 | #Star 0 YFork 0

<» Code Issues 0 Pull requests 0 Actions Wiki Security More ~

2.4. Inthe Fork DO180-apps window, click yourgituser to select your personal GitHub
project.

Fork DO180-apps x

Where should we fork DO180-apps?

(% 7] yourgituser

i~ | Important
— While it is possible to rename your personal fork of the https://github.com/
RedHatTraining/D0180-apps repository, grading scripts, helper scripts, and the
example output in this course assume that you retain the name DO180-apps when
your fork the repository.

2.5. After a few minutes, the GitHub web interface displays your new repository
yourgituser/DO180-apps.

¥ yourgituser / DO180-apps @Walch~ 0 sSlar 0 YFork 1
forked from RedHatTraining/DO180-apps

<> Code Pull requests 0 Wiki Security More ~ Settings

DO180-0OCP4.5-en-3-20201217 “

Chapter1 | Introducing Container Technology

) 3. Before starting any exercise, you also need to clone this course's sample applications from
your personal GitHub account to your workstation VM. Perform the following steps:

31 Run the following command to clone this course's sample applications repository.
Replace yourgituser with the name of your personal GitHub account:

[student@workstation ~]$ git clone https://github.com/yourgituser/D0180-apps
Cloning into 'DO180-apps'...
...output omitted...

3.2. Verify that /home/student/D0180-apps is a Git repository:

[student@workstation ~]$ cd DO180-apps
[student@workstation D0180-apps]$ git status
On branch master

nothing to commit, working directory clean

3.3. Verify that /home/student/D0180-apps contains this course's sample
applications, and change back to the student user's home folder.

[student@workstation D0180-apps]$ head README.md
D0180-apps

...output omitted...

[student@workstation D0180-apps]$ cd ~
[student@workstation ~1$

P 4. Now that you have a local clone of the D0180-apps repository on your workstation VM,
and you have executed the lab-configure command successfully, you are ready to start
this course's exercises.

During this course, all exercises that build applications from source start from the master
branch of the D0180-apps Git repository. Exercises that make changes to source code
require you to create new branches to host your changes, so that the master branch
always contains a known good starting point. If for some reason you need to pause or
restart an exercise, and need to either save or discard about changes you make into your
Git branches, refer to Appendix D, Useful Git Commands.

This concludes the guided exercise.

Chapter1 | Introducing Container Technology

Summary

In this chapter, you learned:

Containers are an isolated application runtime created with very little overhead.

A container image packages an application with all of its dependencies, making it easier to run
the application in different environments.

Applications such as Podman create containers using features of the standard Linux kernel.

Container image registries are the preferred mechanism for distributing container images to
multiple users and hosts.

OpenShift orchestrates applications composed of multiple containers using Kubernetes.

Kubernetes manages load balancing, high availability, and persistent storage for containerized
applications.

OpenShift adds to Kubernetes multitenancy, security, ease of use, and continuous integration
and continuous development features.

OpenShift routes enable external access to containerized applications in a manageable way.

y 2AR(IA

3 n ."'".'"".l
o

A

=

i)

=]
L

LUOD JeUL

—
|
&)]

) ILBILIAL

n

.
[

-
L

—
L

) 1eH pay T

W DO180-OCP4.5-en-3-20201217

Chapter 2

Creating Containerized
Services

Goal Provision a service using container technology. U
Objectives + Create a database server from a container
image. i
L
Sections + Provisioning a Containerized Database Server .
(and Guided Exercise) "

!
-

«g Lab + Creating Containerized Services
—

L

4

0180-0OCP4.5-en-3-20201217

Chapter 2 | Creating Containerized Services

Provisioning Containerized Services

Objectives

After completing this section, students should be able to:
+ Search for and fetch container images with Podman.
+ Run and configure containers locally.

+ Use the Red Hat Container Catalog.

Fetching Container Images with Podman

Applications can run inside containers as a way to provide them with an isolated and controlled
execution environment. Running a containerized application, that is, running an application

inside a container, requires a container image, a file system bundle providing all application files,
libraries, and dependencies the application needs to run. Container images can be found in image
registries: services that allow users to search and retrieve container images. Podman users can use
the search subcommand to find available images from remote or local registries:

[student@workstation ~]$ sudo podman search rhel

INDEX NAME DESCRIPTION STARS OFFICIAL AUTOMATED
redhat.com registry.access.redhat.com/rhel This plat... 0@

...output omitted...

After you have found an image, you can use Podman to download it. When using the pull
subcommand, Podman fetches the image and saves it locally for future use:

[student@workstation ~]$ sudo podman pull rhel
Trying to pull registry.access.redhat.com/rhel...Getting image source signatures

Copying blob sha256: ...output omitted...

72.25 MB / 72.25 MB [] 8s
Copying blob sha256: ...output omitted...

1.20 KB / 1.20 KB [] os
Copying config sha256: ...output omitted...

6.30 KB / 6.30 KB [1 0s

Writing manifest to image destination

Storing signatures

699d44bc6ea2b9fb23e7899bd4023d3c83894d3be64b12e65a3fe63e2c70f0ef
Container images are named based on the following syntax:

registry_name/user_name/image_name:tag

+ First registry_name, the name of the registry storing the image. It is usually the FQDN of the
registry.

+ user_name stands for the user or organization the image belongs to.

+ The image_name should be unique in user namespace.

Chapter 2 | Creating Containerized Services

+ The tag identifies the image version. If the image name includes no image tag, latest is
assumed.

Note
S This classroom's Podman installation uses a several publicly available registries, like
Quay . io and Red Hat Container Catalog.

After retrieval, Podman stores images locally and you can list them with the images subcommand:

[student@workstation ~]$ sudo podman images

REPOSITORY TAG IMAGE ID CREATED SIZE
registry.access.redhat.com/rhel latest 699d44bc6ea2 4 days ago 214MB
...output omitted. ..

Running Containers

The podman run command runs a container locally based on an image. At a minimum, the
command requires the name of the image to execute in the container.

The container image specifies a process that starts inside the container known as the entry
point. The podman run command uses all parameters after the image name as the entry
point command for the container. The following example starts a container from a Red Hat
Enterprise Linux image. It sets the entry point for this container to the echo "Hello wor1ld"
command.

[student@workstation ~]$ sudo podman run ubi7/ubi:7.7 echo 'Hello!'
Hello world

To start a container image as a background process, pass the -d option to the podman run
command:

[student@workstation ~]$ sudo podman run -d rhscl/httpd-24-rhel7:2.4-36.8
ff4ec6d74e9b2a7b55c49f138e5618bc46fe2a09c23093664fea7febc3dfalb2
[student@workstation ~]$ sudo podman inspect -1 \
> -f "{{.NetworkSettings.IPAddress}}"
10.88.0.68
[student@workstation ~]$ curl http://160.88.0.68:8080

...output omitted. ..
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en">

...output omitted. ..
<title>

Test Page for the Apache HTTP Server on Red Hat Enterprise Linux
</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<style type="text/css">

...output omitted. ..

The previous example ran a containerized Apache HTTP server in the background. Then, the
example uses the podman inspect command to retrieve the container's internal IP address
from container metadata. Finally, it uses the IP address to fetch the root page from Apache HTTP
server. This response proves the container is still up and running after the podman run command.

Chapter 2 | Creating Containerized Services

g Note

Most Podman subcommands accept the - 1 flag (1 for latest) as a replacement for
the container id. This flag applies the command to the latest used container in any
Podman command.

Q Note

If the image to be executed is not available locally when using the podman run
command, Podman automatically uses pull to download the image.

When referencing the container, Podman recognizes a container either with the container name or
the generated container id. Use the - -name option to set the container name when running the
container with Podman. Container names must be unique. If the podman run command includes
no container name, Podman generates a unique random name.

If the images require interacting with the user with console input, Podman can redirect container
input and output streams to the console. The run subcommand requires the -t and -1 flags (or,
in short, -it flag) to enable interactivity.

S Note
Many Podman flags also have an alternative long form; some of these are explained
below.

+ -tisequivalentto - -tty, meaning a pseudo-tty (pseudo-terminal) is to be
allocated for the container.

+ -listhesameas --interactive. When used, standard input is kept open into
the container.

+ -d, oritslong form - -detach, means the container runs in the background
(detached). Podman then prints the container id.

See the Podman documentation for the complete list of flags.

The following example starts a Bash terminal inside the container, and interactively runs some
commands in it:

[student@workstation ~]$ sudo podman run -it ubi7/ubi:7.7 /bin/bash
bash-4.2# 1s

...output omitted. ..

bash-4.2# whoami

root

bash-4.2# exit

exit

[student@workstation ~]$

Some containers need or can use external parameters provided at startup. The most common
approach for providing and consuming those parameters is through environment variables.
Podman can inject environment variables into containers at startup by adding the -e flag to the
run subcommand:

Chapter 2 | Creating Containerized Services

[student@workstation ~]$ sudo podman run -e GREET=Hello -e NAME=RedHat \
> rhel7:7.5 printenv GREET NAME

Hello

RedHat

[student@workstation ~]$

The previous example starts a RHEL image container that prints the two environment variables
provided as parameters. Another use case for environment variables is setting up credentials into a
MySQL database server:

[root@workstation ~]# sudo podman run --name mysql-custom \
> -e MYSQL_USER=redhat -e MYSQL_PASSWORD=r3dh4t \
> -d rhmap47/mysql:5.5

Using the Red Hat Container Catalog

Red Hat maintains its repository of finely tuned container images. Using this repository provides
customers with a layer of protection and reliability against known vulnerabilities, which could
potentially be caused by untested images. The standard podman command is compatible with the
Red Hat Container Catalog. The Red Hat Container Catalog provides a user-friendly interface for
searching and exploring container images from the Red Hat repository.

The Container Catalog also serves as a single interface, providing access to different aspects of all
the available container images in the repository. It is useful in determining the best image among
multiple versions of container images given health index grades. The health index grade indicates
how current an image is, and whether it contains the latest security updates.

The Container Catalog also gives access to the errata documentation of an image. It describes the
latest bug fixes and enhancements in each update. It also suggests the best technique for pulling
an image on each operating system.

The following images highlight some of the features of the Red Hat Container Catalog.

Container images

Container images offer lightweight and self-contained software to enable deployment at scale.

Home » Software » Container images

Apache x 1-150f 43 ¥ >

Provider

RED HAT’ RED HAT’
S GOPENSHIFT OOPENSHIFT

O DataStax Inc.

O 1BM rhscl/httpd-24-rhel7 openshift4/ose-metering-hive openshift4/ose-metering-had...
Apache httpd 2.4 Apache Hive Apache Hadoo
J Red Hat, Inc. P P P P P
by Red Hat, Inc by Red Hat, Inc by Red Hat, Inc
O Splunk
Platform for running Apache Apache Hive Apache Hadoop is a collection
httpd 2.4 or building httpd- of open-source software
Category

based application utilities that facilitate using a

Figure 2.1: Red Hat Container Catalog search page

DO180-0OCP4.5-en-3-20201217 “

Chapter 2 | Creating Containerized Services

As displayed above, searching for Apache in the search box of the Container Catalog displays
a suggested list of products and image repositories matching the search pattern. To access the
Apache httpd 2.4 image page, select rhscl/httpd-24-rhel7 from the suggested list.

Standalone Image

Apache httpd 2.4

thscl/httpd-24-rhel7

Architecture amd64 ~ Tag ®latest v

P |atest ®24 W24

Overview

Description

Apache httpd 2.4 available as container, is a powerful, efficient, and extensible web server. Apache supports a variety of
features, many implemented as compiled modules which extend the core functionality. These can range from server-side
programming language support to authentication schemes. Virtual hosting allows one Apache installation to serve many

different Web sites.

Products using this container

~

Red Hat Enterprise Linux 7
by Red Hat, Inc

The leading enterprise operating
system to speed application delivery
across physical, virtual, and cloud
environments,

Updated 18 days ago

Provided by ‘

Published
12 days ago

Release Category

Generally Available @

Health
Size
153 MB
Digest

d9163e7cf7ac |W

Registry

registry.redhat.io,
registry.access.redhat.com

Figure 2.2: Apache httpd 2.4 (rhscl/httpd-24-rhel7) overview image page

The Apache httpd 2.4 panel displays image details and several tabs. This page states that Red Hat
maintains the image repository. Under the Overview tab, there are other details:

« Description: A summary of the image's capabilities.

+ Products using this container:: It indicates that Red Hat Enterprise Linux uses this image

repository.

+ Most Recent Tag: When the image received its latest update, the latest tag applied to the image,

the health of the image, and more.

DO180-0OCP4.5-en-3-20201217

Chapter 2 | Creating Containerized Services

P |atest ®24 @240

Get this image

Using registry tokens

Registry: registry.redhat.io
Repository: rhscl/httpd-24-rhel7

Image Type: Standalone Image

Agree to terms and conditions

Before downloading or using this Container, you must agree to the Red Hat subscription agreement located at redhat.com/licenses. If
you do not agree with these terms, do not download or use the Container. If you have an existing Red Hat Enterprise Agreement (or
other negotiated agreement with Red Hat) with terms that govern subscription services associated with Containers, then your existing
agreement will control.

Use the following instructions to get images from a Red Hat container registry using registry service account tokens. You
will need to create a registry service account to use prior to completing any of the following tasks.

Figure 2.3: Apache httpd 2.4 (rhscl/httpd-24-rhel7) latest image page

The Get this image tab provides the procedure to get the most current version of the image. The
page provides different options to retrieve the image. Choose your preferred procedure in the
tabs, and the page provides the appropriate instructions to retrieve the image.

References

Red Hat Container Catalog
https://registry.redhat.io

Quay.io website
https://quay.io

DO180-0OCP4.5-en-3-20201217 “

https://registry.redhat.io
https://quay.io

Chapter 2 | Creating Containerized Services

» Guided Exercise

Creating a MySQL Database Instance

In this exercise, you will start a MySQL database inside a container, and then create and
populate a database.

Outcomes
You should be able to start a database from a container image and store information inside
the database.

Before You Begin
Open a terminal on workstation as the student user and run the following command:

[student@workstation ~]$ lab container-create start

P 1. Create a MySQL container instance.

11. Start a container from the Red Hat Software Collections Library MySQL image.

[student@workstation ~]$ sudo podman run --name mysql-basic \
> -e MYSQL_USER=userl -e MYSQL_PASSWORD=mypa55 \

> -e MYSQL_DATABASE=items -e MYSQL_ROOT PASSWORD=r00tpa55 \
> -d rhscl/mysql-57-rhel7:5.7-3.14

Trying to pull ...output omitted...

Copying blob sha256:e373541...output omitted...

69.66 MB / 69.66 MB [] 8s
Copying blob sha256:c5d2e94...output omitted...
1.20 KB / 1.20 KB [] os
Copying blob sha256:b3949ae...output omitted...
62.03 MB / 62.03 MB [1 8s

Writing manifest to image destination
Storing signatures
92eaabh67da®475745b2beffa7e0895391ab34ab3bf1ded99363bb09279a24a0

This command downloads the MySQL container image with the 5.7-3.14 tag, and
then starts a container-based image. It creates a database named items, owned
by a user named user1 with mypa55 as the password. The database administrator
password is set to r@0@tpa55 and the container runs in the background.

1.2. Verify that the container started without errors.

[student@workstation ~]$ sudo podman ps --format "{{.ID}} {{.Image}} {{.Names}}"
92eaabh67da@ registry.access.redhat.com/rhscl/mysql-57-rhel7:5.7-3.14 mysql-basic

P 2. Access the container sandbox by running the following command:

Chapter 2 | Creating Containerized Services

[student@workstation ~]$ sudo podman exec -it mysql-basic /bin/bash
bash-4.2%

This command starts a Bash shell, running as the mysql user inside the MySQL container.
) 3. Add data to the database.

31. Connect to MySQL as the database administrator user (root).

Run the following command from the container terminal to connect to the database:

bash-4.2% mysql -uroot

Welcome to the MySQL monitor. Commands end with ; or \g.
...output omitted. ..

mysql>

The mysqgl command opens the MySQL database interactive prompt. Run the
following command to determine the database availability:

mysql> show databases;

| information_schema |
| items |
[mysql I
| performance_schema |
| sys I

5 rows in set (0.01 sec)

3.2. Create a new table in the items database. Run the following command to access the
database.

mysql> use items;
Database changed

3.3. Create atable called Projects in the items database.

mysql> CREATE TABLE Projects (id int(11) NOT NULL,
-> name varchar(255) DEFAULT NULL,
-> code varchar(255) DEFAULT NULL,
-> PRIMARY KEY (id));

Query OK, 0 rows affected (0.01 sec)

You can optionally use the ~/D0180/solutions/container-create/
create_table. txt file to copy and paste the CREATE TABLE MySQL statement

as given above.

3.4. Use the show tables command to verify that the table was created.

Chapter 2 | Creating Containerized Services

mysql> show tables;

1 row in set (0.00 sec)

3.5. Use the insert command to insert a row into the table.

mysql> insert into Projects (id, name, code) values (1, 'DevOps', 'D0180');
Query OK, 1 row affected (0.02 sec)

3.6. Use the select command to verify that the project information was added to the
table.

mysql> select * from Projects;

dhbocoodboccocoocooos dhbocccooo +
| id | name | code |
dhbecoocococcocoocooos dhococcoao +
| 1 | DevOps | D0180 |
Pooccocoocooocooos Poococcooa +

1 row in set (0.00 sec)

3.7. Exit from the MySQL prompt and the MySQL container:
mysql> exit
Bye

bash-4.2% exit
exit

Finish
Onworkstation, runthe lab container-create finish scriptto complete this lab.

[student@workstation ~]$ lab container-create finish

This concludes the exercise.

Chapter 2 | Creating Containerized Services

» Lab

Creating Containerized Services

Performance Checklist
In this lab, you create an Apache HTTP Server container with a custom welcome page.

Outcomes

You should be able to start and customize a container using a container image.

Before You Begin

Open a terminal on workstation as the student user and run the following command:

[student@workstation ~]$ lab container-review start

1. Start a container named httpd-basic in the background, and forward port 8080 to port
80 in the container. Use the quay.io/redhattraining/httpd-parent containerimage
with the 2. 4 tag.

Note
E Use the -p 8080:80 option with sudo podman run command to forward the
port.

This command starts the Apache HTTP server in the background and returns to the Bash
prompt.

2. Testthe httpd-basic container.
Fromworkstation, attempt to access http://1localhost: 8080 using any web browser.

AnHello from the httpd-parent container! message is displayed, which is the
index.html page from the Apache HTTP server container running on workstation.

3. Customize the httpd-basic container to display Hello Wor 1d as the message. The
container's message is stored in the file /var/www/html/index.html.

3.]. Start a Bash session inside the container.

3.2. From the Bash session, verify the index.html file under /var/www/html directory
using the ls -1la command.

3.3. Change the index.html file to contain the text Hello Wor ld, replacing all of the
existing content.

3.4. Attempttoaccess http://1localhost:8080 again, and verify that the web page has
been updated.

DO180-0OCP4.5-en-3-20201217 “

Chapter 2 | Creating Containerized Services

Evaluation

Grade your work by running the lab container-review grade command on your
workstation machine. Correct any reported failures and rerun the script until successful

[student@workstation ~]$ lab container-review grade

Finish
Onworkstation, runthe lab container-review finish script to complete this lab.

[student@workstation ~]$ lab container-review finish

This concludes the lab.

W DO180-0OCP4.5-en-3-20201217

Chapter 2 | Creating Containerized Services

» Solution

Creating Containerized Services

Performance Checklist
In this lab, you create an Apache HTTP Server container with a custom welcome page.

Outcomes

You should be able to start and customize a container using a container image.

Before You Begin
Open a terminal on workstation as the student user and run the following command:

[student@workstation ~]$ lab container-review start

1. Start a container named httpd-basic in the background, and forward port 8080 to port
80 in the container. Use the quay.io/redhattraining/httpd-parent containerimage
with the 2.4 tag.

Note
S Use the -p 8080:80 option with sudo podman run command to forward the
port.

Run the following command:

[student@workstation ~]$ sudo podman run -d -p 8080:80 \

> --name httpd-basic quay.io/redhattraining/httpd-parent:2.4
...output omitted...

Copying blob sha256:743f2d6...output omitted...

21.45 MB / 21.45 MB [1 1s
Copying blob sha256:c92eb69...output omitted...

155 B / 155 B [1 6s
Copying blob sha256:2211bh05...output omitted...

9.86 MB / 9.86 MB [1 6s
Copying blob sha256:aed1801...output omitted...

15.78 MB / 15.78 MB [1 1s
Copying blob sha256:7c472a4...output omitted...

300 B / 300 B [] 6s
Copying config sha256:b7cc370...output omitted. ..

7.18 KB / 7.18 KB [1 6s

Writing manifest to image destination
Storing signatures
b51444e3bld7aaf94b3a4a54485d76a0a094cbfac89c287d360890a3d2779a5a

This command starts the Apache HTTP server in the background and returns to the Bash
prompt.

DO180-0OCP4.5-en-3-20201217 “

Chapter 2 | Creating Containerized Services

2. Testthe httpd-basic container.
Fromworkstation, attempt to access http://1localhost:8080 using any web browser.

AnHello from the httpd-parent container! message is displayed, which is the
index.html page from the Apache HTTP server container running onworkstation.

[student@workstation ~]$ curl http://localhost:8080
Hello from the httpd-parent container!

3. Customize the httpd-basic container to display Hello Wor 1d as the message. The
container's message is stored in the file /var/www/html/index.html.

3.]. Start a Bash session inside the container.

Run the following command:

[student@workstation ~]$ sudo podman exec -it httpd-basic /bin/bash
bash-4.4#

3.2. From the Bash session, verify the index. html file under /var/www/htm1l directory
using the 1s -la command.

bash-4.4# 1s -la /var/www/html

total 4

drwxr-xr-x. 2 root root 24 Jun 12 11:58 .
drwxr-xr-x. 4 root root 33 Jun 12 11:58 ..
-rw-r--r--. 1 root root 39 Jun 12 11:58 index.html

3.3. Change the index.html file to contain the text Hello Wor ld, replacing all of the
existing content.

From the Bash session in the container, run the following command:

bash-4.4# echo "Hello World" > /var/www/html/index.htm1l

3.4. Attempttoaccess http://1localhost:8080 again, and verify that the web page has
been updated.

bash-4.4# exit
[student@workstation ~]$ curl http://localhost:8080
Hello World

Evaluation

Grade your work by running the lab container-review grade command on your
workstation machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab container-review grade

Finish

Onworkstation, runthe lab container-review finish scriptto complete this lab.

Chapter 2 | Creating Containerized Services

[student@workstation ~]$ lab container-review finish

This concludes the lab.

DO180-0OCP4.5-en-3-20201217

Chapter 2 | Creating Containerized Services

Summary

In this chapter, you learned:
+ Podman allows users to search for and download images from local or remote registries.
+ The podman run command creates and starts a container from a container image.

+ Containers are executed in the background by using the -d flag, or interactively by using the -
it flag.

+ Some container images require environment variables that are set using the -e option from the
podman run command.

+ Red Hat Container Catalog assists in searching, exploring, and analyzing container images from
Red Hat's official container image repository.

w DO180-0OCP4.5-en-3-20201217

Chapter 3

Managing Containers

Goal Modify prebuilt container images to create and ¢
manage containerized services.
Objectives + Manage a container's life cycle from creation to .
deletion. “
+ Save container application data with persistent ,
storage. - |
-~ + Describe how to use port forwarding to access i
] tainer.
= a container.
e
" Sections + Managing the Life Cycle of Containers (and

Guided Exercise)

+ Attaching Persistent Storage to Containers
(and Guided Exercise)

Accessing Containers (and Guided Exercise)

Lab + Managing Containers

r/

DO180-0OCP4.5-en-3-20201217

Chapter 3 | Managing Containers

Managing the Life Cycle of Containers

Objectives

After completing this section, students should be able to manage the life cycle of a container from
creation to deletion.

Container Life Cycle Management with Podman

In previous chapters you learned how to use Podman to create a containerized service. Now you
will dive deeper into commands and strategies that you can use to manage a container's life cycle.
Podman allows you not only to run containers, but also to make them run in the background,
execute new processes inside them, and provide them with resources such as file system volumes
or a network.

Podman, implemented by the podman command, provides a set of subcommands to create
and manage containers. Developers use those subcommands to manage container and
container images life cycle. The following figure shows a summary of the most commonly used
subcommands that change container and image state.

image handling | container states

Public registry Red Hat Container Private registry
Catalog

00 >

I
1 paused

i

! exec
i

external

pull | unpause

push
node local

rmi —l
—

{3} exited or oom killed ()
i _—b

+————— Yes
running restart policy?
no

I rm-f
save [kill
I ~ stop
A\
L restart l

start
@ il
deleted TAR

stopped e deleted

Figure 3.1: Podman managing subcommands

Podman also provides a set of useful subcommands to obtain information about running and
stopped containers. You can use those subcommands to extract information from containers and
images for debugging, updating, or reporting purposes. The following figure shows a summary of
the most commonly used subcommands that query information from containers and images.

w DO180-0OCP4.5-en-3-20201217

Chapter 3 | Managing Containers

image handling ' container states

Public registry Red Hat Container private registry
Catalog

10

paused
h —>
external
local ps
search
images
node local >
— a— i top —» @ .
= +«—— inspect ——— S
— A
i —p running
local storage !
history i stats
1
S tar -tf i logs
i
I
| ps-a
| N
H i
i
i
TAR i stopped
1

Figure 3.2: Podman query subcommands

Use these two figures as a reference while you learn about Podman subcommands in this course.

Creating Containers

The podman run command creates a new container from an image and starts a process inside
the new container. If the container image is not available locally, this command attempts to
download the image using the configured image repository:

[student@workstation ~]$ sudo podman run rhscl/httpd-24-rhel7

Trying to pull regist...httpd-24-rhel7:latest...Getting image source signatures
Copying blob sha256:23113...b0be82

72.21 MB / 72.21 MB [] 7s
...output omitted...AHOO094: Command line: 'httpd -D FOREGROUND'

ne

In the previous output sample, the container was started with a non interactive process (without
the - it option) and is running in the foreground because it was not started with the -d option.
Stopping the resulting process with Ctr 1+C (SIGINT) therefore stops both the container process
as well as the container itself.

Podman identifies containers by a unique container ID or container name. The podman ps
command displays the container ID and names for all actively running containers:

DO180-0OCP4.5-en-3-20201217 “

Chapter 3 | Managing Containers

[student@workstation ~]$ sudo podman ps
CONTAINER ID IMAGE COMMAND ... NAMES
4709aad60490 rhscl/httpd-24-rhel7 "httpd -D FOREGROUND" ... focused_fermate

© The container ID is unique and generated automatically.
© The container name can be manually specified, otherwise it is generated automatically. This
name must be unique or the run command fails.

The podman run command automatically generates a unique, random ID. It also generates a
random container name. To define the container name explicitly, use the - -name option when
running a container:

[student@workstation ~]$ sudo podman run --name my-httpd-container
rhscl/httpd-24-rhel7
...output omitted...AHOOO094: Command line: 'httpd -D FOREGROUND'

i ; Note
The name must be unique. Podman throws an error if the name is already in use,
including stopped containers.

Another important feature is the ability to run the container as a daemon process in the
background. The -d option is responsible for running in detached mode. When using this option,
Podman returns the container ID on the screen, allowing you to continue to run commands in the
same terminal while the container runs in the background:

[student@workstation ~]$ sudo podman run --name my-httpd-container -d
rhscl/httpd-24-rhel7
77d4b7b8ed1fd57449163bchOb78d205e70d2314273263ab941c0c371ad56412

The container image specifies the command to run to start the containerized process, known
as the entry point. The podman run command can override this entry point by including the
command after the container image:

[student@workstation ~]$ sudo podman run rhscl/httpd-24-rhel7 1s /tmp
anaconda-post. log

ks-script-1j4CXN

yum. log

The specified command must be executable inside the container image.

Note
E Because a specified command appears in the previous example, the container skips
the entry point for the ht tpd image. Hence, the ht tpd service does not start.

Some containers need to run as an interactive shell or process. This includes containers running
processes that need user input (such as entering commands), and processes that generate output
through standard output. The following example starts an interactive bash shellina rhscl/
httpd-24-rhel7 container:

Chapter 3 | Managing Containers

[student@workstation ~]$ sudo podman run -it rhscl/httpd-24-rhel7 /bin/bash
bash-4.2#

The -t and -1 options enable terminal redirection for interactive text-based programs. The -t
option allocates a pseudo-tty (a terminal) and attaches it to the standard input of the container.
The -1 option keeps the container's standard input open, even if it was detached, so the main
process can continue waiting for input.

Running Commands in a Container

When a container starts, it executes the entry point command. However, it may be necessary to
execute other commands to manage the running container. Some typical use case are shown
below:

+ Executing an interactive shell in an already running container.
+ Running processes that update or display the container's files.
+ Starting new background processes inside the container.

The podman exec command starts an additional process inside an already running container:

[student@workstation ~]$ sudo podman exec 7ed6e671a600 cat /etc/hostname
7ed6e671a600

The previous example uses the container ID to execute the command.

Podman remembers the last container used in any command. Developers can skip writing this
container's ID or name in later Podman commands by replacing the container id by the - 1 option:

[student@workstation ~]$ sudo podman exec my-httpd-container cat /etc/hostname

7ed6e671a600
[student@workstation ~]$ sudo podman exec -1 cat /etc/hostname

7ed6e671a600

Managing Containers

Creating and starting a container is just the first step of the container's life cycle. A container's life
cycle also includes stopping, restarting, or finally removing it. Users can also examine the container
status and metadata for debugging, updating, or reporting purposes.

Podman provides the following commands for managing containers:

+ podman ps: This command lists running containers:

[student@workstation ~]$ sudo podman ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
77d4b7b8ed1f" rhscl/httpd—24—rhe17¢3 "httpd..."e, ...ago" Up...e’ 80/tcp¢’ my -
htt...©@

©® Each container, when created, getsa container ID,whichisahexadecimal number. This
ID looks like an image ID but is unrelated.

© Container image that was used to start the container.

© Command executed when the container started.

Chapter 3 | Managing Containers

O Date and time the container was started.

© Total container uptime, if still running, or time since terminated.

O Ports that were exposed by the container or any port forwarding that might be configured.
© The container name.

Podman does not discard stopped containers immediately. Podman preserves their local file
systems and other states for facilitating postmortem analysis. Option -a lists all containers,
including stopped ones:

[student@workstation ~]$ sudo podman ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
4829d82fbbff rhscl/httpd-24-rhel7 "httpd..." ...ago Exited (0)... my -
httpd...

S Note
While creating containers, Podman aborts if the container name is already in
use, even if the container is in a “stopped” status. This option can help to avoid
duplicated container names.

« podman inspect: This command lists metadata about a running or stopped container. The
command produces JSON output:

[student@workstation ~]$ sudo podman inspect my-httpd-container
[

{
"Id": "980e45...76c8be",

...output omitted. ..
"NetworkSettings": {

"Bridge": "",
"EndpointID": "483fc9...5d801a",
"Gateway": "172.17.42.1",
"GlobalIPv6Address": "",
"GlobalIPv6PrefixLen": 0O,
"HairpinMode": false,
"IPAddress": "172.17.0.9",

...output omitted. ..

This command allows formatting of the output string using the given Go template with the -f
option. For example, to retrieve only the IP address, use the following command:

[student@workstation ~]$ sudo podman inspect \
> -f '"{{ .NetworkSettings.IPAddress }}' my-httpd-container
172.17.0.9

+ podman stop: This command stops a running container gracefully:

[student@workstation ~]$ sudo podman stop my-httpd-container
77d4b7b8ed1fd57449163bchOb78d205e70d2314273263ab941c0c371ad56412

Using podman stop is easier than finding the container start process on the host OS and killing
it.

Chapter 3 | Managing Containers

« podman kill: This command sends Unix signals to the main process in the container. If no
signal is specified, it sends the SIGKILL signal, terminating the main process and the container.

[student@workstation ~]$ sudo podman kill my-httpd-container
77d4b7b8ed1fd57449163bchOb78d205e70d2314273263ab941c0c371ad56412

You can specify the signal with the -s option:

[student@workstation ~]$ sudo podman kill -s SIGKILL my-httpd-container
77d4b7b8ed1fd57449163bcbh0b78d205e70d2314273263ab941c0c371ad56412

Any Unix signal can be sent to the main process. Podman accepts either the signal name and
number. The following table shows several useful signals:

Signal Value Default Action Comment

SIGHUP 1 Term Hangup detected on controlling terminal or
death of controlling process

SIGINT 2 Term Interrupt from keyboard
SIGQUIT | 3 Core Quit from keyboard

SIGILL 4 Core lllegal Instruction

SIGABRT @ 6 Core Abort signal from abort(3)
SIGFPE 8 Core Floating point exception
SIGKILL | 9 Term Kill signal

SIGSEGV | T Core Invalid memory reference
SIGPIPE 13 Term Broken pipe: write to pipe with no readers
SIGALRM | 14 Term Timer signal from alarm(2)
SIGTERM | 15 Term Termination signal

SIGUSR1 | 30,1016 Term User-defined signal 1

SIGUSR2 | 311217 Term User-defined signal 2

SIGCHLD | 20,178 Ign Child stopped or terminated
SIGCONT | 19,18,25 Cont Continue if stopped

SIGSTOP | 17]19,23 Stop Stop process

SIGTSTP | 18,20,24 Stop Stop typed at tty

SIGTTIN | 21,2126 Stop tty input for background process

Chapter 3 | Managing Containers

Signal Value Default Action Comment

SIGTTOU | 22,2227 Stop tty output for background process

S Note
Term
Terminate the process.

Core
Terminate the process and generate a core dump.

Ign
Signal is ignored.

Stop
Stop the process.

+ podman restart: This command restarts a stopped container:

[student@workstation ~]$ sudo podman restart my-httpd-container
77d4b7b8ed1fd57449163bcbh0b78d205e70d2314273263ab941c0c371ad56412

The podman restart command creates a new container with the same container ID, reusing
the stopped container state and file system.

« podman rm: This command deletes a container and discards its state and file system:

[student@workstation ~]$ sudo podman rm my-httpd-container
77d4b7b8ed1fd57449163bcbh0b78d205e70d2314273263ab941c0c371ad56412

The -f option of the rm subcommand instructs Podman to remove the container even if not
stopped. This option terminates the container forcefully and then removes it. Using - f option is
equivalent to podman kill and podman rmcommands together.

You can delete all containers at the same time. Many podman subcommands accept the -a
option. This option indicates using the subcommand on all available containers or images. The
following example removes all containers:

[student@workstation ~]$ sudo podman rm -a

5fd8e98ec7eah567eahe84943fe82e99fdfc91d12c65d99ec760d5a55h8470d6
716Td687f65b0957edac73b84bh3253760e915166d3bc620c4aec8e5f4eadfe8e
86162c906b44f4cb63ba2e3386554030dch6abedbcee9e9fcad6@aad9f8bh2d5d4

Before deleting all containers, all running containers must be in a “stopped” status. You can use
the following command to stop all containers:

[student@workstation ~]$ sudo podman stop -a

5fd8e98ec7eah567eahe84943fe82e99fdfc91d12c65d99ec760d5a55h8470d6
716fd687f65b0957edac73b84b3253760e915166d3bc620c4aec8e5f4eadfe8e
86162c906b44f4cb63ba2e3386554030dch6abedbcee9e9fcad60aad9f8b2d5d4

Chapter 3 | Managing Containers

S Note
The inspect, stop, kill, restart, and rm subcommands can use the container
ID instead of the container name.

References

Unix Posix Signals man page
http://man7.org/linux/man-pages/man7/signal.7.html

DO180-0OCP4.5-en-3-20201217 “

http://man7.org/linux/man-pages/man7/signal.7.html

Chapter 3 | Managing Containers

» Guided Exercise

Managing a MySQL Container

In this exercise, you will create and manage a MySC)L® database container.

Outcomes

You should be able to create and manage a MySQL database container.

Before You Begin

Make sure that workstation has the podman command available and is correctly set up by
running the following command from a terminal window:

[student@workstation ~]$ lab manage-lifecycle start

P 1. Download the MySQL database container image, and attempt to start it. The container
does not start because several environment variables must be provided to the image.

[student@workstation ~]$ sudo podman run --name mysql-db rhscl/mysql-57-rhel7
Trying to pull ...output omitted...
...output omitted. ..
Writing manifest to image destination
Storing signatures
You must either specify the following environment variables:
MYSQL_USER (regex: 'A[a-zA-Z0-9_]+3$')
MYSQL_PASSWORD (regex: 'A[a-zA-Z0O-9_ ~!@#$%N&*()-=<>,.2;:|]+$")
MYSQL_DATABASE (regex: 'Al[a-zA-Z0-9_]1+3$')
Or the following environment variable:
MYSQL_ROOT_PASSWORD (regex: 'A[a-zA-Z0-9_~!@#$%/&*()-=<>,.?;:|]+$")
Or both.
Optional Settings:
...output omitted. ..

For more information, see https://github.com/sclorg/mysql-container

S Note
If you try to run the container as a daemon (-d), the error message about the
required variables is not displayed. However, this message is included as part of the
container logs, which can be viewed using the following command:

[student@workstation ~]$ sudo podman logs mysql-db

P 2. Create a new container named mysq1, and specify each required variable using the -e
parameter.

Chapter 3 | Managing Containers

E Note
Make sure you start the new container with the correct name.

[student@workstation ~]$ sudo podman run --name mysql \
> -d -e MYSQL_USER=userl -e MYSQL_PASSWORD=mypa55 \
> -e MYSQL_DATABASE=items -e MYSQL_ROOT_PASSWORD=r00tpa55 \

> rhscl/mysql-57-rhel7

The command displays the container ID for the mysq1l container. Below is an example of

the output.

a49dba9ff17f2b5876001725b581fdd331c9ab8b9eda21cc2a2899c23f078509

P 3. Verify that the mysql container started correctly. Run the following command:

[student@workstation ~]$ sudo podman ps --format="{{.ID}} {{.Names}} {{.Status}}"
a49dba9ffi1i7f mysgl Up About a minute ago

The command only shows the first 12 characters of the container ID displayed in the
previous command.

P 4. Inspect the container metadata to obtain the IP address for the MySQL database:

[student@workstation ~]$ sudo podman inspect \
> -f '"{{ .NetworkSettings.IPAddress }}' mysql

10.88.0.6

The IP address of your container may differ from the one shown above (10.88.0.6).

S Note
The podman inspect command provides additional important information.
For example, the Env section displays environment variables, such as the

MYSQL_ROOT_PASSWORD variable.

P 5. Populate the items database with the Projects table:

[student@workstation ~]$ mysql -uuserl -h 10.88.0.6 \
> -pmypa55 items < /home/student/D0180/labs/manage-lifecycle/db.sql

P 6. Create another container using the same container image as the previous container.
Interactively enter the /bin/bash shell instead of using the default command for the

container image.

[student@workstation ~]$ sudo podman run --name mysql-2 \
> -it rhscl/mysql-57-rhel7 /bin/bash
bash-4.2$

Chapter 3 | Managing Containers

P 7. Try to connect to the MySQL database in the new container:

bash-4.2% mysql -uroot

The following error displays:

ERROR 2002 (HY0OO): Can't connect to local MySQL ...output omitted...

The MySQL database server is not running, because the container executed the /bin/
bash command rather than starting the MySQL server.

P 8. Exit the container:

bash-4.2% exit

P 9. Verify that the mysql-2 container is not running:

[student@workstation ~]$ sudo podman ps -a \

> --format="{{.ID}} {{.Names}} {{.Status}}"
2871e392af02 mysql-2 Exited (1) 19 seconds ago
a49dbaoff17f mysql Up 10 minutes ago
c053c7e09c21 mysql-db Exited (1) 44 minutes ago

P 10. Query the mysql container to list all rows in the Projects table. The command instructs
the bash shell to to query the items database using a mysqgl command.

[student@workstation ~]$ sudo podman exec mysql /bin/bash \
> -c 'mysql -uuserl -pmypa55 -e "select * from items.Projects;"'
mysql: [Warning] Using a password on the command line interface can be insecure.

id name code
1 DevOps D0180
Finish

Onworkstation, runthe lab manage-lifecycle finish scriptto complete this exercise.

[student@workstation ~]$ lab manage-lifecycle finish

This concludes the exercise.

Chapter 3 | Managing Containers

Attaching Persistent Storage to
Containers

Objectives

After completing this section, students should be able to:
+ Save application data across container restarts through the use of persistent storage.
« Configure host directories for use as container volumes.

« Mount a volume inside the container.

Preparing Permanent Storage Locations

Container storage is said to be ephemeral, meaning its contents are not preserved after the
container is removed. Containerized applications work on the assumption that they always start
with empty storage, and this makes creating and destroying containers relatively inexpensive
operations.

Previously in this course, container images were characterized as immutable and layered, meaning
that they are never changed, but rather composed of layers that add or override the contents of
layers below.

A running container gets a new layer over its base container image, and this layer is the container
storage. At first, this layer is the only read/write storage available for the container, and it is

used to create working files, temporary files, and log files. Those files are considered volatile. An
application does not stop working if they are lost. The container storage layer is exclusive to the
running container, so if another container is created from the same base image, it gets another
read/write layer. This ensures the each container's resources are isolated from other similar
containers.

Ephemeral container storage is not sufficient for applications that need to keep data over restarts,
such as databases. To support such applications, the administrator must provide a container with
persistent storage.

Chapter 3 | Managing Containers

Image Layers - all
élnl read-only

Red Hat Enterprise Linux 7.2

Container based on RHEL 7.2

Figure 3.3: Container layers

Containerized applications should not try to use the container storage to store persistent data,
because they cannot control how long its contents will be preserved. Even if it were possible to
keep container storage indefinitely, the layered file system does not perform well for intensive I/O
workloads and would not be adequate for most applications requiring persistent storage.

Reclaiming Storage

Podman keeps old stopped container storage available to be used by troubleshooting operations,
such as reviewing failed container logs for error messages.

If the administrator needs to reclaim old container storage, the container can then be deleted
using podman rm container_id. This command also deletes the container storage. The
stopped container IDs can be found using podman ps -acommand.

Preparing the Host Directory

Podman can mount host directories inside a running container. The containerized application sees
these host directories as part of the container storage, much like regular applications see a remote
network volume as if it were part of the host file system. But these host directories' contents

are not reclaimed after the container is stopped, and they can be mounted to new containers
whenever needed.

For example, a database container can use a host directory to store database files. If this database
container fails, Podman can create a new container using the same host directory, keeping the
database data available to client applications. To the database container, it does not matter where
this host directory is stored from the host point of view; it could be anything from a local hard disk
partition to a remote networked file system.

A container runs as a host operating system process, under a host operating system user

and group ID, so the host directory needs to be configured with ownership and permissions
allowing access to the container. In RHEL, the host directory also needs to be configured

with the appropriate SELinux context, whichis container_file_t. Podman uses the
container_file_t SELinux context to restrict which files of the host system the container is
allowed to access. This avoids information leakage between the host system and the applications
running inside containers.

One way to set up the host directory is described below:

W DO180-0OCP4.5-en-3-20201217

Chapter 3 | Managing Containers
1. Create a directory with owner and group root:

[student@workstation ~]$ sudo mkdir /var/dbfiles

2. The user running processes in the container must be capable of writing files to the directory.
If the host machine does not have exactly the same user defined, the permission should
be defined with the numeric user ID (UID) from the container. In the case of the Red Hat-
provided MySQL service, the UID is 27:

[student@workstation ~]$ sudo chown -R 27:27 /var/dbfiles

3. Apply the container_file_t context to the directory (and all subdirectories) to allow
containers access to all of its contents.

[student@workstation ~]$ sudo semanage fcontext -a -t container_file_t
'/var/dbfiles(/.*)?'

4. Apply the SELinux container policy that you set up in the first step to the newly created
directory:

[student@workstation ~]$ sudo restorecon -Rv /var/dbfiles

The host directory must be configured before starting the container that uses the directory.

Mounting a Volume

After creating and configuring the host directory, the next step is to mount this directory to a
container. To bind mount a host directory to a container, add the -v option to the podman run
command, specifying the host directory path and the container storage path, separated by a colon

.

For example, to use the /var/dbfiles host directory for MySQL server database files, which are
expected to be under /var/1ib/mysql inside a MySQL container image named mysq€l, use the
following command:

[student@workstation ~]$ sudo podman run -v /var/dbfiles:/var/lib/mysql
rhmap47/mysql

In the previous command, if the /var/1ib/mysql already exists inside the mysqgl container
image, the /var/dbfiles mount overlays but does not remove the content from the container
image. If the mount is removed, the original content is accessible again.

Chapter 3 | Managing Containers

» Guided Exercise

Persisting a MySQL Database

In this exercise, you will create a container that stores the MySQL database data into a host
directory.

Outcomes

You should be able to deploy container with a persistent database.

Before You Begin
The workstation should not have any container images running. Run the following
command onworkstation:

[student@workstation ~]$ lab manage-storage start

P 1. Create the /var/local/mysql directory with the correct SELinux context and
permissions.

11. Create the /var/local/mysql directory.

[student@workstation ~]$ sudo mkdir -pv /var/local/mysql
mkdir: created directory ‘/var/local/mysql’

1.2. Add the appropriate SELinux context for the /var/local/mysql directory and its
contents.

[student@workstation ~]$ sudo semanage fcontext -a \
> -t container_file_t '/var/local/mysql(/.*)?'

1.3. Apply the SELinux policy to the newly created directory.

[student@workstation ~]$ sudo restorecon -R /var/local/mysql

14. Verify that the SELinux context type for the /var/local/mysql directory is
container_file_t.

[student@workstation ~]$ 1s -1dZ /var/local/mysql
drwxr-xr-x. root root unconfined_u:object_r:container_file_t:s@ /var/local/mysql

15. Change the owner of the /var/local/mysql directory to the mysql user and
mysql group:

[student@workstation ~]$ sudo chown -Rv 27:27 /var/local/mysql
changed ownership of ‘/var/local/mysql’ from root:root to 27:27

Chapter 3 | Managing Containers

Note

E The user running processes in the container must be capable of writing files to the
directory. If the host machine does not have exactly the same user defined, the
permission should be defined with the numeric user ID (UID) from the container. For
the MySQL service provided by Red Hat, the UID is 27.

P 2. Create a MySQL container instance with persistent storage.

21. Pull the MySQL container image:

[student@workstation ~]$ sudo podman pull rhscl/mysql-57-rhel7

Trying to pull ...output omitted...rhscl/mysql-57-rhel7...output omitted. ..
...output omitted. ..

Writing manifest to image destination

Storing signatures
4ae3a3f4f409a8912cab9fbf71d3564d011ed2e68f926d50188f2a3a72c809c5

2.2. Create a new container specifying the mount point to store the MySQL database
data:

[student@workstation ~]$ sudo podman run --name persist-db \

> -d -v /var/local/mysql:/var/lib/mysql/data \

> -e MYSQL_USER=userl -e MYSQL_PASSWORD=mypa55 \

> -e MYSQL_DATABASE=items -e MYSQL_ROOT_PASSWORD=r00tpa55 \

> rhscl/mysql-57-rhel7
6e0ef134315h510042ca757faf86912bal19df27790c601f95ec2fd9d3c44b95d

This command mounts the /var/local/mysql directory from the host to the /
var/1lib/mysql/data directory in the container. By default, the MySQL database
stores data in the /var/1ib/mysql/data directory.

2.3. \Verify that the container started correctly.

[student@workstation ~]$ sudo podman ps --format="{{.ID}} {{.Names}} {{.Status}}"
6e0ef134315b persist-db Up 3 minutes ago

P 3. \Verify that the /var/local/mysql directory contains the items directory:

[student@workstation ~]$ 1s -1d /var/local/mysql/items
drwxr-x---. 2 27 27 20 Nov 13 12:55 /var/local/mysql/items

The items directory stores data related to the items database that was created by this
container. If the 1tems directory does not exist, then the mount point was not defined
correctly during container creation.

Finish
Onworkstation, runthe lab manage-storage finish scriptto complete this lab.

[student@workstation ~]$ lab manage-storage finish

Chapter 3 | Managing Containers

This concludes the exercise.

W DO180-0OCP4.5-en-3-20201217

Chapter 3 | Managing Containers

Accessing Containers

Objectives

After completing this section, students should be able to:
+ Describe the basics of networking with containers.

+ Remotely connect to services within a container.

Introducing Networking with Containers

The Cloud Native Computing Foundation (CNCF) sponsors the Container Networking Interface
(CNI) open source project. The CNI project aims to standardize the network interface for
containers in cloud native environments, such as Kubernetes and Red Hat OpenShift Container
Platform.

Podman uses the CNI project to implement a software-defined network (SDN) for containers
on each host. Podman attaches each container to a virtual bridge and assigns each container a
private IP address. The configuration file that specifies CNI settings for Podmanis /etc/cni/
net.d/87-podman-bridge.conflist.

DO180-0OCP4.5-en-3-20201217 “

Chapter 3 | Managing Containers

Host Network

HOST 1

Container 1

Container 2

HOST 2

Container 3

Container 4

F 3

local container SDN

Containers from different
hosts have no network access
to each other

F 3

local container SDN

F

«+«—» Network packet flow —— Virtual or physical network

Figure 3.4: Basic Linux container networking

When Podman creates containers on the same host, it assigns each container a unique IP address
and connects them all to the same software-defined network. These containers can communicate

freely with each other by IP address.

Containers created with Podman running on different hosts belong to different software-defined
networks. Each SDN is isolated, which prevents a container in one network from communicating
with a container in a different network. Because of network isolation, a container in one SDN can
have the same IP address as a container in a different SDN.

Itis also important to note that, by default, all container networks are hidden from the host
network. That is, containers typically can access the host network, but without explicit
configuration, there is no access back into the container network.

DO180-0OCP4.5-en-3-20201217

Chapter 3 | Managing Containers

Mapping Network Ports

Accessing a container from the host network can be a challenge. A container is assigned an

IP address from a pool of available addresses. When a container is destroyed, the container's
address is released back to the pool of available addresses. Another problem is that the container
software-defined network is only accessible from the container host.

To solve these problems, define port forwarding rules to allow external access to a container
service. Use the -p [<IP address>:][<host port>:]<container port> option with
the podman run command to create an externally accessible container. Consider the following
example:

[student@workstation ~]$ sudo podman run -d --name apachel -p 8080:80
rhscl/httpd-24-rhel7:2.4

The value 8080 : 80 specifies that any requests to port 8080 on the host are forwarded to port 80
within the container.

Host Network

HOST 1
podman -p>
HOST 3 (port forward) Container 1
_>
local container SDN
Container 2
HOST 2
Container 3
local container SDN
— Container 4
«—> Network packet flow —— Virtual or physical network

Figure 3.5: Allowing external accesses to Linux containers

You can also use the - p option to only forward requests to a container if those requests originate
from a specified IP address:

DO180-0OCP4.5-en-3-20201217 “

Chapter 3 | Managing Containers

[student@workstation ~]$ sudo podman run -d --name apache2 \
> -p 127.0.0.1:8081:80 rhscl/httpd-24-rhel7:2.4

The example above limits external access to the apache2 container to requests from localhost
to host port 8081. These requests are forwarded to port 80 in the apache2 container.

If a port is not specified for the host port, Podman assigns a random available host port for the
container:

[student@workstation ~]$ sudo podman run -d --name apache3 -p 127.0.0.1::80
rhscl/httpd-24-rhel7:2.4

To see the port assigned by Podman, use the podman port <container name>command:

[student@workstation ~]$ sudo podman port apache3
80/tcp -> 127.0.0.1:35134

[student@workstation ~]$ curl 127.0.60.1:35134
<html><body><h1>It works!</h1></body></html>

If only a container port is specified with the - p option, a random available host port is assigned to
container. Requests to this assigned host port from any IP address are forwarded to the container
port.

[student@workstation ~]$ sudo podman run -d --name apache4 -p 80
rhscl/httpd-24-rhel7:2.4

[student@workstation ~]$ sudo podman port apache4

80/tcp -> 0.0.0.0:37068

In the above example, any routable request to host port 37068 is forwarded to the port 80 in the
container.

References

Container Network Interface - networking for Linux containers
https://github.com/containernetworking/cni

Cloud Native Computing Foundation
https://www.cncf.io/

https://github.com/containernetworking/cni
https://www.cncf.io/

Chapter 3 | Managing Containers

» Guided Exercise

Loading the Database

In this exercise, you will create a MySQL database container with port forwarding enabled.
After populating a database with a SQL script, you verify the database content using three
different methods.

Outcomes

You should be able to deploy a database container and load a SQL script.

Before You Begin

Open a terminal on workstation as the student user and run the following command:

[student@workstation ~]$ lab manage-networking start

This ensures the /var/local/mysql directory exists and is configured with the correct
permissions to enable persistent storage for the MySQL container.

P 1. Create a MySQL container instance with persistent storage and port forwarding:

[student@workstation ~]$ sudo podman run --name mysqldb-port \
> -d -v /var/local/mysql:/var/lib/mysql/data -p 13306:3306 \

> -e MYSQL_USER=userl -e MYSQL_PASSWORD=mypa55 \

> -e MYSQL_DATABASE=items -e MYSQL_ROOT_PASSWORD=r00tpa55 \

> rhscl/mysql-57-rhel7

Trying to pull ...output omitted.. .

Copying blob sha256:1c9f515...output omitted. ..

T2.70 [B / P [Becccccscccccoscoscccsoconcoscnocaososcnooconocaoooscnocaons 1 5s
Copying blob sha256:1d2c4ce...output omitted. ..
LB (B / P [eocmccoccoscoscascoscascassassassasoas = TR R R, 1 Os
Copying blob sha256:f1e961f...output omitted...
Bo@B B / P [eocmccoscoscoscascascas Ho0oE00000060000000000EE000000E000000E 1 Os
Copying blob sha256:9f1840c...output omitted...
R (3 / P [oomccmscoscoscoscas S0 0o0000E00600006000EE0000006000EE00DE00E 1 7s

Copying config sha256:60726...output omitted. ..

Chapter 3 | Managing Containers

6.85 KB / 6.85 KB [] os

Wri
Sto

ting manifest to image destination
ring signatures

066630d45ch902ah533d503c83b834aa6a9f9cf88755ch68eedb8a3e8edbc5aa

14

) 2.

[st
994

) 3.

[st
> -

) 4.

[st
>/

+--

14

The last line of your output will differ from that shown above, as well as the time needed to
download each image layer.

The -p option configures port forwarding so that port 13306 on the local host forwards to
container port 3306.

Note

The start script creates the /var/local/mysql directory with the appropriate
ownership and SELinux context required by the containerized database.

Verify that the mysqldb-port container started successfully and enables port forwarding.

udent@workstation ~]$ sudo podman ps --format="{{.ID}} {{.Names}} {{.Ports}}"
1da2936a5 mysqldb-port 0.0.0.0:13306->3306/tcp

Populate the database using the provided file. If there are no errors, then the command
does not return any output.

udent@workstation ~]$ mysql -uuserl -h 127.0.0.1 -pmypa55 \
P13306 items < /home/student/D0180/labs/manage-networking/db.sql

There are multiple ways to verify that the database loaded successfully. The next steps
show three different methods. You only need to complete one of the methods.

Verify that the database loaded successfully by executing a non-interactive command
inside the container.

udent@workstation ~]$ sudo podman exec -it mysqldb-port \
opt/rh/rh-mysql57/root/usr/bin/mysql -uroot items -e "SELECT * FROM Item"
ccfhoccococosooccoocooooo fhoccooo +

d | description | done |

ccfhoccococosooccoocooooo fhoccooo +

1 | Pick up newspaper | 0 |

2 | Buy groceries | 1 |

ccfhoccococosooccoocooooo fhoccooo +

Note

Because the mysqgl command is not found in a directory defined in the container
PATH variable, you must use an absolute path.

Chapter 3 | Managing Containers

P 5. Verify that the database loaded successfully by using port forwarding from the local host.
This alternate method is optional.

[student@workstation ~]$ mysql -uuserl -h 127.0.0.1 -pmypa55 \
> -P13306 items -e "SELECT * FROM Item"

e o--n-- +
| id | description | done |
e o--n-- +
| 1 | Pick up newspaper | 0 |
| 2 | Buy groceries | 1 |
e o--n-- +

P 6. Verify that the database loaded successfully by opening an interactive terminal session
inside the container. This alternate method is optional.

6.]. Open a Bash shell inside the container.

[student@workstation ~]$ sudo podman exec -it mysqldb-port /bin/bash
bash-4.2%

6.2. Verify that the database contains data:

bash-4.2$% mysql -uroot items -e "SELECT * FROM Item"

fococtbococcccococacoocnoas Fommmm- +
| id | description | done |
fococtbococcccococacoocnoas Fommmm- +
| 1 | Pick up newspaper | 0 |
| 2 | Buy groceries | 1 |
fpocccfbooccccocococoocooas Fommmm- +

6.3. Exit from the container:

bash-4.2% exit

Finish
Onworkstation, runthe lab manage-networking finish script to complete this lab.

[student@workstation ~]$ lab manage-networking finish

This concludes the exercise.

Chapter 3 | Managing Containers

» Lab

Managing Containers

Performance Checklist
In this lab, you will deploy a container that saves the MySQL database data into a folder on
the host and then you will load the database in another container.

Outcomes

You should be able to deploy and manage a persistent database using a shared volume. You
should also be able to start a second database using the same shared volume and observe
that the data is consistent between the two containers because they are using the same
directory on the host to store the MySQL data.

Before You Begin
Open a terminal on workstation as the student user and run the following command:

[student@workstation ~]$ lab manage-review start

1. Create the /var/local/mysql directory with the correct SELinux context and permissions.
11. Create the /var/1local/mysql directory.

1.2. Add the appropriate SELinux context for the /var/local/mysql directory and its
contents. With the correct context, you can mount this directory in a running container.

1.3. Apply the SELinux policy to the newly created directory.

1.4. Change the owner of the /var/local/mysql directory to match the mysql user and
mysql group for the rhsc1/mysql-57-rhel7 containerimage:

2. Deploy a MySQL container instance using the following characteristics:
+ Name:mysql-1
* Run as daemon: yes

+ Volume: from /var/local/mysql host folder to /var/1lib/mysql/data container
folder

- Containerimage: rhscl/mysql-57-rhel7
+ Port forward: no
- Environment variables:

- MYSQL_USER: userl

- MYSQL_PASSWORD: mypa5b5

- MYSQL_DATABASE: items

W DO180-0OCP4.5-en-3-20201217

Chapter 3 | Managing Containers

- MYSQL_ROOT_PASSWORD: ro0tpas55

3. Loadthe items database using the /home/student/D0180/1labs/manage-review/
db.sql script.

3.1. Get the container IP address.
3.2. Load the database using the SQL commandsin /home/student/D0180/labs/

manage-review/db.sql. Use the IP address you find in the previous step as the
database server's host IP.

S Note
You can import all the commands in the above file using the less-than operator
(<) after the mysql command, instead of typing them. Also, you need to add the
-h CONTAINER_IP parameter to the mysql command to connect to the correct
container.

3.3. Use an SQL SELECT statement to output all rows of the Item table to verify that the
[tems database is loaded.

Note
S You can add the -e SQL parameter to the mysql command to execute an SQL
instruction.

4. Stop the container gracefully.

1| Important

= This step is very important because a new container will be created sharing the
same volume for database data. Having two containers using the same volume can
corrupt the database. Do not restart the mysql-1 container.

5. Create a new container with the following characteristics:
+ Name:mysql-2
* Run as a daemon: yes

+ Volume: from /var/local/mysql host folder to /var/1lib/mysql/data container
folder

+ Containerimage: rhscl/mysql-57-rhel?
+ Port forward: yes, from host port 13306 to container port 3306

- Environment variables:

MYSQL_USER: userl

MYSQL_PASSWORD: mypas5

MYSQL_DATABASE: items

MYSQL_ROOT_PASSWORD: ro0tpas5

Chapter 3 | Managing Containers

9.

Save the list of all containers (including stopped ones) to the /tmp/my-containers file.

Access the Bash shell inside the container and verify that the items database and the Item
table are still available. Confirm also that the table contains data.

71. Access the Bash shell inside the container.

7.2. Connect to the MySQL server.

7.3. List all databases and confirm that the items database is available.

74. List all tables from the items database and verify that the Item table is available.
75. View the data from the table.

76. Exit from the MySQL client and from the container shell.

Using port forwarding, insert a new row into the Item table. The row should have a
descriptionvalue of Finished 1lab, and a done value of 1.

8.1. Connect to the MySQL database.
8.2. Insert the new row.
8.3. Exit from the MySQL client.

Because the first container is not required any more, remove it to release resources.

Evaluation

Grade your work by running the lab manage-review grade command from your
workstation machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab manage-review grade

Finish

Onworkstation, runthe lab manage-review finish command to complete this lab.

[student@workstation ~]$ lab manage-review finish

This concludes the lab.

Chapter 3 | Managing Containers

» Solution

Managing Containers

2.

Performance Checklist
In this lab, you will deploy a container that saves the MySQL database data into a folder on
the host and then you will load the database in another container.

Outcomes

You should be able to deploy and manage a persistent database using a shared volume. You
should also be able to start a second database using the same shared volume and observe
that the data is consistent between the two containers because they are using the same
directory on the host to store the MySQL data.

Before You Begin
Open a terminal on workstation as the student user and run the following command:

[student@workstation ~]$ lab manage-review start

Create the /var/local/mysql directory with the correct SELinux context and permissions.

11. Create the /var/local/mysql directory.

[student@workstation ~]$ sudo mkdir -pv /var/local/mysql
mkdir: created directory ‘/var/local/mysql’

1.2. Add the appropriate SELinux context for the /var/local/mysql directory and its
contents. With the correct context, you can mount this directory in a running container.

[student@workstation ~]$ sudo semanage fcontext -a \
> -t container_file_t '/var/local/mysql(/.*)?'

1.3. Apply the SELinux policy to the newly created directory.

[student@workstation ~]$ sudo restorecon -R /var/local/mysql

1.4. Change the owner of the /var/local/mysql directory to match the mysql user and
mysql group for the rhsc1/mysql-57-rhel7 container image:

[student@workstation ~]$ sudo chown -Rv 27:27 /var/local/mysql
changed ownership of ‘/var/local/mysql’ from root:root to 27:27

Deploy a MySQL container instance using the following characteristics:

+ Name:mysql-1

DO180-0OCP4.5-en-3-20201217

Chapter 3 | Managing Containers

+ Run as daemon: yes

+ Volume: from /var/local/mysql host folder to /var/1ib/mysql/data container
folder

+ Containerimage: rhscl/mysql-57-rhel?
- Port forward: no
+ Environment variables:

- MYSQL_USER: user1

- MYSQL_PASSWORD: mypa55

- MYSQL_DATABASE: items

- MYSQL_ROOT_PASSWORD: ro0tpa55

21. Create and start the container.

[student@workstation ~]$ sudo podman run --name mysql-1 \

> -d -v /var/local/mysql:/var/lib/mysql/data \

> -e MYSQL_USER=userl -e MYSQL_PASSWORD=mypa55 \

> -e MYSQL_DATABASE=items -e MYSQL_ROOT_PASSWORD=r00tpa55 \

> rhscl/mysql-57-rhel7

Trying to pull ...output omitted...

...output omitted...

Writing manifest to image destination

Storing signatures
61l6azfaa55x866e7eb18b1fd0423a5461d8f24c147b1ad8668b76e6167587cdd

2.2. \Verify that the container was started correctly.

[student@workstation ~]$ sudo podman ps --format="{{.ID}} {{.Names}}"
6l6azfaa55x8 mysql-1

3. Loadthe items database using the /home/student/D0180/1labs/manage-review/
db.sql script.

31. Get the container IP address.

[student@workstation ~]$ sudo podman inspect \
> -f '"{{ .NetworkSettings.IPAddress }}' mysql-1
10.88.0.6

3.2. Load the database using the SQL commands in /home/student/D0180/labs/
manage-review/db.sql. Use the IP address you find in the previous step as the
database server's host IP.

Chapter 3 | Managing Containers

E Note
You can import all the commands in the above file using the less-than operator
(<) after the mysql command, instead of typing them. Also, you need to add the
-h CONTAINER_IP parameter to the mysql command to connect to the correct
container.

[student@workstation ~]$ mysql -uuserl -h CONTAINER IP \
> -pmypa55 items < /home/student/D0180/labs/manage-review/db.sql

3.3. Use an SQL SELECT statement to output all rows of the Item table to verify that the

I[tems database is loaded.

Note
E You can add the -e SQL parameter to the mysql command to execute an SQL
instruction.

[student@workstation ~]$ mysql -uuserl -h CONTAINER IP -pmypa55 items \
> -e "SELECT * FROM Item"

o m e e e aaoo- +--ooa-- +
| id | description | done |
o m e e e aaoo- +--ooa-- +
| 1 | Pick up newspaper | 0 |
| 2 | Buy groceries | 1 |
tommeem e e e e oo +o-eea- +

4. Stop the container gracefully.

1| Important
= This step is very important because a new container will be created sharing the
same volume for database data. Having two containers using the same volume can
corrupt the database. Do not restart the mysql-1 container.

Use the following command to stop the container:

[student@workstation ~]$ sudo podman stop mysql-1
6l6azfaab5x866e7eb18b1fd0423a5461d8f24c147b1ad8668b76e6167587cdd

5. Create a new container with the following characteristics:
+ Name:mysql-2

+ Run as a daemon: yes

+ Volume: from /var/local/mysql host folder to /var/1lib/mysql/data container

folder

- Containerimage: rhscl/mysql-57-rhel7?

Chapter 3 | Managing Containers

+ Port forward: yes, from host port 13306 to container port 3306

« Environment variables:

MYSQL_USER: userl

MYSQL_PASSWORD: mypa55

- MYSQL_DATABASE: items

MYSQL_ROOT_PASSWORD: ro0tpas5

51. Create and start the container.

[student@workstation ~]$ sudo podman run --name mysql-2 \

> -d -v /var/local/mysql:/var/lib/mysql/data \

> -p 13306:3306 \

> -e MYSQL_USER=userl -e MYSQL_PASSWORD=mypa55 \

> -e MYSQL_DATABASE=items -e MYSQL_ROOT_PASSWORD=r00tpa55 \

> rhscl/mysql-57-rhel7
281c0e2790e54cd5a@b8e2a8ch6e3969981b85cde8ac611bf7ea98ff78bdffbb

5.2. Verify that the container was started correctly.

[student@workstation ~]$ sudo podman ps --format="{{.ID}} {{.Names}}"
281c0e2790e5 mysql-2

6. Save the list of all containers (including stopped ones) to the /tmp/my-containers file.

Save the information with the following command:
[student@workstation ~]$ sudo podman ps -a > /tmp/my-containers

7. Access the Bash shell inside the container and verify that the items database and the Item
table are still available. Confirm also that the table contains data.

71. Access the Bash shell inside the container.

[student@workstation ~]$ sudo podman exec -it mysql-2 /bin/bash
7.2. Connect to the MySQL server.

bash-4.2$ mysql -uroot

7.3. List all databases and confirm that the items database is available.

mysql> show databases;

| information_schema |
| items |
| mysql |

Chapter 3 | Managing Containers

| performance_schema |
| sys I

5 rows in set (0.03 sec)

74. List all tables from the items database and verify that the Item table is available.

mysql> use items;
Database changed
mysql> show tables;

1 row in set (0.01 sec)

7.5. View the data from the table.

mysql> SELECT * FROM Item;

e B e e e S e e S S s e S o +
| id | description | done |
doceetem e e e e e oo +-ceea- +
| 1 | Pick up newspaper | 0 |
| 2 | Buy groceries | 1 |
toceetemm e e e e oo +-ceea- +

7.6. Exit from the MySQL client and from the container shell.

mysql> exit
Bye
bash-4.2% exit

8. Using port forwarding, insert a new row into the Item table. The row should have a
descriptionvalue of Finished 1lab, and a done value of 1.

8.1. Connect to the MySQL database.

[student@workstation ~]$ mysql -uuserl -h workstation.lab.example.com \
> -pmypa55 -P13306 items
...output omitted. ..

Welcome to the MariaDB monitor. Commands end with ; or \g.
...output omitted. ..

MySQL [items]>

8.2. Insert the new row.

MySQL[items]> insert into Item (description, done) values ('Finished lab', 1);
Query OK, 1 row affected (0.00 sec)

Chapter 3 | Managing Containers
8.3. Exit from the MySQL client.

MySQL[items]> exit
Bye

9. Because the first container is not required any more, remove it to release resources.

Use the following command to remove the container:

[student@workstation ~]$ sudo podman rm mysql-1
616azfaa55x866e7eb18b1fd0423a5461d8f24c147b1ad8668b76e6167587cdd

Evaluation

Grade your work by running the lab manage-review grade command from your
workstation machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab manage-review grade

Finish
Onworkstation, run the lab manage-review finish command to complete this lab.

[student@workstation ~]$ lab manage-review finish

This concludes the lab.

Chapter 3 | Managing Containers

Summary

In this chapter, you learned:

+ Podman has subcommands to: create a new container (run), delete a container (rm), list
containers (ps), stop a container (stop), and start a process in a container (exec).

+ Default container storage is ephemeral, meaning its contents are not present after the container
restarts or is removed.

- Containers can use a folder from the host file system to work with persistent data.
- Podman mounts volumes in a container with the -v option in the podman run command.
+ The podman exec command starts an additional process inside a running container.

+ Podman maps local ports to container ports by using the -p option in the run subcommand.

y 2AR(IA

3 n ."'".'"".l
o

A

=

i)

=]
L

LUOD JeUL

—
|
&)]

) ILBILIAL

n

.
[

-
L

—
L

) 1eH pay T

W DO180-OCP4.5-en-3-20201217

Chapter 4

Managing Container Images

Goal Manage the life cycle of a container image from ¢
creation to deletion.
Objectives + Search for and pull images from remote .
registries. 4
+ Export, import, and manage container images ,
locally and in a registry. '.
‘“ \
= Sections + Accessing Registries (and Quiz)
o + Manipulating Container Images (and Guided
= Exercise)
Lab + Managing Container Images

r/

DO180-0OCP4.5-en-3-20201217

Chapter 4 | Managing Container Images

Accessing Registries

Objectives

After completing this section, students should be able to:

+ Search for and pull images from remote registries using Podman commands and the registry
REST API.

+ List the advantages of using a certified public registry to download secure images.
+ Customize the configuration of Podman to access alternative container image registries.
- Listimages downloaded from a registry to the local file system.

+ Manage tags to pull tagged images.

Public Registries

Image registries are services offering container images to download. They allow image creators
and maintainers to store and distribute container images to public or private audiences.

Podman searches for and downloads container images from public and private registries. Red Hat
Container Catalog is the public image registry managed by Red Hat. It hosts a large set of
container images, including those provided by major open source projects, such as Apache,
MySQL, and Jenkins. All images in the Container Catalog are vetted by the Red Hat internal
security team, meaning they are trustworthy and secured against security flaws.

Red Hat container images provide the following benefits:
+ Trusted source: All container images comprise sources known and trusted by Red Hat.

+ Original dependencies: None of the container packages have been tampered with, and only
include known libraries.

+ Vulnerability-free: Container images are free of known vulnerabilities in the platform
components or layers.

+ Runtime protection: All applications in container images run as non-root users, minimizing the
exposure surface to malicious or faulty applications.

+ Red Hat Enterprise Linux (RHEL) compatible: Container images are compatible with all RHEL
platforms, from bare metal to cloud.

+ Red Hat support: Red Hat commercially supports the complete stack.

Quay.io is another public image repository sponsored by Red Hat. Quay.io introduces several
exciting features, such as server-side image building, fine-grained access controls, and automatic
scanning of images for known vulnerabilities.

While Red Hat Container Catalog images are trusted and verified, Quay.io offers live images
regularly updated by creators. Quay.io users can create their namespaces, with fine-grained access
control, and publish the images they create to that namespace. Container Catalog users rarely or
never push new images, but consume trusted images generated by the Red Hat team.

Chapter 4 | Managing Container Images

Private Registries

Some image creators or maintainers want to make their images public available. Other image
creators, however, prefer to keep their images private due to:

+ Company privacy and secret protection.
+ Legal restrictions and laws.
+ Avoidance of publishing images in development.

Private registries give image creators the control about their images placement, distribution and
usage.

Configuring Registries in Podman

To configure registries for the podman command, you need to update the /etc/containers/
registries.conf file. Edit the registries entryinthe [registries.search] section,
adding an entry to the values list.

[registries.search]
registries = ["registry.access.redhat.com", "quay.io"]

Note

S Use an FQDN and port number to identify a registry. A registry that does not include
a port number has a default port number of 5000. If the registry uses a different
port, it must be specified. Indicate port numbers by appending a colon (;) and the
port number after the FQDN.

Secure connections to a registry require a trusted certificate. To support insecure connections,
add the registry name to the registries entryin [registries.insecure] section of /etc/
containers/registries.conf file:

[registries.insecure]
registries = ['localhost:5000']

Accessing Registries
Searching for Images in Registries

The podman search command finds images by image name, user name, or description from all
the registries listed in the /etc/containers/registries.conf configuration file. The syntax
for the podman search command is shown below:

[student@workstation ~]$ sudo podman search [OPTIONS] <term>

The following table shows some useful options available for the search subcommand:

Option Description
--limit <number> Limits the number of listed images per
registry.

Chapter 4 | Managing Container Images

Option Description

--filter <filter=value> Filter output based on conditions provided.
Supported filters are:

+ stars=<number>: Show only images with
at least this number of stars.

+ is-automated=<true|false>: Show
only images automatically built.

« is-official=<true]|false>: Show only
images flagged as official.

--tls-verify <true|false> Enables or disables HTTPS certificate
validation for all used registries. true

Registry HTTP API

A remote registry exposes web services that provide an application programming interface (API)
to the registry. Podman uses these interfaces to access and interact with remote repositories.
Many registries conform to the Docker Registry HTTP API v2 specification, which exposes
a standardized REST interface for registry interaction. You can use this REST interface to directly
interact with a registry, instead of using Podman.

Some samples using this APl with cur 1 commands are shown below:

To list all repositories available in a registry, use the /v2/_catalog endpoint. The n parameter is
used to limit the number of repositories to return.

[student@workstation ~]$ curl -Ls https://myserver/v2/_catalog?n=3
{"repositories":["centos/httpd", "do180/custom-httpd", "hello-openshift"]}

S Note
If Python is available, use it to format the JSON response:

[student@workstation ~]$ curl -Ls https://myserver/v2/_catalog?n=3 \
> | python -m json.tool

{

"repositories": [
"centos/httpd",
"do180/custom-httpd",
"hello-openshift"

]

}

The /v2/<name>/tags/list endpoint provides the list of tags available for a single image:

[student@workstation ~]$ curl -Ls \
> https://quay.io/v2/redhattraining/httpd-parent/tags/list \
> | python -m json.tool

{

Chapter 4 | Managing Container Images

"name": "redhattraining/httpd-parent",
"tags": [

"latest",

|I2.4II

Note
E Quay.io offers a dedicated API to interact with repositories beyond what is specified
in Docker Repository API. See https://docs.quay.io0/api/ for details.

Registry Authentication

Some container image registries require access authorization. The podman login command
allows username and password authentication to a registry:

[student@workstation ~]$ sudo podman login -u username \
> -p password registry.access.redhat.com
Login Succeeded!

The registry HTTP API requires authentication credentials. First, use the Red Hat Single Sign On
(SSO) service to obtain an access token:

[student@workstation ~]$ curl -u username:password -Ls \

> "https://sso.redhat.com/auth/realms/rhcc/protocol/redhat-docker-v2/auth?
service=docker-registry"

{"token":"eyJh...05G8",

"access_token":"eyJh...mgL4",

"expires_in":...output omitted...}[student@workstation ~]$

Then, include this token in a Bearer authorization header in subsequent requests:

[student@workstation ~]$ curl -H "Authorization: Bearer eyJh...mgL4" \
> -Ls https://registry.redhat.io/v2/rhscl/mysql-57-rhel7/tags/list \
> | python -mjson.tool
{
"name": "rhscl/mysql-57-rhel7",
"tags": [

"5.7-3.9",

"5.7-3.8",

"5.7-3.4",

"5.7-3.7",
...output omitted...

Note
E Other registries may require different steps to provide credentials. If a registry
adheres to the Docker Registry HTTP v2 API, authentication conforms to the

RFC7235 scheme.

Chapter 4 | Managing Container Images

Pulling Images

To pull container images from a registry, use the podman pullcommand:

[student@workstation ~]$ sudo podman pull [OPTIONS] [REGISTRY[:PORT]/]NAME[:TAG]

The podman pull command uses the image name obtained from the search subcommand
to pull an image from a registry. The pull subcommand allows adding the registry name to the
image. This variant supports having the same image in multiple registries.

For example, to pull an NGINX container from the quay . 10 registry, use the following command:

[student@workstation ~]$ sudo podman pull quay.io/bitnami/nginx

S Note
If the image name does not include a registry name, Podman searches for a
matching container image using the registries listed in the /etc/containers/
registries.conf configuration file. Podman search for images in registries in the
same order they appear in the configuration file.

Listing Local Copies of Images

Any container image downloaded from a registry is stored locally on the same host where the
podman command is executed. This behavior avoids repeating image downloads and minimizes
the deployment time for a container. Podman also stores any custom container images you build in
the same local storage.

Note
E By default, Podman stores container images in the /var/1ib/containers/
storage/overlay-images directory.

Podman provides an images subcommand to list all the container images stored locally.

[student@workstation ~]$ sudo podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
registry.redhat.io/rhscl/mysql-57-rhel7 latest c07bf25398f4 13 days ago 444MB

Image Tags

An image tag is a mechanism to support multiple releases of the same image. This feature is useful
when multiple versions of the same software are provided, such as a production-ready container
or the latest updates of the same software developed for community evaluation. Any Podman
subcommand that requires a container image name accepts a tag parameter to differentiate
between multiple tags. If an image name does not contain a tag, then the tag value defaults to
latest. For example, to pull an image with the tag 5.7 from rhsc1/mysql-57-rhel7, use the
following command:

[student@workstation ~]$ sudo podman pull rhscl/mysql-57-rhel7:5.7

Chapter 4 | Managing Container Images

To start a new container based on the rhsc1/mysql-57-rhel7:5.7 image, use the following
command:

[student@workstation ~]$ sudo podman run rhscl/mysql-57-rhel7:5.7

D References
Red Hat Container Catalog

https://registry.redhat.io

Quay.io

https://quay.io

Docker Registry HTTP API V2
https://github.com/docker/distribution/blob/master/docs/spec/api.md

RFC7235 - HTTP/1.1: Authentication
https://tools.ietf.org/html/rfc7235

DO180-0OCP4.5-en-3-20201217 “

https://registry.redhat.io
https://quay.io
https://github.com/docker/distribution/blob/master/docs/spec/api.md
https://tools.ietf.org/html/rfc7235

Chapter 4 | Managing Container Images

» Quiz

Working With Registries

Choose the correct answers to the following questions, based on the following information:

Podman is available on a RHEL host with the following entry in /etc/containers/
registries.conf file:

[registries.search]
registries = ["registry.redhat.io","quay.io"]

The registry.redhat.io and quay.io hosts have a registry running, both have valid
certificates, and use the version 1registry. The following images are available for each host:

Image names/tags per registry

Regisitry Image

registry.redhat.io * nginx/1.0
+ mysql/5.6
+ httpd/2.2

quay.io + mysql/5.5
+ httpd/2.4

No images are locally available.

P 1. Which two commands display mysqlimages available for download from
registry.redhat.io? (Choose two.)
a. podman search registry.redhat.io/mysql
b. podman images
c. podman pull mysql
d. podman search mysql

P 2. Which command is used to list all available image tags for the ht tpd container image?
a. podman search httpd
b. podman images httpd
c. podman pull --all-tags=true httpd
d. There is no podman command available to search for tags.

Chapter 4 | Managing Container Images

P 3. Which two commands pull the ht tpd image with the 2. 2 tag? (Choose two.)
a. podman pull httpd:2.2
b. podman pull httpd:latest
c. podman pull quay.io/httpd
d. podman pull registry.redhat.io/httpd:2.2

P 4. When running the following commands, what container images will be downloaded?

podman pull registry.redhat.io/httpd:2.2
podman pull quay.io/mysql:5.6

a. quay.io/httpd:2.2
registry.redhat.io/mysql:5.6
b. registry.redhat.io/httpd:2.2
registry.redhat.io/mysql:5.6
c. registry.redhat.io/httpd:2.2
No image will be downloaded for mysq|.
d. quay.io/httpd:2.2
No image will be downloaded for mysq|l.

DO180-0OCP4.5-en-3-20201217 “

Chapter 4 | Managing Container Images

» Solution

Working With Registries

Choose the correct answers to the following questions, based on the following information:

Podman is available on a RHEL host with the following entry in /etc/containers/
registries.conf file:

[registries.search]
registries = ["registry.redhat.io","quay.io"]

The registry.redhat.io and quay.io hosts have a registry running, both have valid
certificates, and use the version 1registry. The following images are available for each host:

Image names/tags per registry

Regisitry Image

registry.redhat.io * nginx/1.0
+ mysql/5.6
+ httpd/2.2

quay.io + mysql/5.5
+ httpd/2.4

No images are locally available.

P 1. Which two commands display mysqlimages available for download from

registry.

a. podman
b. podman
c. podman
d. podman

redhat.io? (Choose two.)

search registry.redhat.io/mysql
images

pull mysql

search mysql

P 2. Which command is used to list all available image tags for the ht tpd container image?

a. podman
b. podman

c. podman

search httpd
images httpd
pull --all-tags=true httpd

d. There is no podman command available to search for tags.

DO180-0OCP4.5-en-3-20201217

Chapter 4 | Managing Container Images

P 3. Which two commands pull the ht tpd image with the 2. 2 tag? (Choose two.)
a. podman pull httpd:2.2
b. podman pull httpd:latest
c. podman pull quay.io/httpd
d. podman pull registry.redhat.io/httpd:2.2

P 4. When running the following commands, what container images will be downloaded?

podman pull registry.redhat.io/httpd:2.2
podman pull quay.io/mysql:5.6

a. quay.io/httpd:2.2
registry.redhat.io/mysql:5.6
b. registry.redhat.io/httpd:2.2
registry.redhat.io/mysql:5.6
c. registry.redhat.io/httpd:2.2
No image will be downloaded for mysq|.
d. quay.io/httpd:2.2
No image will be downloaded for mysq|.

DO180-0OCP4.5-en-3-20201217 “

Chapter 4 | Managing Container Images

Manipulating Container Images

Objectives

After completing this section, students should be able to:

+ Save and load container images to local files.

+ Delete images from the local storage.

- Create new container images from containers and update image metadata.

+ Manage image tags for distribution purposes.

Introduction

There are various ways to manage image containers while adhering to DevOps principles. For
example, a developer finishes testing a custom container in a machine and needs to transfer this
container image to another host for another developer, or to a production server. There are two
ways to do this:

1. Save the containerimage to a . tar file.

2. Publish (push) the container image to an image registry.

E Note
One of the ways a developer could have created this custom container is discussed
later in this chapter (podman commit). However, in the following chapters we
discuss the recommended way to do so using Dockerfiles.

Saving and Loading Images

Existing images from the Podman local storage can be saved to a . tar file using the podman
save command. The generated file is not a regular TAR archive; it contains image metadata and
preserves the original image layers. Using this file, Podman can recreate the original image exactly
as it was.

The general syntax of the save subcommand is as follows:

[student@workstation ~]$ sudo podman save [-o FILE_NAME] IMAGE_NAME[:TAG]

Podman sends the generated image to the standard output as binary data. To avoid that, use the -
0 option.

The following example saves the previously downloaded MySQL container image from the
Red Hat Container Catalog to the mysql. tar file:

[student@workstation ~]$ sudo podman save \
> -0 mysql.tar registry.access.redhat.com/rhscl/mysql-57-rhel7:5.7

Chapter 4 | Managing Container Images

Use the . tar files generated by the save subcommand for backup purposes. To restore the
container image, use the podman load command. The general syntax of the command is as
follows:

[student@workstation ~]$ sudo podman load [-i FILE_NAME]

For example, this command would load an image saved in a file named mysql. tar.

[student@workstation ~]$ sudo podman load -i mysql.tar

If the . tar file given as an argument is not a container image with metadata, the podman load
command fails.

Note

5 To save disk space, compress the file generated by the save subcommand with
Gzip using the - -compress parameter. The load subcommand uses the gunzip
command before importing the file to the local storage.

Deleting Images

Podman keeps any image downloaded in its local storage, even the ones currently unused by any
container. However, images can become outdated, and should be subsequently replaced.

E Note
Any updates to images in a registry are not automatically updated. The image must
be removed and then pulled again to guarantee that the local storage has the latest
version of an image.

To delete an image from the local storage, run the podman rmi command. The syntax for this
command is as follows:

[student@workstation ~]$ sudo podman rmi [OPTIONS] IMAGE [IMAGE...]

An image can be referenced using its name or its ID for removal purposes. Podman cannot delete
images while containers are using that image. You must stop and remove all containers using that
image before deleting it.

To avoid this, the rmi subcommand has the - - force option. This option forces the removal of
an image even if that the image is used by several containers or these containers are running.
Podman stops and removes all containers using the forcefully removed image before removing it.

Deleting all Images

To delete all images that are not used by any container, use the following command:

[student@workstation ~]$ sudo podman rmi -a

Chapter 4 | Managing Container Images

The command returns all the image IDs available in the local storage and passes them as
parameters to the podman rmi command for removal. Images that are in use are not deleted.
However, this does not prevent any unused images from being removed.

Modifying Images

Ideally, all container images should be built using a Dockerfile, in order to create a clean,
lightweight set of image layers without log files, temporary files, or other artifacts created by the
container customization. However, some users may provide container images as they are, without
a Dockerfile. As an alternative approach to creating new images, change a running container
in place and save its layers to create a new container image. The podman commit command
provides this feature.

Warning

A Even though the podman commit command is the most straightforward approach
to creating new images, it is not recommended because of the image size (commit
keeps logs and process ID files in the captured layers), and the lack of change
traceability. A Dockerfile provides a robust mechanism to customize and
implement changes to a container using a human-readable set of commands,
without the set of files that are generated by the operating system.

The syntax for the podman commit command is as follows:

[student@workstation ~]$ sudo podman commit [OPTIONS] CONTAINER \
> [REPOSITORY[:PORT]/]IMAGE_NAME[:TAG]

The following table shows the most important options available for the podman commit
command:

Option Description

--author "" Identifies who created the container image.
--message "" Includes a commit message to the registry.
--format Selects the format of the image. Valid options

are ociand docker.

i ; Note
The - -message option is not available in the default OCI container format.

To find the ID of a running container in Podman, run the podman ps command:

[student@workstation ~]$ sudo podman ps
CONTAINER ID IMAGE ... NAMES
87bdfcc7c656 mysql ...output omitted... mysqgl-basic

Eventually, administrators might customize the image and set the container to the desired state.
To identify which files were changed, created, or deleted since the container was started, use the
diff subcommand. This subcommand only requires the container name or container ID:

Chapter 4 | Managing Container Images

[student@workstation ~]$ sudo podman diff mysql-basic
/run

/run/mysqld

/run/mysqld/mysqgld.pid

/run/mysqld/mysqld.sock
/run/mysqld/mysqld.sock. lock

/run/secrets

> > > > 00

The diff subcommand tags any added file with an A, any changed ones with a C, and any deleted
file with a D.

Note

E The diff command only reports added, changed, or deleted files to the container
file system. Files that are mounted to a running container are not considered part of
the container file system.

To retrieve the list of mounted files and directories for a running container, use the
podman inspect command:

[student@workstation ~]$ sudo podman inspect \
> -f "{{range .Mounts}}{{println .Destination}}{{end}}" CONTAINER_NAME/ID

Any file in this list, or file under a directory in this list, is not shown in the output of
the podman diff command.

To commit the changes to another image, run the following command:

[student@workstation ~]$ sudo podman commit mysql-basic mysql-custom

Tagging Images

A project with multiple images based on the same software could be distributed, creating
individual projects for each image, but this approach requires more maintenance for managing and
deploying the images to the correct locations.

Container image registries support tags to distinguish multiple releases of the same project. For
example, a customer might use a container image to run with a MySQL or PostgreSQL database,
using a tag as a way to differentiate which database is to be used by a container image.

Note

E Usually, the tags are used by container developers to distinguish between multiple
versions of the same software. Multiple tags are provided to identify a release easily.
The official MySQL container image website uses the version as the tag's name
(5.5.16). Also, the same image has a second tag with the minor version, such as
5.5, to minimize the need to get the latest release for a specific version.

To tag an image, use the podman tag command:

Chapter 4 | Managing Container Images

[student@workstation ~]$ sudo podman tag [OPTIONS] IMAGE[:TAG] \
> [REGISTRYHOST/][USERNAME/]NAME[: TAG]

The IMAGE argument is the image name with an optional tag, which is managed by Podman. The
following argument refers to the new alternative name for the image. Podman assumes the latest
version, as indicated by the latest tag, if the tag value is absent. For example, to tag an image,
use the following command:

[student@workstation ~]$ sudo podman tag mysql-custom devops/mysql

The mysqgl-custom option corresponds to the image name in the container registry.

To use a different tag name, use the following command instead:

[student@workstation ~]$ sudo podman tag mysql-custom devops/mysql:snapshot

Removing Tags from Images

A single image can have multiple tags assigned using the podman tag command. To remove
them, use the podman rmi command, as mentioned earlier:

[student@workstation ~]$ sudo podman rmi devops/mysql:snapshot

Note
S Because multiple tags can point to the same image, to remove an image referred to
by multiple tags, first remove each tag individually.

Best Practices for Tagging Images

Podman automatically adds the latest tag if you do not specify any tag, because Podman
considers the image to be the latest build. However, this may not be true depending on how each
project uses tags. For example, many open source projects consider the latest tag to match the
most recent release, but not the latest build.

Moreover, multiple tags are provided to minimize the need to remember the latest release of a
particular version of a project. Thus, if there is a project version release, for example, 2.1.10,
another tag called 2. 1 can be created pointing to the same image from the 2.1.10 release. This
simplifies pulling images from the registry.

Publishing Images to a Registry

To publish an image to a registry, it must reside in the Podman's local storage and be tagged for
identification purposes. To push the image to the registry the syntax of the push subcommand is:

[student@workstation ~]$ sudo podman push [OPTIONS] IMAGE [DESTINATION]

For example, to push the bitnami/nginx image to its repository, use the following command:

[student@workstation ~]$ sudo podman push quay.io/bitnami/nginx

Chapter 4 | Managing Container Images

References

Podman site
https://podman.io/

DO180-0OCP4.5-en-3-20201217

https://podman.io/

Chapter 4 | Managing Container Images

» Guided Exercise

Creating a Custom Apache Container
Image

In this guided exercise, you will create a custom Apache container image using the podman
commit command.

Outcomes
You should be able to create a custom container image.

Before You Begin

Open a terminal on workstation as the student user and run the following command:

[student@workstation ~]$ lab image-operations start

P 1. Loginto your Quay.io account and start a container by using the image available at
quay.io/redhattraining/httpd-parent. The -p option allows you to specify a
redirect port. In this case, Podman forwards incoming requests on TCP port 8180 of the
host to TCP port 80 of the container.

[student@workstation ~]$ sudo podman login quay.io

Username: your_quay_username

Password: your_quay_password

Login Succeeded!

[student@workstation ~]$ sudo podman run -d --name official-httpd \
> -p 8180:80 quay.io/redhattraining/httpd-parent

...output omitted...

Writing manifest to image destination

Storing signatures
3a6baecaff2b4e8c53b026e04847dda5976b773adela3a712b1431d60ac5915d

Your last line of output is different from the last line shown above. Note the first twelve
characters.

P 2. Create an HTML page on the official-httpd container.

21, Access the shell of the container by using the podman exec command and create an
HTML page.

[student@workstation ~]$ sudo podman exec -it official-httpd /bin/bash
bash-4.4# echo "D0180 Page" > /var/www/html/do180.htm1l

2.2. Exit from the container.

bash-4.4# exit

Chapter 4 | Managing Container Images

2.3. Ensure that the HTML file is reachable from the workstation VM by using the curl
command.

[student@workstation ~]$ curl 127.0.0.1:8180/do180.htm1l

You should see the following output:

D0180 Page

P 3. Usethe podman diff command to examine the differences in the container between the
image and the new layer created by the container.

[student@workstation ~]$ sudo podman diff official-httpd
C /etc

C /root

A /root/.bash_history
..output omitted.. .

/tmp

/var

/var/log

/var/log/httpd
/var/log/httpd/access_log
/var/log/httpd/error_1log
/var/waw

/var/www/html
/var/www/html/do180.html

>0 0>>000O0 -

Q Note

Often, web server container images label the /var/www/htm1 directory as a
volume. In these cases, any files added to this directory are not considered part
of the container file system, and would not show in the output of the git diff
command.

The quay.io/redhattraining/httpd-parent container image does not label
the /var/www/html directory as a volume. As a result, the change to the /var/
www/html/do180.html file is considered a change to the underlying container file
system.

P 4. Create a newimage with the changes created by the running container.

41. Stoptheofficial-httpd container.

[student@workstation ~]$ sudo podman stop official-httpd
3a6baecaff2b4e8c53b026e04847dda5976b773adela3a712b1431d60ac5915d

4.2. Commit the changes to a new container image with a new name. Use your name as
the author of the changes.

[student@workstation ~]$ sudo podman commit \
> -a 'Your Name' official-httpd do180-custom-httpd
Getting image source signatures

Chapter 4 | Managing Container Images

Skipping fetch of repeat blob sha256:071d8bd765171080d01682844524be57ac9883e. . .
...output omitted. ..
Copying blob sha256:1e19be875ce6f5b9dece378755eh9df96ee205abfh4f165c797f59a9. ..

15.00 KB / 15.00 KB [] s
Copying config sha256:8049dc2e7d0aBbla70fc0268ad236399d9f5fh686ad4e31c7482cc. . .
2.99 KB / 2.99 KB [] os

Writing manifest to image destination
Storing signatures
31c3ac78e9d4137c928da23762e7d32b00c428eb1036cablcaeeb399befe2a23

4.3. List the available container images.

[student@workstation ~]$ sudo podman images

The expected output is similar to the following:

REPOSITORY TAG IMAGE ID CREATED SIZE
localhost/do180-custom-httpd latest 31c3ac78e9d4
quay.io/redhattraining/httpd-parent latest 2cc07fbb5000

The image ID matches the first 12 characters of the hash. The most recent images are
listed at the top.

P 5. Publish the saved container image to the container registry.

51. Load your classroom environment configuration.

Run the following command to load the environment variables created in the first
guided exercise:

[student@workstation ~]$ source /usr/local/etc/ocp4.config

5.2. To tag the image with the registry host name and tag, run the following command.

[student@workstation ~]$ sudo podman tag do180-custom-httpd \
> quay.io/${RHT_OCP4_QUAY_ USER}/do180-custom-httpd:v1.0

5.3. Runthe podman images command to ensure that the new name has been added to
the cache.

[student@workstation ~]$ sudo podman images

REPOSITORY TAG IMAGE ID

localhost/do180-custom-httpd latest 31c3ac78e9d4
quay.io/${RHT_OCP4_QUAY_USER}/do180-custom-httpd v1.0 31c3ac78e9d4
quay.io/redhattraining/httpd-parent latest 2cc07fbb5000

5.4. Publish the image to your Quay.io registry.

[student@workstation ~]$ sudo podman push \
> quay.io/${RHT_OCP4_QUAY_USER}/do180-custom-httpd:v1.0
Getting image source signatures

Chapter 4 | Managing Container Images

Copying blob sha256:071d8bd765171080d01682844524he57ac9883e53079h6ac66707e19. ..
200.44 MB / 200.44 MB [] 1m38s

...output omitted. ..

Copying config sha256:31c3ac78e9d4137c928da23762e7d32b00c428eh1036cablcaeeb3. ..
2.99 KB / 2.99 KB [] ©s

Writing manifest to image destination

Copying config sha256:31c3ac78e9d4137c928da23762e7d32b00c428eb1036cablicaeebs. . .
(G I Lo I (= [e S o S S S S S S S S S S] os

Writing manifest to image destination

Storing signatures

Note

E Pushing the do180-custom-httpdimage creates a private repository in your
Quay.io account. Currently, private repositories are disallowed by Quay.io free plans.
You can either create the public repository prior to pushing the image, or change
the repository to public afterwards.

5.5. Verify that the image is available from Quay.io. The podman search command
requires the image to be indexed by Quay.io. That may take some hours to occur, so
use the podman pullcommand to fetch the image. This proves the availability for
the image.

[student@workstation ~]$ sudo podman pull \
> -q quay.io/${RHT_OCP4_QUAY_USER}/do180-custom-httpd:v1.0
31c3ac78e9d4137¢c928da23762e7d32b00c428eb1036cablcaeeb3

P 6. Create a container from the newly published image.

Use the podman run command to start a new container. Use your_quay_username/
do180-custom-httpd:v1.0 as the base image.

[student@workstation ~]$ sudo podman run -d --name test-httpd -p 8280:80 \
> ${RHT_OCP4_QUAY_USER}/do180-custom-httpd:v1.0
c0f04e906bb12bd0e514chdBe581d2746e04e44a468dfbc85bc29ffcc5acdl6e

P 7. Use the curl command to access the HTML page. Make sure you use port 8280.
This should display the HTML page created in the previous step.

[student@workstation ~]$ curl http://localhost:8280/d0180.html
D0180 Page

Finish

Onworkstation, runthe lab image-operations finish script to complete this lab.

[student@workstation ~]$ lab image-operations finish

This concludes the guided exercise.

Chapter 4 | Managing Container Images

» Lab

Managing Images

Performance Checklist
In this lab, you will create and manage container images.

Outcomes

You should be able to create a custom container image and manage container images.

Before You Begin
Open a terminal on workstation as the student user and run the following command:

[student@workstation ~]$ lab image-review start

1. Usethe podman pullcommand to download the quay.io/redhattraining/
nginx:1.17 container image. This image is a copy of the official container image availabe at
docker.io/library/nginx:1.17.

Ensure that you successfully downloaded the image.
2. Start a new container using the Nginx image, according to the specifications listed in the
following list.
+« Name: official-nginx
* Run as daemon: yes
- Container image: nginx

+ Port forward: from host port 8080 to container port 80.

3. Login to the container using the podman exec command. Replace the contents of the
index.html file with DO180. The web server directory is located at /usr/share/nginx/
html.

After the file has been updated, exit the container and use the cur 1 command to access the
web page.

4. Stop the running container and commit your changes to create a new container image. Give
the new image a name of do180/mynginx and a tag of v1.0-SNAPSHOT. Use the following
specifications:

+ Image name: do180/mynginx
+ Image tag: v1.0-SNAPSHOT

+ Author name: your name

5. Start a new container using the updated Nginx image, according to the specifications listed in
the following list.

+ Name: official-nginx-dev

W DO180-0OCP4.5-en-3-20201217

Chapter 4 | Managing Container Images

+ Run as daemon: yes
- Container image: do180/mynginx:v1l.0-SNAPSHOT

+ Port forward: from host port 8080 to container port 80.

6. Login to the container using the podman exec command, and introduce a final change.
Replace the contents of the file /usr/share/nginx/html/index.html file with DO180
Page.

After the file has been updated, exit the container and use the cur 1 command to verify the
changes.

7. Stop the running container and commit your changes to create the final container image.
Give the new image a name of do180/mynginx and a tag of v1.0. Use the following
specifications:

+ Image name: do180/mynginx
* Image tag:v1.0

+ Author name: your name

8. Remove the development image do180/mynginx:vil.0-SNAPSHOT from local image
storage.

9. Use the image tagged do180/mynginx:v1l. 0 to create a new container with the following
specifications:

+ Container name: my-nginx

+ Run as daemon: yes

+ Containerimage: do180/mynginx:v1.0

+ Port forward: from host port 8280 to container port 80

Onworkstation, use the curl command to access the web server, accessible from the
port 8280.

Evaluation

Grade your work by running the lab image-review grade command onyourworkstation
machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab image-review grade

Finish
Onworkstation, runthe lab image-review finish command to complete this lab.

[student@workstation ~]$ lab image-review finish

This concludes the lab.

Chapter 4 | Managing Container Images

» Solution

Managing Images

2.

Performance Checklist
In this lab, you will create and manage container images.

Outcomes

You should be able to create a custom container image and manage container images.

Before You Begin
Open a terminal on workstation as the student user and run the following command:

[student@workstation ~]$ lab image-review start

Use the podman pull command to download the quay.io/redhattraining/
nginx:1.17 container image. Thisimage is a copy of the official container image availabe at
docker.io/1library/nginx:1.17.

Ensure that you successfully downloaded the image.

11, Use the podman pullcommand to pull the Nginx container image.

[student@workstation ~]$ sudo podman pull quay.io/redhattraining/nginx:1.17
Trying to pull Trying to pull quay.io/redhattraining/nginx:1.17...
...output omitted. ..

Storing signatures
9beeba249f3ee158d3e495a6ac25c5667ae2de8ad43ac2a8bfd2bf687a58c06c9

1.2. Ensure that the container image exists on the local system by running the podman
images command.

[student@workstation ~]$ sudo podman images

This command produces output similar to the following:

REPOSITORY TAG IMAGE ID CREATED SIZE
quay.io/redhattraining/nginx 1.17 9beeba249f3e 6 months ago 131MB

Start a new container using the Nginx image, according to the specifications listed in the
following list.

+ Name: official-nginx
* Run as daemon: yes

- Container image: nginx

W DO180-0OCP4.5-en-3-20201217

Chapter 4 | Managing Container Images

+ Port forward: from host port 8080 to container port 80.

21. Onworkstation, use the podman run command to create a container named
official-nginx.

[student@workstation ~]$ sudo podman run --name official-nginx \
> -d -p 8080:80 quay.io/redhattraining/nginx:1.17
b9d5739af239914b371025¢c38340352ac1657358561e7ebbd5472dfd5ff97788

3. Login to the container using the podman exec command. Replace the contents of the
index.html file with DO180. The web server directory is located at /usr/share/nginx/
html.

After the file has been updated, exit the container and use the cur 1 command to access the
web page.

31 Login to the container by using the podman exec command.

[student@workstation ~]$ sudo podman exec -it official-nginx /bin/bash
root@bh9d5739af239:/#

3.2. Update the index.html file located at /usr/share/nginx/html. The file should
read D0O180.

root@b9d5739af239:/# echo 'D0180' > /usr/share/nginx/html/index.html

3.3. Exit the container.

root@b9d5739af239:/# exit

3.4. Use the curl command to ensure that the index.html file is updated.

[student@workstation ~]$ curl 127.0.0.1:8080
D0180

4. Stop the running container and commit your changes to create a new container image. Give
the new image a name of do180/mynginx and a tag of v1.0-SNAPSHOT. Use the following
specifications:

+ Image name: do180/mynginx
+ Image tag: v1.0-SNAPSHOT
+ Author name: your name

41. Usethe sudo podman stop command to stop the official-nginx container.

[student@workstation ~]$ sudo podman stop official-nginx
b9d5739af239914b371025c38340352ac1657358561e7ebhbd5472dfd5ff97788

4.2. Commit your changes to a new container image. Use your name as the author of the
changes.

Chapter 4 | Managing Container Images

[student@workstation ~]$ sudo podman commit -a 'Your Name' \

> official-nginx do180/mynginx:v1.0-SNAPSHOT

Getting image source signatures

...output omitted...

Storing signatures
d6d10f52e258e4e88c181a56c51637789424€9261b208338404€82a26c960751

4.3. List the available container images to locate your newly created image.

[student@workstation ~]$ sudo podman images

REPOSITORY TAG IMAGE ID CREATED
localhost/do180/mynginx v1.0-SNAPSHOT d6d10f52e258 30 seconds ago
quay.io/redhattraining/nginx 1.17 9beeba249f3e 6 months ago

5. Start a new container using the updated Nginx image, according to the specifications listed in
the following list.

+ Name: official-nginx-dev

* Run as daemon: yes

+ Containerimage: do180/mynginx:v1.0-SNAPSHOT

+ Port forward: from host port 8080 to container port 80.

51. Onworkstation, use the podman run command to create a container named
official-nginx-dev.

[student@workstation ~]$ sudo podman run --name official-nginx-dev \

> -d -p 8080:80 do180/mynginx:v1.0-SNAPSHOT
cfa21f02a77d0e46e438c255f83dea2dfb89bb5aa72413a28866156671f0bbbb

6. Login to the container using the podman exec command, and introduce a final change.
Replace the contents of the file /usr/share/nginx/html/index.html file with DO180
Page.

After the file has been updated, exit the container and use the cur 1 command to verify the
changes.

6.l. Login to the container by using the podman exec command.

[student@workstation ~]$ sudo podman exec -it official-nginx-dev /bin/bash
root@cfa21fe2a77d:/#

6.2. Update the index.html file located at /usr/share/nginx/html. The file should
read D0180 Page.

root@cfa21fe2a77d:/# echo 'D0180 Page' > /usr/share/nginx/html/index.html

6.3. Exit the container.

root@cfa21f02a77d:/# exit

Chapter 4 | Managing Container Images
6.4. Use the cur 1l command to ensure that the index.html file is updated.

[student@workstation ~]$ curl 127.0.0.1:8080
D0180 Page

7. Stop the running container and commit your changes to create the final container image.
Give the new image a name of do180/mynginx and a tag of v1.0. Use the following
specifications:

+ Image name: do180/mynginx
* Image tag:v1.0

+ Author name: your name

71. Use the sudo podman stop command to stop the official-nginx-dev container.

[student@workstation ~]$ sudo podman stop official-nginx-dev
cfa21f02a77d0e46e438c255f83dea2dfb89bb5aa72413a28866156671F0bbbb

7.2. Commit your changes to a new container image. Use your name as the author of the
changes.

[student@workstation ~]$ sudo podman commit -a 'Your Name' \

> official-nginx-dev do180/mynginx:v1.0

Getting image source signatures

...output omitted...

Storing signatures
90915976c33de534e06778a74d2a8969c25ef5f8f58cOclab7aeaacl9abdi8af

7.3. List the available container images in order to locate your newly created image.

[student@workstation ~]$ sudo podman images

REPOSITORY TAG IMAGE ID CREATED

localhost/do180/mynginx v1i.0 90915976c33d 6 seconds ago
localhost/do180/mynginx v1.0-SNAPSHOT d6d10f52e258 8 minutes ago
quay.io/redhattraining/nginx 1.17 9beeba249f3e 6 months ago

8. Remove the developmentimage do180/mynginx:vl.0-SNAPSHOT from local image
storage.

8.1. Despite being stopped, the official-nginx-dev is still present. Display the
container with the podman ps command with the -a flag.

[student@workstation ~]$ sudo podman ps -a \

> --format="{{.ID}} {{.Names}} {{.Status}}"

cfa21f02a77d official-nginx-dev Exited (@) 9 minutes ago
b9d5739af239 official-nginx Exited (@) 12 minutes ago

8.2. Remove the container with the podman rm command.

Chapter 4 | Managing Container Images

[student@workstation ~]$ sudo podman rm official-nginx-dev
cfa21f02a77d0ed46e438c255f83dea2dfb89bbh5aa72413a28866156671F0bbbb

8.3. \Verify that the container is deleted by resubmitting the same podman ps command.

[student@workstation ~]$ sudo podman ps -a \
> --format="{{.ID}} {{.Names}} {{.Status}}"
b9d5739af239 official-nginx Exited (@) 12 minutes ago

8.4. Use the sudo podman rmicommand to remove the do180/mynginx:v1.0-
SNAPSHOT image.

[student@workstation ~]$ sudo podman rmi do180/mynginx:vi.0-SNAPSHOT
Untagged: localhost/do180/mynginx:vil.0-SNAPSHOT

8.5. Verify that the image is no longer present by listing all images using the podman
images command.

[student@workstation ~]$ sudo podman images

REPOSITORY TAG IMAGE ID CREATED SIZE
localhost/do180/mynginx v1i.0 90915976c33d 5 minutes ago 131MB
quay.io/redhattraining/nginx 1.17 9beeba249f3e 6 months ago 131MB

9. Use the image tagged do180/mynginx:v1l. 0 to create a new container with the following
specifications:

+ Container name: my-nginx

* Run as daemon: yes

+ Containerimage: do180/mynginx:v1.0

+ Port forward: from host port 8280 to container port 80

Onworkstation, use the curl command to access the web server, accessible from the
port 8280.

9.1. Usethe sudo podman run command to create the my-nginx container, according
to the specifications.

[student@workstation ~]$ sudo podman run -d --name my-nginx \
> -p 8280:80 do180/mynginx:v1.0
51958c8ec8d2613bd26185194c66ca96c95d23b82c43b23b0fOfb9fded74da20

9.2. Use the curl command to ensure that the index.html page is available and returns
the custom content.

[student@workstation ~]$ curl 127.0.0.1:8280
D0180 Page

Chapter 4 | Managing Container Images

Evaluation

Grade your work by running the lab image-review grade command onyourworkstation
machine. Correct any reported failures and rerun the script until successful

[student@workstation ~]$ lab image-review grade

Finish
Onworkstation, runthe lab image-review finish command to complete this lab.

[student@workstation ~]$ lab image-review finish

This concludes the lab.

DO180-0OCP4.5-en-3-20201217 w

Chapter 4 | Managing Container Images

Summary

In this chapter, you learned:

+ The Red Hat Container Catalog provides tested and certified images at
registry.redhat.io.

+ Podman can interact with remote container registries to search, pull, and push container images.
+ Image tags are a mechanism to support multiple releases of a container image.

+ Podman provides commands to manage container images both in local storage and as
compressed files.

+ Use the podman commit to create animage from a container.

W DO180-0OCP4.5-en-3-20201217

Chapter 5

Creating Custom Container
Images

Goal Design and code a Dockerfile to build a custom ¢
container image.
Objectives + Describe the approaches for creating custom .
container images. 4
Create a container image using common ,
Dockerfile commands. '.
Sections + Designing Custom Container Images (and i

Quiz)

Building Custom Container Images with
Dockerfiles (and Guided Exercise)

TN

Lab + Creating Custom Container Images

r/

DO180-0OCP4.5-en-3-20201217

Chapter 5 | Creating Custom Container Images

Designing Custom Container Images

Objectives

After completing this section, students should be able to:
+ Describe the approaches for creating custom container images.
+ Find existing Dockerfiles to use as a starting point for creating a custom container image.

+ Define the role played by the Red Hat Software Collections Library (RHSCL) in designing
container images from the Red Hat registry.

+ Describe the Source-to-Image (S2I) alternative to Dockerfiles.

Reusing Existing Dockerfiles

One method of creating container images has been covered so far: create a container, modify

it to meet the requirements of the application to run in it, and then commit the changes to an
image. This option, although straightforward, is only suitable for using or testing very specific
changes. It does not follow best software practices, like maintainability, automation of building, and
repeatability.

Dockerfiles are another option for creating container images, addressing these limitations.
Dockerfiles are easy to share, version control, reuse, and extend.

Dockerfiles also make it easy to extend one image, called a child image, from another image, called
a parent image. A child image incorporates everything in the parent image and all changes and
additions made to create it.

To share and reuse images, many popular applications, languages, and frameworks are already
available in public image registries such as Quay . io. It is not trivial to customize an application
configuration to follow recommended practices for containers, and so starting from a proven
parent image usually saves a lot of work.

Using a high-quality parent image enhances maintainability, especially if the parent image is kept
updated by its author to account for bug fixes and security issues.

Typical scenarios in creating a Dockerfile for building a child image from an existing container
image include:

+ Add new runtime libraries, such as database connectors.
+ Include organization-wide customization such as SSL certificates and authentication providers.

+ Add internal libraries to be shared as a single image layer by multiple container images for
different applications.

Changing an existing Dockerfile to create a new image can also be a sensible approach in other
scenarios. For example:

+ Trim the container image by removing unused material (such as man pages, or documentation
foundin /usr/share/doc).

Chapter 5 | Creating Custom Container Images

+ Lock either the parent image or some included software package to a specific release to lower
risk related to future software updates.

Two sources of container images to use either as parent images or for changing their Dockerfiles
are Docker Hub and the Red Hat Software Collections Library (RHSCL).

Working with the Red Hat Software Collections Library

Red Hat Software Collections Library (RHSCL), or simply Software Collections, is Red Hat's
solution for developers who need to use the latest development tools that usually do not fit the
standard RHEL release schedule.

Red Hat Enterprise Linux (RHEL) provides a stable environment for enterprise applications. This
requires RHEL to keep the major releases of upstream packages at the same level to prevent API
and configuration file format changes. Security and performance fixes are backported from later
upstream releases, but new features that would break backward-compatibility are not backported.

RHSCL allows software developers to use the latest version without impacting RHEL, because
RHSCL packages do not replace or conflict with default RHEL packages. Default RHEL packages
and RHSCL packages are installed side-by-side.

Note

5 All RHEL subscribers have access to the RHSCL. To enable a particular software
collection for a specific user or application environment (for example, MySQL 5.7,
which is named rh-mysq157), enable the RHSCL software Yum repositories and
follow a few simple steps.

Finding Dockerfiles from the Red Hat Software
Collections Library

RHSCL is the source of most container images provided by the Red Hat image registry for use by
RHEL Atomic Host and OpenShift Container Platform customers.

Red Hat provides RHSCL Dockerfiles and related sources in the rhscl-dockerfiles package
available from the RHSCL repository. Community users can get Dockerfiles for CentOS-based
equivalent container images from https://github.com/sclorg?q=-container.

Note

S Many RHSCL container images include support for Source-to-Image (S21), best
known as an OpenShift Container Platform feature. Having support for S2| does not
affect the use of these container images with Docker.

Container Images in Red Hat Container Catalog
(RHCC)

Mission-critical applications require trusted containers. The Red Hat Container Catalog is a
repository of reliable, tested, certified, and curated collection of container images built on versions
of Red Hat Enterprise Linux (RHEL) and related systems. Container images available through
RHCC have undergone a quality-assurance process. All components have been rebuilt by Red Hat
to avoid known security vulnerabilities. They are upgraded on a regular basis so that they contain
the required version of software even when a new image is not yet available. Using RHCC, you

DO180-0OCP4.5-en-3-20201217 “

Chapter 5 | Creating Custom Container Images

can browse and search for images, and you can access information about each image, such as its
version, contents, and usage.

Searching for Images Using Quay.io

Quay.io is an advanced container repository from CoreOS optimized for team collaboration. You
can search for container images using https://quay.io/search.

Clicking on an image's name provides access to the image information page, including access to all
existing tags for the image, and the command to pull the image.

Finding Dockerfiles on Docker Hub

Anyone can create a Docker Hub account and publish container images there. There are no
general assurances about quality and security; images on Docker Hub range from professionally
supported to one-time experiments. Each image has to be evaluated individually.

After searching for an image, the documentation page might provide a link to its Dockerfile. For
example, the first result when searching for mysql is the documentation page for the MySQL
official image at https://hub.docker.com/_/mysql.

On that page, the link for the 5.6/Dockerfile image points to the docker - library GitHub
project, which hosts Dockerfiles for images built by the Docker community automatic build
system.

The direct URL for the Docker Hub MySQL 5.6 Dockerfile tree is https://github.com/docker-
library/mysql/blob/master/5.6.

Describing How to use the OpenShift Source-to-
Image Tool

Source-to-Image (S2I) provides an alternative to using Dockerfiles to create new container
images and can be used either as a feature from OpenShift or as the standalone s21 utility. S2I
allows developers to work using their usual tools, instead of learning Dockerfile syntax and using
operating system commands such as yum, and usually creates slimmer images, with fewer layers.

S2l uses the following process to build a custom container image for an application:

1. Start a container from a base container image called the builder image, which includes a
programming language runtime and essential development tools such as compilers and
package managers.

2. Fetch the application source code, usually from a Git server, and send it to the container.
3. Build the application binary files inside the container.

4. Save the container, after some clean up, as a new container image, which includes the
programming language runtime and the application binaries.

The builder image is a regular container image following a standard directory structure and
providing scripts that are called during the S2I process. Most of these builder images can also be
used as base images for Dockerfiles, outside the S2I process.

The s21i command is used to run the S2I process outside of OpenShift, in a Docker-only
environment. It can be installed on a RHEL system from the source-to-image RPM package, and
on other platforms, including Windows and Mac OS, from the installers available in the S2I project
on GitHub.

w DO180-0OCP4.5-en-3-20201217

https://quay.io/search
https://hub.docker.com/_/mysql
https://github.com/docker-library/mysql/blob/master/5.6
https://github.com/docker-library/mysql/blob/master/5.6

Chapter 5 | Creating Custom Container Images

References

Red Hat Software Collections Library (RHSCL)
https://access.redhat.com/documentation/en/red-hat-software-collections/

Red Hat Container Catalog (RHCC)
https://access.redhat.com/containers/

RHSCL Dockerfiles on GitHub
https://github.com/sclorg?q=-container

Using Red Hat Software Collections Container Images
https://access.redhat.com/articles/1752723

Quay.io
https://quay.io/search

Docker Hub
https://hub.docker.com/

Docker Library GitHub project
https://github.com/docker-library

The S2I GitHub project
https://github.com/openshift/source-to-image

DO180-0OCP4.5-en-3-20201217

https://access.redhat.com/documentation/en/red-hat-software-collections/
https://access.redhat.com/containers/
https://github.com/sclorg?q=-container
https://access.redhat.com/articles/1752723
https://quay.io/search
https://hub.docker.com/
https://github.com/docker-library
https://github.com/openshift/source-to-image

Chapter 5 | Creating Custom Container Images

» Quiz

Approaches to Container Image Design

Choose the correct answers to the following questions:

P 1. Which method for creating container images is recommended by the containers

b 2.

P 3.

community? (Choose one.)

a.

Run commands inside a basic OS container, commit the container, and save or export it as

a new container image.

. Run commands from a Dockerfile and push the generated container image to an image

registry.

. Create the container image layers manually from tar files.
. Run the podman build command to process a container image description in YAML

format.

What are two advantages of using the standalone S2I process as an alternative to

Dockerfiles? (Choose two.)

a.

b
c.
d

Requires no additional tools apart from a basic Podman setup.

. Creates smaller container images, having fewer layers.

Reuses high-quality builder images.

. Automatically updates the child image as the parent image changes (for example, with

security fixes).

. Creates images compatible with OpenShift, unlike container images created from Docker

tools.

What are two typical scenarios for creating a Dockerfile to build a child image from an

existing image? (Choose two.)

a.
b.

C.

Adding new runtime libraries.
Setting constraints to a container's access to the host machine's CPU.
Adding internal libraries to be shared as a single image layer by multiple container images

for different applications.

W DO180-0OCP4.5-en-3-20201217

Chapter 5 | Creating Custom Container Images

» Solution

Approaches to Container Image Design

Choose the correct answers to the following questions:

P 1. Which method for creating container images is recommended by the containers

b 2.

P 3.

community? (Choose one.)

a.

Run commands inside a basic OS container, commit the container, and save or export it as

a new container image.

. Run commands from a Dockerfile and push the generated container image to an image

registry.

. Create the container image layers manually from tar files.

. Run the podman build command to process a container image description in YAML

format.

What are two advantages of using the standalone S2I process as an alternative to

Dockerfiles? (Choose two.)

a.

b
c.
d

Requires no additional tools apart from a basic Podman setup.

. Creates smaller container images, having fewer layers.

Reuses high-quality builder images.

. Automatically updates the child image as the parent image changes (for example, with

security fixes).

. Creates images compatible with OpenShift, unlike container images created from Docker

tools.

What are two typical scenarios for creating a Dockerfile to build a child image from an

existing image? (Choose two.)

a.
b.

C.

Adding new runtime libraries.
Setting constraints to a container's access to the host machine's CPU.
Adding internal libraries to be shared as a single image layer by multiple container images

for different applications.

DO180-0OCP4.5-en-3-20201217

Chapter 5 | Creating Custom Container Images

Building Custom Container Images with
Dockerfiles

Objectives

After completing this section, students should be able to create a container image using common
Dockerfile commands.

Building Base Containers

A Dockerfileis a mechanism to automate the building of container images. Building an image
from a Dockerfile is a three-step process:

1. Create a working directory
2. Write the Dockerfile

3. Build the image with Podman

Create a Working Directory

The working directory is the directory containing all files needed to build the image. Creating an
empty working directory is good practice to avoid incorporating unnecessary files into the image.
For security reasons, the root directory, /, should never be used as a working directory for image
builds.

Write the Dockerfile Specification

A Dockerfileis a text file that must exist in the working directory. This file contains the
instructions needed to build the image. The basic syntax of a Dockerfile follows:

Comment
INSTRUCTION arguments

Lines that begin with a hash, or pound, symbol (#) are comments. INSTRUCTION states for any
Dockerfile instruction keyword. Instructions are not case-sensitive, but the convention is to make
instructions all uppercase to improve visibility.

The first non-comment instruction must be a FROM instruction to specify the base image.
Dockerfile instructions are executed into a new container using this image and then committed to
a new image. The next instruction (if any) executes into that new image. The execution order of
instructions is the order of their appearance in the Dockerfile.

Note
E The ARG instruction can appear before the FROM instruction, but ARG instructions
are outside the objectives for this section.

Each Dockerfile instruction runs in an independent container using an intermediate image built
from every previous command. This means each instruction is independent from other instructions
in the Dockerfile.

Chapter 5 | Creating Custom Container Images

The following is an example Dockerfile for building a simple Apache web server container:

© 06 60 o©o o0

This is a comment line (1]

FROM ubi7/ubi:7.7 ©

LABEL description="This is a custom httpd container image" (3]
MAINTAINER John Doe <jdoe@xyz.com> o

RUN yum install -y httpd (s

ExPOSE 80 O

ENV LogLevel "info" (7]

ADD http://someserver.com/filename.pdf /var/www/html (s
COPY ./src/ /var/www/html/ ©

USER apache (10}

ENTRYPOINT ["/usr/sbin/httpd"] @

CMD ["-D", "FOREGROUND"] @

Lines that begin with a hash, or pound, sign (#) are comments.

The FROM instruction declares that the new container image extends ubi7/ubi:7.7
container base image. Dockerfiles can use any other container image as a base image, not
only images from operating system distributions. Red Hat provides a set of container images
that are certified and tested and highly recommends using these container images as a base.
The LABEL is responsible for adding generic metadata to an image. A LABEL is a simple key-
value pair.

MAINTAINER indicates the Author field of the generated container image's metadata. You
can use the podman inspect command to view image metadata.

RUN executes commands in a new layer on top of the current image. The shell that is used to
execute commandsis /bin/sh.

EXPOSE indicates that the container listens on the specified network port at runtime. The
EXPOSE instruction defines metadata only; it does not make ports accessible from the host.
The -p option in the podman run command exposes container ports from the host.

ENV is responsible for defining environment variables that are available in the container. You
can declare multiple ENV instructions within the Dockerfile. You can use the env command
inside the container to view each of the environment variables.

ADD instruction copies files or folders from a local or remote source and adds them to the
container's file system. If used to copy local files, those must be in the working directory. ADD
instruction unpacks local . tar files to the destination image directory.

COPY copies files from the working directory and adds them to the container's file system. It
is not possible to copy a remote file using its URL with this Dockerfile instruction.

USER specifies the username or the UID to use when running the container image for the
RUN, CMD, and ENTRYPOINT instructions. It is a good practice to define a different user other
than root for security reasons.

ENTRYPOINT specifies the default command to execute when the image runs in a container.
If omitted, the default ENTRYPOINT is /bin/sh -c.

CMD provides the default arguments for the ENTRYPOINT instruction. If the default
ENTRYPOINT applies (/bin/sh -c), then CMD forms an executable command and
parameters that run at container start.

CMD and ENTRYPOINT

ENTRYPOINT and CMD instructions have two formats:

+ Exec form (using a JSON array):

ENTRYPOINT ["command", "paraml", "param2"]
CMD ["paraml", "param2"]

Chapter 5 | Creating Custom Container Images
+ Shell form:

ENTRYPOINT command paraml param2
CMD paraml param2

Exec form is the preferred form. Shell form wraps the commandsina /bin/sh -c shell, creating
a sometimes unnecessary shell process. Also, some combinations are not allowed, or may not
work as expected. For example, if ENTRYPOINT is ["ping"] (exec form) and CMD is localhost
(shell form), then the expected executed command is ping localhost, but the container tries
ping /bin/sh -c localhost, which is a malformed command.

The Dockerfile should contain at most one ENTRYPOINT and one CMD instruction. If more than
one of each is present, then only the last instruction takes effect. CMD can be present without
specifying an ENTRYPOINT. In this case, the base image's ENTRYPOINT applies, or the default
ENTRYPOINT if none is defined.

Podman can override the CMD instruction when starting a container. If present, all parameters for
the podman run command after the image name form the CMD instruction. For example, the
following instruction causes the running container to display the current time:

ENTRYPOINT ["/bin/date", "+%H:%M"]

The ENTRYPOINT defines both the command to be executed and the parameters. So the CMD
instruction cannot be used. The following example provides the same functionality, with the added
benefit of the CMD instruction being overwritable when a container starts:

ENTRYPOINT ["/bin/date"]
CMD ["+%H:%M"]

In both cases, when a container starts without providing a parameter, the current time is displayed:

[student@workstation ~]$ sudo podman run -it do180/rhel
11:41

In the second case, if a parameter appears after the image name in the podman run command,
it overwrites the CMD instruction. The following command displays the current day of the week
instead of the time:

[student@workstation demo-basic]$ sudo podman run -it do180/rhel +%A
Tuesday

Another approach is using the default ENTRYPOINT and the CMD instruction to define the initial
command. The following instruction displays the current time, with the added benefit of being able
to be overridden at run time.

CMD ["date", "+%H:%M"]

ADD and COPY

The ADD and COPY instructions have two forms:

+ The Shell form:

Chapter 5 | Creating Custom Container Images

ADD <source>... <destination>
COPY <source>... <destination>

* The Exec form:

ADD ["<source>",... "<destination>"]
COPY ["<source>", ... "<destination>"]

If the source is a file system path, it must be inside the working directory.

The ADD instruction also allows you to specify a resource using a URL:

ADD http://someserver.com/filename.pdf /var/www/html

If the source is a compressed file, then the ADD instruction decompresses the file to the
destination folder. The COPY instruction does not have this functionality.

Warning

A Both the ADD and COPY instructions copy the files, retaining permissions, with root
as the owner, even if the USER instruction is specified. Red Hat recommends using a
RUN instruction after the copy to change the owner and avoid “permission denied”
errors.

Layering Image

Each instruction in a Dockerfile creates a new image layer. Having too many instructions in
a Dockerfile causes too many layers, resulting in large images. For example, consider the
following RUN instructions in a Dockerfile:

RUN yum --disablerepo=* --enablerepo="rhel-7-server-rpms"
RUN yum update -y
RUN yum install -y httpd

The previous example is not a good practice when creating container images. It creates three
layers (one for each RUN instruction) while only the last is meaningful. Red Hat recommends
minimizing the number of layers. You can achieve the same objective while creating a single layer
by using the && conjunction:

RUN yum --disablerepo=* --enablerepo="rhel-7-server-rpms" && yum update -y && yum
install -y httpd

The problem with this approach is that the readability of the Dockerfile decays. Use the \
escape code to insert line breaks and improve readability. You can also indent lines to align the
commands:

RUN yum --disablerepo=* --enablerepo="rhel-7-server-rpms" && \
yum update -y && \
yum install -y httpd

Chapter 5 | Creating Custom Container Images

This example creates only one layer, and the readability improves. RUN, COPY, and ADD instructions
create new image layers, but RUN can be improved this way.

Red Hat recommends applying similar formatting rules to other instructions accepting multiple
parameters, such as LABEL and ENV:

LABEL version="2.0" \
description="This is an example container image" \
creationDate="01-09-2017"

ENV MYSQL_ROOT_PASSWORD="my_password" \
MYSQL_DATABASE "my_database"

Building Images with Podman

The podman build command processes the Dockerfile and builds a new image based on the
instructions it contains. The syntax for this command is as follows:

$ podman build -t NAME:TAG DIR

DIR is the path to the working directory, which must include the Dockerfile. It can be the current
directory as designated by a dot (.) if the working directory is the current directory. NAME:TAG is

a name with a tag given to the new image. If TAG is not specified, then the image is automatically
tagged as latest.

References

Dockerfile Reference Guide
https://docs.docker.com/engine/reference/builder/

Creating base images
https://docs.docker.com/engine/userguide/eng-image/baseimages/

W DO180-0OCP4.5-en-3-20201217

https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/userguide/eng-image/baseimages/

Chapter 5 | Creating Custom Container Images

» Guided Exercise

Creating a Basic Apache Container Image

In this exercise, you will create a basic Apache container image.

Outcomes
You should be able to create a custom Apache container image built on a Red Hat
Enterprise Linux 7.5 image.

Before You Begin
Run the following command to download the relevant lab files and to verify that Docker is
running:

[student@workstation ~]$ lab dockerfile-create start

P 1. Create the Apache Dockerfile

11, Open a terminal on workstation. Use your preferred editor and create a new
Dockerfile:

[student@workstation ~]$ vim /home/student/D0180/1labs/dockerfile-create/Dockerfile

1.2. Use UBI 7.7 as a base image by adding the following FROM instruction at the top of
the new Dockerfile:

FROM ubi7/ubi:7.7

1.3. Below the FROM instruction, include the MAINTAINER instruction to set the Author
field in the new image. Replace the values to include your name and email address:

MAINTAINER Your Name <youremail>

1.4. Below the MAINTAINER instruction, add the following LABEL instruction to add
description metadata to the new image:

LABEL description="A custom Apache container based on UBI 7"

1.5. Add a RUN instruction with a yum install command to install Apache on the new
container:

RUN yum install -y httpd && \
yum clean all

1.6. Add a RUN instruction to replace contents of the default HTTPD home page:

Chapter 5 | Creating Custom Container Images
RUN echo "Hello from Dockerfile" > /var/www/html/index.html

1.7. Use the EXPOSE instruction below the RUN instruction to document the port that the
container listens to at runtime. In this instance, set the port to 80, because it is the
default for an Apache server:

EXPOSE 80

Note

S The EXPOSE instruction does not actually make the specified port available to the
host; rather, the instruction serves as metadata about which ports the container is
listening on.

1.8. At the end of the file, use the following CMD instruction to set ht tpd as the default
entry point:

CMD ["httpd", "-D", "FOREGROUND"]

1.9. Verify that your Dockerfile matches the following before saving and proceeding with
the next steps:

FROM ubi7/ubi:7.7
MAINTAINER Your Name <youremail>
LABEL description="A custom Apache container based on UBI 7"

RUN yum install -y httpd && \
yum clean all

RUN echo "Hello from Dockerfile" > /var/www/html/index.html
EXPOSE 80

CMD [”httpd”, ”'D”I ”FOREGROUND"]

P 2. Build and verify the Apache container image.

21. Use the following commands to create a basic Apache container image using the
newly created Dockerfile:

[student@workstation ~]$ cd /home/student/D0180/1labs/dockerfile-create
[student@workstation dockerfile-create]$ sudo podman build --layers=false \

> -t dol80/apache .

STEP 1: FROM ubi7/ubi:7.7

Getting image source signatures o

Copying blob sha256:...output omitted...

71.46 MB / 71.46 MB [] 18s
...output omitted. ..

Chapter 5 | Creating Custom Container Images

Storing signatures

STEP 2: MAINTAINER Your Name <youremail>

STEP 3: LABEL description="A custom Apache container based on UBI 7"
STEP 4: RUN yum install -y httpd && yum clean all

Loaded plugins: ovl, product-id, search-disabled-repos, subscription-manager
...output omitted...

STEP 5: RUN echo "Hello from Dockerfile" > /var/www/html/index.html
STEP 6: EXPOSE 80

STEP 7: CMD ["httpd", "-D", "FOREGROUND"]

STEP 8: COMMIT ...output omitted... localhost/dol80/apache: latest
Getting image source signatures

...output omitted...

Storing signatures
b49375fa8eele549dc1b72742532f01c13e@ad5b4a82bb088e5befbe59377bcf

© The container image listed in the FROM instruction is only downloaded if not
already present in local storage.

S Note
Podman creates many anonymous intermediate images during the build process.
They are not be listed unless -a is used. Use the - - layers=false option of the
build subcommand to instruct Podman to delete intermediate images.

2.2. After the build process has finished, run podman images to see the new image in the
image repository:

[student@workstation dockerfile-create]$ sudo podman images

REPOSITORY TAG IMAGE ID CREATED SIZE
localhost/do180/apache latest b49375fa8eel 11 seconds ago 247MB
registry.access.redhat.com/ubi7/ubi 7.7 0355cd652bd1 8 months ago 215MB

P 3. Runthe Apache container.

3.1. Use the following command to run a container using the Apache image:

[student@workstation dockerfile-create]$ sudo podman run --name lab-apache \
> -d -p 10080:80 do180/apache
fald1c450e8892ae085dd8bbf763edac92c41e6ffaa7ad6ec6388466809bb391

3.2. Runthe podman ps command to see the running container:

[student@workstation dockerfile-create]$ sudo podman ps
CONTAINER ID IMAGE COMMAND ...output omitted. .
fald1c450e88 localhost/dol80/apache: latest httpd -D FOREGROU...output omitted...

3.3. Use the cur 1 command to verify that the server is running:

[student@workstation dockerfile-create]$ curl 127.0.0.1:10080
Hello from Dockerfile

Chapter 5 | Creating Custom Container Images

Finish
Onworkstation, runthe lab dockerfile-create finish scriptto complete this lab.

[student@workstation ~]$ lab dockerfile-create finish

This concludes the guided exercise.

W DO180-0OCP4.5-en-3-20201217

Chapter 5 | Creating Custom Container Images

» Lab

Creating Custom Container Images

Performance Checklist

In this lab, you will create a Dockerfile to build a custom Apache Web Server container image.
The custom image will be based on a RHEL 7.7 UBl image and serve a custom index.html

page.

Outcomes

You should be able to create a custom Apache Web Server container that hosts static HTML
files.

Before You Begin
Open a terminal on workstation as the student user and run the following command:

[student@workstation ~]$ lab dockerfile-review start

1. Review the provided Dockerfile stub in the /home/student/D0180/1labs/dockerfile-
review/ folder. Edit the Dockerfile and ensure that it meets the following specifications:

+ The base imageisubi7/ubi:7.7

+ Sets the desired author name and email ID with the MAINTAINER instruction
+ Sets the environment variable PORT to 8080

+ Install Apache (httpd package).

+ Change the Apache configuration file /etc/httpd/conf/httpd.conf to listen to port
8080 instead of the default port 80.

+ Change ownership of the /etc/httpd/logs and /run/httpd folders to user and group
apache (UID and GID are 48).

+ So that container users know how to access the Apache Web Server, expose the value set
in the PORT environment variable.

+ Copy the contents of the src/ folder in the lab directory to the Apache DocumentRoot
file (/var/www/html/) inside the container.

The src folder contains a single index.html file that prints a Hello World! message.

+ Start the Apache httpd daemon in the foreground using the following command:
httpd -D FOREGROUND

2. Build the custom Apache image with the name do180/custom-apache.

3. Create a new container in detached mode with the following characteristics:

DO180-0OCP4.5-en-3-20201217 w

Chapter 5 | Creating Custom Container Images

+ Name: dockerfile

+ Container image: do180/custom-apache

+ Port forward: from host port 20080 to container port 8080
+ Run as a daemon: yes

Verify that the container is ready and running.

4. Verify that the server is serving the HTML file.

Evaluation

Grade your work by running the lab dockerfile-review grade command from your
workstation machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab dockerfile-review grade

Finish
Fromworkstation, runthe lab dockerfile-review finish command to complete this

lab.

[student@workstation ~]$ lab dockerfile-review finish

This concludes the lab.

Chapter 5 | Creating Custom Container Images

» Solution

Creating Custom Container Images

Performance Checklist

In this lab, you will create a Dockerfile to build a custom Apache Web Server container image.
The custom image will be based on a RHEL 7.7 UBl image and serve a custom index.html

page.

Outcomes

You should be able to create a custom Apache Web Server container that hosts static HTML
files.

Before You Begin

Open a terminal on workstation as the student user and run the following command:

[student@workstation ~]$ lab dockerfile-review start

1. Review the provided Dockerfile stub in the /home/student/D0180/1labs/dockerfile-
review/ folder. Edit the Dockerfile and ensure that it meets the following specifications:

+ The base imageisubi7/ubi:7.7

+ Sets the desired author name and email ID with the MAINTAINER instruction
+ Sets the environment variable PORT to 8080

+ Install Apache (httpd package).

+ Change the Apache configuration file /etc/httpd/conf/httpd.conf to listen to port
8080 instead of the default port 80.

+ Change ownership of the /etc/httpd/logs and /run/httpd folders to user and group
apache (UID and GID are 48).

+ So that container users know how to access the Apache Web Server, expose the value set
in the PORT environment variable.

+ Copy the contents of the src/ folder in the lab directory to the Apache DocumentRoot
file (/var/www/html/) inside the container.

The src folder contains a single index.html file that prints a Hello World! message.

+ Start the Apache httpd daemon in the foreground using the following command:

httpd -D FOREGROUND

11. Use your preferred editor to modify the Dockerfile located in the /home/student/
D0180/labs/dockerfile-review/ folder.

DO180-0OCP4.5-en-3-20201217 w

Chapter 5 | Creating Custom Container Images

[student@workstation ~]$ cd /home/student/D0180/labs/dockerfile-review/
[student@workstation dockerfile-review]$ vim Dockerfile

12. Set the base image for the Dockerfile to ubi7/ubi:7.7.

FROM ubi7/ubi:7.7

1.3. Set your name and email with a MAINTAINER instruction.

MAINTAINER Your Name <youremail>

14. Create an environment variable called PORT and set it to 8080.

ENV PORT 8080

1.5. Install Apache server.

RUN yum install -y httpd && \
yum clean all

1.6. Change the Apache HTTP Server configuration file to listen to port 8080 and change
ownership of the server working folders with a single RUN instruction.

RUN sed -ri -e "/AListen 80/c\Listen ${PORT}" /etc/httpd/conf/httpd.conf && \
chown -R apache:apache /etc/httpd/logs/ && \
chown -R apache:apache /run/httpd/

1.7. Use the USER instruction to run the container as the apache user. Use the EXPOSE
instruction to document the port that the container listens to at runtime. In this
instance, set the port to the PORT environment variable, which is the default for an
Apache server.

USER apache

Expose the custom port that you provided in the ENV var
EXPOSE ${PORT}

1.8. Copy all the files from the src folder to the Apache DocumentRoot path at /var/
www/htmt.

Copy all files under src/ folder to Apache DocumentRoot (/var/www/html)
COPY ./src/ /var/www/html/

19. Finally, insert a CMD instruction to run httpd in the foreground, and then save the
Dockerfile

Start Apache in the foreground
CMD ["httpd", "-D", "FOREGROUND"]

Chapter 5 | Creating Custom Container Images

2.

Build the custom Apache image with the name do180/custom-apache.

21. Verify the Dockerfile for the custom Apache image.

The Dockerfile for the custom Apache image should look like the following:

FROM ubi7/ubi:7.7
MAINTAINER Your Name <youremail>
ENV PORT 8080

RUN yum install -y httpd && \
yum clean all

RUN sed -ri -e "/AListen 80/c\Listen ${PORT}" /etc/httpd/conf/httpd.conf && \
chown -R apache:apache /etc/httpd/logs/ && \
chown -R apache:apache /run/httpd/

USER apache

Expose the custom port that you provided in the ENV var
EXPOSE ${PORT}

Copy all files under src/ folder to Apache DocumentRoot (/var/www/html)
COPY ./src/ /var/www/html/

Start Apache in the foreground
CMD ["httpd", "-D", "FOREGROUND"]

2.2. Runasudo podman build command to build the custom Apache image and name it
do180/custom-apache.

[student@workstation dockerfile-review]$ sudo podman build --layers=false \

> -t do180/custom-apache .

STEP 1: FROM ubi7/ubi:7.7

...output omitted. ..

STEP 2: MAINTAINER username <username@example.com>

STEP 3: ENV PORT 8080

STEP 4: RUN yum install -y httpd && yum clean all

...output omitted. ..

STEP 5: RUN sed -ri -e "/AListen 80/c\Listen ${PORT}" /etc/httpd/conf/httpd.conf
&& chown -R apache:apache /etc/httpd/logs/ && chown -R apache:apache /
run/httpd/

STEP 6: USER apache

STEP 7: EXPOSE ${PORT}

STEP 8: COPY ./src/ /var/www/html/

STEP 9: CMD ["httpd", "-D", "FOREGROUND"]

STEP 10: COMMIT ...output omitted... localhost/dol80/custom-apache:latest
...output omitted. ..

2.3. Runthe podman images command to verify that the custom image is built
successfully

Chapter 5 | Creating Custom Container Images

[student@workstation dockerfile-review]$ sudo podman images

REPOSITORY TAG IMAGE ID
locahost/do180/custom-apache latest da92b9426325
registry.access.redhat.com/ubi7/ubi 7.7 6fecccc91c83

3. Create a new container in detached mode with the following characteristics:
+ Name: dockerfile
+ Container image: do180/custom-apache
+ Port forward: from host port 20080 to container port 8080
* Run as a daemon: yes
Verify that the container is ready and running.

31. Create and run the container.

[student@workstation dockerfile-review]$ sudo podman run -d \
> --name dockerfile -p 20080:8080 do180/custom-apache
367823e35c4a. ..

3.2. Verify that the container is ready and running.

[student@workstation dockerfile-review]$ sudo podman ps
. IMAGE COMMAND ... PORTS NAMES
. do180/custom... "httpd -D ..." ... 0.0.0.0:20080->8080/tcp dockerfile

4. Verify that the server is serving the HTML file.
Runacurlcommandon127.0.0.1:20080

[student@workstation dockerfile-review]$ curl 127.0.0.1:20080

The output should be as follows

<htm1l>
<header><tit1e>D0180 Hello!</title></header>
<body>
Hello World! The dockerfile-review lab works!
</body>
</htm1l>

Evaluation

Grade your work by running the lab dockerfile-review grade command from your
workstation machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab dockerfile-review grade

Chapter 5 | Creating Custom Container Images
Finish
Fromworkstation, runthe lab dockerfile-review finish command to complete this

lab.

[student@workstation ~]$ lab dockerfile-review finish

This concludes the lab.

DO180-0OCP4.5-en-3-20201217 w

Chapter 5 | Creating Custom Container Images

Summary

In this chapter, you learned:

A Dockerfile contains instructions that specify how to construct a container image.

Container images provided by Red Hat Container Catalog or Quay.io are a good starting point
for creating custom images for a specific language or technology.

Building an image from a Dockerfile is a three-step process:
1. Create a working directory.

2. Specify the build instructions in a Dockerfile file.

3. Build the image with the podman build command.

The Source-to-Image (S2l) process provides an alternative to Dockerfiles. S2l implements
a standardized container image build process for common technologies from application
source code. This allows developers to focus on application development and not Dockerfile
development.

Chapter 6

Deploying Containerized
Applications on OpenShift

Goal Deploy single container applications on OpenShift U
Container Platform.
Objectives + Describe the architecture of Kubernetes and .
Red Hat OpenShift Container Platform. *
Create standard Kubernetes resources.
Create a route to a service. "

Lt Build an application using the Source-to-Image i
facility of OpenShift Container Platform.

, Create an application using the OpenShift web

console.

e
Sections + Describing Kubernetes and OpenShift
Architecture (and Quiz)

w

Creating Kubernetes Resources (and Guided
Exercise)

Creating Routes (and Guided Exercise)

Creating Applications with the Source-to-
Image Facility (and Guided Exercise)

Creating Applications with the OpenShift Web
Console (and Guided Exercise)

Lab + Deploying Containerized Applications on
OpenShift

r/

DO180-0OCP4.5-en-3-20201217

Chapter 6 | Deploying Containerized Applications on OpenShift

Describing Kubernetes and OpenShift
Architecture

Objectives

After completing this section, students should be able to:

+ Describe the architecture of a Kubernetes cluster running on the Red Hat OpenShift Container
Platform (RHOCP).

+ List the main resource types provided by Kubernetes and RHOCP.
+ ldentify the network characteristics of containers, Kubernetes, and RHOCP.
+ List mechanisms to make a pod externally available.

Kubernetes and OpenShift

In previous chapters we saw that Kubernetes is an orchestration service that simplifies the
deployment, management, and scaling of containerized applications. One of the main advantages
of using Kubernetes is that it uses several nodes to ensure the resiliency and scalability of its
managed applications. Kubernetes forms a cluster of node servers that run containers and are
centrally managed by a set of master servers. A server can act as both a server and a node, but
those roles are usually segregated for increased stability.

Kubernetes Terminology

Term Definition
Node A server that hosts applications in a Kubernetes cluster.
Master Node A node server that manages the control planein a Kubernetes cluster.

Master nodes provide basic cluster services such as APIs or controllers.

Worker Node Also named Compute Node, worker nodes execute workloads for the cluster.
Application pods are scheduled onto worker nodes.

Resource Resources are any kind of component definition managed by Kubernetes.
Resources contain the configuration of the managed component (for
example, the role assigned to a node), and the current state of the
component (for example, if the node is available).

Controller A controller is a Kubernetes process that watches resources and makes
changes attempting to move the current state towards the desired state.

Label A key-value pair that can be assigned to any Kubernetes resource. Selectors
use labels to filter eligible resources for scheduling and other operations.

Namespace A scope for Kubernetes resources and processes, so that resources with the
same name can be used in different boundaries.

Chapter 6 | Deploying Containerized Applications on OpenShift

S Note
The latest Kubernetes versions implement many controllers as Operators. Operators
are Kubernetes plug-in components that can react to cluster events and control
the state of resources. Operators and CoreOS Operator Framework are outside the
scope of this document.

Red Hat OpenShift Container Platform is a set of modular components and services built on top
of Red Hat CoreOS and Kubernetes. RHOCP adds Paa$S capabilities such as remote management,
increased security, monitoring and auditing, application life-cycle management, and self-service
interfaces for developers.

An OpenShift cluster is a Kubernetes cluster that can be managed the same way, but using
the management tools provided by OpenShift, such as the command-line interface or the web
console. This allows for more productive workflows and makes common tasks much easier.

OpenShift Terminology
Term Definition
Infra Node A node server containing infrastructure services like monitoring, logging, or

external routing.

Console A web Ul provided by the RHOCP cluster that allows developers and
administrators to interact with cluster resources.

Project OpenShift's extension of Kubernetes' namespaces. Allows the definition of
user access control (UAC) to resources.

The following schema illustrates the OpenShift Container Platform stack.

RED HAT
0 OPENSHIFT

DevOps Tools and User Experience
Web Console, CLI, REST API, SCM integration

Containerized Services Runtimes and xPaa$S
Auth, Networking, Image Registry Java, Ruby, Node.js and more
Contai':::')zrr:f]tezstration Etcd CRDs
i Ki
R AT Cluster state and configs ubernetes Operators
CRI-O

Container runtime

Red Hat CoreOS
Container optimized OS

Figure 6.1: OpenShift component stack

DO180-0OCP4.5-en-3-20201217 w

Chapter 6 | Deploying Containerized Applications on OpenShift

From bottom to top, and from left to right, this shows the basic container infrastructure, integrated
and enhanced by Red Hat:

+ The base OS is Red Hat CoreOS. Red Hat CoreOS is a Linux distribution focused on providing
an immutable operating system for container execution.

+ CRI-Ois an implementation of the Kubernetes CRI (Container Runtime Interface) to enable
using OCI (Open Container Initiative) compatible runtimes. CRI-O can use any container
runtime that satisfies CRI: runc (used by the Docker service), Libpod (used by Podman) or
rkt (from CoreQOS).

+ Kubernetes manages a cluster of hosts, physical or virtual, that run containers. It uses resources
that describe multicontainer applications composed of multiple resources, and how they
interconnect.

« Etcdis a distributed key-value store, used by Kubernetes to store configuration and state
information about the containers and other resources inside the Kubernetes cluster.

« Custom Resource Definitions (CRDs) are resource types stored in Etcd and managed by
Kubernetes. These resource types form the state and configuration of all resources managed by
OpenShift.

+ Containerized services fulfill many Paa$S infrastructure functions, such as networking and
authorization. RHOCP uses the basic container infrastructure from Kubernetes and the
underlying container runtime for most internal functions. That is, most RHOCP internal services
run as containers orchestrated by Kubernetes.

+ Runtimes and xPaaS are base container images ready for use by developers, each preconfigured
with a particular runtime language or database. The xPaaS offering is a set of base images for
Red Hat middleware products such as JBoss EAP and ActiveMQ. Red Hat OpenShift Application
Runtimes (RHOAR) are a set runtimes optimized for cloud native applications in OpenShift.

The application runtimes available are Red Hat JBoss EAP, OpenJDK, Thorntail, Eclipse Vert.x,
Spring Boot, and Node.js.

+ DevOps tools and user experience: RHOCP provides web Ul and CLI management tools for
managing user applications and RHOCP services. The OpenShift web Ul and CLI tools are built
from REST APIs which can be used by external tools such as IDEs and Cl platforms.

Chapter 6 | Deploying Containerized Applications on OpenShift

O ROUTING LAYER

Developer

—

MASTER NODE S

API/ Management/ — S

Data Store Scheduler

SCM (Git/Svn) > Authentication Replication ~——
' Gluster
1 Storage
¢ RED HAT COREOS
Cl/cp —
<—)
NODE INFRA NODE :
Existing —
Automation ~ — POD 1 POD 1 Ceph
Toolsets Storage
POD 2 POD 2
(@ POD N L oA POD N L App
@ —
Operations RED HAT COREOS RED HAT COREOS |
Other Storage
OPENSHIFT Vendors

SERVICE LAYER

CERTIFIED HARDWARE / CLOUD PROVIDER

Figure 6.2: OpenShift and Kubernetes architecture

New Featuresin RHOCP 4

RHOCP 4 is a massive change from previous versions. As well as keeping backwards compatibility
with previous releases, it includes new features, such as:

+ CoreOS as the mandatory operating system for all nodes, offering an immutable infrastructure
optimized for containers.

« Abrand new cluster installer which guides the process of installation and update.

+ A self-managing platform, able to automatically apply cluster updates and recoveries without
disruption.

+ Aredesigned application life-cycle management.

+ An Operator SDK to build, test, and package Operators.

Describing Kubernetes Resource Types

Kubernetes has six main resource types that can be created and configured using a YAML or a
JSON file, or using OpenShift management tools:

Pods (po)
Represent a collection of containers that share resources, such as IP addresses and persistent
storage volumes. It is the basic unit of work for Kubernetes.

Services (svc)
Define a single IP/port combination that provides access to a pool of pods. By default,
services connect clients to pods in a round-robin fashion.

DO180-0OCP4.5-en-3-20201217 w

Chapter 6 | Deploying Containerized Applications on OpenShift

Replication Controllers (rc)
A Kubernetes resource that defines how pods are replicated (horizontally scaled) into
different nodes. Replication controllers are a basic Kubernetes service to provide high
availability for pods and containers.

Persistent Volumes (pv)
Define storage areas to be used by Kubernetes pods.

Persistent Volume Claims (pvc)
Represent a request for storage by a pod. PVCs links a PV to a pod so its containers can make
use of it, usually by mounting the storage into the container's file system.

ConfigMaps (cm) and Secrets
Contains a set of keys and values that can be used by other resources. ConfigMaps and
Secrets are usually used to centralize configuration values used by several resources. Secrets
differ from ConfigMaps maps in that Secrets' values are always encoded (not encrypted) and
their access is restricted to fewer authorized users.

Although Kubernetes pods can be created standalone, they are usually created by high-level
resources such as replication controllers.

OpenShift Resource Types

The main resource types added by OpenShift Container Platform to Kubernetes are as follows:

Deployment config (dc)
Represents the set of containers included in a pod, and the deployment strategies to be used.
A dc also provides a basic but extensible continuous delivery workflow.

Build config (bc)
Defines a process to be executed in the OpenShift project. Used by the OpenShift Source-
to-Image (S2!) feature to build a container image from application source code stored in a
Git repository. A bc works together with a dc to provide a basic but extensible continuous
integration and continuous delivery workflows.

Routes
Represent a DNS host name recognized by the OpenShift router as an ingress point for
applications and microservices.

S Note
To obtain a list of all the resources available in a RHOCP cluster and their
abbreviations, use the oc api-resources or kubectl api-resources
commands.

Although Kubernetes replication controllers can be created standalone in OpenShift, they are
usually created by higher-level resources such as deployment controllers.

Networking

Each container deployed in a Kubernetes cluster has an IP address assigned from an internal
network that is accessible only from the node running the container. Because of the container's
ephemeral nature, IP addresses are constantly assigned and released.

Kubernetes provides a software-defined network (SDN) that spawns the internal container
networks from multiple nodes and allows containers from any pod, inside any host, to access pods
from other hosts. Access to the SDN only works from inside the same Kubernetes cluster.

Chapter 6 | Deploying Containerized Applications on OpenShift

Containers inside Kubernetes pods should not connect to each other's dynamic IP address directly.
Services resolves this problem by linking more stable IP addresses from the SDN to the pods. If
pods are restarted, replicated, or rescheduled to different nodes, services are updated, providing
scalability and fault tolerance.

External access to containers is more complicated. Kubernetes services can specify a NodePort
attribute, which is a network port redirected by all the cluster nodes to the SDN. Then, the
containers in the node can redirect a port to the node's port. Unfortunately, none of these
approaches scale well.

OpenShift makes external access to containers both scalable and simpler by defining route
resources. A route defines external-facing DNS names and ports for a service. A router (ingress
controller) forwards HTTP and TLS requests to the service addresses inside the Kubernetes
SDN. The only requirement is that the desired DNS names are mapped to the IP addresses of the
RHOCP router nodes.

D References
Kubernetes documentation website
https://kubernetes.io/docs/

OpenShift documentation website
https://docs.openshift.com/

Understanding Operators
https://docs.openshift.com/container-platform/4.5/operators/olm-what-
operators-are.html

DO180-0OCP4.5-en-3-20201217 w

https://kubernetes.io/docs/
https://docs.openshift.com/
https://docs.openshift.com/container-platform/4.5/operators/olm-what-operators-are.html
https://docs.openshift.com/container-platform/4.5/operators/olm-what-operators-are.html

Chapter 6 | Deploying Containerized Applications on OpenShift

» Quiz

Describing Kubernetes and OpenShift

Choose the correct answers to the following questions:

P 1. Which two sentences are correct regarding Kubernetes architecture? (Choose two.)
a. Kubernetes nodes can be managed without a master.

. Kubernetes masters manage pod scaling.

. Kubernetes masters schedule pods to specific nodes.

. Kubernetes tools cannot be used to manage resources in an OpenShift cluster.

o™ o O T

. Containers created from Kubernetes pods cannot be managed using standalone tools
such as Podman.

P 2. Which two sentences are correct regarding Kubernetes and OpenShift resource types?

(Choose two.)

a. A podis responsible for provisioning its own persistent storage.

b. All pods generated from the same replication controller have to run in the same node.

c. Aroute is responsible for providing IP addresses for external access to pods.

d. A replication controller is responsible for monitoring and maintaining the number of pods
for a particular application.

P 3. Which two statements are true regarding Kubernetes and OpenShift networking?
(Choose two.)
a. A Kubernetes service can provide an IP address to access a set of pods.
b. Kubernetes is responsible for providing a fully qualified domain name for a pod.
c. Areplication controller is responsible for routing external requests to the pods.
d. Aroute is responsible for providing DNS names for external access.

P 4. Which statement is correct regarding persistent storage in OpenShift and Kubernetes?

a. A PVC represents a storage area that a pod can use to store data and is provisioned by
the application developer.

b. A PVC represents a storage area that can be requested by a pod to store data but is
provisioned by the cluster administrator.

c. APVC represents the amount of memory that can be allocated to a node, so that a
developer can state how much memory he requires for his application to run.

d. APVC represents the number of CPU processing units that can be allocated to an

application pod, subject to a limit managed by the cluster administrator.

DO180-0OCP4.5-en-3-20201217

Chapter 6 | Deploying Containerized Applications on OpenShift

P 5. Which statement is correct regarding OpenShift additions to Kubernetes?
a. OpenShift adds features to simplify Kubernetes configuration of many real-world use
cases.
b. Container images created for OpenShift cannot be used with plain Kubernetes.
¢. Red Hat maintains forked versions of Kubernetes internal to the RHOCP product.

d. Doing continuous integration and continuous deployment with RHOCP requires external
tools.

DO180-0OCP4.5-en-3-20201217 “

Chapter 6 | Deploying Containerized Applications on OpenShift

» Solution

Describing Kubernetes and OpenShift

Choose the correct answers to the following questions:

P 1. Which two sentences are correct regarding Kubernetes architecture? (Choose two.)
a. Kubernetes nodes can be managed without a master.

. Kubernetes masters manage pod scaling.

. Kubernetes masters schedule pods to specific nodes.

. Kubernetes tools cannot be used to manage resources in an OpenShift cluster.

o™ o O T

. Containers created from Kubernetes pods cannot be managed using standalone tools

such as Podman.

P 2. Which two sentences are correct regarding Kubernetes and OpenShift resource types?

(Choose two.)

a. A podis responsible for provisioning its own persistent storage.

b. All pods generated from the same replication controller have to run in the same node.
c. Aroute is responsible for providing IP addresses for external access to pods.

d. A replication controller is responsible for monitoring and maintaining the number of pods

for a particular application.

P 3. Which two statements are true regarding Kubernetes and OpenShift networking?
(Choose two.)
a. A Kubernetes service can provide an IP address to access a set of pods.
b. Kubernetes is responsible for providing a fully qualified domain name for a pod.
¢. Areplication controller is responsible for routing external requests to the pods.

d. Aroute is responsible for providing DNS names for external access.

P 4. Which statement is correct regarding persistent storage in OpenShift and Kubernetes?

a. APVC represents a storage area that a pod can use to store data and is provisioned by
the application developer.

b. A PVC represents a storage area that can be requested by a pod to store data but is
provisioned by the cluster administrator.

c. APVC represents the amount of memory that can be allocated to a node, so that a
developer can state how much memory he requires for his application to run.

d. APVC represents the number of CPU processing units that can be allocated to an

application pod, subject to a limit managed by the cluster administrator.

DO180-0OCP4.5-en-3-20201217

Chapter 6 | Deploying Containerized Applications on OpenShift

P 5. Which statement is correct regarding OpenShift additions to Kubernetes?
a. OpenShift adds features to simplify Kubernetes configuration of many real-world use
cases.
b. Container images created for OpenShift cannot be used with plain Kubernetes.
¢. Red Hat maintains forked versions of Kubernetes internal to the RHOCP product.

. Doing continuous integration and continuous deployment with RHOCP requires external
tools.

DO180-0OCP4.5-en-3-20201217 w

Chapter 6 | Deploying Containerized Applications on OpenShift

Creating Kubernetes Resources

Objectives

After completing this section, students should be able to create standard Kubernetes resources.

The Red Hat OpenShift Container Platform (RHOCP)
Command-line Tool

The main method of interacting with an RHOCP cluster is using the oc command. The basic usage
of the command is through its subcommands in the following syntax:

$> oc <command>

Before interacting with a cluster, most operations require a logged-in user. The syntax to log in is
shown below:

$> oc login <clusterurl>

Describing Pod Resource Definition Syntax

RHOCP runs containers inside Kubernetes pods, and to create a pod from a container image,
OpenShift needs a pod resource definition. This can be provided either as a JSON or YAML text
file, or can be generated from defaults by the oc new-app command or the OpenShift web
console.

A pod is a collection of containers and other resources. An example of a WildFly application server
pod definition in YAML format is shown below:

apiVersion: vi
kind: Pod@®
metadata:
name: wildfly"
labels:
name: wildflye’
spec:
containers:
- resources:
limits :
cpu: 0.5
image: do276/todojee
name: wildfly
ports:
- containerPort: 8080"
name: wildfly
env:©
- name: MYSQL_ENV_MYSQL_DATABASE
value: items

W DO180-0OCP4.5-en-3-20201217

Chapter 6 | Deploying Containerized Applications on OpenShift

- name: MYSQL_ENV_MYSQL_USER
value: userl

- name: MYSQL_ENV_MYSQL_PASSWORD
value: mypab5

Declares a Kubernetes pod resource type.

A unique name for a pod in Kubernetes that allows administrators to run commands on it.
Creates a label with a key named name that other resources in Kubernetes, usually as service,
can use to find it.

A container-dependent attribute identifying which port on the container is exposed.

Defines a collection of environment variables.

00 000

Some pods may require environment variables that can be read by a container. Kubernetes
transforms all the name and value pairs to environment variables. For instance, the
MYSQL_ENV_MYSQL_USER variable is declared internally by the Kubernetes runtime with a value
of useri, and is forwarded to the container image definition. Because the container uses the
same variable name to get the user's login, the value is used by the WildFly container instance to
set the username that accesses a MySQL database instance.

Describing Service Resource Definition Syntax

Kubernetes provides a virtual network that allows pods from different workers to connect. But,
Kubernetes provides no easy way for a pod to discover the IP addresses of other pods.

Kubernetes Pod SDN

Node 1

——— Pod 1 —
— Pod 2

Node 2

— Pod 3 —

— Pod 4

<«—> Network packet flow —— Virtual or physical network

Figure 6.3: Basic Kubernetes networking

Services are essential resources to any OpenShift application. They allow containers in one pod to
open network connections to containers in another pod. A pod can be restarted for many reasons,
and it gets a different internal IP address each time. Instead of a pod having to discover the IP
address of another pod after each restart, a service provides a stable IP address for other pods to
use, no matter what worker node runs the pod after each restart.

DO180-0OCP4.5-en-3-20201217 w

Chapter 6 | Deploying Containerized Applications on OpenShift

Kubernetes Pod SDN Kubernetes Service SDN
Node 1
— Service 1 —
«—
Pod1
—
— Pod 2
The same services exists
in all nodes
Node 2
«—H
— Pod 3
]
— Pod 4
—— Service 1 —
— Network packet flow —— Virtual or physical network

Figure 6.4: Kubernetes services networking

Most real-world applications do not run as a single pod. They need to scale horizontally, so many
pods run the same containers from the same pod resource definition to meet growing user
demand. A service is tied to a set of pods, providing a single IP address for the whole set, and a
load-balancing client request among member pods.

The set of pods running behind a service is managed by a DeploymentConfig resource. A
DeploymentConfig resource embeds a ReplicationController that manages how many pod copies
(replicas) have to be created, and creates new ones if any of them fail. DeploymentConfig and
ReplicationController resources are explained later in this chapter.

The following example shows a minimal service definition in JSON syntax:

"kind": "Service", (1]
"apiVersion": "vi1i",
"metadata": {
"name": "quotedb" (2]
}
"spec": {
"ports": [©
{
"port": 3306,
"targetPort": 3306

1,
"selector": {
"name": "mysqldb" (4]

© The kind of Kubernetes resource. In this case, a Service.

W DO180-0OCP4.5-en-3-20201217

Chapter 6 | Deploying Containerized Applications on OpenShift

© A unique name for the service.

© portsisan array of objects that describes network ports exposed by the service. The
targetPort attribute has to match a containerPort from a pod container definition, and
the port attribute is the port that is exposed by the service. Clients connect to the service
port and the service forwards packets to the pod targetPort.

O selector is how the service finds pods to forward packets to. The target pods need to have
matching labels in their metadata attributes. If the service finds multiple pods with matching
labels, it load balances network connections between them.

Each service is assigned a unique IP address for clients to connect to. This IP address comes from
another internal OpenShift SDN, distinct from the pods' internal network, but visible only to pods.
Each pod matching the selector is added to the service resource as an endpoint.

Discovering Services

An application typically finds a service IP address and port by using environment variables. For
each service inside an OpenShift project, the following environment variables are automatically
defined and injected into containers for all pods inside the same project:

+ SVC_NAME_SERVICE_HOST is the service IP address.

+ SVC_NAME_SERVICE_PORT is the service TCP port.

Note
E The SVC_NAME part of the variable is changed to comply with DNS naming
restrictions: letters are capitalized and underscores (_) are replaced by dashes (-).

Another way to discover a service from a pod is by using the OpenShift internal DNS server, which
is visible only to pods. Each service is dynamically assigned an SRV record with an FQDN of the
form:

SVC_NAME .PROJECT_NAME.svc.cluster. local

When discovering services using environment variables, a pod has to be created and started only
after the service is created. If the application was written to discover services using DNS queries,
however, it can find services created after the pod was started.

There are two ways for an application to access the service from outside an OpenShift cluster:

1. NodePort type: This is an older Kubernetes-based approach, where the service is exposed
to external clients by binding to available ports on the worker node host, which then proxies
connections to the service IP address. Use the oc edit svc command to edit service
attributes and specify NodePort as the value for type, and provide a port value for the
nodePort attribute. OpenShift then proxies connections to the service via the public IP
address of the worker node host and the port value setin nodePort.

2. OpenShift Routes: This is the preferred approach in OpenShift to expose services using a
unique URL. Use the oc expose command to expose a service for external access or expose
a service from the OpenShift web console.

Figure 6.5 illustrates how NodePort services allow external access to Kubernetes services.
OpenShift routes are covered in more detail later in this course.

Chapter 6 | Deploying Containerized Applications on OpenShift

NODE 1
Pod 1
Node Port
33011
Pod 2
HOST
NODE 2
Pod 3
Node Port
33011
Pod 4

Figure 6.5: Alternative method for external access to a Kubernetes service

OpenShift provides the oc port-forward command for forwarding a local port to a pod port.
This is different from having access to a pod through a service resource:

+ The port-forwarding mapping exists only on the workstation where the oc client runs, while a
service maps a port for all network users.

+ A service load-balances connections to potentially multiple pods, whereas a port-forwarding
mapping forwards connections to a single pod.

5 Note
Red Hat discourages the use of the NodePor t approach to avoid exposing
the service to direct connections. Mapping via port-forwarding in OpenShift is
considered a more secure alternative.

The following example demonstrates the use of the oc port-forward command:

[student@workstation ~]$ oc port-forward mysql-openshift-1-glqrp 3306:3306

The previous command forwards port 3306 from the developer machine to port 3306 on the db
pod, where a MySQL server (inside a container) accepts network connections.

Note
5 When running this command, make sure you leave the terminal window running.
Closing the window or canceling the process stops the port mapping.

Creating New Applications

Simple applications, complex multitier applications, and microservice applications can be
described by a single resource definition file. This single file would contain many pod definitions,
service definitions to connect the pods, replication controllers or DeploymentConfigs to
horizontally scale the application pods, PersistentVolumeClaims to persist application data, and
anything else needed that can be managed by OpenShift.

W DO180-0OCP4.5-en-3-20201217

Chapter 6 | Deploying Containerized Applications on OpenShift

i~ | Important

In OpenShift 4.5 the oc new-app command now produces Deployment resources
instead of DeploymentConfig resources by default. This version of DO180

does not cover the Deployment resource, only DeploymentConfigs. To create
DeploymentConfig resources, you can pass the - -as-deployment-config flag
when invoking oc new-app, which is done throughout this version of the course.
For more information, see Understanding Deployments and DeploymentConfigs
[https://docs.openshift.com/container-platform/4.5/applications/deployments/
what-deployments-are.html#what-deployments-are].

The oc new-app command can be used with the -0 jsonor -o yaml option to create a
skeleton resource definition file in JSSON or YAML format, respectively. This file can be customized
and used to create an application using the oc create -f <filename>command, or merged
with other resource definition files to create a composite application.

The oc new-app command can create application pods to run on OpenShift in many different
ways. It can create pods from existing docker images, from Dockerfiles, and from raw source code
using the Source-to-Image (S2I) process.

Run the oc new-app -h command to understand all the different options available for creating
new applications on OpenShift.

The following command creates an application based on an image, mysql, from Docker Hub, with
the label set to db=mysq1l:

[student@workstation ~]$ oc new-app mysql --as-deployment-config \
> MYSQL_USER=user MYSQL_PASSWORD=pass MYSQL_DATABASE=testdb -1 db=mysql

The following figure shows the Kubernetes and OpenShift resources created by the oc new-app
command when the argument is a container image:

https://docs.openshift.com/container-platform/4.5/applications/deployments/what-deployments-are.html#what-deployments-are
https://docs.openshift.com/container-platform/4.5/applications/deployments/what-deployments-are.html#what-deployments-are
https://docs.openshift.com/container-platform/4.5/applications/deployments/what-deployments-are.html#what-deployments-are

Chapter 6 | Deploying Containerized Applications on OpenShift

> Contiguration
oc new-app Creates (Application)
<image> G Image StreamG

—> Service

Q

— created by oc new-app
Figure 6.6: Resources created for a new application

The following command creates an application based on an image from a private Docker image
registry:

oc new-app --docker-image=myregistry.com/mycompany/myapp --name=myapp --as-
deployment-config

The following command creates an application based on source code stored in a Git repository:

oc new-app https://github.com/openshift/ruby-hello-world --name=ruby-hello --as-
deployment-config

You will learn more about the Source-to-Image (S2I) process, its associated concepts, and more
advanced ways to use oc new-app to build applications for OpenShift in the next section.

Managing OpenShift Resources at the Command Line

There are several essential commands used to manage OpenShift resources as described below.

Use the oc get command to retrieve information about resources in the cluster. Generally, this
command outputs only the most important characteristics of the resources and omits more
detailed information.

The oc get RESOURCE_TYPE command displays a summary of all resources of the specified
type. The following illustrates example output of the oc get pods command.

NAME READY STATUS RESTARTS AGE
nginx-1-5r583 1/1 Running 0] 1h
myapp-1-144m7 1/1 Running 0] 1h

W DO180-0OCP4.5-en-3-20201217

Chapter 6 | Deploying Containerized Applications on OpenShift

ocgetall

Use the oc get all command to retrieve a summary of the most important components of a
cluster. This command iterates through the major resource types for the current project and prints
out a summary of their information.

NAME DOCKER RE
is/nginx 172.30.1.

NAME REVISION
dc/nginx 1

NAME DESIRED
rc/nginx-1 1

NAME CLUSTER-
svc/nginx 172.30.7

NAME R
po/nginx-1-ypp8t 1

oc describe RES

PO TAGS UPDATED

1:5000/basic-kubernetes/nginx latest About an hour ago

DESIRED CURRENT TRIGGERED BY
1 1 config, image(nginx:latest)
CURRENT READY AGE
1 1 1h
IP EXTERNAL -IP PORT(S) AGE
2.75 <none> 80/TCP, 443/TCP 1h
EADY STATUS RESTARTS AGE
/1 Running 0 1h

OURCE_TYPE RESOURCE_NAME

If the summaries provided by oc get are insufficient, use the oc describe command to retrieve
additional information. Unlike the oc get command, there is no way to iterate through all the
different resources by type. Although most major resources can be described, this functionality

is not available across all resources. The following is an example output from describing a pod

resource:

Name: mysql-op
Namespace:

Priority:
PriorityClassName:
Node:

Start Time:

Labels:

Annotations:

Status:
IP:

enshift-1-glgrp

mysql-openshift

0

none

cluster-worker-1/172.25.250.52

Fri, 15 Feb 2019 02:14:34 +0000
app=mysqgl-openshift

deployment=mysqgl-openshift-1
deploymentconfig=mysql-openshift
openshift.io/deployment-config.latest-version: 1
openshift.io/deployment-config.name: mysqgl-openshift
openshift.io/deployment.name: mysql-openshift-1
openshift.io/generated-by: OpenShiftNewApp
openshift.io/scc: restricted

Running

10.129.0.85

oc get RESOURCE_TYPE RESOURCE_NAME -o yaml

This command can be used to export a resource definition. Typical use cases include creating a
backup, or to aid in the modification of a definition. The -0 yam1 option prints out the object
representation in YAML format, but this can be changed to JSON format by providinga -0 json

option.

Chapter 6 | Deploying Containerized Applications on OpenShift

ocC create

This command creates resources from a resource definition. Typically, this is paired with the oc
get RESOURCE_TYPE RESOURCE_NAME -o yaml command for editing definitions.

oc edit

This command allows the user to edit resources of a resource definition. By default, this command
opens a vi buffer for editing the resource definition.

oc delete RESOURCE_TYPE name

The oc delete command removes a resource from an OpenShift cluster. Note that a
fundamental understanding of the OpenShift architecture is needed here, because deleting
managed resources such as pods results in new instances of those resources being automatically
created. When a project is deleted, it deletes all of the resources and applications contained within
it.

oc exec CONTAINER_ID options command

The oc exec command executes commands inside a container. You can use this command to run
interactive and noninteractive batch commands as part of a script.

Labelling resources

When working with many resources in the same project, it is often useful to group those resources
by application, environment, or some other criteria. To establish these groups, you define labels
for the resources in your project. Labels are part of the metadata section of a resource, and are
defined as key/value pairs, as shown in the following example:

apiVersion: vi
kind: Service
metadata:
...contents omitted...
labels:
app: nexus
template: nexus-persistent-template
name: nexus
...contents omitted. ..

Many oc subcommands support a - L option to process resources from a label specification.
For the oc get command, the - 1 option acts as a selector to only retrieve objects that have a
matching label:

$ oc get svc,dc -1 app=nexus

NAME TYPE CLUSTER-IP EXTERNAL -IP PORT(S) AGE
service/nexus ClusterIP 172.30.29.218 <none> 8081/TCP 4h
NAME REVISION DESIRED CURRENT
deploymentconfig.apps.openshift.io/nexus 1 1 1

Chapter 6 | Deploying Containerized Applications on OpenShift

Note

E Although any label can appear in resources, both the app and template keys are
common for labels. By convention, the app key indicates the application related
to this resource. The template key labels all resources generated by the same
template with the template's name.

When using templates to generate resources, labels are especially useful. A template resource has
a labels section separated from the metadata. labels section. Labels defined in the labels
section do not apply to the template itself, but are added to every resource generated by the
template.

apivVersion: template.openshift.io/v1
kind: Template
labels:
app: nexus
template: nexus-persistent-template
metadata:
...contents omitted...
labels:
maintainer: redhat
name: nexus-persistent
...contents omitted...
objects:
- apiversion: vi
kind: Service
metadata:
name: nexus
labels:
version: 1
...contents omitted...

The previous example defines a template resource with a single label: maintainer: redhat.
The template generates a service resource with three labels: app: nexus, template: nexus-
persistent-template,andversion: 1.

Chapter 6 | Deploying Containerized Applications on OpenShift

References

Additional information about pods and services is available in the Pods and Services
section of the OpenShift Container Platform documentation:

Architecture

https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.5/html-single/architecture/index

Additional information about creating images is available in the OpenShift
Container Platform documentation:

Creating Images

https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.5/html-single/images/index

Labels and label selectors details are available in Working with Kubernetes Objects
section for the Kubernetes documentation:

Labels and Selectors
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

W DO180-0OCP4.5-en-3-20201217

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/architecture/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/architecture/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/images/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/images/index
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

Chapter 6 | Deploying Containerized Applications on OpenShift

» Guided Exercise

Deploying a Database Server on
OpenShift

In this exercise, you will create and deploy a MySQL database pod on OpenShift using the oc
new-app command.

Outcomes
You should be able to create and deploy a MySQL database pod on OpenShift.

Before You Begin

Onworkstation, run the following command to set up the environment:

[student@workstation ~]$ lab openshift-resources start

P 1. Prepare the lab environment.

11. Load your classroom environment configuration.

Run the following command to load the environment variables created in the first
guided exercise:

[student@workstation ~]$ source /usr/local/etc/ocp4.config

12. Login to the OpenShift cluster.

[student@workstation ~]$ oc login -u ${RHT_OCP4_DEV_USER} -p \
> ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_MASTER_API}

Login successful

...output omitted. ..

1.3. Create a new project that contains your RHOCP developer username for the
resources you create during this exercise:

[student@workstation ~]$ oc new-project ${RHT_OCP4_DEV_USER}-mysql-openshift
Now using project ...output omitted...

P 2. Create a new application from the rhsc1/mysql-57-rhel7 container image using the oc
new-app command.
This image requires that you use the -e option to set the MYSQL_USER, MYSQL_PASSWORD,
MYSQL_DATABASE, and MYSQL_ROOT_PASSWORD environment variables.
Use the - -docker-image option with the oc new-app command to specify the

classroom private registry URI so that OpenShift does not try and pull the image from the
internet:

Chapter 6 | Deploying Containerized Applications on OpenShift

[student@workstation ~]$ oc new-app --as-deployment-config \
> --docker-image=registry.access.redhat.com/rhscl/mysql-57-rhel7:latest \
> --name=mysql-openshift \
> -e MYSQL_USER=userl -e MYSQL_PASSWORD=mypa55 -e MYSQL_DATABASE=testdb \
> -e MYSQL_ROOT_PASSWORD=ro00tpab55
--> Found container image 60726b3 (14 months old) from registry.access.redhat.com
for "registry.access.redhat.com/rhscl/mysql-57-rhel7:latest"
...output omitted...
--> Creating resources
imagestream.image.openshift.io "mysql-openshift" created
deploymentconfig.apps.openshift.io "mysqgl-openshift" created
service "mysql-openshift" created
--> Success
Application is not exposed. You can expose services to the outside world by
executing one or more of the commands below:
'oc expose svc/mysqgl-openshift’
Run 'oc status' to view your app.

P 3. Verify that the MySQL pod was created successfully and view the details about the pod and
its service.

31 Runtheoc statuscommand to view the status of the new application and verify
that the deployment of the MySQL image was successful:

[student@workstation ~]$ oc status
In project ${RHT_OCP4_DEV_USER}-mysql-openshift on server

svc/mysql-openshift - 172.30.114.39:3306
dc/mysqgl-openshift deploys istag/mysql-openshift:latest

deployment #1 running for 11 seconds - 0/1 pods
...output omitted...

3.2. List the pods in this project to verify that the MySQL pod is ready and running:

[student@workstation ~]$ oc get pods

NAME READY STATUS RESTARTS AGE
mysql-openshift-1-deploy 0/1 Completed 0 111s
mysql-openshift-1-xg665 1/1 Running 0 109s

Note
E Notice the name of the running pod. You need this information to be able to log in
to the MySQL database server later.

3.3. Usetheoc describe command to view more details about the pod:

[student@workstation ~]$ oc describe pod mysql-openshift-1-xg665

Name: mysql-openshift-1-xg665

Namespace: ${RHT_OCP4_DEV_USER}-mysql-openshift
Priority: 0

Node: master01/192.168.50.10

Chapter 6 | Deploying Containerized Applications on OpenShift

Start Time: Fri, 13 Nov 2020 08:50:03 -0500

Labels: deployment=mysqgl-openshift-1
deploymentconfig=mysql-openshift

...output omitted. ..

Status: Running

IP: 10.10.0.34

...output omitted...

3.4. List the services in this project and verify that the service to access the MySQL pod
was created:

[student@workstation ~]$ oc get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
mysql-openshift ClusterIP 172.30.121.55 <none> 3306/TCP 10m

3.5. Retrieve the details of the mysql-openshift service using the oc describe
command and note that the service type is ClusterIP by default:

[student@workstation ~]$ oc describe service mysql-openshift

Name: mysql-openshift
Namespace: ${RHT_OCP4_DEV_USER}-mysql-openshift
Labels: app=mysqgl-openshift

app.kubernetes.io/component=mysql-openshift
app.kubernetes.io/instance=mysql-openshift

Annotations: openshift.io/generated-by: OpenShiftNewApp
Selector: deploymentconfig=mysql-openshift

Type: ClusterIP

IP: 172.30.121.55

Port: 3306-tcp 3306/TCP

TargetPort: 3306/TCP

Endpoints: 10.10.0.34:3306

Session Affinity: None

Events: <none>

3.6. View details about the deployment configuration (dc) for this application:

[student@workstation ~]$ oc describe dc mysql-openshift

Name: mysql-openshift

Namespace: ${RHT_OCP4_DEV_USER}-mysql-openshift
Created: 15 minutes ago

Labels: app=mysql-openshift

app.kubernetes.io/component=mysql-openshift
app.kubernetes.io/instance=mysql-openshift
...output omitted. ..
Deployment #1 (latest):

Name: mysql-openshift-1

Created: 15 minutes ago

Status: Complete

Replicas: 1 current / 1 desired

Selector: deployment=mysql-openshift-1, deploymentconfig=mysql-openshift

Chapter 6 | Deploying Containerized Applications on OpenShift

Labels: app.kubernetes.io/component=mysql-openshift, app.kubernetes.io/
instance=mysql-openshift, app=mysql-openshift, openshift.io/deployment-
config.name=mysql-openshift

Pods Status: 1 Running / O Waiting / O Succeeded / 0 Failed
...output omitted. ..

3.7. Expose the service creating a route with a default name and a fully qualified domain
name (FQDN):

[student@workstation ~]$ oc expose service mysql-openshift
route.route.openshift.io/mysql-openshift exposed

[student@workstation ~]$ oc get routes

NAME HOST/PORT 50 a PORT
mysql-openshift mysql-openshift-${RHT_OCP4_DEV_USER}-mysql. .. oo 3306-tcp

P 4. Connect to the MySQL database server and verify that the database was created
successfully.

4]1. From the workstation machine, configure port forwarding betweenworkstation

and the database pod running on OpenShift using port 3306. The terminal will hang
after executing the command.

[student@workstation ~]$ oc port-forward mysql-openshift-1-xg665 3306:3306
Forwarding from 127.0.0.1:3306 -> 3306
Forwarding from [::1]:3306 -> 3306

4.2. From the workstation machine open another terminal and connect to the MySQL
server using the MySQL client.

[student@workstation ~]$ mysql -uuserl -pmypa55 --protocol tcp -h localhost
Welcome to the MariaDB monitor. Commands end with ; or \g.

Your MySQL connection id is 2

Server version: 5.7.24 MySQL Community Server (GPL)

Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

MySQL [(none)]>

4.3. \Verify the creation of the testdb database.

MySQL [(none)]> show databases;

| information_schema |
| testdb |

2 rows in set (0.00 sec)

4.4, Exit from the MySQL prompt:

Chapter 6 | Deploying Containerized Applications on OpenShift

MySQL [(none)]> exit
Bye

Close the terminal and return to the previous one. Finish the port forwarding process
by pressing Ctr 1+C.

Forwarding from 127.0.0.1:3306 -> 3306
Forwarding from [::1]:3306 -> 3306
Handling connection for 3306

nC

P 5. Delete the project to remove all the resources within the project:

[student@workstation ~]$ oc delete project ${RHT_OCP4_DEV_USER}-mysql-openshift

Finish

Onworkstation, runthe lab openshift-resources finish scriptto complete this lab.

[student@workstation ~]$ lab openshift-resources finish

This concludes the exercise.

DO180-0OCP4.5-en-3-20201217 w

Chapter 6 | Deploying Containerized Applications on OpenShift

Creating Routes

Objectives

After completing this section, students should be able to expose services using OpenShift routes.

Working with Routes

Services allow for network access between pods inside an OpenShift instance, and routes allow for
network access to pods from users and applications outside the OpenShift instance.

Kubernetes Pod SDN

Host network

>

Router pods run in selected
infrastructure nodes

HTTP, TLS
Host —_—

Node 3

Router Pod
routel

Node 1

Service 1

Pod 1

Node 2

Pod 2

Pod 3

Service 1

— Network packet flow —— Virtual or physical network

Kubernetes Service SDN

]

—

Figure 6.7: OpenShift routes and Kubernetes services

A route connects a public-facing IP address and DNS host name to an internal-facing service IP. It
uses the service resource to find the endpoints; that is, the ports exposed by the service.

OpenShift routes are implemented by a cluster-wide router service, which runs as a containerized
application in the OpenShift cluster. OpenShift scales and replicates router pods like any other

OpenShift application.

S Note
In practice, to improve performance and reduce latency, the OpenShift router
connects directly to the pods using the internal pod software-defined network

(SDN).

DO180-0OCP4.5-en-3-20201217

Chapter 6 | Deploying Containerized Applications on OpenShift

The router service uses HAProxy as the default implementation.

An important consideration for OpenShift administrators is that the public DNS host names
configured for routes need to point to the public-facing IP addresses of the nodes running the
router. Router pods, unlike regular application pods, bind to their nodes' public IP addresses
instead of to the internal pod SDN.

The following example shows a minimal route defined using JSON syntax:

{
"apiversion": "v1",
"kind": "Route",
"metadata": {
"name": "quoteapp"
+
"spec": {
"host": '"quoteapp.apps.example.com",
"to": {
"kind": "Service",
"name": "quoteapp"
}
}
}

The apiVersion, kind, and metadata attributes follow standard Kubernetes resource definition
rules. The Route value for kind shows that this is a route resource, and the metadata.name
attribute gives this particular route the identifier quoteapp.

As with pods and services, the main part is the spec attribute, which is an object containing the
following attributes:

+ host is a string containing the FQDN associated with the route. DNS must resolve this FQDN to
the IP address of the OpenShift router. The details to modify DNS configuration are outside the

scope of this course.

- tois an object stating the resource this route points to. In this case, the route points to an
OpenShift Service with the name set to quoteapp.

Note
S Names of different resource types do not collide. It is perfectly legal to have a route
named quoteapp that points to a service also named quoteapp.

1| Important

Unlike services, which use selectors to link to pod resources containing specific
labels, a route links directly to the service resource name.

Creating Routes

Use the oc create command to create route resources, just like any other OpenShift resource.
You must provide a JSON or YAML resource definition file, which defines the route, to the oc
create command.

Chapter 6 | Deploying Containerized Applications on OpenShift

The oc new-app command does not create a route resource when building a pod from container
images, Dockerfiles, or application source code. After all, oc new-app does not know if the pod is
intended to be accessible from outside the OpenShift instance or not.

Another way to create a route is to use the oc expose service command, passing a service
resource name as the input. The - -name option can be used to control the name of the route
resource. For example:

$ oc expose service quotedb --name quote

By default, routes created by oc expose generate DNS names of the form:
route-name-project-name.default-domain

Where:

* route-name is the name assigned to the route. If no explicit name is set, OpenShift assigns the
route the same name as the originating resource (for example, the service name).

+ project-name is the name of the project containing the resource.

« default-domain is configured on the OpenShift master and corresponds to the wildcard DNS
domain listed as a prerequisite for installing OpenShift.

For example, creating a route named quote in project named test from an OpenShift instance
where the wildcard domain is cloudapps.example.comresults in the FQDN quote-
test.cloudapps.example.com.

Note

S The DNS server that hosts the wildcard domain knows nothing about route host
names. It merely resolves any name to the configured IP addresses. Only the
OpenShift router knows about route host names, treating each one asan HTTP
virtual host. The OpenShift router blocks invalid wildcard domain host names that
do not correspond to any route and returns an HTTP 404 error.

Leveraging the Default Routing Service
The default routing service is implemented as an HAProxy pod. Router pods, containers, and their

configuration can be inspected just like any other resource in an OpenShift cluster:

$ oc get pod --all-namespaces -1 app=router
NAMESPACE NAME READY STATUS RESTARTS AGE
openshift-ingress router-default-746b5cfb65-f6sdm 1/1 Running 1 4d

By default, router is deployed in openshift-ingress project. Use oc describe pod
command to get the routing configuration details:

$ oc describe pod router-default-746b5cfb65-f6sdm

Name: router-default-746b5cfb65-f6sdm
Namespace: openshift-ingress
...output omitted. ..
Containers:
router:

Chapter 6 | Deploying Containerized Applications on OpenShift

...output omitted. ..
Environment:
STATS_PORT:
ROUTER_SERVICE_NAMESPACE:
DEFAULT_CERTIFICATE_DIR:
ROUTER_SERVICE_NAME:
ROUTER_CANONICAL_HOSTNAME:
...output omitted...

1936

openshift-ingress
/etc/pki/tls/private

default
apps.cluster.lab.example.com

The subdomain, or default domain to be used in all default routes, takes its value from the

ROUTER_CANONICAL_HOSTNAME entry.

References

Additional information about the architecture of routes in OpenShift is available in
the Architecture and Developer Guide sections of the

OpenShift Container Platform documentation.
https://access.redhat.com/documentation/en-us/openshift_container_platform/

DO180-0OCP4.5-en-3-20201217

https://access.redhat.com/documentation/en-us/openshift_container_platform/

Chapter 6 | Deploying Containerized Applications on OpenShift

» Guided Exercise

Exposing a Service as a Route

In this exercise, you will create, build, and deploy an application on an OpenShift cluster and
expose its service as a route.

Outcomes

You should be able to expose a service as a route for a deployed OpenShift application.

Before You Begin
Open a terminal on workstation as the student user and run the following command:

[student@workstation ~]$ lab openshift-routes start

P 1. Prepare the lab environment.

11. Load your classroom environment configuration.

Run the following command to load the environment variables created in the first
guided exercise:

[student@workstation ~]$ source /usr/local/etc/ocp4.config

1.2. Login to the OpenShift cluster.

[student@workstation ~]$ oc login -u ${RHT_OCP4_DEV_USER} -p \
> ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_MASTER_API}

Login successful

...output omitted...

1.3. Create a new project that contains your RHOCP developer username for the
resources you create during this exercise:

[student@workstation ~]$ oc new-project ${RHT_OCP4_DEV_USER}-route

P 2. Create a new PHP application using Source-to-Image from the php-hellowor1ld
directory in the Git repository athttp://github.com/${RHT_OCP4_GITHUB_USER}/
D0180-apps/

21. Use the oc new-app command to create the PHP application.
i~ | Important
= The following example uses a backslash (\) to indicate that the second line is a

continuation of the first line. If you wish to ignore the backslash, you can type the
entire command in one line.

Chapter 6 | Deploying Containerized Applications on OpenShift

[student@workstation ~]$ oc new-app --as-deployment-config \
> php:7.3~https://github.com/${RHT_OCP4_GITHUB_USER}/D0180-apps \
> --context-dir php-helloworld --name php-helloworld
--> Found image fbe3911 (13 days old) in image stream "openshift/php" under tag
"7.3" for "php:7.3"
...output omitted...
--> Creating resources ...
...output omitted...
--> Success
Build scheduled, use 'oc logs -f bc/php-helloworld' to track its progress.
Application is not exposed. You can expose services to the outside world by
executing one or more of the commands below:
'oc expose svc/php-helloworld'
Run 'oc status' to view your app.

2.2. Wait until the application finishes building and deploying by monitoring the progress
with the oc get pods -wcommand:

[student@workstation ~]$ oc get pods -w

NAME READY STATUS RESTARTS AGE
php-helloworld-1-build 0/1 Init:0/2 0 2s
php-helloworld-1-build 0/1 Init:0/2 0 4s
php-helloworld-1-build 0/1 Init:1/2 0 5s
php-helloworld-1-build 0/1 PodInitializing 0 6s
php-helloworld-1-build 1/1 Running 0 7s
php-helloworld-1-deploy 0/1 Pending 0 0s
php-helloworld-1-deploy 0/1 Pending 0 0s
php-helloworld-1-deploy ©/1 ContainerCreating 0] 0s
php-hellowor1ld-1-build 0/1 Completed 0] 5m8s
php-helloworld-1-cnphm ©/1 Pending 0] 0s
php-helloworld-1-cnphm 0/1 Pending 0 1s
php-helloworld-1-deploy 1/1 Running 0 4s
php-helloworld-1-cnphm ©/1 ContainerCreating 0] 1s
php-helloworld-1-cnphm 1/1 Running 0 62s
php-helloworld-1-deploy ©/1 Completed 0] 65s
php-helloworld-1-deploy ©/1 Terminating 0] 66s
php-helloworld-1-deploy ©/1 Terminating 0] 66s

ne

Your exact output may differ in names, status, timing, and order. Look for the
Completed container with the deploy suffix: That means the application is
deployed successfully. The container in Running status with a random suffix (cnphm
in the example) contains the application and shows it is up and running.

Alternatively, monitor the build and deployment logs with the oc logs -f
bc/php-helloworld and oc logs -f dc/php-helloworld commands,
respectively. Press Ctr 1+C to exit the command if necessary.

[student@workstation ~]$ oc logs -f bc/php-helloworld

Cloning "https://github.com/${RHT_OCP4_GITHUB_USER}/D0180-apps"

Commit: f7cd8963ef353d9173c3a21dcccf402f3616840b (Initial commit, including all
apps previously in course)

...output omitted...

Chapter 6 | Deploying Containerized Applications on OpenShift

STEP 7: USER 1001

STEP 8: RUN /usr/libexec/s2i/assemble

---> Installing application source...

...output omitted. ..

Push successful

[student@workstation ~]$ oc logs -f dc/php-helloworld

-> Cgroups memory 1limit is set, using HTTPD_MAX_REQUEST_WORKERS=136
=> sourcing 20-copy-config.sh

...output omitted...

[core:notice] [pid 1] AHO0094: Command line: 'httpd -D FOREGROUND'
ne

Your exact output may differ.

2.3. Review the service for this application using the oc describe command:

[student@workstation ~]$ oc describe svc/php-helloworld

Name: php-helloworld
Namespace: ${RHT_OCP4_DEV_USER}-route
Labels: app=php-helloworld

app.kubernetes.io/component=php-hellowor ld
app.kubernetes.io/instance=php-hellowor ld

Annotations: openshift.io/generated-by: OpenShiftNewApp
Selector: deploymentconfig=php-helloworld
Type: ClusterIP

IP: 172.30.228.124

Port: 8080-tcp 8080/TCP

TargetPort: 8080/TCP

Endpoints: 10.10.0.35:8080

Port: 8443-tcp 8443/TCP

TargetPort: 8443/TCP

Endpoints: 10.10.0.35:8443

Session Affinity: None

Events: <none>

The IP address displayed in the output of the command may differ.

P 3. Expose the service, which creates a route. Use the default name and fully qualified domain
name (FQDN) for the route:

[student@workstation ~]$ oc expose svc/php-helloworld
route.route.openshift.io/php-helloworld exposed
[student@workstation ~]$ oc describe route

Name: php-helloworld

Namespace: ${RHT_OCP4_DEV_USER}-route
Created: 5 seconds ago

Labels: app=php-helloworld

app.kubernetes.io/component=php-hellowor ld
app.kubernetes.io/instance=php-hellowor ld
Annotations: openshift.io/host.generated=true
Requested Host: php-hellowor1ld-$RHT_OCP4_DEV_USER}-route.${RHT_OCP4_WILDC. ..
exposed on router default (host ${RHT_OCP4_WILDCARD_DOMAIN}) 4 seconds ago
Path: <none>
TLS Termination: <none>
Insecure Policy: <none>

Chapter 6 | Deploying Containerized Applications on OpenShift

Endpoint Port: 8080-tcp
Service: php-helloworld
Weight: 100 (100%)

Endpoints: 10.10.0.35:8443, 10.10.0.35:8080

P 4. Access the service from a host external to the cluster to verify that the service and route
are working.

[student@workstation ~]$ curl \
> php-helloworld-${RHT_OCP4_DEV_USER}-route.${RHT_OCP4_WILDCARD_DOMAIN}
Hello, World! php version is 7.3.11

Note
S The output of the PHP application depends on the actual code in the Git repository.
It may be different if you updated the code in previous sections.

Notice the FQDN is comprised of the application name and project name by default. The
remainder of the FQDN, the subdomain, is defined when OpenShift is installed.
P 5. Replace this route with a route named xyz.

51. Delete the current route:

[student@workstation ~]$ oc delete route/php-helloworld
route.route.openshift.io "php-helloworld" deleted

i ; Note
Deleting the route is optional. You can have multiple routes for the same service,
provided they have different names.

52. Create a route for the service with a name of ${RHT_OCP4_DEV_USER} -Xyz.

[student@workstation ~]$ oc expose svc/php-helloworld \

> --name=${RHT_OCP4_DEV_USER}-xyz
route.route.openshift.io/${RHT_OCP4_DEV_USER}-xyz exposed
[student@workstation ~]$ oc describe route

Name: ${RHT_OCP4_DEV_USER}-xyz
Namespace: ${RHT_OCP4_DEV_USER}-route
Created: 5 seconds ago

Labels: app=php-helloworld

app.kubernetes.io/component=php-helloworld
app.kubernetes.io/instance=php-hellowor ld
Annotations: openshift.io/host.generated=true
Requested Host: ${RHT_OCP4_DEV_USER}-xyz-${RHT_OCP4_DEV_USER}-route.${RHT_...
exposed on router default (host ${RHT_OCP4_WILDCARD_DOMAIN}) 4 seconds ago
Path: <none>
TLS Termination: <none>
Insecure Policy: <none>

Chapter 6 | Deploying Containerized Applications on OpenShift

Endpoint Port: 8080-tcp
Service: php-helloworld
Weight: 100 (100%)

Endpoints: 10.10.0.35:8443, 10.10.0.35:8080
Note the new FQDN that was generated based on the new route name. Both the
route name and the project name contain your user name, hence it appears twice in

the route FQDN.

5.3. Make an HTTP request using the FQDN on port 80:

[student@workstation ~]$ curl \
> ${RHT_OCP4_DEV_USER}-xyz-${RHT_OCP4_DEV_USER}-route.${RHT_OCP4_WILDCARD_DOMAIN}
Hello, World! php version is 7.3.11

Finish
Onworkstation, runthe lab openshift-routes finish scriptto complete this exercise.

[student@workstation ~]$ lab openshift-routes finish

This concludes the guided exercise.

Chapter 6 | Deploying Containerized Applications on OpenShift

Creating Applications with Source-to-
Image

Objectives

After completing this section, students should be able to deploy an application using the Source-
to-Image (S2I) facility of OpenShift Container Platform.

The Source-to-Image (S2l) Process

Source-to-Image (S2l) is a tool that makes it easy to build container images from application
source code. This tool takes an application's source code from a Git repository, injects the source
code into a base container based on the language and framework desired, and produces a new
container image that runs the assembled application.

Figure 6.8 shows the resources created by the oc new-app command when the argument is an
application source code repository. Notice that S2| also creates a Deployment Configuration and
all its dependent resources.

oc new-app Creates Build (s21)
S E— 5 " +—
<source> ; Configuration Notifies Image Stream
(S , o O
1
: , Monitors,
: Container Fetches
i Creates local cache Metadata
1
1
I
I A4
|
Application 1 Clones Builder Pod Pulls (S21 Builder)
Sources Image
Git Server Pushes External Registry
v

(Application)

Image €
1
(S .
1

Internal Registry

Deployment
Confiqurationo

—— dependent resource —— created by oc new-app

Figure 6.8: Deployment Configuration and dependent resources

S2lis the primary strategy used for building applications in OpenShift Container Platform. The
main reasons for using source builds are:

+ User efficiency: Developers do not need to understand Dockerfiles and operating system
commands such as yum install. They work using their standard programming language tools.

DO180-0OCP4.5-en-3-20201217 w

Chapter 6 | Deploying Containerized Applications on OpenShift

+ Patching: S2I allows for rebuilding all the applications consistently if a base image needs a
patch due to a security issue. For example, if a security issue is found in a PHP base image, then
updating this image with security patches updates all applications that use this image as a base.

+ Speed: With S2I, the assembly process can perform a large number of complex operations
without creating a new layer at each step, resulting in faster builds.

+ Ecosystem: S2| encourages a shared ecosystem of images where base images and scripts can
be customized and reused across multiple types of applications.

Describing Image Streams

OpenShift deploys new versions of user applications into pods quickly. To create a new application,
in addition to the application source code, a base image (the S2I builder image) is required. If
either of these two components gets updated, OpenShift creates a new container image. Pods
created using the older container image are replaced by pods using the new image.

Even though it is evident that the container image needs to be updated when application code
changes, it may not be evident that the deployed pods also need to be updated should the builder
image change.

The image stream resource is a configuration that names specific container images associated
with image stream tags, an alias for these container images. OpenShift builds applications against
an image stream. The OpenShift installer populates several image streams by default during
installation. To determine available image streams, use the oc get command, as follows:

$ oc get is -n openshift

NAME IMAGE REPOSITORY TAGS

cli ...Svc:5000/0penshift/cli latest

dotnet ...SvC:5000/0penshift/dotnet 2.0,2.1, latest
dotnet-runtime ...svc:5000/0penshift/dotnet-runtime 2.0,2.1, latest
httpd ..SvC:5000/0penshift/httpd 2.4, latest
jenkins ..svc:5000/0penshift/jenkins 1,2

mariadb ..SvC:5000/0penshift/mariadb 10.1,10.2, latest

mongodb ..SvC:5000/0penshift/mongodb 2.4,2.6,3.2,3.4,3.6, latest
mysql ..SvC:5000/0penshift/mysql 5.5,5.6,5.7, latest

nginx ..SvC:5000/0penshift/nginx 1.10,1.12,1.8, latest
nodejs ..svCc:5000/0penshift/nodejs 0.10,10,11,4,6, 8, latest
perl ..svCc:5000/0penshift/perl 5.16,5.20,5.24,5.26, latest
php ..svCc:5000/0penshift/php 5.5,5.6,7.0,7.1, latest
postgresql ..SvC:5000/0penshift/postgresql 10,9.2,9.4,9.5,9.6, latest
python ..svCc:5000/0penshift/python 2.7,3.3,3.4,3.5,3.6, latest
redis ..svCc:5000/0penshift/redis 3.2, latest

ruby ..svC:5000/0penshift/ruby 2.0,2.2,2.3,2.4,2.5, latest
wildfly ..SvC:5000/0penshift/wildfly 10.0,10.1,11.0,12.0, ...

Note
E Your OpenShift instance may have more or fewer image streams depending on local
additions and OpenShift point releases.

OpenShift detects when an image stream changes and takes action based on that change. If a
security issue arises in the nodejs-010-rhel7 image, it can be updated in the image repository,
and OpenShift can automatically trigger a new build of the application code.

Chapter 6 | Deploying Containerized Applications on OpenShift

Itis likely that an organization chooses several supported base S2| images from Red Hat, but may
also create their own base images.

Building an Application with S2I and the CLI

Building an application with S2I can be accomplished using the OpenShift CLI.

An application can be created using the S2I process with the oc new-app command from the
CLI.

$ oc new-app "--as-deployment-config ¢3php~http://my.git.server.com/my-appe,
- -name=myapp

Create a DeploymentConfig instead of a Deployment

The image stream used in the process appears to the left of the tilde (~).

The URL after the tilde indicates the location of the source code's Git repository.
Sets the application name.

0000

Note
S Instead of using the tilde, you can set the image stream by using the -1 option.

$ oc new-app --as-deployment-config -i php http://services.lab.example.com/app
- -hame=myapp

The oc new-app command allows creating applications using source code from a local or remote
Git repository. If only a source repository is specified, oc new-app tries to identify the correct
image stream to use for building the application. In addition to application code, S2I can also
identify and process Dockerfiles to create a new image.

The following example creates an application using the Git repository in the current directory.

$ oc new-app --as-deployment-config .

i~ | Important

= When using a local Git repository, the repository must have a remote origin that
points to a URL accessible by the OpenShift instance.

It is also possible to create an application using a remote Git repository and a context
subdirectory:

$ oc new-app --as-deployment-config \
https://github.com/openshift/sti-ruby.git \
--context-dir=2.0/test/puma-test-app

Finally, it is possible to create an application using a remote Git repository with a specific branch
reference:

Chapter 6 | Deploying Containerized Applications on OpenShift

$ oc new-app --as-deployment-config \
https://github.com/openshift/ruby-hello-world.git#beta4

If an image stream is not specified in the command, new-app attempts to determine which
language builder to use based on the presence of certain files in the root of the repository:

Language Files

Ruby Rakefile Gemfile, config.ru
Java EE pom.xml

Node js app.json package.json

PHP index.php composer.json
Python requirements.txt config.py
Perl index.plcpanfile

After a language is detected, the new-app command searches for image stream tags that have
support for the detected language, or an image stream that matches the name of the detected
language.

Create a JSON resource definition file by using the -0 json parameter and output redirection:

$ oc -0 json new-app --as-deployment-config \
> php~http://services. lab.example.com/app \
> --name=myapp > s2i.json

This JSON definition file creates a list of resources. The first resource is the image stream:

...output omitted...
{
"kind": "ImageStream", (1]
"apiVersion": "image.openshift.io/v1",
"metadata": {
"name": "myapp", (2]
"creationTimestamp": null
"labels": {
"app": "myapp"
}
"annotations": {
"openshift.io/generated-by": "OpenShiftNewApp"

}
+
"spec": {
"lookupPolicy": {
"local": false
}
}

"status": {
"dockerImageRepository": ""

Chapter 6 | Deploying Containerized Applications on OpenShift

H

...output omitted. ..

© Define a resource type of image stream.
© Name the image stream myapp.

The build configuration (bc) is responsible for defining input parameters and triggers that are
executed to transform the source code into a runnable image. The BuildConfig (BC) is the
second resource, and the following example provides an overview of the parameters used by
OpenShift to create a runnable image.

...output omitted...
{
"kind": "BuildConfig", o
"apiVersion": "build.openshift.io/v1",
"metadata": {
"name": "myapp", (2]
"creationTimestamp": null,
"labels": {
"app": "myapp"
H
"annotations": {
"openshift.io/generated-by": "OpenShiftNewApp"

}
H
"spec": {
"triggers": [

{
"type": "GitHub",
"github": {

"secret": "S5_4BZpPabM6KrIuPBvI"

}

H

{
"type": "Generic",
"generic": {

"secret": "3q8K8JNDoRzhjozlKgMz"

}

H

{
"type": "ConfigChange"

H

{
"type": "ImageChange",
"imageChange": {}

}

1,
"source": {
lltypell: "Git",
llgitll: {
"uri": "http://services. lab.example.com/app" ©

H

Chapter 6 | Deploying Containerized Applications on OpenShift

"strategy": {
"type": "Source", o
"sourceStrategy": {

"from": {
"kind": "ImageStreamTag",
"namespace": "openshift",
"name": "php:7.3" o
}
}
3
"output": {
"to": {
"kind": "ImageStreamTag",
"name": "myapp:latest" o
}
3

"resources": {3},
"postCommit": {3},
"nodeSelector": null
3
"status": {
"lastVersion": 0

+

...output omitted...

Define a resource type of BuildConfig.

Name the BuildConfig myapp.

Define the address to the source code Git repository.
Define the strategy to use S2I.

Define the builder image as the php:7.3 image stream.
Name the output image stream myapp: latest.

000000

The third resource is the deployment configuration that is responsible for customizing the
deployment process in OpenShift. It may include parameters and triggers that are necessary to
create new container instances, and are translated into a replication controller from Kubernetes.
Some of the features provided by DeploymentConfig objects are:

« User customizable strategies to transition from the existing deployments to new deployments.
+ Rollbacks to a previous deployment.

+ Manual replication scaling.

...output omitted. ..
{
"kind": "DeploymentConfig", 1)
"apiVersion": "apps.openshift.io/v1",
"metadata": {
"name": "myapp", (2]
"creationTimestamp": null,
"labels": {
"app": "myapp"
}

"annotations": {

Chapter 6 | Deploying Containerized Applications on OpenShift

"openshift.io/generated-by": "OpenShiftNewApp"

}
"spec": {
"strategy": {
"resources": {}

H
"triggers": [
{
"type": "ConfigChange" (3]
H
{
"type": "ImageChange", o
"imageChangeParams": {
"automatic": true,
"containerNames": [
"myapp"
1,
"from": {
"kind": "ImageStreamTag",
"name": "myapp:latest"
}
}
}
1,

"replicas": 1,
"test": false,
"selector": {
llappll : llmyapp"’
"deploymentconfig": "myapp"
}
"template": {
"metadata": {
"creationTimestamp": null,
"labels": {
llappll : llmyapp"’
"deploymentconfig": "myapp"
}
"annotations": {
"openshift.io/generated-by": "OpenShiftNewApp"

}
}
"spec": {
"containers": [
{
"name": "myapp",
"image": "myapp:latest", o
"ports": [o
{

"containerPort": 8080,
"protocol": "TCP"

"containerPort": 8443,
"protocol": "TCP"

Chapter 6 | Deploying Containerized Applications on OpenShift

1,

"resources": {}

}

"status": {
"latestVersion": 0O,
"observedGeneration": 0,
"replicas": 0,
"updatedReplicas": 0,
"availableReplicas": 0,
"unavailableReplicas": @

H

...output omitted...

Define a resource type of DeploymentConfig.

Name the DeploymentConfig myapp.

A configuration change trigger causes a new deployment to be created any time the
replication controller template changes.

An image change trigger causes the creation of a new deployment each time a new version of
the myapp: latest image is available in the repository.

Defines the container image to deploy: myapp: latest.

Specifies the container ports.

00 0 000

The last item is the service, already covered in previous chapters:

...output omitted. ..
{
"kind": "Service",
"apiversion": "v1i",
"metadata": {
"name": "myapp",
"creationTimestamp": null,
"labels": {
"app": "myapp"
3
"annotations": {
"openshift.io/generated-by": "OpenShiftNewApp"

}
}
"spec": {
"ports": [
{
"name": "8080-tcp",
"protocol": "TCP",
"port": 8080,
"targetPort": 8080
3
{

"name": '"8443-tcp",

Chapter 6 | Deploying Containerized Applications on OpenShift

"protocol": "TCP",
"port": 8443,
"targetPort": 8443

1,

"selector": {
llappll : llmyapplI’
"deploymentconfig": "myapp"

3
"status": {
"loadBalancer": {}

E Note
By default, the oc new-app command does not create a route. You can create a
route after creating the application. However, a route is automatically created when
using the web console because it uses a template.

After creating a new application, the build process starts. Use the oc get builds command to
see a list of application builds:

$ oc get builds
NAME TYPE FROM STATUS STARTED DURATION
php-helloworld-1 Source Git@9e17db8 Running 13 seconds ago

OpenShift allows viewing the build logs. The following command shows the last few lines of the
build log:

$ oc logs build/myapp-1

i~ | Important

If the build is not Running yet, or OpenShift has not deployed the s2i-build pod
yet, the above command throws an error. Just wait a few moments and retry it.

Trigger a new build with the oc start-build build_config_name command:

$ oc get buildconfig
NAME TYPE FROM LATEST
myapp Source Git 1

$ oc start-build myapp
build "myapp-2" started

Chapter 6 | Deploying Containerized Applications on OpenShift

Relationship Between Build and Deployment
Configurations

The BuildConfig pod is responsible for creating the images in OpenShift and pushing them to
the internal container registry. Any source code or content update typically requires a new build to
guarantee the image is updated.

The DeploymentConfig pod is responsible for deploying pods to OpenShift. The outcome of
aDeploymentConfig pod execution is the creation of pods with the images deployed in the
internal container registry. Any existing running pod may be destroyed, depending on how the
DeploymentConfig resource is set.

The BuildConfig and DeploymentConfig resources do not interact directly. The
BuildConfig resource creates or updates a container image. The DeploymentConfig reacts to
this new image or updated image event and creates pods from the container image.

References

Source-to-Image (S2I) Build
https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.5/html-single/builds/build-strategies#build-
strategy-s2i_build-strategies

S2I GitHub repository
https://github.com/openshift/source-to-image

W DO180-0OCP4.5-en-3-20201217

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/builds/build-strategies#build-strategy-s2i_build-strategies
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/builds/build-strategies#build-strategy-s2i_build-strategies
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/builds/build-strategies#build-strategy-s2i_build-strategies
https://github.com/openshift/source-to-image

Chapter 6 | Deploying Containerized Applications on OpenShift

» Guided Exercise

Creating a Containerized Application with
Source-to-Image

In this exercise, you will build an application from source code and deploy the application to
an OpenShift cluster.

Outcomes
You should be able to:

+ Build an application from source code using the OpenShift command-line interface.

+ Verify the successful deployment of the application using the OpenShift command-line
interface.

Before You Begin
Run the following command to download the relevant lab files and configure the
environment:

[student@workstation ~]$ lab openshift-s2i start

P 1. Inspect the PHP source code for the sample application and create and push a new branch
named s21 to use during this exercise.

11 Enter your local clone of the D0180-apps Git repository and checkout the master
branch of the course's repository to ensure you start this exercise from a known good
state:

[student@workstation openshift-s2i]$ cd ~/D0180-apps
[student@workstation D0180-apps]$ git checkout master
...output omitted...

1.2. Create a new branch to save any changes you make during this exercise:

[student@workstation D0180-apps]$ git checkout -b s2i
Switched to a new branch 's2i'
[student@workstation D0180-apps]$ git push -u origin s2i
...output omitted...
* [new branch] s2i -> s2i
Branch 's2i' set up to track remote branch 's2i' from 'origin'.

1.3. Review the PHP source code of the application, inside the the php-hellowor ld
folder.

Open the index. php file in the /home/student/D0180-apps/php-hellowor 1d
folder:

Chapter 6 | Deploying Containerized Applications on OpenShift

<?php
print "Hello, World! php version is " . PHP_VERSION . "\n";
?>

The application implements a simple response which returns the PHP version it is
running.

P 2. Prepare the lab environment.

2]. Load your classroom environment configuration.

Run the following command to load the environment variables created in the first
guided exercise:

[student@workstation D0180-apps]$ source /usr/local/etc/ocp4.config

2.2. Login to the OpenShift cluster.

[student@workstation D0180-apps]$ oc login -u ${RHT_OCP4_DEV_USER} -p \
> ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_MASTER_API}

Login successful

...output omitted...

2.3. Create a new project that contains your RHOCP developer username for the
resources you create during this exercise:

[student@workstation D0180-apps]$ oc new-project ${RHT_OCP4_DEV_USER}-s2i

P 3. Create a new PHP application using Source-to-Image from the php-hellowor1ld
directory using the s21i branch you created in the previous step in your fork of the DO180-
apps Git repository.

31 Usethe oc new-app command to create the PHP application.

i~ | Important
— The following example uses the number sign (#) to select a specific branch from the
git repository, in this case the s21 branch created in the previous step.

[student@workstation D0180-apps]$ oc new-app --as-deployment-config php:7.3 \
> --name=php-helloworld \

> https://github.com/${RHT_OCP4_GITHUB_USER}/D0180-apps#s2i \

> --context-dir php-helloworld

3.2. Wait for the build to complete and the application to deploy. Verify that the build
process starts with the oc get pods command.

[student@workstation openshift-s2i]$ oc get pods
NAME READY STATUS RESTARTS AGE
php-helloworld-1-build 1/1 Running 0] 5s

Chapter 6 | Deploying Containerized Applications on OpenShift

3.3. Examine the logs for this build. Use the build pod name for this build, php-
helloworld-1-build.

[student@workstation D0180-apps]$ oc logs --all-containers \

> -f php-helloworld-1-build

Cloning "https://github.com/${RHT_OCP4_GITHUB_USER}/D0180-apps"

Commit: f7cd8963ef353d9173c3a21dcccf402f3616840b (Initial commit, including all
apps previously in course)

...output omitted. ..

Writing manifest to image destination

Storing signatures

Generating dockerfile with builder image image-registry.openshift-image-...
php@sha256:f3c9...7546

STEP 1: FROM image-registry.openshift-image-registry.svc:5000/...

...output omitted. ..

Pushing image ...openshift-image-registry.svc:5000/s2i/php-helloworld: latest...

Getting image source signatures

...output omitted. ..

STEP 8: RUN /usr/libexec/s2i/assemble

---> Installing application source...

...output omitted. ..

Copying config sha256:6ce5730f48d9c746e7chd7ea7b8ed0f15b83932444d1d2bd7711d7. ..
21.45 KiB / 21.45 KiB 0s

Writing manifest to image destination

Storing signatures

Successfully pushed .../php-helloworld:latest@sha256:63e757a4c@edaeda497dab7. ..
Push successful

Notice the clone of the Git repository as the first step of the build. Next, the Source-
to-lmage process built a new container called s2i/php-helloworld: latest.
The last step in the build process is to push this container to the OpenShift private
registry.

3.4. Review the DeploymentConfig for this application:

[student@workstation D0180-apps]$ oc describe dc/php-helloworld
Name: php-helloworld

Namespace: ${RHT_OCP4_DEV_USER}-s2i
Created: About a minute ago
Labels: app=php-helloworld

app.kubernetes.io/component=php-hellowor ld
app.kubernetes.io/instance=php-hellowor ld

Annotations: openshift.io/generated-by=0penShiftNewApp
Latest Version: 1

Selector: deploymentconfig=php-hellowor ld

Replicas: 1

Triggers: Config, Image(php-helloworld@latest, auto=true)
Strategy: Rolling

Template:

Pod Template:

Chapter 6 | Deploying Containerized Applications on OpenShift

Labels: deploymentconfig=php-hellowor ld
Annotations: openshift.io/generated-by: OpenShiftNewApp
Containers:

php-helloworld:

Image: image-registry.openshift-image-

registry.svc:5000/${RHT_OCP4_DEV_USER}-s2i/php-
hellowor1ld@sha256:ae3ec890625f153c0163812501f2522fddc96431036374aa2472ddd52bc7cch4

Ports: 8080/TCP, 8443/TCP
Host Ports: 0/TCP, O/TCP
Environment: <none>
Mounts: <none>

Volumes: <none>

Deployment #1 (latest):

Name: php-helloworld-1

Created: about a minute ago

Status: Complete

Replicas: 1 current / 1 desired

Selector: deployment=php-helloworld-1, deploymentconfig=php-helloworld
Labels: app.kubernetes.io/component=php-helloworld, app.kubernetes.io/

instance=php-helloworld, app=php-helloworld, openshift.io/deployment -
config.name=php-helloworld

Pods Status: 1 Running / O Waiting / © Succeeded / 0 Failed
...output omitted...

3.5. Add aroute to test the application:

[student@workstation D0180-apps]$ oc expose service php-helloworld \
> --name ${RHT_OCP4_DEV_USER}-helloworld
route.route.openshift.io/${RHT_OCP4_DEV_USER}-helloworld exposed

3.6. Find the URL associated with the new route:

[student@workstation D0180-apps]$ oc get route -o jsonpath='{..spec.host}{"\n"}'
${RHT_OCP4_DEV_USER}-hellowor1d-${RHT_OCP4_DEV_USER}-s2i.
${RHT_OCP4_WILDCARD_DOMAIN}

3.7. Test the application by sending an HTTP GET request to the URL you obtained in the
previous step:

[student@workstation D0180-apps]$ curl -s \
> ${RHT_OCP4_DEV_USER}-hellowor1d-${RHT_OCP4_DEV_USER}-s2i.\

> ${RHT_OCP4_WILDCARD_DOMAIN}
Hello, World! php version is 7.3.11

P 4. Explore starting application builds by changing the application in its Git repository and
executing the proper commands to start a new Source-to-Image build.

4]. Enter the source code directory.

[student@workstation D0180-apps]$ cd ~/D0180-apps/php-helloworld

Chapter 6 | Deploying Containerized Applications on OpenShift

4.2. Editthe index. php file as shown below:

<?php

print "Hello, World! php version is " . PHP_VERSION . "\n";
print "A change is a coming!\n";

?>

Save the file.

4.3. Commit the changes and push the code back to the remote Git repository:

[student@workstation php-helloworld]$ git add .
[student@workstation php-helloworld]$ git commit -m 'Changed index page contents.'
[s2i b1324aa] changed index page contents
1 file changed, 1 insertion(+)
[student@workstation php-helloworld]$ git push origin s2i
...output omitted. ..
Counting objects: 7, done.
Delta compression using up to 2 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (4/4), 417 bytes | 0 bytes/s, done.
Total 4 (delta 1), reused 0 (delta 0)
remote: Resolving deltas: 100% (1/1), completed with 1 local object.
To https://github.com/${RHT_OCP4_GITHUB_USER}/D0180-apps
f7cd896..b1324aa s2i -> s2i

4.4, Start a new Source-to-Image build process and wait for it to build and deploy:

[student@workstation php-hellowor1ld]$ oc start-build php-helloworld
build.build.openshift.io/php-helloworld-2 started

[student@workstation php-helloworld]$ oc logs php-helloworld-2-build -f
...output omitted...

Successfully pushed .../php-helloworld: latest@sha256:74e757a4cQedaedad497dab7. ..
Push successful

Note
S Logs may take some seconds to be available after the build starts. If the previous
command fails, wait a bit and try again.

45. After the second build has completed use the oc get pods command to verify that
the new version of the application is running.

[student@workstation php-helloworld]$ oc get pods

NAME READY STATUS RESTARTS AGE
php-hellowor1ld-1-build 0/1 Completed 0] 11m
php-helloworld-1-deploy 0/1 Completed 0 10m
php-hellowor1ld-2-build 0/1 Completed 0] 45s
php-helloworld-2-deploy 0/1 Completed 0 16s
php-hellowor1ld-2-wq9wz 1/1 Running 0 13s

4.6. Test that the application serves the new content:

Chapter 6 | Deploying Containerized Applications on OpenShift

[student@workstation php-helloworld]$ curl -s \
> ${RHT_OCP4_DEV_USER}-helloworld-${RHT_OCP4_DEV_USER}-s2i.\

> ${RHT_OCP4_WILDCARD_DOMAIN}
Hello, World! php version is 7.3.11
A change is a coming!

Finish

Onworkstation, runthe lab openshift-s2i finish script to complete this lab.

[student@workstation php-helloworld]$ lab openshift-s2i finish

This concludes the guided exercise.

W DO180-0OCP4.5-en-3-20201217

Chapter 6 | Deploying Containerized Applications on OpenShift

Creating Applications with the OpenShift
Web Console

Objectives

After completing this section, students should be able to:
+ Create an application with the OpenShift web console.
+ Manage and monitor the build cycle of an application.

+ Examine resources for an application.

Accessing the OpenShift Web Console

The OpenShift web console allows users to execute many of the same tasks as the OpenShift
command-line client. You can create projects, add applications to projects, view application
resources, and manipulate application configurations as needed. The OpenShift web console runs
as one or more pods, each pod running on a master node.

The web console runs in a web browser. The default URL is of the format https://console-
openshift-console.{wildcard DNS domain for the RHOCP cluster}/ By default,
OpenShift generates a self-signed certificate for the web console. You must trust this certificate
in order to gain access.

The web console uses a REST API to communicate with the OpenShift cluster. By default, the
REST API endpoint is accessed with a different DNS name and self-signed certificate. You must
also trust this certificate for the REST API endpoint.

After you have trusted the two OpenShift certificates, the console requires authentication to
proceed.

Managing Projects

Upon successful login, the Home — Projects page displays a list of projects you can access. From
this page you can create, edit, or delete a project.

If you have permission to view cluster metrics, then you are instead redirected to the Home —
Overview page. This page shows general information and metrics about the cluster. The Overview
menu item is hidden from users without authority to view cluster metrics.

Chapter 6 | Deploying Containerized Applications on OpenShift

RedHat
OpenShift # O O User your-user ¥
Container Platform

% Administrator

Projects

Home
Name + Search by name.. /
Projects
Search Name 1 Display Name Status Requester
Sk @ todo-app Y @ Active your-user
Events
@ hello-world nar @ Active your-user

Operators

Workloads

Networking

Storage

Builds

Compute

User Management

Administration

Figure 6.9: OpenShift web console home page

The ellipsis icon at the end of each row provides a menu with project actions. Select the
appropriate entry to edit or delete the project.

If you click a project link in this view, you are redirected to the Project Status page which shows all
of the applications created within that project space.

Navigating the Web Console

A navigation menu is located on the left side of the web console. The menu includes two
perspectives: Administrator and Developer. Each item in the menu expands to provide access to
a set of related management functions. When the Administrator perspective is selected, these
items are as follows:

Home
The home menu allows users to quickly access projects and resources. From this menu, you
can browse and manage projects, search or explore cluster resources, and inspect cluster
events.

Operators
The OperatorHub is a catalog that allows you to discover, search and install operators in the
cluster. After installing an operator, you can use the Installed Operators option to manage the
operator or search for other installed operators.

S Note
The latest Kubernetes versions implement many controllers as Operators. Operators
are Kubernetes plug-in components that can react to cluster events and control the
state of resources. Operators and the CoreOS Operator Framework are outside the
scope of this document.

W DO180-0OCP4.5-en-3-20201217

Chapter 6 | Deploying Containerized Applications on OpenShift

Workloads
These options enable management of several types of Kubernetes and OpenShift resources,
such as pods and deployment configurations. Other advanced deployment options that are
accessible from this menu, such as configuration maps, secrets, and cron jobs, are beyond the
scope of the course.

Networking
This menu contains options to manage OpenShift resources that affect application access,
such as services and routes, for a project. Other options for configuring an OpenShift Network
Policy or Ingress are available, but these topics are outside the scope of this course.

Storage
This menu contains options to configure persistent storage for project applications. In
particular, persistent volumes and persistent volume claims for a project are managed from
the Storage menu.

Builds
The Build Configs option displays a list of project build configurations. Click a build
configuration link in this view to access an overview page for the specified build configuration.
From this page, you can view and edit the application's build configuration.

The Builds option provides a list of recent build processes for application container images in
the project. Click the link for a particular build to access the build logs for that particular build
process.

The Image Streams option provides a list of image streams defined in the project. Click an
image stream entry in this list to access an overview page to view and manage that image
stream.

Compute
Provides options to access and manage the compute nodes of the OpenShift cluster. From
this page, you can also configure node health checks and autoscaling.

User management
From this option, you can configure authentication and authorization using users, groups,
roles, role bindings and service accounts.

Administration
Provides options to manage cluster and project settings, such as resource quotas and role-
based access controls. Functions in the Administration section are outside the scope of this
course.

Creating New Applications

From the Developer perspective, use +Add to select a way to create a new application in
an OpenShift project. You can add an application from the Developer Catalog, which offers
a selection of Source-to-Image (S2I) templates, builder images and Helm charts to create
technology-specific applications. Select a desired template, and provide the necessary
information to deploy the new application.

You are not limited to deploying an application from the catalog. You can also deploy an
application using:

+ A container image hosted on a remote container registry.
+ A YAML file that specifies the Kubernetes and OpenShift resources to create.

+ Abuilder image using the source code from your own git repository.

Chapter 6 | Deploying Containerized Applications on OpenShift

+ A Dockerfile.

To create an application with one of these methods, select the appropriate option in the Add page.
Use the Container Image option to deploy an existing container image. Use the YAML option
to create the resources specified in a YAML file. Use the From Git option to deploy your source
code using a builder image. Use the From Dockerfile option to specify and build the image from a
specific Dockerfile. The Databases, Operator Backed and Helm Chart options are shortcuts to the
catalog.

RedHat

= OpenShift BH &L O ©
Container Platform

OpenShift Administrator v

Project: rht-jramirez-external-service v Application: all applications v

<> Developer

+Add

Topology

Monitoring

Search

Builds

Helm

Project

Config Maps

Secrets

Add

Select a way to create an application, component or service from one of the options.

©

From Git
Import code from your git

repository to be built and
deployed

YAML

Create resources from their YAML
or JSON definitions

S

Container Image

Deploy an existing image from an
image registry or image stream
tag

L]

From Catalog

Browse the catalog to discover,
deploy and connect to services

P

HELM

’ N
Operator Backed Helm Chart

Browse the catalog to discover
and deploy operator managed

Browse the catalog to discover
and install Helm Charts

From Dockerfile

Import your Dockerfile from your
git repo to be built and deployed

Database

Browse the catalog to discover
database services to add to your
application

services

Figure 6.10: OpenShift Developer Catalog page

Managing Application Builds

From the Administrator perspective, click the Build Configs option of the Builds menu after you
add a Source-to-Image application to a project. The new build configuration is accessible from this
view:

188

Chapter 6 | Deploying Containerized Applications on OpenShift

— RedHat
= OpenShift o OpenShift Administrator ¥
Container Platform

&2 Administrator

— Build Configs

Operators Y Filter v Name « Searchbyname.. /
Workloads

Name 1t Namespace Labels Created
Networking

E® todoapp @D test app=todoapp @ Aug 3,142 pm

Storage

Builds
Build Configs
Builds

Image Streams

Figure 6.11: OpenShift build configurations page

Click a build configuration in the list to view an overview page for the selected build configuration.
From the overview page, you can:

+ View the build configuration parameters, such as the URL for the source code's Git repository.

+ View and edit the environment variables that are set in the builder container, during an
application build process.

+ View a list of recent application builds, and click a selected build to access logs from the build
process.

Managing Deployed Applications
The Workloads menu provides access to deployment configurations in the project.

RedHat
OpenShift o OpenShift Administrator ¥
Container Platform

&2 Administrator

Home Deployment Configs

Operators Name + Search by name... /
Workloads
Name 1t Namespace Status Labels Pod Selector
Pods
Deployments @9 todoapp Q@D test 1of 1pods app=todoapp Q app=todoapp,
deploymentco
Deployment Configs nfig=todoapp

Stateful Sets

Secrets

Config Maps

Figure 6.12: OpenShift Workloads menu

Click a deployment configuration entry in the list to view an overview page for the selection. From
the overview page, you can:

+ View the deployment configuration parameters, such as the specifications of an application
container image.

DO180-0OCP4.5-en-3-20201217 w

Chapter 6 | Deploying Containerized Applications on OpenShift

+ Change the desired number of application pods to manually scale the application.
+ View and edit the environment variables that are set in the deployed application container.

+ View a list of application pods, and click a selected pod to access logs for that pod.

Other Web Console Features

The web console allows you to:

+ Manage resources, such as project quotas, user membership, secrets, and other advanced
resources.

+ Create persistent volume claims.
+ Monitor builds, deployments, pods, and system events.
+ Create continuous integration and deployment pipelines with Jenkins.

Detailed usage for the above features is outside the scope of this course.

W DO180-0OCP4.5-en-3-20201217

Chapter 6 | Deploying Containerized Applications on OpenShift

» Guided Exercise

Creating an Application with the Web
Console

In this exercise, you will create, build, and deploy an application to an OpenShift cluster using
the OpenShift web console.

Outcomes

You should be able to create, build, and deploy an application to an OpenShift cluster using
the web console.

Before You Begin
Get the lab files by executing the lab script:

[student@workstation ~]$ lab openshift-webconsole start

The lab script verifies that the OpenShift cluster is running.

P 1. Inspect the PHP source code for the sample application and create and push a new branch
named console to use during this exercise.

11. Enter your local clone of the D0180-apps Git repository and checkout the master
branch of the course's repository to ensure you start this exercise from a known good
state:

[student@workstation ~]$ cd ~/D0180-apps
[student@workstation D0180-apps]$ git checkout master
...output omitted. ..

1.2. Create a new branch to save any changes you make during this exercise:

[student@workstation D0180-apps]$ git checkout -b console
Switched to a new branch 'console'
[student@workstation D0180-apps]$ git push -u origin console
...output omitted...
* [new branch] console -> console
Branch 'console' set up to track remote branch 'console' from 'origin'.

1.3. Review the PHP source code of the application, inside the the php-hellowor ld
folder.

Open the index. php file in the /home/student/D0180-apps/php-hellowor 1d
folder:

Chapter 6 | Deploying Containerized Applications on OpenShift

<?php
print "Hello, World! php version is " . PHP_VERSION . "\n";
?>

The application implements a simple response which returns the PHP version it is
running.

P 2. Open aweb browser and navigate to https://console-openshift-console.
${RHT_OCP4_WILDCARD_DOMAIN} to access the OpenShift web console. Login and
create a new project named youruser-console.

21. Load your classroom environment configuration.

Run the following command to load the environment variables created in the first
guided exercise:

[student@workstation ~]$ source /usr/local/etc/ocp4.config

2.2. Retrieve the value of the wildcard domain specific to your cluster, using the
$RHT_OCP4_WILDCARD_DOMAIN

[student@workstation ~]$ echo $RHT_OCP4_WILDCARD_DOMAIN
apps.cluster. lab.example.com

2.3. Open the Firefox browser and navigate to https://console-openshift-
console.${RHT_OCP4_WILDCARD_DOMAIN} to access the OpenShift web
console. Log in to the OpenShift console using your credentials.

2.4. Create a new project named youruser-console. You can type any values you
prefer in the other fields.

RedHat
OpenShift User youruser
Container Platform

&2 Administrat: H
mistrstr Projects

Home
Projects Welcome to OpenShift
Search OpenShift helps you quickly develop, host, and scale applications. To get started,

create a project for your application.

Explore
To learn more, visit the OpenShift documentation .

Events
Download the command-line tools

Operators Create a new project

Workloads

Figure 6.13: Create a new project

W DO180-0OCP4.5-en-3-20201217

Chapter 6 | Deploying Containerized Applications on OpenShift

Create Project

Name *

youruser—console

Display Name

My Project

Description

Practice creating applications with the OpenShift Web Console

Figure 6.14: Create a new project

2.5. After you have completed the required fields, click Create in the Create Project
dialog box to go to the Project Status page for the youruser-console project:
RedHat s

OpenShift # O O
Container Platform

User youruser v

2 Administrator Projects > Project Details

(PR) youruser-console @ Active Actions v
Home .

aiscts Overview Details YAML Workloads Role Bindings
Search
Explore

Details View all Status Activity View events
Events

Ongoi
Name @ Active ngeng

Operators

Workloads

Networking

Storage

Builds

Compute

User Management

Administration

youruser-console

Requester
youruser

Labels
No labels

Inventory

0 Deployments
0 Deployment Configs

0 Stateful Sets

Utilization

Resource

Memory

Filesystem

Usage

Not available

Not available

Not available

1Hour

No datapoints found.

No datapoints found.

No datapoints found.

Figure 6.15: Project Status page

P 3. Create the new php-helloworld application with a PHP template.

There are no ongoing
activities.

Recent Events 01 Pause

There are no recent events

DO180-0OCP4.5-en-3-20201217

Chapter 6 | Deploying Containerized Applications on OpenShift

31. Switch to the Developer perspective using the drop-down at the top of the left-hand

menu:

— RedHat
— OpenShift

Container Platform

Projects > Project Details

&2 Administrator

GD youruser-console © active

&2 Administrator

</> Developer

Overview Details YAML
Search
Explore
Details View all Status
Events
Name @ Active

Operators

youruser—console

Workloads Requester

Figure 6.16: Developer perspective drop-down

Workloads

Role Bindings

3.2. Click From Catalog to display a list of technology templates. Uncheck the Operator

Backed checkbox to see all of the templates.

RedHat
OpenShift
Container Platform

Project: youruser-console +
</> Developer

(+)
()

@ Template

.NET Core + PostgreSQL

+Add Developer Catalog
Topology Add shared apps, services, or source-to-image builders to your project from the Developer Catalog. Cluster admins can install additior
show up here automatically.
Monitoring
| Allitems All ltems
Search
Languages
Filter by keyword... Group By:None v
Databases
Builds Middleware
1/CD
Helm cre
Other @ Builder Image
Project
Type .NET Core

Operator Backed (O
o op © Build and run .NET Core 3.1

applications on RHEL 7. For more

Config Maps

() Helm Charts (8)

() Builder Image (10) information about using this...

Secrets
() Template (98)

[Service Class (0)

@ Template

.NET Core Example

An example .NET Core
application.

Figure 6.17: Developer Catalog page

3.3. Enter php in the Filter by keyword field.

(Persistent)

An example .NET Core application
with a PostgreSQL database. For
more information about using th...

@ Template

3scale APIcast APl Gateway
provided by Red Hat, Inc.

3scale's APlcast is an NGINX

hamad ADI Ankawin imad +n

DO180-0OCP4.5-en-3-20201217

Chapter 6 | Deploying Containerized Applications on OpenShift

RedHat e
OpenShift # O ©
Container Platform

Project: youruser-console

</> Developer

+Add Developer Catalog
Topology Add shared apps, services, or source-to-image builders to your project from the Developer Catalog. Cluster admins can install additior
show up here automatically.
Monitoring
| Allitems All ltems
Search
Languages
php Group By:None v
Databases
Btz Middleware
Cl/CD
Helm 4
Other Template Php Template
Project
Type CakePHP + MySQL CakePHP + MySQL
) Operator Backed (0) provided by Red Hat, Inc. (Ephemeral)
Config Maps provided by Red Hat, Inc.
() Helm Charts (0) An example CakePHP application
s o () Builder Image (1) with a MySQL database. For more An example CakePHP application
ecrets information about using this... with a MySQL database. For more

Template (2
O P @ information about using this...
[Service Class (0)

Builder Image

PHP
provided by Red Hat, Inc.

Build and run PHP 7.3
applications on RHEL 7. For more
information about using this...

Figure 6.18: Finding PHP-related templates

3.4. After filtering, click the PHP builder image to display the PHP dialog box. Click Create
Application to display the Create Source-to-Image Application page.

DO180-0OCP4.5-en-3-20201217 w

Chapter 6 | Deploying Containerized Applications on OpenShift

RedHat aen
OpenShift # O ©

Container Platform

<[> Developer

+Add Create Source-to-Image Application
Topology
o Builder

Monitoring

Builder Image Version *
Search

&3 -
Builds @B PHP 73
BUILDER PHP

Helm

Build and run PHP 7.3 applications on RHEL 7. For more information about using this builder image,
Project including OpenShift considerations, see https://github.com/sclorg/s2i-php-
container/blob/master/7.3/README.md.

Sample repository: https://github.com/sclorg/cakephp-ex.git @

Config Maps

Secrets .
Git
Git Repo URL *
Try Sample 1

Figure 6.19: Configuring Source-to-Image for a PHP application

3.5. Change the Builder Image Version to PHP version 7.3.

Specify the location of the source code git repository: https://
github.com/yourgituser/D0180-apps.

Use the Advanced Git Options to set the context directory to php-hellowor 1d and
branch console for this exercise

W DO180-0OCP4.5-en-3-20201217

Chapter 6 | Deploying Containerized Applications on OpenShift

</> Developer

+Add

Topology

Monitoring

Search

Builds

Helm

Project

Config Maps

Secrets

@®» PHP73

BUILDER PHP

Build and run PHP 7.3 applications on RHEL 7. For more information about using this builder image,
including OpenShift considerations, see https://github.com/sclorg/s2i-php-
container/blob/master/7.3/README.md.

Sample repository: https://github.com/sclorg/cakephp-ex.git @

Git

Git Repo URL *

https://github.com/youruser/DO180-apps

Try Sample 1

v Hide Advanced Git Options

Git Reference

console

Optional branch, tag, or commit.

Context Dir

php-helloworld

Optional subdirectory for the application source code, used as a context directory for build.

Figure 6.20: Setting Advanced Git Options for the application

Enter php-hellowor ld for both the application name and the name used for
associated resources. Select Deployment Config as the resource type.

DO180-0OCP4.5-en-3-20201217

Chapter 6 | Deploying Containerized Applications on OpenShift

RedHat
OpenShift
Container Platform

(+]

<> Developer

General
+Add

Application Name

Topology php-helloworld

Monitoring A unique name given to the application grouping to label your resources.

Name *
Search

php-helloworld

Build A unique name given to the component that will be used to name associated resources.
uilds

Resources
Helm

Select the resource type to generate
Project
O Deployment

Config Maps apps/Deployment
A Deployment enables declarative updates for Pods and ReplicaSets.
Secrets @ Deployment Config

apps.openshift.io/DeploymentConfig

A Deployment Config defines the template for a pod and manages deploying new images or configuration changes

Advanced Options

Create a route to the application
Exposes your application at a public URL

Figure 6.21: Setting application options

Scroll to the bottom of the page, and select Create a route to the application.
Click Create to create the required OpenShift and Kubernetes resources for the
application.

You are redirected to the Topology page:

W DO180-0OCP4.5-en-3-20201217

Chapter 6 | Deploying Containerized Applications on OpenShift

RedHat
OpenShift
Container Platform

Project: youruser-console + Application: all applications +

</> Developer

Display Options +

+Add
Topology
Monitoring

Search

“

Builds Bhp

Helm I (v}

rJ

Project php-helloworld

A php-helloworld

Config Maps

Secrets

Figure 6.22: Topology page

This page indicates that the php-helloworld application is created. The DC annotation
to the left of the php-hellowor 1d link is an acronym for Deployment Config.
This link redirects to a page containing information about the application's
deployment configuration.

3.6. Switch back to the Administrator perspective for the remainder of the exercise:

Chapter 6 | Deploying Containerized Applications on OpenShift

RedHat
OpenShift
Container Platform

<> Developer Project: youruser-console + Application: all applications «

Display Options ~ +

@2 Administrator

</> Developer

Monitoring
Search
“Z
Builds
Php
Helm ° o
Project php-helloworld

A php-helloworld

Config Maps

Secrets

Figure 6.23: Administrator perspective drop-down

P 4. Use the navigation bar on the left side of the OpenShift web console to locate information
for the application's OpenShift and Kubernetes resources:

» DeploymentConfig

 BuildConfig

* Build Logs

+ Service

* Route

4]1. Examine the deployment configuration. In the navigation bar, click Workloads to
reveal more menu choices. Click Deployment Configs to display a list of deployment

configurations for the youruser-console project. Click the php-hellowor 1d link
to display deployment configuration information.

W DO180-0OCP4.5-en-3-20201217

Chapter 6 | Deploying Containerized Applications on OpenShift

p— RedHat .
= OpenShift # O O
Container Platform

. - Project: youruser-console v
&2 Administrator

Deployment Configs > Deployment Config Details

Home
php-helloworld
Projects
Search i o .
Details YAML Replication Controllers Pods Environment Events
Explore
i Deployment Config Details
Operators
~
Workloads
v
Pods
Deployments
Name Latest Version
Deployment Configs php-helloworld 1
Stateful Sets Namespace Message
Secrets @ youruser-console config change
Config Maps Labels Update Strategy
app=php-helloworld app.kubernetes.io/component=php-helloworld Rolling
Cron Jobs app.kubernetes.io/instance=php-helloworld

app.kubernetes.io/name=php Min Ready Seconds

app.kubernetes.io/part-of=php-helloworld Not Configured
app.openshift.io/runtime=php app.openshift.io/runtime-version=7.3

Jobs

Daemon Sets .
Triggers

Replica Sets Pod Selector ImageChange, ConfigChange

Q, app=php-helloworld, deploymentconfig=php-helloworld

Replication Controllers

Figure 6.24: Application deployment configuration details page

Explore the available information from the Details tab. The build may still be running
when you reach this page, so the DC might not have a value of 1 pod, yet.

If you click the up and down arrow icons next to the doughnut chart that indicates the
number of pods, you can scale the application up and down horizontally.

4.2. Examine the build configuration. In the navigation bar, click Builds to reveal more
menu choices. Click Build Configs to display a list of build configurations for the
youruser-console project. Click the php-hellowor 1d link to display the build
configuration for the application.

DO180-0OCP4.5-en-3-20201217 w

Chapter 6 | Deploying Containerized Applications on OpenShift

RedHat
OpenShift
Container Platform

%% Administrator

Home
Projects
Search
Explore

Events

Operators

Workloads

Networking

Storage

Builds
Build Configs
Builds

Image Streams

Compute

User Management

Administration

Project: youruser-console +

Build Configs > Build Config Details

php-helloworld

Details YAML Builds Environment Events

Build Config Details

Name

php-helloworld

Namespace

@ youruser-console

Labels

app=php-helloworld app.kubernetes.io/component=php-helloworld
app.kubernetes.io/instance=php-helloworld
app.kubernetes.io/name=php app.kubernetes.io/part-of=console

app.openshift.io/runtime=php app.openshift.io/runtime-version=7.3

Annotations

3 Annotations #*

Created At
@ 4 minutes ago

Owner

Type
Source

Git Repository
https://github.com/yourgithubuser/DO180-apps.git

Git Ref

console

Context Dir
php-helloworld

Build From

@D php73

Output To
(@ php-helloworldlatest

Run Policy

Serial

Figure 6.25: Application build configuration details page

Explore the available information from the Details tab. The YAML tab allows you

to view and edit the build configuration as a YAML file. The Builds tab provides

an historical list of builds, along with a link to more information for each build.

The Environment tab allows you to view and edit environment variables for the
application's build environment. The Events tab displays a list of build related events
and metadata.

4.3. Examine the logs for the Source-to-Image build of the application. In the Builds
menu, click Builds to display a list of recent builds for the youruser-console

project.

Click the php-hellowor 1d-1 link to access information for the first build of the
php-hellowor1ld application:

DO180-0OCP4.5-en-3-20201217

Chapter 6 | Deploying Containerized Applications on OpenShift

RedHat
OpenShift o © User youruser v
Container Platform
. . Project: youruser-console
%2 Administrator
Builds > Build Details
Home
©® php-helloworld-1 & comptete Actions
Projects _
Search . .
Details YAML Environment Logs Events
Explore
Bt Build Details
Operators
Memory Usage CPU Usage Filesystem
100 MiB
Workloads : 100m oB
Networking i
50 MiB 50m oe
Storage
Builds 10:46 10:47 10:48 10:49 10:46 10:47 10:48 10:49 10:46 10:47 10:48 10:49
Build Configs
Builds Name Status
php-helloworld-1 @ Complete
Image Streams
Namespace Type
Compute @ youruser-console Source
User Management Labels Git Repository
app=php-helloworld app.kubernetes.io/part-of=console https://github.com/yourgithubuser/DO180-apps.git

app.kubernetes.io/instance=php-helloworld

Figure 6.26: An application build details page

Explore the available information from the Details tab. Next, click the Logs tab. A
scrollable text box contains output from the build process:

— RedHat
= OpenShift o © User youruser v
Container Platform
- Project: youruser-console v
o2 Administrator
Builds > Build Details
Home
© php-helloworld-1 © complete Actions +
Projects
Search
Details YAML Environment Logs Events
Explore —_—
Events ra
Log stream ended. & Download | IJExpand

Operators 59 lines

Writing manifest to image destination

Storing signatures

—-> 5cb438a2c45
5cbh438a2c45f80b7620779e8ca5b10b9c7e8f3279718686d067dd45fd9dec5de

Workloads

Networking

Pushing image image-registry.openshift-image-registry.svc:5000/youruser-console/php-helloworld:latest ...
Getting image source signatures

Copying blob sha256:65b33f0244f1283afc60b050b38243d16fba6725550a6abbfeb5b67ba59b461

Copying blob sha256:fc5b206e9329a1674dd9e8efbeed5c9be28d0do@dcbabba3cb6bb67a2f22cfcf2a

Copying blob sha256:9f@4ed9c572e5de5b715b5f831e573d1ad7080933982a25113c443eb6bd9497e

Copying blob sha256:c9ae4966e1018b89a5d@bd37ef429bb5a893e52cfff040a40e325be5117620c1

Copying blob sha256:e7021e0589e97471d99c4265b7c8e64da328e48f116b5f260353b2e0a2adb373

Copying blob sha256:9e7a6dc796f0a75c560158a9f9e30fb8b5a9@ch53edcedf fbdf5778406e4de39

Copying config sha256:5cb438a2c45f80b7620779e8ca5b10b9c7e813279718686d067dd45fd9dec5de

Writing manifest to image destination

Storing signatures

Successfully pushed image-registry.openshift-image-registry.svc:5000/youruser-console/php-helloworld@sha256
Push successful

Storage

Builds
Build Configs
Builds

Image Streams

Compute

User Management

Figure 6.27: Logs for an application build

When Podman builds a container image, similar output is observed compared with the
output shown in the browser.

Chapter 6 | Deploying Containerized Applications on OpenShift

4.4, Locate information for the php-hellowor 1d application's service. In the navigation
bar, click Networking to reveal more menu choices. Click Services to display a list of
services for the youruser-console project. Click the php-hellowor 1d link to
display the information associated with the application's service:

Project: youruser-console v

o2 Administrator

Services > Service Details

Home
© php-helloworld Actions ~
Projects R ——
Search
Details YAML Pods
Explore
B Service Details Service Routing
Operators Name Service Address
php-helloworld Type Location
Workloads
Namespace
Cluster IP 172307342
Networking @ youruser-console
Accessible within the cluster
Services Labels only

Routes app=php-helloworld

app.kubernetes.io/component=php-helloworld Service Port Mapping
Ingresses app.kubernetesio/instance=php-helloworld
app.kubernetes.io/name=php Name Port Protocol Pod Port or
Network Policies N
app.kubernetes.io/part-of=php-helloworld ame

app.openshiftio/runtime=php

Storage
g R R 8080t 8080 Tcp @ 5050

St Pod Selector
8443-tcp 8443 TCP @ 8443

Build Configs Q app=php-helloworld, deploymentconfig=php-helloworld

Figure 6.28: Service details page

Explore the available information from the Details tab. The YAML tab allows you to
view and edit the service configuration, as a YAML file. The Pods tab displays the
current list of pods that provide the application service.

45. Locate external route information for the application. On the navigation bar, click
Networking — Routes to display a list of configured routes for the youruser -
console project. Click the php-hellowor 1d link to display information associated
with the application's route:

W DO180-0OCP4.5-en-3-20201217

Chapter 6 | Deploying Containerized Applications on OpenShift

— RedHat
= OpenShift # O © User youruser v

Container Platform

. . Project: youruser-console +
&2 Administrator

Routes > Route Details

Home
G php-helloworld © Accepted Actions +
Projects —
Search .
Details YAML
Explore
ST Route Details
Operators Name Location
php-helloworld http://php-helloworld-youruser-
Workloads console.apps.cluster.lab.example.com &
Namespace
Networking @ youruser-console Status
@ Accepted
Services Labels

Routes app=php-helloworld Host

app.kubernetes.io/component=php-helloworld php-helloworld-youruser-

Ingresses app.kubernetes.io/instance=php-helloworld console.apps.cluster.lab.example.com
app.kubernetes.io/name=ph

Network Policies RR - / [P Path
app.kubernetes.io/part-of=console

app.openshift.io/runtime=php

Storage

app.openshift.io/runtime-version=7.3 Router Canonical Hostname

Builds apps.cluster.lab.example.com

Annotations

Figure 6.29: Route details page

Explore the available information from the Details tab. The Location field provides
a link to the external route for the application; http://php-helloworld-
${RHT_OCP4_DEV_USER}-console.${RHT_OCP4_WILDCARD_DOMAIN}. Click
the link to access the application in a new tab:

Mozilla Firefox x

&5 php-helloworld - Details X | php-helloworld-developer-c: X | +

G @ ‘ php-helloworld-console.apps.cluster.lab.example.com| —)‘ /L

Hello, World! php version is 7.3.11
Figure 6.30: Initial PHP application results

P 5. Modify the application code, commit the change, push the code to the remote Git
repository, and trigger a new application build.

51. Enter the source code directory:

[student@workstation D0180-apps]$ cd ~/D0180-apps/php-helloworld

52. Add the second print line statement in the index. php page to read "A change is in
the air!" and save the file. Add the change to the Git index, commit the change, and
push the changes to the remote Git repository.

DO180-0OCP4.5-en-3-20201217 w

Chapter 6 | Deploying Containerized Applications on OpenShift

[student@workstation php-helloworld]$ vim index.php
[student@workstation php-helloworld]$ cat index.php

<?php

print "Hello, World! php version is " . PHP_VERSION . "\n";
print "A change is in the air!\n";

2>

[student@workstation php-helloworld]$ git add index.php
[student@workstation php-helloworld]$ git commit -m 'updated app'
[console d198fb5] updated app

...output omitted...

1 file changed, 1 insertion(+), 1 deletion(-)
[student@workstation php-helloworld]$ git push origin console
Counting objects: 7, done.

Delta compression using up to 2 threads.

Compressing objects: 100% (3/3), done.

Writing objects: 100% (4/4), 409 bytes | 0 bytes/s, done.
Total 4 (delta 1), reused 0 (delta 0)

...output omitted...

5.3. Trigger an application build manually from the web console.

On the navigation bar, click Builds — Build Configs and then click the php-
hellowor ld link to access the Build Config Details page. From the Actions menu in
the upper right of the screen, click Start Build:

— RedHat
= OpenShift # O 0 User youruser v
Container Platform
. Project: youruser-console v
%2 Administrator
Build Configs > Build Config Details
Home
php-helloworld Actions ~
Operators
Start Build
Workloads Details YAML Builds Environment Events -
Edit Labels
Networkin . " . Edit Annotations
& Build Config Details
Edit Build Config
Storage Name Type
php-helloworld Source Delete Build Config
Builds
Namespace Git Repository
Build Configs 5 X .
@ youruser-console https://github.com/yourgithubuser/DO180-apps.git
Builds
Labels Git Ref
Image Streams app=php-helloworld console
app.kubernetes.io/component=php-helloworld
Compute app.kubernetes.io/instance=php-helloworld Context Dir
app.kubernetes.io/name=php php-helloworld
User Management app.kubernetes.io/part-of=console .
app.openshift.io/runtime=php Build From
Administration app.openshift.io/runtime-version=7.3 @ php:73

Figure 6.31: Start an application build

You are redirected to a Build Details page for the new build. Click the Logs tab
to monitor progress of the build. The last line of a successful build contains Push
successful.

W DO180-0OCP4.5-en-3-20201217

Chapter 6 | Deploying Containerized Applications on OpenShift

When the build completes, the deploy starts. Go to the Workloads — Pods section,
and wait for the new pod is deployed and running.

54. Reloadthe http://php-helloworld-${RHT_OCP4_DEV_USER}-console.
${RHT_OCP4_WILDCARD_DOMAIN} URL in the browser. The application response
corresponds to the updated source code:

Mozilla Firefox x

&5 Pods - Red Hat OpenShit X | php-helloworld-developer-c. X | +

c @ ‘ php-helloworld-console.apps.cluster.lab.example.com —).‘ i >» =

Hello, World! php version is 7.3.11 A change is in the air!

Figure 6.32: Updated web application output

) 6. Delete the project. On the navigation bar, click Home — Projects. Click the icon at the
right side of the row containing an entry for the youruser -console project. Click Delete
Project from the menu that appears.

RedHat .
OpenShift H User youruser v
Container Platform

2 Admini i

Home
Name Search by name... /
Projects
Search Name 1 Display Name Status Requester
Explore @ youruser- My Project @ Active youruser

console
Events

Edit Project

Operators Delete Project

Workloads

Figure 6.33: Delete a project
Enter youruser-console in the confirmation dialog box, and click Delete.
Finish
Onworkstation, runthe lab openshift-webconsole finish scriptto complete this lab.

[student@workstation php-helloworld]$ lab openshift-webconsole finish

This concludes the guided exercise.

DO180-0OCP4.5-en-3-20201217 w

Chapter 6 | Deploying Containerized Applications on OpenShift

» Lab

Deploying Containerized Applications on
OpenShift

Performance Checklist

In this lab, you will create an application using the OpenShift Source-to-Image facility.

Outcomes

You should be able to create an OpenShift application and access it through a web browser.

Before You Begin

Open a terminal on workstation as the student user and run the following command:

[student@workstation ~]$ lab openshift-review start

1. Prepare the lab environment.

11 Load your classroom environment configuration.

Run the following command to load the environment variables created in the first
guided exercise:

[student@workstation ~]$ source /usr/local/etc/ocp4.config

1.2. Login to the OpenShift cluster.

13. Create a new project named "${RHT_OCP4_DEV_USER?}-ocp" for the resources you
create during this exercise:

2. Create a temperature converter application written in PHP using the php: 7.3 image stream
tag. The source code is in the Git repository at https://github.com/RedHatTraining/
D0180-apps/ in the temps directory. You may use the OpenShift command-line interface
or the web console to create the application.

Expose the application's service to make the application accessible from a web browser.

3. Verify that you can access the application in a web browser at http://
temps-${RHT_OCP4_DEV_USER}-ocp.${RHT_OCP4_WILDCARD_DOMAIN}.

Evaluation

Onworkstation, runthe lab openshift-review grade command to grade your work.
Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab openshift-review grade

Chapter 6 | Deploying Containerized Applications on OpenShift

Finish

Onworkstation, runthe lab openshift-review finish command to complete this lab.

[student@workstation ~]$ lab openshift-review finish

This concludes the lab.

DO180-0OCP4.5-en-3-20201217 w

Chapter 6 | Deploying Containerized Applications on OpenShift

» Solution

Deploying Containerized Applications on
OpenShift

Performance Checklist

In this lab, you will create an application using the OpenShift Source-to-Image facility.

Outcomes

You should be able to create an OpenShift application and access it through a web browser.

Before You Begin
Open a terminal on workstation as the student user and run the following command:

[student@workstation ~]$ lab openshift-review start

1. Prepare the lab environment.

11 Load your classroom environment configuration.

Run the following command to load the environment variables created in the first
guided exercise:

[student@workstation ~]$ source /usr/local/etc/ocp4.config

1.2. Login to the OpenShift cluster.

[student@workstation ~]$ oc login -u ${RHT_OCP4_DEV_USER} -p \
> ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_MASTER_API}

Login successful

...output omitted...

1.3. Create a new project named "${RHT_OCP4_DEV_USER}-ocp" for the resources you
create during this exercise:

[student@workstation ~]$ oc new-project ${RHT_OCP4_DEV_USER}-ocp

2. Create a temperature converter application written in PHP using the php: 7.3 image stream
tag. The source code is in the Git repository at https://github.com/RedHatTraining/
D0180-apps/ in the temps directory. You may use the OpenShift command-line interface
or the web console to create the application.

Expose the application's service to make the application accessible from a web browser.

21. If using the command-line interface, run the following commands:

W DO180-0OCP4.5-en-3-20201217

Chapter 6 | Deploying Containerized Applications on OpenShift

[student@workstation ~]$ oc new-app --as-deployment-config \

> php:7.3~https://github.com/RedHatTraining/D0180-apps \

> --context-dir temps --name temps

--> Found image fbe3911 (2 weeks old) in image stream "openshift/php" under tag
"7.3" for "php:7.3"

Apache 2.4 with PHP 7.3

PHP 7.3 available as container is a base platform ...output omitted...
...output omitted...

--> Creating resources
imagestream.image.openshift.io "temps" created
buildconfig.build.openshift.io "temps" created
deploymentconfig.apps.openshift.io "temps" created
service "temps" created
--> Success
Build scheduled, use 'oc logs -f bc/temps' to track its progress.
Application is not exposed. You can expose services to the outside world by
executing one or more of the commands below:
'oc expose svc/temps'
Run 'oc status' to view your app.

2.2. Monitor progress of the build.

[student@workstation ~]$ oc logs -f bc/temps
Cloning "https://github.com/RedHatTraining/D0180-apps"
Commit: f7cd8963ef353d9173c3a21ldcccf402f3616840b (Initial commit, including all
apps previously in course)
...output omitted...
Successfully pushed image-registry.openshift-
image-registry.svc:5000/${RHT_OCP4_DEV_USER}-temps/
temps@sha256:59f713adfacdbc2a3ca8lcd4ef4af46517dfffa3f0029372f86fbcafs571416a74
Push successful

2.3. Verify that the application is deployed.

[student@workstation ~]$ oc get pods -w

NAME READY STATUS RESTARTS AGE
temps-1-build 0/1 Completed 0 91s
temps-1-deploy 0/1 Completed 0 60s
temps-1-p4zjc 1/1 Running 0 58s

Press Ctr1+C to exit the oc get pods -wcommand.

2.4. Expose the temps service to create an external route for the application.

[student@workstation ~]$ oc expose svc/temps
route.route.openshift.io/temps exposed

Chapter 6 | Deploying Containerized Applications on OpenShift

3. Verify that you can access the application in a web browser at http://
temps-${RHT_OCP4_DEV_USER}-ocp.${RHT_OCP4_WILDCARD_DOMAIN}.

3.1. Determine the URL for the route.

[student@workstation ~]$ oc get route/temps
NAME HOST/PORT
temps temps-${RHT_OCP4_DEV_USER}-ocp.${RHT_OCP4_WILDCARD_DOMAIN}

3.2. Verify that the temperature converter application works by opening a web browser and
navigating to the URL displayed in the previous step.

Converting Temperatures X |+

< c @ (0 temps-ocp.apps.cluster.lab.example.com

Enter the temperature to convert:

Convert to: Celsius v
Convert Reset
Evaluation

Onworkstation, runthe lab openshift-review grade command to grade your work.
Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab openshift-review grade
Finish
Onworkstation, runthe lab openshift-review finish command to complete this lab.

[student@workstation ~]$ lab openshift-review finish

This concludes the lab.

W DO180-0OCP4.5-en-3-20201217

Chapter 6 | Deploying Containerized Applications on OpenShift

Summary

In this chapter, you learned:

OpenShift Container Platform stores definitions of each OpenShift or Kubernetes resource
instance as an object in the cluster's distributed database service, etcd. Common resource
types are: Pod, Persistent Volume (PV), Persistent Volume Claim (PVC), Service
(SVC), Route, Deployment Configuration (DC),andBuild Configuration (BC).

Use the OpenShift command-line client oc to:

- Create, change, and delete projects.

- Create application resources inside a project.

- Delete, inspect, edit, and export resources inside a project.

- Check logs from application pods, deployments, and build operations.

The oc new-app command can create application pods in many different ways: from an
existing container image hosted on an image registry, from Dockerfiles, and from source code
using the Source-to-Image (S2I) process.

Source-to-Image (S2) is a tool that makes it easy to build a container image from application
source code. This tool retrieves source code from a Git repository, injects the source code into
a selected container image based on a desired language or technology, and produces a new
container image that runs the assembled application.

A Route connects a public-facing IP address and DNS host name to an internal-facing service
IP. While services allow for network access between pods inside an OpenShift instance, routes
allow for network access to pods from users and applications outside the OpenShift instance.

You can create, build, deploy and monitor applications using the OpenShift web console.

y 2AR(IA

3 n ."'".'"".l
o

A

=

i)

=]
L

LUOD JeUL

—
|
&)]

) ILBILIAL

n

.
[

-
L

—
L

) 1eH pay T

W DO180-OCP4.5-en-3-20201217

Chapter 7

Deploying Multi-Container
Applications

Goal Deploy applications that are containerized using U
multiple container images.
Objectives + Describe considerations for containerizing .
applications with multiple container images. 4
+ Deploy a multi-container application on ,
OpenShift using a template. '.
‘“ \
Sections + Considerations for Multi-Container

w

; Applications (and Guided Exercise)
+ Deploying a Multi-Container Application on

OpenShift (and Guided Exercise)
Lab + Deploying Multi-Container Applications

r/

DO180-0OCP4.5-en-3-20201217

Chapter 7 | Deploying Multi-Container Applications

Considerations for Multi-Container
Applications

Objectives

After completing this section, students should be able to:

+ Describe considerations for containerizing applications with multiple container images.
+ Leverage networking concepts in containers.

+ Create a multi-container application with Podman.

« Describe the architecture of the To Do List application.

Leveraging Multi-Container Applications

The examples shown so far throughout this course have worked fine with a single container. A
more complex application, however, can get the benefits of deploying different components
into different containers. Consider an application composed of a front-end web application, a
REST back end, and a database server. Those components may have different dependencies,
requirements and life cycles.

Although it is possible to orchestrate multi-container applications' containers manually,
Kubernetes and OpenShift provide tools to facilitate orchestration. Attempting to manually
manage dozens or hundreds of containers quickly becomes complicated. In this section, we are
going to return to using Podman to create a simple multi-container application to demonstrate the
underlying manual steps for container orchestration. In later sections, you will use Kubernetes and
OpenShift to orchestrate these same application containers.

Discovering Services in a Multi-Container Application

Podman uses Container Network Interface (CNI) to create a software-defined network (SDN)
between all containers in the host. Unless stated otherwise, CNI assigns a new IP address to a
container when it starts.

Each container exposes all ports to other containers in the same SDN. As such, services are readily
accessible within the same network. The containers expose ports to external networks only by
explicit configuration.

Due to the dynamic nature of container IP addresses, applications cannot rely on either fixed

IP addresses or fixed DNS host names to communicate with middleware services and other
application services. Containers with dynamic IP addresses can become a problem when working
with multi-container applications because each container must be able to communicate with
others to use services upon which it depends.

For example, consider an application composed of a front-end container, a back-end container,
and a database. The front-end container needs to retrieve the IP address of the back-end
container. Similarly, the back-end container needs to retrieve the IP address of the database
container. Additionally, the IP address could change if a container restarts, so a process is needed
to ensure any change in IP triggers an update to existing containers.

Chapter 7 | Deploying Multi-Container Applications

BEFORE AFTER
Front End Container Front End Container
IP: 10.8.0.1 IP: 10.8.0.1
backend.host =10.8.0.2 backend.host = 10.8.0.2
™
R
v
Back End Container New Back End Container
IP: 10.8.0.2 IP: 10.8.0.4
database.host =10.8.0.3 database.host =10.8.0.3
Database Container Database Container
IP: 10.8.0.3 IP: 10.8.0.3

Figure 7.1: A restart breaks three-tiered application links

Both Kubernetes and OpenShift provide potential solutions to the issue of service discoverability
and the dynamic nature of container networking. Some of these solutions are covered later in the
chapter.

Comparing Podman and Kubernetes

Using environment variables allows you to share information between containers with Podman.
However, there are still some limitations and some manual work involved in ensuring that all
environment variables stay in sync, especially when working with many containers. Kubernetes
provides an approach to solve this problem by creating services for your containers, as covered in
previous chapters.

Pods are attached to a Kubernetes namespace, which OpenShift calls a project. When a pod starts,
Kubernetes automatically adds a set of environment variables for each service defined on the
same namespace.

Any service defined on Kubernetes generates environment variables for the IP address and
port number where the service is available. Kubernetes automatically injects these environment
variables into the containers from pods in the same namespace. These environment variables
usually follow a convention:

+ Uppercase: All environment variables are set using uppercase names.

+ Snakecase: Any environment variable created by a service is usually composed of multiple words
separated with an underscore ().

« Service name first: The first word for an environment variable created by a service is the service
name.

+ Protocol type: Most network environment variables include the protocol type (TCP or UDP).
These are the environment variables generated by Kubernetes for a service:

+ <SERVICE_NAME>_SERVICE_HOST: Represents the IP address enabled by a service to access
a pod.

DO180-0OCP4.5-en-3-20201217 w

Chapter 7 | Deploying Multi-Container Applications

+ <SERVICE_NAME>_SERVICE_PORT: Represents the port where the server port is listed.

+ <SERVICE_NAME>_PORT: Represents the address, port, and protocol provided by the service
for external access.

+ <SERVICE_NAME>_PORT_<PORT_NUMBER>_<PROTOCOL>: Defines an alias for the
<SERVICE_NAME>_PORT.

+ <SERVICE_NAME>_PORT_<PORT_NUMBER>_<PROTOCOL>_PROTO: Identifies the protocol type
(TCP or UDP).

+ <SERVICE_NAME>_PORT_<PORT_NUMBER>_<PROTOCOL>_PORT: Defines an alias for
<SERVICE_NAME>_SERVICE_PORT.

+ <SERVICE_NAME>_PORT_<PORT_NUMBER>_<PROTOCOL>_ADDR: Defines an alias for
<SERVICE_NAME>_ SERVICE_HOST

For instance, given the following service:

apiVersion: vi
kind: Service
metadata:
labels:
name: mysql
name: mysql
spec:
ports:
- protocol: TCP
- port: 3306
selector:
name: mysql

The following environment variables are available for each pod created after the service, on the
same namespace:

MYSQL_SERVICE_HOST=10.0.0.11
MYSQL_SERVICE_PORT=3306
MYSQL_PORT=tcp://10.0.0.11:3306
MYSQL_PORT_3306_TCP=tcp://10.0.0.11:3306
MYSQL_PORT_3306_TCP_PROTO=tcp
MYSQL_PORT_3306_TCP_PORT=3306
MYSQL_PORT_3306_TCP_ADDR=10.0.0.11

Note

S Other relevant <SERVICE_NAME>_PORT_* environment variable names
are set on the basis of the protocol. IP address and port number are
set in the <SERVICE_NAME>_PORT environment variable. For example,
MYSQL_PORT=tcp://10.0.0.11:3306 entry leads to the creation
of environment variables with names such as MYSQL_PORT_3306_TCP,
MYSQL_PORT_3306_TCP_PROTO, MYSQL_PORT_3306_TCP_PORT, and
MYSQL_PORT_3306_TCP_ADDR. If the protocol component of an environment
variable is undefined, Kubernetes uses the TCP protocol and assigns the variable
names accordingly.

Chapter 7 | Deploying Multi-Container Applications

Describing the To Do List Application

Many labs from this course make use of a To Do List application. This application is divided into

three tiers, as illustrated by the following figure:

&

User Web
Browser

)

To Do List app

HTML5 REST
Single-page app Services
AngularJs HTTP API
Front end Back end

\

The front end is composed of
static HTML files that are
downloaded by and executed
in the user web browser

Database
Server

MySQL

Database files

Figure 7.2: To Do List application logical architecture

+ The presentation tier is built as a single-page HTML5 front-end using AngularJs.

+ The business tier is composed by an HTTP API back-end, with Node.js.

+ The persistence tier based on a MySQL database server.

The following figure is a screen capture of the application web interface:

DO180-0OCP4.5-en-3-20201217

Chapter 7 | Deploying Multi-Container Applications

To Do List Application

To Do List Add Task
id Description Done Description:
1 Pick up new... false b 4
2 Buy groceries true Add Description
Completed:

Clear

First Previous Next Last

Figure 7.3: The To Do List application

On the left is a table with items to complete, and on the right is a form to add a new item.

The classroom private registry server, services. lab.example.com, provides the application in
two versions:

nodejs

Represents the way a typical developer would create the application as a single unit, without
caring to break it into tiers or services.

nodejs_api
Shows the changes needed to break the application into presentation and business tiers. Each

tier corresponds to an isolated container image.

The sources of both of these application versions are available from the todoapp/nodejs folder
in the Git repository at: https://github.com/RedHatTraining/D0180-apps.git.

W DO180-0OCP4.5-en-3-20201217

Chapter 7 | Deploying Multi-Container Applications

» Guided Exercise

Deploying the Web Application and
MySQL Containers

In this lab, you will create a script that runs and networks a Node.js application container and
the MySQL container.

Outcomes
You should be able to network containers to create a multi-tiered application.

Before You Begin
You must have the To Do List application source code and lab files on workstation. To set
up the environment for the exercise, run the following command:

[student@workstation ~]$ lab multicontainer-design start

) 1. Build the MySQL image.

A custom MySQL 5.7 image is used for this exercise. It is configured to automatically run
any scriptsin the /var/1ib/mysql/init directory. The scripts load the schema and
some sample data into the database for the To Do List application when a container starts.

11. Review the Dockerfile.

Using your preferred editor, open and examine the completed Dockerfile located at
/home/student/D0180/1labs/multicontainer-design/images/mysql/
Dockerfile.

1.2. Build the MySQL database image.
To build the base image, run the following podman build script.

[student@workstation ~]$ cd ~/D0180/labs/multicontainer-design/images/mysql
[student@workstation mysql]$ sudo podman build -t do180/mysql-57-rhel7 \
> --layers=false .

STEP 1: FROM rhscl/mysql-57-rhel7

Getting image source signatures

...output omitted...

Storing signatures

STEP 2: ADD root /

STEP 3: COMMIT dol180/mysql-57-rhel?7

...output omitted. ..

Writing manifest to image destination

Storing signatures

8dcl...6933

1.3. This command builds a dedicated MySQL container image based on the /home/
student/D0180/labs/multicontainer-design/images/mysql context

Chapter 7 | Deploying Multi-Container Applications

folder and the Dockerfile file in it. Wait for the build to complete, and then run the
following command to verify that the image is built successfully:

[student@workstation mysql]$ sudo podman images

REPOSITORY TAG IMAGE ID CREATED SIZE
localhost/do180/mysql-57-rhel7 latest 8dcl111531fce 21 seconds ago 444MB
registry.[...]/rhscl/mysql-57-rhel7 latest c07bf25398f4 4 weeks ago 444MB

P 2. Build the Node.js parent image using the provided Dockerfile.

2.1, Review the Dockerfile.

Using your preferred editor, open and examine the completed Dockerfile located at
/home/student/D0180/labs/multicontainer-design/images/nodejs/
Dockerfile.

Notice the following instructions defined in the Dockerfile:

+ Two environment variables, NODEJS_VERSION and HOME, are defined using the
ENV command.

+ Packages necessary for Node.js are installed with yum using the RUN command.

+ A new user and group are created to run the Node.js application along with the
app-root directory using the RUN command.

+ The enable-rh-nodejs8. sh script, to run automatically at login, is added to /
etc/profile.d/ with the ADD command.

+ The USER command is used to switch to the newly created appuser account.

+ The WORKDIR command is used to switch to the $HOME directory for application
execution.

2.2. Build the parent image.

To build the base image, run the podman build command.

[student@workstation ~]$ cd ~/D0180/1labs/multicontainer-design/images/nodejs
[student@workstation nodejs]$ sudo podman build -t do186/nodejs \

> --layers=false .

STEP 1: FROM ubi7/ubi:7.7

Getting image source signatures

...output omitted...

--> Finished Dependency Resolution

Dependencies Resolved

Package Arch Version Repository Size
Installing:
make x86_64 1:3.82-24.el7 ubi-7 421 k
rh-nodejs8 x86_64 3.0-5.el7 ubi-server-rhscl-7-rpms 7.3 k

...output omitted...

Chapter 7 | Deploying Multi-Container Applications

Writing manifest to image destination
Storing signatures
5e61...30de

2.3. Wait for the build to complete, and then run the following command to verify that the
image has been built successfully. Several columns of the podman images column
are not relevant, so you can use the - -format option to format the output.

[student@workstation nodejs]$ sudo podman images \
> --format "table {{.ID}} {{.Repository}} {{.Tag}}"

IMAGE ID REPOSITORY TAG
5e610ea8d94a localhost/do180/nodejs latest
78c2e6304f23 localhost/do180/mysql-57-rhel7 latest
22ba71124135 registry.access.redhat.com/ubi7/ubi 7.7

c07bf25398f4 registry.access.redhat.com/rhscl/mysql-57-rhel? latest

P 3. Build the To Do List application child image using the provided Dockerfile.

31. Review the Dockerfile.

Using your preferred editor, open and examine the completed Dockerfile located at
/home/student/D0180/1labs/multicontainer-design/deploy/nodejs/
Dockerfile.

3.2. Explore the Environment Variables.

Inspect the environment variables that allow the Node.js REST API container to
communicate with the MySQL container.

3.2.1. View the file /home/student/D0180/1labs/multicontainer-design/
deploy/nodejs/nodejs-source/models/db. js, containing the database
configuration provided below:

module.exports.params = {

dbname: process.env.MYSQL_DATABASE,
username: process.env.MYSQL_USER,
password: process.env.MYSQL_PASSWORD,
params: {

host: "10.88.100.101",

port: "3306",

dialect: 'mysql'

i

3.2.2. Notice the environment variables used by the REST API. These variables are
exposed to the container using -e options with the podman run command in
this guided exercise. Those environment variables are described below.

MYSQL_DATABASE
The name of the MySQL database in the mysq1 container.

MYSQL_USER

The name of the database user used by the todoapi container to run
MySQL commands.

Chapter 7 | Deploying Multi-Container Applications

MYSQL_PASSWORD
The password of the database user that the todoapi container uses to
authenticate to the mysq1l container.

Note

S The host and port details of the MySQL container are embedded with the REST
API application. The host, as shown above in the db . js file, is the IP address of the
mysql container.

3.3. Build the child image.

Examine the /home/student/D0180/labs/multicontainer-design/
deploy/nodejs/build. sh script to see how the image is built. Run the following
commands to build the child image.

[student@workstation nodejs]$ cd ~/D0180/1labs/multicontainer-design/deploy/nodejs
[student@workstation nodejs]$./build.sh

Preparing build folder

STEP 1: FROM dol180/nodejs

STEP 2: ARG NEXUS_BASE_URL

STEP 3: MAINTAINER username <username@example.com>

STEP 4: COPY run.sh build ${HOME}/

STEP 5: RUN scl enable rh-nodejs8 'npm install --registry=http://$NEXUS_BASE_URL/
repository/nodejs/"'

...output omitted. ..

Writing manifest to image destination

Storing signatures

2b12...6463

i ; Note
The build. sh script lowers restrictions for write access to the build directory,
allowing non-root users to install dependencies.

3.4. Wait for the build to complete and then run the following command to verify that the
image has been built successfully:

[student@workstation nodejs]$ sudo podman images \
> --format "table {{.ID}} {{.Repository}} {{.Tag}}"

IMAGE ID REPOSITORY TAG
2b127523c28e localhost/do180/todonodejs latest
6bf46c84a3ch localhost/do180/nodejs latest
fa0084527d05 localhost/do180/mysql-57-rhel7 latest
22ba71124135 registry.access.redhat.com/ubi7/ubi 7.7

c07bT25398f4 registry.access.redhat.com/rhscl/mysql-57-rhel? latest

P 4. Modify the existing script to create containers with the appropriate IP, as defined in
the previous step. In this script, the order of commands is given such that it starts the
mysql container and then starts the todoapi container before connecting it to the
mysql container. After invoking every container, there is a wait time of 9 seconds, so each
container has time to start.

Chapter 7 | Deploying Multi-Container Applications

4.1.

Edit the run. sh file located at /home/student/D0180/labs/multicontainer -
design/deploy/nodejs/networked to insert the podman run command at the
appropriate line for invoking mysql container. The following screen shows the exact
podman command to insert into the file.

sudo podman run -d --name mysql -e MYSQL_DATABASE=items -e MYSQL_USER=userl \
-e MYSQL_PASSWORD=mypa55 -e MYSQL_ROOT_PASSWORD=r00tpa55 \

-v $PWD/work/data:/var/lib/mysql/data \

-v $PWD/work/init:/var/1lib/mysql/init -p 30306:3306 \

--ip 10.88.100.101 dol180/mysql-57-rhel7

4.2.

In the previous command, the MYSQL_DATABASE, MYSQL_USER, and
MYSQL_PASSWORD are populated with the credentials to access the MySQL
database. These environment variables are required for the mysq1l container to run.
Also, the $PWD/work/data and $PWD/work/init local folders are mounted as
volumes into the container's file system.

Note the IP assigned to the container. This IP should be the same as the one provided
in the /home/student/D0180/labs/multicontainer-design/deploy/
nodejs/nodejs-source/models/db. js file.

In the same run. sh file, insert another podman run command at the appropriate
line to run the todoapi container. The following screen shows the docker command
to insert into the file.

sudo podman run -d --name todoapi -e MYSQL_DATABASE=items -e MYSQL_USER=userl \
-e MYSQL_PASSWORD=mypa55 -p 30080:30080 \
do180/todonodejs

{4

) 5.

Note

After each podman run command inserted into the run. sh script, ensure that
there is also a sleep 9 command. If you need to repeat this step, the work
directory and its contents must be deleted before re-running the run. sh script.

43.

4.4.

Verify that your run. sh script matches the solution script located at /home/
student/D0180/solutions/multicontainer-design/deploy/nodejs/
networked/run.sh.

Save the file and exit the editor.

Run the containers.

51

Use the following command to execute the script that you updated to run the mysql
and todoapi containers.

[student@workstation nodejs]$ cd \
/home/student/D0180/labs/multicontainer-design/deploy/nodejs/networked
[student@workstation networked]$./run.sh

Chapter 7 | Deploying Multi-Container Applications

Note

E Itis possible that the IP selected for the container (10.88.100.101) is already reserved
for another container, even if that container was already deleted. In this case,
delete the todonodejs image and container before creating an updated one with
the sudo podman rmi -f todonodejs command. Then delete the MySQL
container with the sudo podman rm -f mysql command. Afterwards, return to
step 3, and update both db. js and run. sh with another available IP.

5.2. Verify that the containers started successfully.

[student@workstation networked]$ sudo podman ps \

> --format="table {{.ID}} {{.Names}} {{.Image}} {{.Status}}"

ID Names Image Status
Cc74b4709e3ae todoapi localhost/dol86/todonodejs:latest Up 3 minutes ago
3bc19f74254c mysql localhost/do180/mysql-57-rhel7:latest Up 3 minutes ago

) 6. Examine the environment variables of the API container.

Run the following command to explore the environment variables exposed in the API
container.

[student@workstation networked]$ sudo podman exec -it todoapi env
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
TERM=xterm

HOSTNAME=

container=oci

NODEJS_VERSION=8.0

HOME=/opt/app-root/src

MYSQL_DATABASE=items

MYSQL_USER=user1

MYSQL_PASSWORD=mypa55

P 7. Testthe application.

71. Runacurlcommand to test the REST API for the To Do List application.

[student@workstation networked]$ curl -w "\n" \
> http://127.0.0.1:30080/todo/api/items/1
{"id":1, "description":"Pick up newspaper", "done":false}

The -w "\n" option with cur 1 command lets the shell prompt appear at the next
line rather than merging with the output in the same line.

7.2. Open Firefox on workstation and point your browser to
http://127.0.0.1:30080/todo/. You should see the To Do List application.

E Note
Make sure to append the trailing slash (/).

Chapter 7 | Deploying Multi-Container Applications

Finish
Onworkstation, runthe lab multicontainer-design finish scriptto complete this

exercise.

[student@workstation ~]$ lab multicontainer-design finish

This concludes the guided exercise.

DO180-0OCP4.5-en-3-20201217 w

Chapter 7 | Deploying Multi-Container Applications

Deploying a Multi-Container Application
on OpenShift

Objectives

After completing this section, students should be able to deploy a multicontainer application on
OpenShift using a template.

Examining the Skeleton of a Template

Deploying an application on OpenShift Container Platform often requires creating several
related resources within a Project. For example, a web application may require a BuildConfig,
DeploymentConfig, Service, and Route resource to run in an OpenShift project. Often the
attributes of these resources have the same value, such as a resource's name attribute.

OpenShift templates provide a way to simplify the creation of resources that an application
requires. A template defines a set of related resources to be created together, as well as a set of
application parameters. The attributes of template resources are typically defined in terms of the
template parameters, such as a resource's name attribute.

For example, an application might consist of a front-end web application and a database server.
Each consists of a service resource and a deployment configuration resource. They share a set
of credentials (parameters) for the front end to authenticate to the back end. The template
can be processed by specifying parameters or by allowing them to be automatically generated
(for example, for a unique database password) in order to instantiate the list of resources in the
template as a cohesive application.

The OpenShift installer creates several templates by default in the openshift namespace. Run
the oc get templates command with the -n openshift option to list these preinstalled
templates:

[student@workstation ~]$ oc get templates -n openshift

NAME DESCRIPTION

cakephp-mysqgl-example An example CakePHP application ...
cakephp-mysql-persistent An example CakePHP application ...
dancer-mysqgl-example An example Dancer application with a MySQL ...
dancer-mysql-persistent An example Dancer application with a MySQL ...
django-psqgl-example An example Django application with a PostgreSQL ...
...output omitted. ..

rails-pgsql-persistent An example Rails application with a PostgreSQL ...
rails-postgresql-example An example Rails application with a PostgreSQL ...
redis-ephemeral Redis in-memory data structure store,
redis-persistent Redis in-memory data structure store,

The following shows a YAML template definition:

[student@workstation ~]$ oc get template mysql-persistent -n openshift -o yaml
apiVersion: template.openshift.io/v1

kind: Template

labels: ...value omitted...

message: ...message omitted ...

Chapter 7 | Deploying Multi-Container Applications

metadata:
annotations:
description: ...description omitted...
iconClass: icon-mysqgl-database
openshift.io/display-name: MySQL
openshift.io/documentation-url: ...value omitted...
openshift.io/long-description: ...value omitted...
openshift.io/provider-display-name: Red Hat, Inc.
openshift.io/support-url: https://access.redhat.com
tags: database,mysql
labels: ...value omitted...
name: mysql-persistent (2]
objects:
- apiversion: vi
kind: Secret

metadata:
annotations: ...annotations omitted. ..
name: ${DATABASE_SERVICE_NAME} (4]
stringData: ...stringData omitted...

- apiversion: vi
kind: Service
metadata:
annotations: ...annotations omitted...
name: ${DATABASE_SERVICE_NAME}
spec: ...spec omitted...
- apiversion: vi
kind: PersistentVolumeClaim

metadata:
name: ${DATABASE_SERVICE_NAME}
spec: ...spec omitted...

- apiversion: vi
kind: DeploymentConfig
metadata:

annotations: ...annotations omitted...
name: ${DATABASE_SERVICE_NAME}
spec: ...spec omitted...

parameters:

- ...MEMORY_LIMIT parameter omitted...

- ...NAMESPACE parameter omitted. ..

- description: The name of the OpenShift Service exposed for the database.
displayName: Database Service Name
name: DATABASE_SERVICE_NAME c,
required: true
value: mysql

- ...MYSQL_USER parameter omitted. ..

- description: Password for the MySQL connection user.
displayName: MySQL Connection Password
from: '[a-zA-Z0-9]{16}' (7]
generate: expression
name: MYSQL_PASSWORD
required: true

- ...MYSQL_ROOT_PASSWORD parameter omitted. ..

Chapter 7 | Deploying Multi-Container Applications

- ...MYSQL_DATABASE parameter omitted. ..
- ...VOLUME_CAPACITY parameter omitted. ..
- ...MYSQL_VERSION parameter omitted. ..

© Defines a list of arbitrary tags to associate with this template. Enter any of these tags in the
Ul to find this template.

© Defines the template name.

© Theobjects section defines the list of OpenShift resources for this template. This
template creates four resources: a Secret, a Service, aPersistentVolumeClaim, anda
DeploymentConfig.

O All four resource objects have their names set to the value of the
DATABASE_SERVICE_NAME parameter.

©O0 The parameters section contains a list of nine parameters. Template resources often
define their attributes using the values of these parameters, as demonstrated with the
DATABASE_SERVICE_NAME parameter.

@ If you do not specify a value for the MYSQL_PASSWORD parameter when you create an
application with this template, OpenShift generates a password that matches this regular
expression.

You can publish a new template to the OpenShift cluster so that other developers can build an
application from the template.

Assume you have an task list application named todo that requires an OpenShift
DeploymentConfig, Service, and Route object for deployment. You create a YAML template
definition file that defines attributes for these OpenShift resources, along with definitions for any
required parameters. Assuming the template is defined in the todo-template.yaml file, use the
oc create command to publish the application template:

[student@workstation deploy-multicontainer]$ oc create -f todo-template.yaml
template.template.openshift.io/todonodejs-persistent created

By default, the template is created under the current project unless you specify a different one
using the -n option, as shown in the following example:

[student@workstation deploy-multicontainer]$ oc create -f todo-template.yaml \
> -n openshift

i | Important

Any template created under the openshift namespace (OpenShift project) is
available in the web console under the dialog box accessible in the Catalog —
Developer Catalog menu item. Moreover, any template created under the current
project is accessible from that project.

Parameters

Templates define a set of parameters, which are assigned values. OpenShift resources defined in
the template can get their configuration values by referencing named parameters. Parameters in
a template can have default values, but they are optional. Any default value can be replaced when
processing the template.

Each parameter value can be set either explicitly by using the oc process command, or
generated by OpenShift according to the parameter configuration.

Chapter 7 | Deploying Multi-Container Applications

There are two ways to list available parameters from a template. The first one is using the oc
describe command:

$ oc describe template mysql-persistent -n openshift
Name: mysql-persistent
Namespace: openshift
Created: 12 days ago
Labels: samplesoperator.config.openshift.io/managed=true
Description: MySQL database service, with ...description omitted...
Annotations: iconClass=icon-mysql-database
openshift.io/display-name=MySQL
...output omitted...
tags=database, mysql

Parameters:
Name : MEMORY_LIMIT
Display Name: Memory Limit
Description: Maximum amount of memory the container can use.
Required: true
Value: 512Mi

Name: NAMESPACE

Display Name: Namespace

Description: The OpenShift Namespace where the ImageStream resides.
Required: false

Value: openshift

...output omitted...

Name: MYSQL_VERSION

Display Name: Version of MySQL Image

Description: Version of MySQL image to be used (5.7, or latest).
Required: true

Value: 5.7

Object Labels: template=mysql-persistent-template

Message: ...output omitted... 1in your project: ${DATABASE_SERVICE_NAME}.
Username: ${MYSQL_USER}
Password: ${MYSQL_PASSWORD}

Database Name: ${MYSQL_DATABASE}
Connection URL: mysql://${DATABASE_SERVICE_NAME}:3306/

For more information about using this template, ...output omitted...
Objects:

Secret ${DATABASE_SERVICE_NAME}

Service ${DATABASE_SERVICE_NAME}

PersistentVolumeClaim ${DATABASE_SERVICE_NAME}
DeploymentConfig ${DATABASE_SERVICE_NAME}

The second way is by using the oc process with the - -parameters option:

Chapter 7 | Deploying Multi-Container Applications

$ oc process --parameters mysql-persistent -n openshift

NAME DESCRIPTION GENERATOR VALUE
MEMORY_LIMIT Maximum a. .. 512Mi

NAMESPACE The OpensS... openshift
DATABASE_SERVICE_NAME The name ... mysql
MYSQL_USER Username ... expression user[A-z0-9]1{3}
MYSQL_PASSWORD Password ... expression [a-zA-Z0-9]{16}
MYSQL_ROOT_PASSWORD Password ... expression [a-zA-Z0-9]{16}
MYSQL_DATABASE Name of t... sampledb
VOLUME_CAPACITY Volume sp... 1Gi
MYSQL_VERSION Version o... 5.7

Processing a Template Using the CLI

When you process a template, you generate a list of resources to create a new application. To
process a template, use the oc process command:

$ oc process -f <filename>

The previous command processes a template file, in either JSON or YAML format, and returns the
list of resources to standard output. The format of the output resource list is JSON. To output the
resource list in YAML format, use the -0 yam1 with the oc process command:

$ oc process -o yaml -f <filename>

Another option is to process a template from the current project or the openshift project:

$ oc process <uploaded-template-name>

i ; Note
The oc process command returns a list of resources to standard output. This
output can be redirected to a file:

$ oc process -o yaml -f filename > myapp.yaml

Templates often generate resources with configurable attributes that are based on the template
parameters. To override a parameter, use the -p option followed by a <name>=<value> pair.

$ oc process -o yaml -f mysql.yaml \
> -p MYSQL_USER=dev -p MYSQL_PASSWORD=$P4SSD -p MYSQL_DATABASE=bank \
> -p VOLUME_CAPACITY=10G6i > mysqlProcessed.yaml

To create the application, use the generated YAML resource definition file:

$ oc create -f mysqlProcessed.yaml

Alternatively, it is possible to process the template and create the application without saving a
resource definition file by using a UNIX pipe:

Chapter 7 | Deploying Multi-Container Applications

$ oc process -f mysql.yaml -p MYSQL_USER=dev \
> -p MYSQL_PASSWORD=$P4SSD -p MYSQL_DATABASE=bank \
> -p VOLUME_CAPACITY=10Gi | oc create -f -

To use a template in the openshift project to create an application in your project, first export
the template:

$ oc get template mysql-persistent -o yaml \
> -n openshift > mysql-persistent-template.yaml

Next, identify appropriate values for the template parameters and process the template:

$ oc process -f mysql-persistent-template.yaml \
> -p MYSQL_USER=dev -p MYSQL_PASSWORD=$P4SSD -p MYSQL_DATABASE=bank \
> -p VOLUME_CAPACITY=10G6i | oc create -f -

You can also use two slashes (//) to provide the namespace as part of the template name:

$ oc process openshift//mysql-persistent \
> -p MYSQL_USER=dev -p MYSQL_PASSWORD=$P4SSD -p MYSQL_DATABASE=bank \
> -p VOLUME_CAPACITY=10Gi | oc create -f -

Alternatively, it is possible to create an application using the oc new-app command passing the
template name as the - -template option argument:

$ oc new-app --template=mysql-persistent \

> -p MYSQL_USER=dev -p MYSQL_PASSWORD=$P4SSD -p MYSQL_DATABASE=bank \
> -p VOLUME_CAPACITY=10Gi \

> --as-deployment-config

Configuring Persistent Storage for OpenShift
Applications

OpenShift Container Platform manages persistent storage as a set of pooled, cluster-wide
resources. To add a storage resource to the cluster, an OpenShift administrator creates a
PersistentVolume object that defines the necessary metadata for the storage resource. The
metadata describes how the cluster accesses the storage, as well as other storage attributes such
as capacity or throughput.

To list the PersistentVolume objectsin a cluster, use the oc get pv command:

[admin@host ~]$ oc get pv

NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM
pveeO1 iMi RWO Retain Available
pveeO2 10Mi RWX Recycle Available

...output omitted. ..

To see the YAML definition for a given PersistentVolume, use the oc get command with the
-0 yaml option:

Chapter 7 | Deploying Multi-Container Applications

[admin@host ~]$ oc get pv pveool -o yaml
apiVersion: vi
kind: PersistentVolume
metadata:
creationTimestamp: ...value omitted...
finalizers:
- kubernetes.io/pv-protection
labels:
type: local
name: pvoeO1l
resourceVersion: ...value omitted...
selfLink: /api/vil/persistentvolumes/pv0001
uid: ...value omitted...
spec:
accessModes:
- ReadWriteOnce
capacity:
storage: 1Mi
hostPath:
path: /data/pveeo1l
type: ""
persistentVolumeReclaimPolicy: Retain
status:
phase: Available

To add more PersistentVolume objects to a cluster, use the oc create command:

[admin@host ~]$ oc create -f pv1001.yaml

Note
S The above pv1001.yaml file must contain a persistent volume definition, similar in
structure to the output of the oc get pv pv-name -o yaml command.

Requesting Persistent Volumes

When an application requires storage, you create a PersistentVolumeClaim (PVC) object
to request a dedicated storage resource from the cluster pool. The following content from a file
named pvc.yamlis an example definition for a PVC:

apiVersion: vi
kind: PersistentVolumeClaim
metadata:

name: myapp
spec:

accessModes:

- ReadWriteOnce

resources:

requests:
storage: 16Gi

Chapter 7 | Deploying Multi-Container Applications

The PVC defines storage requirements for the application, such as capacity or throughput. To
create the PVC, use the oc create command:

[admin@host ~]$ oc create -f pvc.yaml

After you create a PVC, OpenShift attempts to find an available PersistentVolume resource
that satisfies the PVC's requirements. If OpenShift finds a match, it binds the PersistentVolume
object to the PersistentVolumeClaim object. To list the PVCs in a project, use the oc get pvc
command:

[admin@host ~]$ oc get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
myapp Bound pveeO1 161 RWO 6s

The output indicates whether a persistent volume is bound to the PVC, along with attributes of the
PVC (such as capacity).

To use the persistent volume in an application pod, define a volume mount for a container
that references the PersistentVolumeClaim object. The application pod definition below
references a PersistentVolumeClaim object to define a volume mount for the application:

apiversion: "v1i"
kind: "Pod"
metadata:
name: "myapp"
labels:
name: "myapp"
spec:
containers:
- name: "myapp"
image: openshift/myapp
ports:
- containerPort: 80
name: "http-server"
volumeMounts:
- mountPath: "/var/www/html"
name: "pvol" (1]
volumes:
- name: "pvol" (2]
persistentVolumeClaim:
claimName: “myapp“e,

© This section declares that the pvol volume mounts at /var/www/htm1in the container file
system.

© This section defines the pvol volume.

© The pvol volume references the myapp PVC. If OpenShift associates an available persistent
volume to the myapp PVC, then the pvol volume refers to this associated volume.

Configuring Persistent Storage with Templates

Templates are often used to simplify the creation of applications requiring persistent storage.
Many of these templates have a suffix of -persistent:

Chapter 7 | Deploying Multi-Container Applications

[student@workstation ~]$ oc get templates -n openshift | grep persistent
cakephp-mysql-persistent An example CakePHP application with a MySQL data...

dancer-mysqgl-persistent An example Dancer application with a MySQL datab...
django-psql-persistent An example Django application with a PostgreSQL ...
dotnet-pgsql-persistent An example .NET Core application with a PostgresS...
jenkins-persistent Jenkins service, with persistent storage....

mariadb-persistent MariaDB database service, with persistent storag...
mongodb-persistent MongoDB database service, with persistent storag...
mysql-persistent MySQL database service, with persistent storage....
nodejs-mongo-persistent An example Node.js application with a MongoDB da...
postgresql-persistent PostgreSQL database service, with persistent sto...
rails-pgsql-persistent An example Rails application with a PostgreSQL d...
redis-persistent Redis in-memory data structure store, with persi...

The following example template defines a PersistentVolumeClaim object along with a
DeploymentConfig object:

apiVersion: template.openshift.io/v1
kind: Template
labels:
template: myapp-persistent-template
metadata:
name: myapp-persistent
namespace: openshift
objects:
- apiVersion: vi
kind: PersistentVolumeClaim o
metadata:
name: ${APP_NAME}
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: ${VOLUME_CAPACITY}
- apiVersion: vi
kind: DeploymentConfig ©
metadata:
name: ${APP_NAME}
spec:
replicas: 1
selector:
name: ${APP_NAME}
strategy:
type: Recreate
template:
metadata:
labels:
name: ${APP_NAME}
spec:
containers:
- image: 'openshift/myapp'
name: myapp

Chapter 7 | Deploying Multi-Container Applications

volumeMounts:
- mountPath: /var/lib/myapp/data
name: ${APP_NAME}-data ©
volumes:
- name: ${APP_NAME}-data @
persistentVolumeClaim:
claimName: ${APP_NAME}

parameters:

description: The name for the myapp application.

displayName: Application Name

name: APP_NAME

required: true

value: myapp

description: Volume space available for data, e.g. 512Mi, 2Gi.
displayName: Volume Capacity

name: VOLUME_CAPACITY

required: true

value: 1Gi

QO The template defines a PersistentVolumeClaim and DeploymentConfig object. Both

objects have names matching the value of the APP_NAME parameter. The persistent volume
claim defines a capacity corresponding the value of the VOLUME_CAPCITY parameter.

© O The DeploymentConfig object defines a volume mount referencing the

PersistentVolumeClaim created by the template.

© O The template defines two parameters: APP_NAME and VOLUME_CAPACITY. The template

uses these parameters to specify the value of attributes for the PersistentVolumeClaim
and DeploymentConfig objects.

With this template, you only need to specify the APP_NAME and VOLUME_CAPACITY parameters
to deploy the myapp application with persistent storage:

[student@workstation ~]$ oc create myapp-template.yaml
template.template.openshift.io/myapp-persistent created
[student@workstation ~]$ oc process myapp-persistent \
> -p APP_NAME=myapp-dev -p VOLUME_CAPACITY=1Gi \

> | oc create -f -

deploymentconfig/myapp created
persistentvolumeclaim/myapp created

D References
Developer information about templates can be found in the Using Templates

section of the OpenShift Container Platform documentation:

Developer Guide

https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.5/html-single/images/index#using-templates

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/images/index#using-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/images/index#using-templates

Chapter 7 | Deploying Multi-Container Applications

» Guided Exercise

Creating an Application with a Template

In this exercise, you will deploy the To Do List application in OpenShift Container Platform
using a template to define resources your application needs to run.

Outcomes
You should be able to build and deploy an application in OpenShift Container Platform using
a provided JSON template.

Before You Begin

You must have the To Do List application source code and lab files on workstation. To
download the lab files and verify the status of the OpenShift cluster, run the following
command in a new terminal window.

[student@workstation ~]$ lab multicontainer-openshift start

P 1. UsetheDockerfileinthe images/mysql subdirectory to build the database container.
Publish the container image to quay . 10 with a tag of do180-mysql-57-rhel7.

11. Build the MySQL database image.

[student@workstation ~]$ cd ~/D0180/labs/multicontainer-openshift/images/mysql
[student@workstation mysql]$ sudo podman build -t do180-mysql-57-rhel7 .

STEP 1: FROM rhscl/mysql-57-rhel?7

Getting image source signatures

Copying blob sha256:e373541...output omitted...

69.66 MB / 69.66 MB [] 6s
Copying blob sha256:c5d2e94...output omitted...
1.20 KB / 1.20 KB [] os
Copying blob sha256:b3949ae...output omitted...
62.03 MB / 62.03 MB [] 5s

Writing manifest to image destination

Storing signatures

STEP 2: ADD root /

STEP 3: COMMIT dol180-mysql-57-rhel?
efab36a2d63c2chad0fee4a8e4858f1655e27ed2d6900748c87dee@Obef8d18f

1.2. To make the image available for OpenShift, tag it and push it up to quay . io. To do
so, run the following commands in the terminal window.

[student@workstation mysql]$ source /usr/local/etc/ocp4.config
[student@workstation mysql]$ sudo podman login quay.io -u ${RHT_OCP4_QUAY_USER}
Password: your_quay_password

Login Succeeded!

[student@workstation mysql]$ sudo podman tag \

> do180-mysql-57-rhel7 quay.io/${RHT_OCP4_QUAY_USER}/d0180-mysql-57-rhel7

Chapter 7 | Deploying Multi-Container Applications

[student@workstation mysql]$ sudo podman push \

> quay.io/${RHT_OCP4_QUAY_USER}/d01806-mysql-57-rhel7

Getting image source signatures

Copying blob ssha256:04dbae...b21619

205.17 MB / 205.17 MB [] 1m19s
...output omitted...

Writing manifest to image destination

Storing signatures

14

Note
The config sha256: value in the above output may differ from your output.

it. Refer to the Repositories Visibility section of the Appendix C to read
details about how to change repository visibility.

Warning
Make sure the repository is public in quay . 10 so OpenShift can get the image from

b 2

Build the base image for the To Do List application using the Node.js Dockerfile, located
in the exercise subdirectory images/nodejs. Tag the image as do180-nodejs. Do not
publish this image to the registry.

[student@workstation mysql]$ cd ~/D0180/1labs/multicontainer-openshift
[student@workstation multicontainer-openshift]$ cd images/nodejs
[student@workstation nodejs]$ sudo podman build --layers=false -t do186-nodejs .
STEP 1: ubi7/ubi:7.7

Getting image source signatures

Copying blob sha256:5d92fc...1ce84e

...output omitted...

Storing signatures

STEP 2: MAINTAINER username <username@example.com>

...output omitted...

STEP 8: CMD ["echo", "You must create your own container from this one."]

...output omitted...
STEP 9: COMMIT ...output omitted...localhost/dol180-nodejs: latest
...output omitted...

) 3.

Use the build. sh scriptin the deploy/nodejs subdirectory to build the To Do List
application. Publish the application image to quay . 10 with an image tag of do180-
todonodejs.

31 Gotothe~/D0180/1labs/multicontainer-openshift/deploy/nodejs
directory and run the build. sh command to build the child image.

[student@workstation nodejs]$ cd ~/D0180/1labs/multicontainer-openshift
[student@workstation multicontainer-openshift]$ cd deploy/nodejs
[student@workstation nodejs]$./build.sh

Preparing build folder

STEP 1: FROM dol180-nodejs

STEP 2: ARG NEXUS_BASE_URL

Chapter 7 | Deploying Multi-Container Applications

STEP 3: MAINTAINER username <username@example.com>
...output omitted. ..

STEP 7: CMD ["scl","enable","rh-nodejs8","./run.sh"]
STEP 8: COMMIT dol80/todonodejs

...output omitted. ..

3.2. Push the image to quay. io.

In order to make the image available for OpenShift to use in the template, tag it and
push it to the private registry. To do so, run the following commands in the terminal
window.

[student@workstation nodejs]$ sudo podman tag do180/todonodejs \
> quay.io/${RHT_OCP4_ QUAY USER}/do180-todonodejs
[student@workstation nodejs]$ sudo podman push \

> quay.io/${RHT_OCP4_ QUAY USER}/do180-todonodejs

Getting image source signatures

Copying blob sha256:24a5c62...output omitted...

...output omitted...

Copying blob sha256:5f70bf1...output omitted...

1024 B / 1024 B [] os
Copying config sha256:c43306d...output omitted.. .
7.26 KB / 7.26 KB [] 6s

Writing manifest to image destination
Copying config sha256:c43306d...output omitted.. .
O B / 7.26 KB [------n-n-ccc oo oo ceeeeececceeeeeeo-o-] os
Writing manifest to image destination
Storing signatures

it. Refer to the Repositories Visibility section of the Appendix C to read

Warning
Make sure the repository is public in quay . 10 so OpenShift can get the image from
details about how to change repository visibility.

P 4. Create the To Do List application from the provided JSON template.

41. Login to OpenShift Container Platform.

[student@workstation nodejs]$ oc login -u ${RHT_OCP4_DEV_USER} \
> -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_MASTER_API}

Login successful.

...output omitted...

Using project "default".

If the oc Login command prompts about using insecure connections, answer y
(yes).

4.2. Create a new project template in OpenShift to use for this exercise. Run the following
command to create the template project.

Chapter 7 | Deploying Multi-Container Applications

[student@workstation nodejs]$ oc new-project ${RHT_OCP4_DEV_USER}-template
Now using project ...output omitted...

4.3. Review the template.

Using your preferred editor, open and examine the template located at /
home/student/D0180/labs/multicontainer-openshift/todo-
template. json. Notice the following resources defined in the template and review
their configurations.

+ The todoapi pod definition defines the Node.js application.

+ The mysql pod definition defines the MySQL database.

+ The todoapi service provides connectivity to the Node.js application pod.
+ The mysql service provides connectivity to the MySQL database pod.

+ The dbinit persistent volume claim definition defines the MySQL /var/1ib/
mysql/init volume.

+ The dbclaim persistent volume claim definition defines the MySQL /var/1ib/
mysql/data volume.

4.4. Process the template and create the application resources.

Use the oc process command to process the template file. This template

requires the Quay.io namespace to retrieve the container images, as the
RHT_OCP4_QUAY_USER parameter. Use the pipe command to send the result to the
oc create command.

Run the following command in the terminal window:

[student@workstation nodejs]$ cd /home/student/D0180/labs/multicontainer-openshift
[student@workstation multicontainer-openshift]$ oc process \

> -f todo-template.json -p RHT_OCP4_QUAY_USER=${RHT_OCP4_QUAY_USER} \

> | oc create -f -

pod/mysql created

pod/todoapi created

service/todoapi created

service/mysql created

persistentvolumeclaim/dbinit created

persistentvolumeclaim/dbclaim created

45. Review the deployment.

Review the status of the deployment using the oc get pods command with the
-w option to continue to monitor the pod status. Wait until both the containers are
running. It may take some time for both pods to start.

[student@workstation multicontainer-openshift]$ oc get pods -w

NAME READY STATUS RESTARTS AGE
mysql 0/1 ContainerCreating 0] 27s
todoapi 1/1 Running 0] 27s
mysql 1/1 Running 0] 27s

Press Ctr 1+C to exit the command.

Chapter 7 | Deploying Multi-Container Applications

P 5. Expose the Service.

To allow the To Do List application to be accessible through the OpenShift router and to be
available as a public FQDN, use the oc expose command to expose the todoapi service.

Run the following command in the terminal window.

[student@workstation multicontainer-openshift]$ oc expose service todoapi
route.route.openshift.io/todoapi exposed

P 6. Testthe application.

6.1. Find the FQDN of the application by running the oc status command and note the
FQDN for the app.

Run the following command in the terminal window.

[student@workstation multicontainer-openshift]$ oc status | grep -o "http:.*com"
http://todoapi-${RHT_OCP4_QUAY_USER}-template.${RHT_OCP4_WILDCARD_DOMAIN}

6.2. Use curlto test the REST API for the To Do List application.

[student@workstation multicontainer-openshift]$ curl -w "\n" \
> $(oc status | grep -o "http:.*com")/todo/api/items/1
{"id":1, "description":"Pick up newspaper", "done":false}

The -w "\n" option with cur 1 command lets the shell prompt appear at the next
line rather than merging with the output in the same line.

6.3. Open Firefox onworkstation and point your browser
tohttp://todoapi-${RHT_OCP4_QUAY_USER} -
template.${RHT_0OCP4_WILDCARD_DOMAIN}/todo/ and you should see the To
Do List application.

Note
E The trailing slash in the URL mentioned above is necessary. If you do not include
that in the URL, you may encounter issues with the application.

Chapter 7 | Deploying Multi-Container Applications

To Do List % [k

« e @ @ todoapi-template apps. cluster.lab. example.com/todo/ - @
To Do List Application
To Do List Add Task
id Description Done Description:
1 Pick up newspaper false x Add Description.
2 Buy groceries true x ez

Completed: ‘ ‘

First | Previous - Next | Last

Figure 7.4: To Do List application

Finish
Onworkstation, runthe lab multicontainer-openshift finish scriptto complete this
lab.

[student@workstation ~]$ lab multicontainer-openshift finish

This concludes the guided exercise.

DO180-0OCP4.5-en-3-20201217 w

Chapter 7 | Deploying Multi-Container Applications

» Lab

Deploying Multi-Container Applications

Performance Checklist

In this lab, you will deploy a PHP Application with a MySQL database using an OpenShift
template to define the resources needed by the application.

Outcomes

You should be able to create an OpenShift application comprised of multiple containers and
access it through a web browser.

Before You Begin

Open a terminal on workstation as the student user and run the following commands:

[student@workstation ~]$ lab multicontainer-review start
[student@workstation ~]$ cd ~/D0180/labs/multicontainer-review

1. Login to OpenShift cluster and create a new project for this exercise.

2. Build the Database container image located in the images/mysql directory and publish it to
your Quay.io repository.

3. Build the PHP container image located in the images/quote-php and publish it to your
Quay.io repository.

Warning
Make sure both repositories are public in quay . 10 so OpenShift can get the images

from it. Refer to the Repositories Visibility section of the Appendix C to
read details about how change repository visibility.

4. Gotothe /home/student/D0180/1labs/multicontainer-review/ directory and
review the provided template quote-php-template. json file.

Note the definitions and configuration of the pods, services, and persistent volume claims
defined in the template.

5. Upload the PHP application template so that any developer with access to your project can
use it.

Process the uploaded template and create the application resources.
Expose the service.

Test the application and verify that it outputs an inspiring message.

Evaluation

Grade your work by running the lab multicontainer-review grade command from your
workstation machine. Correct any reported failures and rerun the script until successful.

W DO180-0OCP4.5-en-3-20201217

Chapter 7 | Deploying Multi-Container Applications
[student@workstation ~]$ lab multicontainer-review grade
Finish

To complete this lab, run the lab multicontainer-review finish command on
workstation.

[student@workstation ~]$ lab multicontainer-review finish

This concludes the lab.

DO180-0OCP4.5-en-3-20201217

Chapter 7 | Deploying Multi-Container Applications

4

Solution

Deploying Multi-Container Applications

2.

Performance Checklist
In this lab, you will deploy a PHP Application with a MySQL database using an OpenShift
template to define the resources needed by the application.

Outcomes
You should be able to create an OpenShift application comprised of multiple containers and
access it through a web browser.

Before You Begin
Open a terminal on workstation as the student user and run the following commands:

[student@workstation ~]$ lab multicontainer-review start
[student@workstation ~]$ cd ~/D0180/labs/multicontainer-review

Log in to OpenShift cluster and create a new project for this exercise.

11, Fromworkstation, login as the user provided at the first exercise.

[student@workstation multicontainer-review]$ source /usr/local/etc/ocp4.config
[student@workstation multicontainer-review]$ oc login -u ${RHT_OCP4_DEV_USER} \
> -p ${RHT_OCP4_DEV_PASSWORD} ${RHT OCP4 MASTER_API}

Login successful.

You don't have any projects. You can try to create a new project, by running
oc new-project <projectname>
If the oc login command prompts about using insecure connections, answer y (yes).

1.2. Create a new project in OpenShift named dep Loy and prefixed by your OpenShift
username:

[student@workstation multicontainer-review]$ oc new-project \
> ${RHT_OCP4_DEV_USER}-deploy
Now using project ...output omitted...

Build the Database container image located in the images/mysql directory and publish it to
your Quay.io repository.

2. Build the MySQL Database image using the provided Dockerfile in the images/mysql
directory.

Chapter 7 | Deploying Multi-Container Applications

[student@workstation multicontainer-review]$ cd images/mysql
[student@workstation mysql]$ sudo podman build -t do180-mysql-57-rhel7 .
STEP 1: FROM rhscl/mysql-57-rhel7

...output omitted...

STEP 4: COMMIT dol180-mysql-57-rhel?

397a...5cfb

2.2. Push the MySQL image to the your Quay.io repository.
In order to make the image available for OpenShift to use in the template, give it the
tagquay.io/${RHT_OCP4_QUAY_USER}/d0180-mysql-57-rhel7 and push it to
the quay . io registry. In order to push images to quay . 1o you first need to log in with
your own credentials.

[student@workstation mysql]$ sudo podman login quay.io -u ${RHT_OCP4_QUAY_USER}
Password: your_quay_password
Login Succeeded!

To tag and push the image run the following commands in the terminal window.

[student@workstation mysql]$ sudo podman tag do186-mysql-57-rhel7 \
> quay.io/${RHT_OCP4_QUAY_USER}/d0180-mysql-57-rhel7
[student@workstation mysql]$ sudo podman push \

> quay.io/${RHT_OCP4_QUAY_USER}/d0180-mysql-57-rhel7

Getting image source signatures

...output omitted. ..

Writing manifest to image destination

Storing signatures

Return to the previous directory.

[student@workstation mysql]$ cd ~/D0180/labs/multicontainer-review

3. Build the PHP container image located in the images/quote-php and publish it to your
Quay.io repository.

from it. Refer to the Repositories Visibility section of the Appendix C to

Warning
Make sure both repositories are public in quay . 10 so OpenShift can get the images
read details about how change repository visibility.

3.1. Build the PHP image using the provided Dockerfile in the images/quote-php
directory.

[student@workstation multicontainer-review]$ cd images/quote-php
[student@workstation quote-php]$ sudo podman build -t do180-quote-php .
STEP 1: FROM registry.access.redhat.com/ubi8/ubi

...output omitted. ..

STEP 8: COMMIT dol80-quote-php

271f...525d

Chapter 7 | Deploying Multi-Container Applications

3.2. Tagand push the PHP image to your Quay.io registry.

In order to make the image available for OpenShift to use in the template, give it the
tag of quay.i10/${RHT_OCP4_QUAY_USER/d0180-quote-php and push it to
Quay.io.

[student@workstation quote-php]$ sudo podman tag do180-quote-php \
> quay.io/${RHT_OCP4_QUAY_USER}/do180-quote-php
[student@workstation quote-php]$ sudo podman push \

> quay.io/${RHT_OCP4_QUAY_USER}/do180-quote-php

Getting image source signatures

...output omitted...

Writing manifest to image destination

Storing signatures

4. Gotothe /home/student/D0180/1labs/multicontainer-review/ directory and
review the provided template quote-php-template. json file.

Note the definitions and configuration of the pods, services, and persistent volume claims
defined in the template.

[student@workstation quote-php]$ cd ~/D0180/labs/multicontainer-review

5. Upload the PHP application template so that any developer with access to your project can
use it.

Use the oc create -f command to upload the template file to the project.

[student@workstation multicontainer-review]$ oc create -f quote-php-template.json
template.template.openshift.io/quote-php-persistent created

6. Process the uploaded template and create the application resources.

6.1. Use the oc process command to process the template file. Make sure providing the
RHT_OCP4_QUAY_USER parameter with the quay .10 namespace where images are
located. Use the pipe command to send the result to the oc create command to
create an application from the template.

[student@workstation multicontainer-review]$ oc process quote-php-persistent \
> -p RHT_OCP4_QUAY_USER=${RHT_OCP4_QUAY_USER} \

> | oc create -f -

pod/mysql created

pod/quote-php created

service/quote-php created

service/mysql created

persistentvolumeclaim/dbinit created

persistentvolumeclaim/dbclaim created

6.2. Verify the status of the deployment using the oc get pods command with the -w
option to monitor the deployment status. Wait until both pods are running. It may take
some time for both pods to start up.

Chapter 7 | Deploying Multi-Container Applications

[student@workstation multicontainer-review]$ oc get pods -w

NAME READY STATUS RESTARTS AGE
mysql 0/1 ContainerCreating 0 21s
quote-php 0/1 ContainerCreating 0 20s
quote-php 1/1 Running 0 35s
mysql 1/1 Running 0 49s
nC

Press Ctr 1+C to exit the command.

7. Expose the service.

To allow the PHP Quote application to be accessible through the OpenShift router and
reachable from an external network, use the oc expose command to expose the quote-
php service.

Run the following command in the terminal window.

[student@workstation multicontainer-review]$ oc expose svc quote-php
route.route.openshift.io/quote-php exposed

8. Test the application and verify that it outputs an inspiring message.

81. Usetheoc get route command to find the FQDN where the application is available.
Note the FQDN for the app.

Run the following command in the terminal window.

[student@workstation multicontainer-review]$ oc get route
NAME HOST/PORT PATH SERVICES
quote-php quote-php-your_dev_user-deploy.wildcard_domain quote-php

8.2. Use the cur 1l command to test the REST API for the PHP Quote application.

[student@workstation ~]$ curl -w "\n" \
> http://quote-php-${RHT_OCP4_DEV_USER}-deploy.${RHT_OCP4_WILDCARD_DOMAIN}
Always remember that you are absolutely unique. Just 1like everyone else.

Note
S The text displayed in the output above may differ, but the cur 1 command should
run successfully.

Evaluation

Grade your work by running the lab multicontainer-review grade command from your
workstation machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab multicontainer-review grade

Chapter 7 | Deploying Multi-Container Applications

Finish
To complete this lab, run the lab multicontainer-review finish command on

workstation.

[student@workstation ~]$ lab multicontainer-review finish

This concludes the lab.

W DO180-0OCP4.5-en-3-20201217

Chapter 7 | Deploying Multi-Container Applications

Summary

In this chapter, you learned:

+ Software defined networks enable communication between containers. Containers must be
attached to the same software-defined network to communicate.

- Containerized applications cannot rely on fixed IP addresses or host names to find services.

« Podman uses Container Network Interface (CNI) to create a software-defined network and
attaches all containers on the host to that network. Kubernetes and OpenShift create a
software-defined network between all containers in a pod.

+ Within the same project, Kubernetes injects a set of variables for each service into all pods.

+ Kubernetes templates automate creating applications consisting of multiple resources.
Template parameters allow using the same values when creating multiple resources.

y 2AR(IA

3 n ."'".'"".l
o

A

=

i)

=]
L

LUOD JeUL

—
|
&)]

) ILBILIAL

n

.
[

-
L

—
L

) 1eH pay T

W DO180-OCP4.5-en-3-20201217

Chapter 8

Troubleshooting Containerized
Applications

Goal

Objectives

Sections

TN

Lab

r/

Troubleshoot a containerized application deployed U
on OpenShift.
Troubleshoot an application build and .
deployment on OpenShift. *
Implement techniques for troubleshooting and ,
debugging containerized applications. '.
Troubleshooting S2I Builds and Deployments i

(and Guided Exercise)

Troubleshooting Containerized Applications
(and Guided Exercise)

Troubleshooting Containerized Applications

DO180-0OCP4.5-en-3-20201217

Chapter 8 | Troubleshooting Containerized Applications

Troubleshooting S2I Builds and
Deployments

Objectives

After completing this section, you should be able to:
+ Troubleshoot an application build and deployment steps on OpenShift.

+ Analyze OpenShift logs to identify problems during the build and deploy process.

Introduction to the S2Il Process

The Source-to-Image (S2!) process is a simple way to automatically create images based on the
programming language of the application source code in OpenShift. While this process is often a
convenient way to quickly deploy applications, problems can arise during the S2l image creation
process, either by the programming language characteristics or the runtime environment that
require both developers and administrators to work together.

It is important to understand the basic workflow for most of the programming languages
supported by OpenShift. The S2| image creation process is composed of two major steps:

+ Build step: Responsible for compiling source code, downloading library dependencies, and
packaging the application as a container image. Furthermore, the build step pushes the image to
the OpenShift registry for the deployment step. The BuildConfig (BC) OpenShift resources
drive the build step.

+ Deployment step: Responsible for starting a pod and making the application available for
OpenShift. This step executes after the build step, but only if the build step succeeded. The
DeploymentConfig (DC) OpenShift resources drive the deployment step.

For the S2I process, each application uses its own BuildConfig and DeploymentConfig
objects, the name of which matches the application name. The deployment process aborts if the
build fails.

The S2I process starts each step in a separate pod. The build process creates a pod named
<application-name>-build-<number>-<string>. For each build attempt, the entire build
step executes and saves a log. Upon a successful build, the application starts on a separate pod
named as <application-name>-<string>.

The OpenShift web console can be used to access the details for each step. To identify any build
issues, the logs for a build can be evaluated and analyzed by clicking the Builds link from the left
panel, depicted as follows.

Chapter 8 | Troubleshooting Containerized Applications

Home Builds
Operators Y Filter Name ~ Search by name.. /
Workloads
Name 1 Namespace Status Created
Networking
@ httpd-example-1 @ troubleshoot @ Complete @ 2 minutes ago

Storage

Builds
Build Configs
Builds

Image Streams

Figure 8.1: Build instances of a project

For each build attempt, a history of the build, tagged with a number, is provided for evaluation.
Clicking on the build name leads to the details page of the build.

Networking Build Details
Storage Memory Usage CPU Usage Filesystem
80 MiB 100m
. oB
Builds
60 MiB
Build Configs -
9 40 MiB 50m os
Builds 20 MiB
Image Streams
1730 1731 17:32 17:33 17:31 17:32 17:33 17:31 17:32 17:33
Compute
User Management Name Status
httpd-example-1 @ Complete
Administration
Namespace Type
@D troubleshoot Source
Labels Git Repository
app=httpd-example buildconfig=httpd-example https://github.com/sclorg/httpd-ex.git

openshift.io/build-config.name=httpd-example

openshift.io/build.start-policy=Serial Git Commit

Figure 8.2: Detailed view of a build instance

The Logs tab of the build details page shows the output generated by the build execution. Those
logs are handy to identify build issues.

Use the Deployment Configs link under Workloads section from the left panel to identify issues
during the deployment step.

After selecting the appropriate deployment configuration, details show in the Details section.

The oc command-line interface has several subcommands for managing the logs. Likewise in the
web interface, it has a set of commands which provides information about each step. For example,
to retrieve the logs from a build configuration, run the following command.

$ oc logs bc/<application-name>

If a build fails, after finding and fixing the issues, run the following command to request a new
build:

DO180-0OCP4.5-en-3-20201217 w

Chapter 8 | Troubleshooting Containerized Applications

$ oc start-build <application-name>

By issuing that command, OpenShift automatically spawns a new pod with the build process.

Deployment logs can be checked with the oc command:

$ oc logs dc/<application-name>

If the deployment is running or has failed, the command returns the logs of the process
deployment process. Otherwise, the command returns the logs from the application's pod.

Describing Common Problems

Sometimes, the source code requires some customization that may not be available in
containerized environments, such as database credentials, file system access, or message queue
information. Those values usually take the form of internal environment variables. Developers
using the S2I process may need to access this information.

The oc logs command provides important information about the build, deploy, and run
processes of an application during the execution of a pod. The logs may indicate missing values or
options that must be enabled, incorrect parameters or flags, or environment incompatibilities.

Note
E Application logs must be clearly labelled to identify problems quickly without the
need to learn the container internals.

Troubleshooting Permission Issues

OpenShift runs S2I containers using Red Hat Enterprise Linux as the base image, and any runtime
difference may cause the S2I process to fail. Sometimes, the developer runs into permission
issues, such as access denied due to the wrong permissions, or incorrect environment permissions
set by administrators. S2I images enforce the use of a different user than the root user to access
file systems and external resources. Also, Red Hat Enterprise Linux 7 enforces SELinux policies
that restrict access to some file system resources, network ports, or process.

Some containers may require a specific user ID, whereas S2| is designed to run containers using a
random user as per the default OpenShift security policy.

The following Dockerfile creates a Nexus container. Note the USER instruction indicating the
nexus user should be used:

FROM ubi7/ubi:7.7
...contents omitted. ..
RUN chown -R nexus:nexus ${NEXUS_HOME}

USER nexus
WORKDIR ${NEXUS_HOME}

VOLUME ["/opt/nexus/sonatype-work"]
...contents omitted...

Chapter 8 | Troubleshooting Containerized Applications

Trying to use the image generated by this Dockerfile without addressing volume permissions
drives to errors when the container starts:

$ oc logs nexus-1-wzjrn
...output omitted...

. org.sonatype.nexus.util.LockFile - Failed to write lock file
..FileNotFoundException: /opt/nexus/sonatype-work/nexus.lock (Permission denied)
..output omitted...

. org.sonatype.nexus.webapp.WebappBootstrap - Failed to initialize

. lStateException: Nexus work directory already in use: /opt/nexus/sonatype-work
..output omitted...

To solve this issue, relax the OpenShift project security with the command oc adm policy.

[student@workstation ~]$ oc adm policy add-scc-to-user anyuid -z default

Thisoc adm policy command enables OpenShift executing container processes with non-root
users. But the file systems used in the container must also be available for the running user. This is
specially important when the container contains volume mounts.

To avoid file system permission issues, local folders used for container volume mounts must satisfy
the following:

+ The user executing the container processes must be the owner of the folder, or have the
necessary rights. Use the chown command to update folder ownership.

+ The local folder must satisfy the SELinux requirements to be used as a container volume.
Assign the container_file_t group to the folder by using the semanage fcontext -
a -t container_file_t <folder>command, then refresh the permissions with the
restorecon -R <folder>command.

Troubleshooting Invalid Parameters

Multi-container applications may share parameters, such as login credentials. Ensure that the
same values for parameters reach all containers in the application. For example, for a Python
application that runs in one container, connected with another container running a database, make
sure that the two containers use the same user name and password for the database. Usually, logs
from the application pod provide a clear idea of these problems and how to solve them.

A good practice to centralize shared parameters is to store them in ConfigMaps. Those
ConfigMaps can be injected through the Deployment Config into containers as environment
variables. Injecting the same ConfigMap into different containers ensures that not only the same
environment variables are available, but also the same values. See the following pod resource
definition:

apiVersion: vi
kind: Pod
...output omitted. ..
spec:

containers:

- name: test-container

...output omitted. ..

env:

- name: ENV_1 ©

Chapter 8 | Troubleshooting Containerized Applications

valueFrom:
configMapKeyRef:
name: configMap_namel
key: configMap_key 1
...output omitted. ..
envFrom:
- configMapRef:
name: configMap_name_2 (2]
..output omitted...

© AnENV_1 environment variable is injected into the container. Its value is the value for the
configMap_key_1 entry in the configMap_namel configMap.

© Allentries in configMap_name_2 are injected into the container as environment variables
with the same name and values.

Troubleshooting Volume Mount Errors

When redeploying an application that uses a persistent volume on a local file system, a pod might
not be able to allocate a persistent volume claim even though the persistent volume indicates
that the claim is released. To resolve the issue, delete the persistent volume claim and then the
persistent volume. Then recreate the persistent volume.

oc delete pv <pv_name>
oc create -f <pv_resource_file>

Troubleshooting Obsolete Images

OpenShift pulls images from the source indicated in an image stream unless it locates a locally-
cached image on the node where the pod is scheduled to run. If you push a new image to the
registry with the same name and tag, you must remove the image from each node the pod is
scheduled on with the command podman rmi.

Run the oc adm prune command for an automated way to remove obsolete images and other
resources.

D References

More information about troubleshooting images is available in the Images section of
the OpenShift Container Platform documentation accessible at:
Creating Images
https://docs.openshift.com/container-platform/4.5/openshift_images/create-
images.html

Documentation about how to consume ConfigMap to create container environment
variables can be found in the Consuming in Environment Variables of the

Configure a Pod to use ConfigMaps
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-
configmap/#define-container-environment-variables-using-configmap-data

W DO180-0OCP4.5-en-3-20201217

https://docs.openshift.com/container-platform/4.5/openshift_images/create-images.html
https://docs.openshift.com/container-platform/4.5/openshift_images/create-images.html
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#define-container-environment-variables-using-configmap-data
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#define-container-environment-variables-using-configmap-data

Chapter 8 | Troubleshooting Containerized Applications

» Guided Exercise

Troubleshooting an OpenShift Build

In this exercise, you will troubleshoot an OpenShift build and deployment process.

Outcomes
You should be able to identify and solve the problems raised during the build and
deployment process of a Node.js application.

Before You Begin
A running OpenShift cluster.

Retrieve the lab files and verify that Docker and the OpenShift cluster are running by running
the following command.

[student@workstation ~]$ lab troubleshoot-s2i start

P 1. Load the configuration of your classroom environment. Run the following command to load
the environment variables created in the first guided exercise:

[student@workstation ~]$ source /usr/local/etc/ocp4.config

P 2. Enteryour local clone of the D0180-apps Git repository and checkout the master branch
of the course's repository to ensure you start this exercise from a known good state:

[student@workstation ~]$ cd ~/D0180-apps
[student@workstation D0180-apps]$ git checkout master
...output omitted...

P 3. Create a new branch to save any changes you make during this exercise:

[student@workstation D0180-apps]$ git checkout -b troubleshoot-s2i

Switched to a new branch 'troubleshoot-s2i'

[student@workstation D0180-apps]$ git push -u origin troubleshoot-s2i

...output omitted...

* [new branch] troubleshoot-s2i -> s2i

Branch 'troubleshoot-s2i' set up to track remote branch 'troubleshoot-s2i' from
'origin'.

P 4. Login to OpenShift using the configured user, password and Master API URL.

Chapter 8 | Troubleshooting Containerized Applications

[student@workstation D0180-apps]$ oc login -u "${RHT_OCP4_DEV_USER}" \
> -p "${RHT_OCP4_DEV_PASSWORD}"

Login successful.

...output omitted...

Create a new project named youruser-nodejs.

[student@workstation DO180-apps]$ oc new-project ${RHT_OCP4_DEV_USER}-nodejs
Now using project "youruser-nodejs" on server "https://
api.cluster.lab.example.com"

...output omitted. ..

P 5. Build a new Node.js application using the Hello Wor ld image located at https://
github.com/yourgituser/D0180-apps/ in the nodejs-hellowor 1d directory.

51. Runtheoc new-app command to create the Node.js application. The command is
provided in the ~/D0180/ labs/troubleshoot-s2i/command. txt file.

[student@workstation DO180-apps]$ oc new-app --as-deployment-config \

> --context-dir=nodejs-helloworld \

> https://github.com/${RHT_OCP4_GITHUB_USER}/D0180-apps#troubleshoot-s2i \
> -i nodejs:12 --name nodejs-hello --build-env \

> npm_config_registry=http://${RHT_OCP4_NEXUS_SERVER}/repository/npm-proxy
--> Found image a2b5ec2 ...output omitted...

Node.js 12
...output omitted...
--> Creating resources
imagestream.image.openshift.io "nodejs-hello" created
buildconfig.build.openshift.io "nodejs-hello" created
deploymentconfig.apps.openshift.io "nodejs-hello" created
service "nodejs-hello" created
--> Success
Build scheduled, use 'oc logs -f bc/nodejs-hello' to track its progress.
Application is not exposed. You can expose services to the outside world by
executing one or more of the commands below:
'oc expose svc/nodejs-hello!
Run 'oc status' to view your app.

The -1 indicates the builder image to use, nodejs:12 in this case.

The - -context-dir option defines which folder inside the project contains the
source code of the application to build.

The - -build-env option defines an environment variable to the builder pod. In this
case, it provides the npm_config_registry environment variable to the builder
pod, so it can reach the NPM registry.

i~ | Important
In the previous command, there must be no spaces between registry=and the
URL of the Nexus server.

Chapter 8 | Troubleshooting Containerized Applications

5.2. Wait until the application finishes building by monitoring the progress with the oc
get pods -wcommand. The pod transitions from a status of running to Error:

[student@workstation D0180-apps]$ oc get pods -w

NAME READY STATUS RESTARTS AGE
nodejs-hello-1-build 1/1 Running 0 15s
nodejs-hello-1-build 0/1 Error 0 73s
AC

The build process fails, and therefore no application is running. Build failures are
usually consequences of syntax errors in the source code or missing dependencies.
The next step investigates the specific causes for this failure.

5.3. Evaluate the errors raised during the build process.

The build is triggered by the build configuration (bc) created by OpenShift when the
S2l process starts. By default, the OpenShift S2I process creates a build configuration
named as the name given: nodejs-hello, which is responsible for triggering the
build process.

Run the oc command with the Logs subcommand in a terminal window to review the
output of the build process:

[student@workstation D0180-apps]$ oc logs bc/nodejs-hello
Cloning "https://github.com/yourgituser/D0180-apps"
Commit: f7cd8963ef353d9173c3a21dcccf402f3616840b (Initial commit...
...output omitted...
STEP 8: RUN /usr/libexec/s2i/assemble
---> Installing application source ...
---> Installing all dependencies
npm ERR! code ETARGET
npm ERR! notarget No matching version found for express@~4.14.2.
npm ERR! notarget In most cases you or one of your dependencies are requesting
npm ERR! notarget a package version that doesn't exist.
npm ERR! notarget
npm ERR! notarget It was specified as a dependency of 'src'
npm ERR! notarget

npm ERR! A complete log of this run can be found in:

npm ERR! /opt/app-root/src/.npm/_logs/2019-10-25T12 37_56_853Z-debug. log
subprocess exited with status 1

...output omitted...

The log shows an error occurred during the build process. This output indicates that
there is no compatible version for the express dependency. But the reason is that
the format used by the express dependency is not valid.

P 6. Update the build process for the project.

The developer uses a nonstandard version of the Express framework that is available
locally on each developer's workstation. Due to the company's standards, the version
must be downloaded from the Node.js official registry and, from the developer's input, it is
compatible with the 4.14.x version.

6.1. Fixthe package. json file.

Use your preferred editor to open the ~/D0180-apps/nodejs-hellowor1d/
package. json file. Review the dependencies versions provided by the developers.

Chapter 8 | Troubleshooting Containerized Applications

It uses an incorrect version of the Express dependency, which is incompatible with
the supported version provided by the company (~4.14. 2). Update the dependency
version as follows.

{
"name": "nodejs-helloworld",
...output omitted...
"dependencies": {
"express": "4.14.x"
}
}

Note
S Notice the X in the version. It indicates that the highest version should be used, but
the version must begin with 4.14..

6.2. Commit and push the changes made to the project.

From the terminal window, run the following command to commit and push the
changes:

[student@workstation D0180-apps]$ git commit -am "Fixed Express release"
...output omitted. ..
1 file changed, 1 insertion(+), 1 deletion(-)
[student@workstation D0180-apps]$ git push
...output omitted. ..
To https://github.com/yourgituser/D0180-apps
ef6557d..73a82cd troubleshoot-s2i -> troubleshoot-s2i

P 7. Relaunch the S2I process.

71. Torestart the build step, execute the following command:

[student@workstation D0180-apps]$ oc start-build bc/nodejs-hello
build.build.openshift.io/nodejs-hello-2 started

The build step is restarted, and a new build pod is created. Check the log by running
the oc logs command.

[student@workstation D0180-apps]$ oc logs -f bc/nodejs-hello

Cloning "https://github.com/yougituser/D0180-apps"

Commit: ea2125c1bf4681dd9b79ddf920d8d8be38cfcf3b (Fixed Express release)
...output omitted...

Pushing image ...image-registry.svc:5000/nodejs/nodejs-hello: latest...
...output omitted...

Push successful

The build is successful, however, this does not indicate that the application is started.

7.2. Evaluate the status of the current build process. Run the oc get pods command to
check the status of the Node.js application.

Chapter 8 | Troubleshooting Containerized Applications

[student@workstation D0180-apps]$ oc get pods

According to the following output, the second build completed, but the application is
in error state.

NAME READY STATUS RESTARTS AGE
nodejs-hello-1-build 0/1 Error 0] 7mils
nodejs-hello-1-deploy 1/1 Running 0] 53s
nodejs-hello-1-nksdq 0/1 CrashLoopBackOoff 3 51s
nodejs-hello-2-build 0/1 Completed 0] 88s

The name of the application pod (nodejs-hello-1-rpx1d) is generated randomly,
and may differ from yours.

7.3. Review the logs generated by the application pod.

[student@workstation D0180-apps]$ oc logs dc/nodejs-hello
...output omitted...

npm info using npm@6.14.5

npm info using node@v12.18.2

npm ERR! missing script: start

...output omitted. ..

Note

E The oc logs dc/nodejs-hello command dumps the logs from the deployment
pod. In the case of a successful deployment, that command dumps the logs from
the application pod, as previously shown.

If the deployment logs do not display the error, then check the logs of the
application pod by running the oc 1logs POD command replacing POD with the
name of the pod that has a stuatus of CrashLoopBackOff.

The application fails to start because the start script declaration is missing.
) 8. Fix the problem by updating the application code.

8.1. Update the package. json file to define a startup command.

The previous output indicates that the ~/D0180-apps/nodejs-hellowor 1d/
package. json file is missing the start attribute in the scripts field. The start
attribute defines a command to run when the application starts. It invokes the node
binary, which runs the app.js application.

To fix the problem, add to the package. json file the following attribute. Do not
forget the comma after the bracket.

Chapter 8 | Troubleshooting Containerized Applications

"description": "Hello World!",
"main": "app.js",
"scripts": {

"start": "node app.js"

}

"author": "Red Hat Training",

8.2. Commit and push the changes made to the project:

[student@workstation DO180-apps]$ git commit -am "Added start up script"
...output omitted. ..
1 file changed, 3 insertions(+)
[student@workstation D0180-apps]$ git push
...output omitted. ..
To https://github.com/yourgituser/D0180-apps
73a82cd..ab5a0411 troubleshoot-s2i -> troubleshoot-s2i

Continue the deploy step from the S2I process.

8.3. Restart the build step.

[student@workstation D0180-apps]$ oc start-build bc/nodejs-hello
build.build.openshift.io/nodejs-hello-3 started

8.4. Evaluate the status of the current build process. Run the command to retrieve the
status of the Node.js application. Wait for the latest build to finish.

[student@workstation D0180-apps]$ oc get pods -w

NAME READY STATUS RESTARTS AGE
nodejs-hello-1-build 0/1 Error 0 66m
nodejs-hello-1-mtxsh 0/1 CrashLoopBackOff 9 23m
nodejs-hello-2-build 0/1 Completed 0 28m
nodejs-hello-3-build 1/1 Running 0 2m3s
nodejs-hello-2-deploy 0/1 Pending 0 0s
nodejs-hello-2-deploy 0/1 Pending 0] 0s
nodejs-hello-2-deploy 0/1 ContainerCreating 0 0s
nodejs-hello-3-build 0/1 Completed @ 3m9s

nodejs-hello-2-deploy 1/1 Running 0 4s
nodejs-hello-2-8tsl4 0/1 Pending 0 0s
nodejs-hello-2-8tsl4 0/1 Pending 0 1s
nodejs-hello-2-8tsl4 0/1 ContainerCreating 0 1s
nodejs-hello-2-8tsl4 1/1 Running 0 50s

nodejs-hello-1-mtxsh 0/1 Terminating 9 25m
nodejs-hello-1-mtxsh 0/1 Terminating 9 25m
nodejs-hello-2-deploy 0/1 Completed O 61s

nodejs-hello-2-deploy 0/1 Terminating 0 61s
nodejs-hello-2-deploy 0/1 Terminating 0 61s
nodejs-hello-1-mtxsh 0/1 Terminating 9 25m
nodejs-hello-1-mtxsh 0/1 Terminating 9 25m

Chapter 8 | Troubleshooting Containerized Applications

According to the output, the build is successful, and the application is able to start
with no errors. The output also provides insight into how the deployment pod
(nodejs-hello-2-deploy) was created, and that it completed successfully and
terminated. As the new application pod is available (nodejs-hello-2-8ts14), the
old one (nodejs-hello-1-mtxsh)isrolled out.

8.5. Review the logs generated by the nodejs-hello application pod.

[student@workstation D0180-apps]$ oc logs dc/nodejs-hello

Environment:

DEV_MODE=false

NODE_ENV=production

DEBUG_PORT=5858

Launching via npm...

npm info it worked if it ends with ok

npm info using npm@6.14.5

npm info using node@v12.18.2

npm info lifecycle nodejs-hellowor1d@1.0.0~prestart: nodejs-hellowor1d@1.0.0
npm info lifecycle nodejs-hellowor1d@1.0.0~start: nodejs-hellowor1d@1.0.0

> nodejs-helloworld@1.0.0 start /opt/app-root/src
> node app.js

Example app listening on port 8080!
The application is now running on port 8080.
P 9. Test the application.

9.1. Runthe oc command with the expose subcommand to expose the application:

[student@workstation D0180-apps]$ oc expose svc/nodejs-hello
route.route.openshift.io/nodejs-hello exposed

9.2. Retrieve the address associated with the application.

[student@workstation D0180-apps]$ oc get route -o yaml
apiVersion: vi
items:
- apiVersion: route.openshift.io/v1
kind: Route
...output omitted...

spec:
host: nodejs-hello-${RHT_OCP4_DEV_USER}-nodejs.${RHT_OCP4_WILDCARD_DOMAIN}
port:
targetPort: 8080-tcp
to:

kind: Service
name: nodejs-hello
...output omitted...

9.3. Access the application from the workstation VM by using the cur 1 command:

Chapter 8 | Troubleshooting Containerized Applications

[student@workstation D0180-apps]$ curl -w "\n" \
> http://nodejs-hello-${RHT_OCP4_DEV_USER}-nodejs.${RHT_OCP4_WILDCARD_DOMAIN}
Hello world!
The output demonstrates the application is up and running.
Finish
Onworkstation, runthe lab troubleshoot-s2i finish scriptto complete this exercise.

[student@workstation D0180-apps]$ lab troubleshoot-s2i finish

This concludes the exercise.

W DO180-0OCP4.5-en-3-20201217

Chapter 8 | Troubleshooting Containerized Applications

Troubleshooting Containerized
Applications

Objectives

After completing this section, you should be able to:

+ Implement techniques for troubleshooting and debugging containerized applications.
+ Use the port-forwarding feature of the OpenShift client tool.

+ View container logs.

+ View OpenShift cluster events.

Forwarding Ports for Troubleshooting

Occasionally developers and system administrators need special network access to a container
that would not be needed by application users. For example, developers may need to use the
administration console for a database or messaging service, or system administrators may make
use of SSH access to a container to restart a terminated service. Such network access, in the form
of network ports, are usually not exposed by the default container configurations, and tend to
require specialized clients used by developers and system administrators.

Podman provides port forwarding features by using the - p option along with the run
subcommand. In this case, there is no distinction between network access for regular application
access and for troubleshooting. As a refresher, the following is an example of configuring port
forwarding by mapping the port from the host to a database server running inside a container:

$ sudo podman run --name db -p 30306:3306 mysql

The previous command maps the host port 30306 to the port 3306 on the db container. This
container is created from the mysql image, which starts a MySQL server that listens on port
3306.

OpenShift provides the oc port-forward command for forwarding a local port to a pod port.
This is different than having access to a pod through a service resource:

+ The port-forwarding mapping exists only in the workstation where the oc client runs, while a
service maps a port for all network users.

+ Aservice load-balances connections to potentially multiple pods, whereas a port-forwarding
mapping forwards connections to a single pod.

Here is an example of the oc port-forward command:

$ oc port-forward db 30306 3306

The previous command forwards port 30306 from the developer machine to port 3306 on the db
pod, where a MySQL server (inside a container) accepts network connections.

Chapter 8 | Troubleshooting Containerized Applications

E Note
When running this command, be sure to leave the terminal window running. Closing
the window or canceling the process stops the port mapping.

While the podman run -p method of mapping (port-forwarding) can only be configured when
the container is started, the mapping with the oc port-forward command can be created and
destroyed at any time after a pod was created.

Note

5 Creating a service of NodePort type for a database pod would be similar to running
podman run -p.However, Red Hat discourages the usage of the NodePort
approach to avoid exposing the service to direct connections. Mapping with port-
forwarding in OpenShift is considered a more secure alternative.

Enabling Remote Debugging with Port Forwarding

Another use for the port forwarding feature is enabling remote debugging. Many integrated
development environments (IDEs) provide the capability to remotely debug an application.

For example, JBoss Developer Studio (JBDS) allows users to utilize the Java Debug Wire Protocol
(JDWP) to communicate between a debugger (JBDS) and the Java Virtual Machine. When
enabled, developers can step through each line of code as it is being executed in real time.

For JDWP to work, the Java Virtual Machine (JVM) where the application runs must be

started with options enabling remote debugging. For example, WildFly and JBoss EAP

users must configure these options on application server startup. The following line in the
standalone.conf file enables remote debugging by opening the JDWP TCP port 8787, for a
WildFly or EAP instance running in standalone mode:

JAVA_OPTS="$JAVA_OPTS \
> -agentlib:jdwp=transport=dt_socket,address=8787, server=y, suspend=n"

When the server starts with the debugger listening on port 8787, a port forwarding mapping needs
to be created to forward connections from a local unused TCP port to port 8787 in the EAP pod.

If the developer workstation has no local JVM running with remote debugging enabled, the local
port can also be 8787.

The following command assumes a WildFly pod named jappserver running a container from an
image previously configured to enable remote debugging:

$ oc port-forward jappserver 8787:8787

Once the debugger is enabled and the port forwarding mapping is created, users can set
breakpoints in their IDE of choice and run the debugger by pointing to the application's host name
and debug port (in this instance, 8787).

Chapter 8 | Troubleshooting Containerized Applications

Accessing Container Logs

Podman and OpenShift provide the ability to view logs in running containers and pods to facilitate
troubleshooting. But neither of them is aware of application specific logs. Both expect the
application to be configured to send all logging output to the standard output.

A container is simply a process tree from the host OS perspective. When Podman starts a
container either directly or on the RHOCP cluster, it redirects the container standard output and
standard error, saving them on disk as part of the container's ephemeral storage. This way, the
container logs can be viewed using podman and oc commands, even after the container was
stopped, but not removed.

To retrieve the output of a running container, use the following podman command.

$ podman logs <containerName>

In OpenShift, the following command returns the output for a container within a pod:

$ oc logs <podName> [-c <containerName>]

E Note
The container name is optional if there is only one container, as oc defaults to the
only running container and returns the output.

OpenShift Events

Some developers consider Podman and OpenShift logs to be too low-level, making
troubleshooting difficult. Fortunately, OpenShift provides a high-level logging and auditing facility
called events.

OpenShift events signal significant actions like starting a container or destroying a pod.

To read OpenShift events, use the get subcommand with the events resource type for the oc
command, as follows.

$ oc get events

Events listed by the oc command this way are not filtered and span the whole RHOCP cluster.
Using a pipe to standard UNIX filters such as grep can help, but OpenShift offers an alternative in
order to consult cluster events. The approach is provided by the describe subcommand.

For example, to only retrieve the events that relate to amysql pod, refer Events field from the
output of oc describe pod mysql command.

$ oc describe pod mysql
...output omitted...

Events:
FirstSeen LastSeen Count From Reason Message
Wed, 10 ... Wed, 10 ... 1 {scheduler } scheduled Successfully as...

...output omitted...

Chapter 8 | Troubleshooting Containerized Applications

Accessing Running Containers

The podman logs and oc logs commands can be useful for viewing output sent by any
container. However, the output does not necessarily display all of the available information if

the application is configured to send logs to a file. Other troubleshooting scenarios may require
inspecting the container environment as seen by processes inside the container, such as verifying
external connectivity.

As a solution, Podman and OpenShift provide the exec subcommand, allowing the creation of
new processes inside a running container, with the standard output and input of these processes
redirected to the user terminal. The following screen display the usage of the podman exec
command:

$ sudo podman exec [options] container command [arguments]

The general syntax for the oc exec command is:

$ oc exec [options] pod [-c container] -- command [arguments]

To execute a single interactive command or start a shell, add the - it options. The following
example starts a Bash shell for the myhttpdpod pod:

$ oc exec -it myhttpdpod /bin/bash

You can use this command to access application logs saved to disk (as part of the container
ephemeral storage). For example, to display the Apache error log from a container, run the
following command:

$ sudo podman exec apache-container cat /var/log/httpd/error_log

Overriding Container Binaries

Many container images do not contain all of the troubleshooting commands users expect to find in
regular OS installations, such as telnet, netcat, ip, or traceroute. Stripping the image from
basic utilities or binaries allows the image to remain slim, thus, running many containers per host.

One way to temporarily access some of these missing commands is mounting the host binaries
folders, such as /bin, /sbin, and /1ib, as volumes inside the container. This is possible because
the -v option from podman run command does not require matching VOLUME instructions to be
present in the Dockerfile of the container image.

Note

E To access these commands in OpenShift, you need to change the pod resource
definition in order to define volumeMounts and volumeClaims objects. You also
need to create a hostPath persistent volume.

The following command starts a container, and overrides the image's /bin folder with the one
from the host. It also starts an interactive shell inside the container.

$ sudo podman run -it -v /bin:/bin image /bin/bash

Chapter 8 | Troubleshooting Containerized Applications

Note

E The directory of binaries to override depends on the base OS image. For example,
some commands require shared libraries from the /1ib directory. Some Linux
distributions have different contents in /bin, /usr/bin, /1ib, or /usr/1ib,
which would require to use the -v option for each directory.

As an alternative, you can include these utilities in the base image. To do so, add instructions in a
Dockerfile build definition. For example, examine the following excerpt from a Dockerfile
definition, which is a child of the rhe17.5 image used throughout this course. The RUN instruction
installs the tools that are commonly used for network troubleshooting.

FROM ubi7/ubi:7.7

RUN yum install -y \
less \
dig \
ping \
iputils && \
yum clean all

When the image is built and the container is created, it will be identical to a rhel7.5 container
image, plus the extra available tools.

Transferring Files To and Out of Containers

When troubleshooting or managing an application, you may need to retrieve or transfer files to
and from running containers, such as configuration files or log files. There are several ways to move
files into and out of containers, as described in the following list.

Volume mounts
Another option for copying files from the host to a container is the usage of volume mounts.
You can mount a local directory to copy data into a container. For example, the following
command sets /conf host directory as the volume to use for the Apache configuration
directory in the container. This provides a convenient way to manage the Apache server
without having to rebuild the container image.

$ sudo podman run -v /conf:/etc/httpd/conf -d dol80/apache

podman cp
The cp subcommand allows users to copy files both into and out of a running container. To
copy a file into a container named todoapi, run the following command.

$ sudo podman cp standalone.conf
todoapi:/opt/jboss/standalone/conf/standalone.conf

To copy a file from the container to the host, flip the order of the previous command.

$ sudo podman cp todoapi:/opt/jboss/standalone/conf/standalone.conf .

Chapter 8 | Troubleshooting Containerized Applications

The podman cp command has the advantage of working with containers that were already
started, while the following alternative (volume mounts) requires changes to the command
used to start a container.

podman exec
For containers that are already running, the podman exec command can be piped to pass
files both into and out of the running container by appending commands that are executed
in the container. The following example shows how to pass in and execute a SQL file inside a
MySQL container:

$ sudo podman exec -i <container> mysql -uroot -proot < /path/on/host/db.sql <
db.sql

Using the same concept, it is possible to retrieve data from a running container and place it
in the host machine. A useful example of this is the usage of the mysqldump utility, which
creates a backup of MySQL database from the container and places it on the host.

$ sudo podman exec -it <containerName> sh \

> -c 'exec mysqldump -h"$MYSQL_PORT_3306_TCP_ADDR" \
> -P"$MYSQL_PORT_3306_TCP_PORT" \

> -uroot -p"$MYSQL_ENV_MYSQL_ROOT_PASSWORD" items'

> db_dump.sql

The previous command uses the container environment variables to connect to the MySQL
server to execute the mysqldump command and redirects the output to a file on the host
machine. It assumes that the container image provides the mysqldump utility, so there is no
need to install the MySQL administration tools on the host.

The oc rsync command provides functionality similar to podman cp for containers running
under OpenShift pods.

D References

More information about port-forwarding is available in the Port Forwarding section
of the OpenShift Container Platform documentation at
Architecture
https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.5/html-single/architecture/index/

More information about the CLI commands for port-forwarding are available in the
Port Forwarding chapter of the OpenShift Container Platform documentation at
Developing Applications

https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.5/html-single/applications/index/

W DO180-0OCP4.5-en-3-20201217

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/architecture/index/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/architecture/index/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/applications/index/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/applications/index/

Chapter 8 | Troubleshooting Containerized Applications

» Guided Exercise

Configuring Apache Container Logs for
Debugging

In this exercise, you will configure an Apache httpd container to send the logs to the stdout,
then review Podman logs and events.

Outcomes

You should be able to configure an Apache httpd container to send debug logs to stdout
and view them using the podman 1logs command.

Before You Begin
A running OpenShift cluster.

Retrieve the lab files and verify that Docker and the OpenShift cluster are running by running
the following command.

[student@workstation ~]$ lab troubleshoot-container start

P 1. Configure a Apache web server to send log messages to the standard output and update
the default log level.

11, The default log level for the Apache httpd image is warn. Change the default log
level for the container to debug, and redirect log messages to stdout by overriding
the default httpd. conf configuration file. To do so, create a custom image from the
workstation VM.

Briefly review the custom httpd. conf file located at /home/student/D0186/
labs/troubleshoot-container/conf/httpd.conf.

+ Observe the ErrorLog directive in the file:

ErrorLog "/dev/stdout"

The directive sends the httpd error log messages to the container's standard
output.

+ Observe the LogLevel directive in the file.
LogLevel debug
The directive changes the default log level to debug.
+ Observe the CustomLog directive in the file.

CustomLog "/dev/stdout" common

Chapter 8 | Troubleshooting Containerized Applications

The directive redirects the httpd access log messages to the container's standard
output.

) 2. Build a custom container to save an updated configuration file to the container.

2. From the terminal window, run the following commands to build a new image.

[student@workstation ~]$ cd ~/D0180/labs/troubleshoot-container
[student@workstation troubleshoot-container]$ sudo podman build \
> -t troubleshoot-container .

STEP 1: FROM quay.io/redhattraining/httpd-parent

...output omitted...

STEP 5: COMMIT troubleshoot-container

e23d...clde

[student@workstation troubleshoot-container]$ cd ~

2.2. Verify that the image is created.

[student@workstation ~]$ sudo podman images

The new image must be available in the local storage.

REPOSITORY TAG IMAGE ID CREATED SIZE
localhost/troubleshoot-container latest e23df. .. 9 seconds ago 137MB
quay.io/redhattraining/httpd-parent latest Oebas. .. 4 weeks ago 137MB

P 3. Create a new httpd container from the custom image.

[student@workstation ~]$ sudo podman run \

> --name troubleshoot-container -d \

> -p 10080:80 troubleshoot-container
4c8bb12815cc02f4eef0254632b7179bd5ce230d83373b49761blac41fc067a9

P 4. Review the container's log messages and events.

4]. View the debug log messages from the container using the podman 1logs command:

[student@workstation ~]$ sudo podman logs -f troubleshoot-container
[mpm_event:notice] [pid 1:tid...] AHO0489: Apache/2.4.37
[mpm_event:info] [pid 1:tid...] AHEE490: Server built: Apr 5 2019 07:31:21
[core:notice] [pid 1:tid...] AHO0094: Command line: 'httpd -D FOREGROUND'
[core:debug] [pid 1:tid ...): AH02639: Using SO_REUSEPORT: yes (1)

[mpm_event:debug] [pid 6:tid ...): AH02471: start_threads: Using epoll
[mpm_event:debug] [pid 7:tid ...): AH02471: start_threads: Using epoll
[mpm_event:debug] [pid 8:tid ...): AH02471: start_threads: Using epoll

Notice the debug logs, available in the standard output.

4.2. Open anew terminal and access the home page of the web server by using the curl
command:

Chapter 8 | Troubleshooting Containerized Applications

[student@workstation ~]$ curl http://127.0.0.1:10080
Hello from the httpd-parent container!

4.3. Review the new entries in the log. Look in the terminal running the podman logs
command to see the new entries.

...output omitted. ..
10.88.0.1 - - [08/Dec/2020:16:29:50 +0000] "GET / HTTP/1.1" 200 39

4.4, Stop the Podman command with Ctr1+C.
Finish
Onworkstation, runthe lab troubleshoot-container finish scriptto complete this

lab.

[student@workstation ~]$ lab troubleshoot-container finish

This concludes the guided exercise.

DO180-0OCP4.5-en-3-20201217 w

Chapter 8 | Troubleshooting Containerized Applications

» Lab

Troubleshooting Containerized
Applications

Performance Checklist
In this lab, you will troubleshoot the OpenShift build and deployment process for a Node.js
application.

Outcomes

You should be able to identify and solve the problems raised during the build and
deployment process of a Node.js application.

Before You Begin
A running OpenShift cluster.

Open a terminal on workstation as the student user and run the following command:

[student@workstation ~]$ lab troubleshoot-review start

1. Load the configuration of your classroom environment. Run the following command to load
the environment variables created in the first guided exercise:

[student@workstation ~]$ source /usr/local/etc/ocp4.config

2. Enter your local clone of the D0180-apps Git repository and checkout the master branch
of the course's repository to ensure you start this exercise from a known good state:

[student@workstation ~]$ cd ~/D0180-apps
[student@workstation D0180-apps]$ git checkout master
...output omitted. ..

3. Create a new branch to save any changes you make during this exercise:

[student@workstation D0180-apps]$ git checkout -b troubleshoot-review

Switched to a new branch 'troubleshoot-review'

[student@workstation D0180-apps]$ git push -u origin troubleshoot-review
...output omitted. ..

* [new branch] troubleshoot-review -> troubleshoot-review

Branch 'troubleshoot-review' set up to track remote branch 'troubleshoot-review'
from 'origin'.

4. Loginto OpenShift using the configured user, password and Master API URL.

5. Create a new project named youruser-nodejs-app:

Chapter 8 | Troubleshooting Containerized Applications

6.

10.

.

12.

In the youruser-nodejs-app OpenShift project, create a new application from
the source code located nodejs-app directory in the Git repository at https://
github.com/yourgituser/D0180-apps. Name the application nodejs-dev.

Expect the build process for the application to fail. Monitor the build process and identify the
build failure.

Update the version of the express dependency in the package. json file with a value of
4. x. Commit and push the changes to the Git repository.

Rebuild the application. Verify that the application builds without errors.

Verify that the application is not running because of a runtime error. Review the logs and
identify the problem.

Correct the spelling of the dependency in the first line of the server . js file. Commit and
push changes to the application to the Git repository. Rebuild the application. After the
application builds, verify that the application is running.

Create a route for the application and test access to the application. Expect an error
message. Review the logs to identify the error.

Replace process.environment with process.env in the server. js file to fix the error.
Commit and push the application changes to the Git repository. Rebuild the application.
When the new application deploys, verify that application does not generate errors when you
access the application URL.

Evaluation

Grade your work by running the lab troubleshoot-review grade command from your
workstation machine. Correct any reported failures and rerun the script until successful.

[student@workstation nodejs-app]$ lab troubleshoot-review grade

Finish

Fromworkstation, runthe lab troubleshoot-review finish command to complete this

lab.

[student@workstation nodejs-app]$ lab troubleshoot-review finish

This concludes the lab.

Chapter 8 | Troubleshooting Containerized Applications

» Solution

Troubleshooting Containerized
Applications

Performance Checklist

In this lab, you will troubleshoot the OpenShift build and deployment process for a Node.js
application.

Outcomes
You should be able to identify and solve the problems raised during the build and
deployment process of a Node.js application.

Before You Begin
A running OpenShift cluster.

Open a terminal on workstation as the student user and run the following command:

[student@workstation ~]$ lab troubleshoot-review start

1. Load the configuration of your classroom environment. Run the following command to load
the environment variables created in the first guided exercise:

[student@workstation ~]$ source /usr/local/etc/ocp4.config

2. Enter your local clone of the D0180-apps Git repository and checkout the master branch
of the course's repository to ensure you start this exercise from a known good state:

[student@workstation ~]$ cd ~/D0180-apps
[student@workstation D0180-apps]$ git checkout master
...output omitted. ..

3. Create a new branch to save any changes you make during this exercise:

[student@workstation D0180-apps]$ git checkout -b troubleshoot-review

Switched to a new branch 'troubleshoot-review'

[student@workstation D0180-apps]$ git push -u origin troubleshoot-review
...output omitted. ..

* [new branch] troubleshoot-review -> troubleshoot-review

Branch 'troubleshoot-review' set up to track remote branch 'troubleshoot-review'
from 'origin'.

4. Loginto OpenShift using the configured user, password and Master APl URL.

W DO180-0OCP4.5-en-3-20201217

Chapter 8 | Troubleshooting Containerized Applications

[student@workstation D0180-apps]$ oc login -u "${RHT_OCP4_DEV_USER}" \
> -p "${RHT_OCP4_DEV_PASSWORD}" "${RHT_OCP4_MASTER_API}"

Login successful.

...output omitted...

5. Create a new project named youruser-nodejs-app:

[student@workstation ~]$ oc new-project ${RHT_OCP4_DEV_USER}-nodejs-app
Now using project "youruser-nodejs-app" on server "https://
api.cluster.lab.example.com"

...output omitted. ..

6. Intheyouruser-nodejs-app OpenShift project, create a new application from
the source code located nodejs-app directory in the Git repository at https://
github.com/yourgituser/D0180-apps. Name the application nodejs-dev.

Expect the build process for the application to fail. Monitor the build process and identify the
build failure.

6.1. Runthe oc new-app command to create the Node.js application.

[student@workstation ~]$ oc new-app --as-deployment-config --name nodejs-dev \
> https://github.com/${RHT_OCP4_GITHUB_USER}/D0180-apps#troubleshoot-review \
> -i nodejs:12 --context-dir=nodejs-app --build-env \

> npm_config_registry=http://${RHT_OCP4_NEXUS_SERVER}/repository/npm-proxy

--> Found image a2b5ec2 ...output omitted...

Node.js 12
...output omitted...
--> Creating resources
imagestream.image.openshift.io "nodejs-dev" created
buildconfig.build.openshift.io "nodejs-dev" created
deploymentconfig.apps.openshift.io "nodejs-dev" created
service "nodejs-dev" created
--> Success
Build scheduled, use 'oc logs -f bc/nodejs-dev' to track its progress.
Application is not exposed. You can expose services to the outside world by
executing one or more of the commands below:
'oc expose svc/nodejs-dev'
Run 'oc status' to view your app.

6.2. Monitor build progress with the oc logs -f bc/nodejs-dev command:

[student@workstation ~]$ oc logs -f bc/nodejs-dev

Cloning "https://github.com/yourgituser/D0180-apps"

...output omitted...

STEP 8: RUN /usr/libexec/s2i/assemble

---> Installing application source ...

---> Installing all dependencies

npm ERR! code ETARGET

npm ERR! notarget No matching version found for express@4.20.

npm ERR! notarget In most cases you or one of your dependencies are requesting
npm ERR! notarget a package version that doesn't exist.

Chapter 8 | Troubleshooting Containerized Applications

npm ERR! notarget
npm ERR! notarget It was specified as a dependency of 'src'
npm ERR! notarget

npm ERR! A complete log of this run can be found in:

npm ERR! /opt/app-root/src/.npm/_logs/2019-10-28T11_30_27_657Z-debug. log
subprocess exited with status 1

subprocess exited with status 1

error: build error: error building at STEP "RUN /usr/libexec/s2i/assemble": exit
status 1

The build process fails, and therefore no application is running. The build log indicates
that there is no version of the express package that matches a version specification
of 4.20.x.

6.3. Use theoc get pods command to confirm that the application is not deployed:

[student@workstation ~]$ oc get pods
NAME READY STATUS RESTARTS AGE
nodejs-dev-1-build 0/1 Error 0 2m

7. Update the version of the express dependency in the package. json file with a value of
4. x. Commit and push the changes to the Git repository.

71. Editthe package. json file in the nodejs-app subdirectory, and change the version
of the express dependency to 4. x. Save the file.

[student@workstation D0180-apps]$ cd nodejs-app

[student@workstation nodejs-app]$ sed -i s/4.20/4.x/ package.json

The file contains the following content:

[student@workstation nodejs-app]$ cat package.json
{
"name": "nodejs-app",
"version": "1.0.0",
"description": "Hello World App",
"main": "server.js",
"author": "Red Hat Training",
"license": "ASL",
"dependencies": {
"express": "4.x",
"html-errors": "latest"

7.2. Commit and push the changes made to the project.

From the terminal window, run the following command to commit and push the
changes:

Chapter 8 | Troubleshooting Containerized Applications

[student@workstation nodejs-app]$ git commit -am "Fixed Express release"
...output omitted...
1 file changed, 1 insertion(+), 1 deletion(-)
[student@workstation nodejs-app]$ git push
...output omitted...
To https://github.com/yourgituser/D0180-apps/
ef6557d..73a82cd troubleshoot-review -> troubleshoot-review

8. Rebuild the application. Verify that the application builds without errors.

81. Usetheoc start-build command to rebuild the application.

[student@workstation nodejs-app]$ oc start-build bc/nodejs-dev
build.build.openshift.io/nodejs-dev-2 started

8.2. Use the oc logs command to monitor the build process logs:

[student@workstation nodejs-app]$ oc logs -f bc/nodejs-dev

Cloning "https://github.com/yourgituser/D0180-apps"

...output omitted. ..

Pushing image ...image-registry.svc:5000/nodejs-app/nodejs-dev:latest
...output omitted. ..

Push successful

The build succeeds if an image is pushed to the internal OpenShift registry.

9. \Verify that the application is not running because of a runtime error. Review the logs and
identify the problem.

91. Usetheoc get podscommand to check the status of the deployment of the
application pod. Eventually, you see that the first application deployment has a status
of CrashLoopBackoff.

[student@workstation nodejs-app]$ oc get pods

NAME READY STATUS RESTARTS AGE
nodejs-dev-1-build 0/1 Error 0 4m27s
nodejs-dev-1-deploy 0/1 Completed 0 28s
nodejs-dev-1-skf56 0/1 CrashLoopBackOff 2 25s
nodejs-dev-2-build 0/1 Completed 0 58s

9.2. Usetheoc logs -f dc/nodejs-dev command to follow the logs for the
application deployment:

[student@workstation nodejs-app]$ oc logs -f dc/nodejs-dev
Environment:

DEV_MODE=false

NODE_ENV=production

DEBUG_PORT=5858
...output omitted. ..

Error: Cannot find module 'http-error'

...output omitted. ..

Chapter 8 | Troubleshooting Containerized Applications

10.

npm info nodejs-app@1.0.0 Failed to exec start script
...output omitted. ..

npm ERR! code ELIFECYCLE

npm ERR! errno 1

npm ERR! nodejs-app@l1.0.0 start: “node server.js’

npm ERR! Exit status 1

npm ERR!

npm ERR! Failed at the nodejs-app@l1.0.0 start script.

npm ERR! This is probably not a problem with npm. There is 1likely additional
logging output above.

npm timing npm Completed in 159ms

...output omitted...

The log indicates that the server. js file attempts to load a module named http-
error. The dependencies variable in the packages file indicates that the module
nameis html-errors, nothttp-error.

Correct the spelling of the dependency in the first line of the server . js file. Commit and
push changes to the application to the Git repository. Rebuild the application. After the
application builds, verify that the application is running.

10.1. Correct the spelling of the module in the first line of the server.js from http-
error to html-errors. Save the file.

[student@workstation nodejs-app]$ sed -i s/http-error/html-errors/ server.js

The file contains the following content:

[student@workstation nodejs-app]$ cat server.js
var createError = require('html-errors');

var express = require('express');
app = express();

app.get('/', function (req, res) {
res.send('Hello World from pod: ' + process.environment.HOSTNAME + '\n')

1)

app.listen(8080, function () {
console. log('Example app listening on port 8080!"');

1)

10.2. Commit and push the changes made to the project.

[student@workstation nodejs-app]$ git commit -am "Fixed module typo"
...output omitted. ..
1 file changed, 1 insertion(+), 1 deletion(-)
[student@workstation nodejs-app]$ git push
...output omitted...
To https://github.com/yourgituser/D0180-apps/
ef6557d..73a82cd troubleshoot-review -> troubleshoot-review

10.3. Use theoc start-build command to rebuild the application.

Chapter 8 | Troubleshooting Containerized Applications

.

[student@workstation nodejs-app]$ oc start-build bc/nodejs-dev
build.build.openshift.io/nodejs-dev-3 started

10.4. Use the oc logs command to monitor the build process logs:

[student@workstation nodejs-app]$ oc logs -f bc/nodejs-dev

Cloning "https://github.com/yourgituser/D0180-apps"

...output omitted...

Pushing image ...-image-registry.svc:5000/nodejs-app/nodejs-dev:latest
...output omitted...

Push successful

10.5. Use the oc get pods -wcommand to monitor the deployment of pods for the
nodejs-dev application:

[student@workstation nodejs-app]$ oc get pods -w

NAME READY STATUS RESTARTS AGE
nodejs-dev-1-build 0/1 Error 0] 11m
nodejs-dev-1-deploy 0/1 Completed 0] 7mlls
nodejs-dev-2-9nds4 1/1 Running 0] 56s
nodejs-dev-2-build 0/1 Completed 0] 7m41s
nodejs-dev-2-deploy 0/1 Completed 0] 61s
nodejs-dev-3-build 0/1 Completed 0 94s

After a third build, the second deployment results in a status of Running.

Create a route for the application and test access to the application. Expect an error
message. Review the logs to identify the error.

1. Use the oc expose command to create a route for the nodejs-dev application:

[student@workstation nodejs-app]$ oc expose svc nodejs-dev
route.route.openshift.io/nodejs-dev exposed

1.2. Usethe oc get route command to retrieve the URL of nodejs-dev route:

[student@workstation nodejs-app]$ oc get route
NAME HOST/PORT
nodejs-dev nodejs-dev-your_user-nodejs-app.wildcard _domain

1.3. Use the curl to access the route. Expect an error message to display.

[student@workstation nodejs-app]$ curl \

> nodejs-dev-${RHT_OCP4_DEV_USER}-nodejs-app.${RHT_OCP4_WILDCARD_DOMAIN}
<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8">

<title>Error</title>

</head>

<body>

Chapter 8 | Troubleshooting Containerized Applications

12.

<pre>Internal Server Error</pre>
</body>
</htm1l>

1.4. Review the logs for the nodejs-dev deployment configuration:

[student@workstation nodejs-app]$ oc logs dc/nodejs-dev
Environment:

DEV_MODE=false

NODE_ENV=production

DEBUG_PORT=5858

Launching via npm...

npm info it worked if it ends with ok

npm info using npm@6.14.5

npm info using node@v12.18.2

npm info lifecycle nodejs-app@l1.0.0~prestart: nodejs-app@1.0.0
npm info lifecycle nodejs-app@l1.0.0~start: nodejs-app@1.0.0

Example app listening on port 8080!
TypeError: Cannot read property 'HOSTNAME' of undefined
...output omitted. ..

The corresponding section of the server. js file is:

app.get('/', function (req, res) {
res.send('Hello World from pod: ' + process.environment.HOSTNAME + '\n')

1)

A process object in Node.js contains a reference to a env object, not a environment
object.

Replace process.environment with process.envin the server. js file to fix the error.
Commit and push the application changes to the Git repository. Rebuild the application.
When the new application deploys, verify that application does not generate errors when you
access the application URL.

121. Replace process.environment with process.env inthe server. js file to fix the
error.

[student@workstation nodejs-app]$ sed -i \
> s/process.environment/process.env/ server.js

The file contains the following content:

[student@workstation nodejs-app]$ cat server.js
var createError = require('html-errors');

var express = require('express');
app = express();

app.get('/', function (req, res) {
res.send('Hello World from pod: ' + process.env.HOSTNAME + '\n')
1}

Chapter 8 | Troubleshooting Containerized Applications

app.listen(8080, function () {
console. log('Example app listening on port 8080!"');

1)

12.2. Commit and push the changes made to the project.

[student@workstation nodejs-app]$ git commit -am "Fixed process.env"
...output omitted...
1 file changed, 1 insertion(+), 1 deletion(-)
[student@workstation nodejs-app]$ git push
...output omitted...
To https://github.com/yourgituser/D0180-apps/
ef6557d..73a82cd troubleshoot-review -> troubleshoot-review

12.3. Use theoc start-build command to rebuild the application.

[student@workstation nodejs-app]$ oc start-build bc/nodejs-dev
build.build.openshift.io/nodejs-dev-4 started

12.4. Use the oc logs command to monitor the build process logs:

[student@workstation nodejs-app]$ oc logs -f bc/nodejs-dev

Cloning "https://github.com/yourgituser/D0180-apps"

...output omitted...

Pushing image ...image-registry.svc:5000/nodejs-app/nodejs-dev:latest
...output omitted. ..

Push successful

12.5. Use the oc get pods command to monitor the deployment of pods for the nodejs-
dev application:

[student@workstation nodejs-app]$ oc get pods

NAME READY STATUS RESTARTS AGE
nodejs-dev-1-build 0/1 Error 0 21m
nodejs-dev-1-deploy 0/1 Completed 0 17m
nodejs-dev-2-build 0/1 Completed 0 17m
nodejs-dev-2-deploy 0/1 Completed 0 11m
nodejs-dev-3-build 0/1 Completed 0 11m
nodejs-dev-3-deploy 0/1 Completed 0] 20s
nodejs-dev-3-wlpps 1/1 Running 0 17s
nodejs-dev-4-build 0/1 Completed 0 48s

After a fourth build, the third deployment has a status of Running.

12.6. Use the cur 1 command to test the application. The application displays a Hel1lo
Wor 1d message containing the host name of the application pod:

[student@workstation nodejs-app]$ curl \
> nodejs-dev-${RHT_OCP4_DEV_USER}-nodejs-app.${RHT_OCP4_WILDCARD_DOMAIN}
Hello World from pod: nodejs-dev-3-wlpps

Chapter 8 | Troubleshooting Containerized Applications

Evaluation

Grade your work by running the lab troubleshoot-review grade command from your
workstation machine. Correct any reported failures and rerun the script until successful

[student@workstation nodejs-app]$ lab troubleshoot-review grade
Finish

Fromworkstation, runthe lab troubleshoot-review finish command to complete this
lab.

[student@workstation nodejs-app]$ lab troubleshoot-review finish

This concludes the lab.

W DO180-0OCP4.5-en-3-20201217

Chapter 8 | Troubleshooting Containerized Applications

Summary

In this chapter, you learned:

Applications typically log activity, such as events, warnings and errors, to aid the analysis of
application behavior.

Container applications should print log data to standard output, instead of to a file, to enable
easy access to logs.

To review the logs for a container deployed locally with Podman, use the podman logs
command.

Use the oc logs command to access logs for BuildConfig and DeploymentConfig
objects, as well as individual pods within an OpenShift project.

The - option allows you to monitor the log output in near real-time for both the podman logs
and oc logs commands.

Use the oc port-forward command to connect directly to a port on an application pod. You
should only leverage this technique on non-production pods, because interactions can alter the
behavior of the pod.

y 2AR(IA

3 n ."'".'"".l
o

“

1l
—t

ENls

07 oD JeyL

) ILBILIAL

n

| ‘1eH paY TZ07 ¢

pl:1:3 DO180-OCP4.5-en-3-20201217

Chapter 9

Comprehensive Review

Goal Review tasks from Red Hat OpenShift I: Containers ¢
& Kubernetes
Objectives * Review tasks from Red Hat OpenShift I: .
Containers & Kubernetes “
Sections + Comprehensive Review P-
4. Lab + Comprehensive Review of Introduction i
o to Containers, Kubernetes, and Red Hat
= OpenShift

0180-0OCP4.5-en-3-20201217

Chapter 9 | Comprehensive Review

Comprehensive Review

Objectives

After completing this section, you should be able to demonstrate knowledge and skills learned in
Red Hat OpenShift I: Containers & Kubernetes.

Reviewing Red Hat OpenShift I: Containers &
Kubernetes

Before beginning the comprehensive review lab for this course, students should be comfortable
with the topics covered in the following chapters.

Chapter 1, Introducing Container Technology

Describe how applications run in containers orchestrated by Red Hat OpenShift Container
Platform.

+ Describe the difference between container applications and traditional deployments.
+ Describe the basics of container architecture.

+ Describe the benefits of orchestrating applications and OpenShift Container Platform.

Chapter 2, Creating Containerized Services

Provision a service using container technology.

+ Create a database server from a container image.

Chapter 3, Managing Containers

Modify prebuilt container images to create and manage containerized services.
+ Manage a container's life cycle from creation to deletion.
+ Save container application data with persistent storage.

+ Describe how to use port forwarding to access a container.

Chapter 4, Managing Container Images

Manage the life cycle of a container image from creation to deletion.
+ Search for and pull images from remote registries.

+ Export, import, and manage container images locally and in a registry.

Chapter 5, Creating Custom Container Images

Design and code a Dockerfile to build a custom container image.

+ Describe the approaches for creating custom container images.

Chapter 9 | Comprehensive Review

+ Create a container image using common Dockerfile commands.

Chapter 6, Deploying Containerized Applications on
OpenShift

Deploy single container applications on OpenShift Container Platform.

+ Describe the architecture of Kubernetes and Red Hat OpenShift Container Platform.

+ Create standard Kubernetes resources.

+ Create a route to a service.

+ Build an application using the Source-to-Image facility of OpenShift Container Platform.
+ Create an application using the OpenShift web console.

Chapter 7, Deploying Multi-Container Applications

Deploy applications that are containerized using multiple container images.

+ Describe considerations for containerizing applications with multiple container images.

+ Deploy a multi-container application on OpenShift using a template.

Chapter 8, Troubleshooting Containerized Applications

Troubleshoot a containerized application deployed on OpenShift.

+ Troubleshoot an application build and deployment on OpenShift.

+ Implement techniques for troubleshooting and debugging containerized applications.

General Container, Kubernetes, and OpenShift Hints

These hints may save some time in completing the comprehensive review lab:

+ The podman command allows you to build, run, and manage container images. Use the man
podman command to access Podman documentation. Use the man podman subcommand
command to get more information about each subcommand.

+ The oc command allows you to create and manage OpenShift resources. Use the man oc or
oc help commands to access OpenShift command-line documentation. OpenShift commands
that are particularly useful include:

oc login -u <username> -p <password> <master_api_url>
Log in to OpenShift as the specified user. Find both credentials and master API URI in the
lab page.

oc new-project
Create a new project (namespace) to contain OpenShift resources.

oc project
Select the current project (namespace) to which all subsequent commands apply.

oc create -f
Create a resource from a file.

Chapter 9 | Comprehensive Review

oc process
Processes a template file applying the parameter values to each included resource. Create
those resources with the oc create command.

ocget
Display the runtime status and attributes of OpenShift resources.

oc describe
Display detailed information about OpenShift resources.

oc delete
Delete OpenShift resources.

+ Before mounting any volumes on the Podman and OpenShift host, ensure you apply the correct
SELinux context to the directory. The correct context is container_file_t. Also, make sure
the ownership and permissions of the directory are set according to the USER directive in the
Dockerfile that was used to build the container being deployed. Most of the time you will have
to use the numeric UID and GID rather than the user and group names to adjust ownership and
permissions of the volume directory.

+ In this classroom, all RPM repositories are defined locally. You must configure the repository
definitions in a custom container image (Dockerfile) before running yum commands.

+ When executing commands in a Dockerfile, combine as many related commands as possible into
one RUN directive. This reduces the number of image layers in the container image.

+ Abest practice for designing a Dockerfile includes the use of environment variables for
specifying repeated constants throughout the file.

Chapter 9 | Comprehensive Review

» Lab

Containerizing and Deploying a Software
Application

In this review, you will containerize a Nexus server, build and test it using Podman, and deploy
it to an OpenShift cluster.

Outcomes
You should be able to:

+ Write a Dockerfile that successfully containerizes a Nexus server.
+ Build a Nexus server container image and deploy it using Podman.

+ Deploy the Nexus server container image to an OpenShift cluster.

Before You Begin

Run the set-up script for this comprehensive review.

[student@workstation ~]$ lab comprehensive-review start

The lab files are located in the /home/student/D0180/labs/comprehensive-review
directory. The solution files are located in the /home/student/D0180/solutions/
comprehensive-review directory.

Instructions

Use the following steps to create and test a containerized Nexus server both locally and in
OpenShift:

Steps
1. Create a container image that starts an instance of a Nexus server:

+ The /home/student/D0180/1labs/comprehensive-review/image directory
contains files for building the container image. Execute the get -nexus-bundle. sh
script to retrieve the Nexus server files.

+ Write a Dockerfile that containerizes the Nexus server. The Dockerfile must be located in
the /home/student/D0180/labs/comprehensive-review/image directory. The
Dockerfile must also:

- Use a base image of ubi7/ubi: 7.7 and set an arbitrary maintainer.

- Set the environment variable NEXUS_VERSION to 2.14.3-02, and set NEXUS_HOME to
/opt/nexus.

- Install the java-1.8.0-openjdk-devel package

Chapter 9 | Comprehensive Review

The RPM repositories are configured in the provided training. repo file. Be sure to
add this file to the container in the /etc/yum. repos.d directory.

Run a command to create a nexus user and group. They both have a UID and GID of
1001.

Unpack the nexus-2.14.3-02-bundle. tar.gz file to the ${NEXUS_HOME}/
directory. Add thenexus-start. sh to the same directory.

Run a command, In -s ${NEXUS_HOME}/nexus-${NEXUS_VERSION}
${NEXUS_HOME}/nexus2, to create a symlink in the container. Run a command to
recursively change the ownership of the Nexus home directory to nexus : nexus.

Make the container run as the nexus user, and set the working directory to /opt/
nexus.

Define a volume mount point for the /opt/nexus/sonatype-work container
directory. The Nexus server stores data in this directory.

- Set the default container command to nexus-start.sh.

There are two *.snippet filesin the /home/student/D01860/labs/comprehensive-
review/images directory that provide the commands needed to create the nexus
account and install Java. Use the files to assist you in writing the Dockerfile.

+ Build the container image with the name nexus.

2. Build and test the container image using Podman with a volume mount:

Use the script /home/student/D0180/labs/comprehensive-review/deploy/
local/run-persistent. sh to start a new container with a volume mount.

Review the container logs to verify that the server is started and running.

Test access to the container service using the URL: http://<container IP
address>:8081/nexus.

Remove the test container.

3. Deploy the Nexus server container image to the OpenShift cluster. You must:

+ Tag the Nexus server container image as quay . 10/${RHT_OCP4_QUAY_USER}/

nexus: latest, and push it the private registry.

+ Create an OpenShift project with a name of ${RHT_OCP4_DEV_USER}-review.

+ Process the deploy/openshift/resources/nexus-template.json template and

create the Kubernetes resources.

+ Create a route for the Nexus service. Verify that you can access http://nexus-

${RHT_OCP4_DEV_USER}-review.${RHT_OCP4_WILDCARD_DOMAIN}/nexus/ from
workstation.

Evaluation

After deploying the Nexus server container image to the OpenShift cluster, verify your work by
running the lab grading script:

Chapter 9 | Comprehensive Review

[student@workstation ~]$ lab comprehensive-review grade

Finish
Onworkstation, runthe lab comprehensive-review finish command to complete this
lab.

[student@workstation ~]$ lab comprehensive-review finish

This concludes the lab.

DO180-0OCP4.5-en-3-20201217 w

Chapter 9 | Comprehensive Review

» Solution

Containerizing and Deploying a Software
Application

In this review, you will containerize a Nexus server, build and test it using Podman, and deploy
it to an OpenShift cluster.

Outcomes
You should be able to:

+ Write a Dockerfile that successfully containerizes a Nexus server.
+ Build a Nexus server container image and deploy it using Podman.

+ Deploy the Nexus server container image to an OpenShift cluster.

Before You Begin

Run the set-up script for this comprehensive review.

[student@workstation ~]$ lab comprehensive-review start

The lab files are located in the /home/student/D0180/labs/comprehensive-review
directory. The solution files are located in the /home/student/D0180/solutions/
comprehensive-review directory.

Instructions

Use the following steps to create and test a containerized Nexus server both locally and in
OpenShift:

Steps
1. Create a container image that starts an instance of a Nexus server:

+ The /home/student/D0180/1labs/comprehensive-review/image directory
contains files for building the container image. Execute the get -nexus-bundle. sh
script to retrieve the Nexus server files.

+ Write a Dockerfile that containerizes the Nexus server. The Dockerfile must be located in
the /home/student/D0180/labs/comprehensive-review/image directory. The
Dockerfile must also:

- Use a base image of ubi7/ubi: 7.7 and set an arbitrary maintainer.

- Set the environment variable NEXUS_VERSION to 2.14.3-02, and set NEXUS_HOME to
/opt/nexus.

- Install the java-1.8.0-openjdk-devel package

Chapter 9 | Comprehensive Review

The RPM repositories are configured in the provided training. repo file. Be sure to
add this file to the container in the /etc/yum. repos.d directory.

- Run a command to create a nexus user and group. They both have a UID and GID of
1001.

- Unpack the nexus-2.14.3-02-bundle. tar.gz file to the ${NEXUS_HOME}/
directory. Add thenexus-start. sh to the same directory.

Run a command, In -s ${NEXUS_HOME}/nexus-${NEXUS_VERSION}
${NEXUS_HOME}/nexus2, to create a symlink in the container. Run a command to
recursively change the ownership of the Nexus home directory to nexus : nexus.

- Make the container run as the nexus user, and set the working directory to /opt/
nexus.

- Define a volume mount point for the /opt/nexus/sonatype-work container
directory. The Nexus server stores data in this directory.

- Set the default container command to nexus-start.sh.

There are two *.snippet filesin the /home/student/D01860/labs/comprehensive-
review/images directory that provide the commands needed to create the nexus
account and install Java. Use the files to assist you in writing the Dockerfile.

+ Build the container image with the name nexus.

11, Execute the get-nexus-bundle. sh script to retrieve the Nexus server files.

[student@workstation ~]$ cd /home/student/D0180/1labs/comprehensive-review/image
[student@workstation image]$./get-nexus-bundle.sh

100.0%

Nexus bundle download successful

1.2. Write a Dockerfile that containerizes the Nexus server. Go to the /home/student/
D0180/1labs/comprehensive-review/image directory and create the Dockerfile.

1.2.1. Specify the base image to use:

FROM ubi7/ubi:7.7

1.2.2. Enter an arbitrary name and email as the maintainer:

FROM ubi7/ubi:7.7

MAINTAINER username <username@examp le.com>

1.2.3. Set a build argument for NEXUS_VERSION and an environment variable for
NEXUS_HOME:

Chapter 9 | Comprehensive Review

FROM ubi7/ubi:7.7

MAINTAINER username <username@examp le.com>

ARG
ENV

ARG
ENV

RUN

RUN

NEXUS_VERSION=2.14.3-02
NEXUS_HOME=/opt/nexus

1.2.4. Add the training.repo repository to the /etc/yum.repos.d directory.
Install the Java package using yum command.

NEXUS_VERSION=2.14.3-02
NEXUS_HOME=/opt/nexus

yum install -y --setopt=tsflags=nodocs java-1.8.0-openjdk-devel && \
yum clean all -y

1.2.5. Create the server home directory and service account and group. Make home
directory owned by the service account.

groupadd -r nexus -f -g 1001 && \

useradd -u 1001 -r -g nexus -m -d ${NEXUS_HOME} -s /sbin/nologin \
-c "Nexus User" nexus && \

chown -R nexus:nexus ${NEXUS_HOME} && \

chmod -R 755 ${NEXUS_HOME}

1.2.6. Make the container run as the nexus user.

USER nexus

ADD
ADD

RUN

1.2.7. Install the Nexus server software at NEXUS_HOME and add the startup script.
Note that the ADD directive will extract the Nexus files.

Create the nexus2 symbolic link pointing to the Nexus server directory.
Recursively change the ownership of the ${NEXUS_HOME} directory to
nexus:nexus.

nexus-${NEXUS_VERSION}-bundle.tar.gz ${NEXUS_HOME}
nexus-start.sh ${NEXUS_HOME}/

1n -s ${NEXUS_HOME}/nexus-${NEXUS_VERSION} \
${NEXUS_HOME}/nexus2

1.2.8. Make /opt/nexus the current working directory:

WORKDIR ${NEXUS_HOME}

Chapter 9 | Comprehensive Review

1.2.9. Define a volume mount point to store the Nexus server persistent data:

VOLUME ["/opt/nexus/sonatype-work"]

1.210. Set the CMD instruction to ["sh", "nexus-start.sh"].The completed
Dockerfile reads as follows:

FROM ubi7/ubi:7.7
MAINTAINER username <username@example.com>

ARG NEXUS_VERSION=2.14.3-02
ENV NEXUS_HOME=/opt/nexus

RUN yum install -y --setopt=tsflags=nodocs java-1.8.0-openjdk-devel && \
yum clean all -y

RUN groupadd -r nexus -f -g 1001 && \
useradd -u 1001 -r -g nexus -m -d ${NEXUS_HOME} -s /sbin/nologin \
-c "Nexus User" nexus && \
chown -R nexus:nexus ${NEXUS_HOME} && \
chmod -R 755 ${NEXUS_HOME}

USER nexus

ADD nexus-${NEXUS_VERSION}-bundle.tar.gz ${NEXUS_HOME}
ADD nexus-start.sh ${NEXUS_HOME}/

RUN 1n -s ${NEXUS_HOME}/nexus-${NEXUS_VERSION} \
${NEXUS_HOME}/nexus2

WORKDIR ${NEXUS_HOME}
VOLUME ["/opt/nexus/sonatype-work"]

CMD ["sh", "nexus-start.sh"]

1.3. Build the container image with the name nexus.

[student@workstation image]$ sudo podman build --layers=false -t nexus .
STEP 1: FROM ubi7/ubi:7.7
Getting image source signatures
...output omitted. ..
STEP 14: COMMIT ...output omitted...localhost/nexus:latest
.output omitted. ..

2. Build and test the container image using Podman with a volume mount:

+ Use the script /home/student/D0180/1labs/comprehensive-review/deploy/
local/run-persistent.sh to start a new container with a volume mount.

+ Review the container logs to verify that the server is started and running.

Chapter 9 | Comprehensive Review

+ Test access to the container service using the URL: http://<container IP
address>:8081/nexus.

* Remove the test container.

21. Execute the run-persistent. sh script. Replace the container name as shown in the
output of the podman ps command.

[student@workstation images]$ cd /home/student/D0180/labs/comprehensive-review
[student@workstation comprehensive-review]$ cd deploy/local
[student@workstation locall]$./run-persistent.sh
80970007036bbb313d8eeb7621fada®ed3fOb4115529dc50dad4dccef0dal34533

2.2. Review the container logs to verify that the server is started and running.

[student@workstation local]$ sudo podman ps \
> --format="{{.ID}} {{.Names}} {{.Image}}"
81f480f21d47 inspiring_poincare localhost/nexus: latest
[student@workstation local]$ sudo podman logs inspiring_poincare
...output omitted...

. INFO [jetty-main-1] ...jetty.JettyServer - Running

. INFO [main] ...jetty.JettyServer - Started

2.3. Inspect the running container to determine its IP address. Provide this IP address to the
curl command to test the container.

[student@workstation local]$ sudo podman inspect \
> -f '"{{.NetworkSettings.IPAddress}}' inspiring poincare

10.88.0.12
[student@workstation local]$ curl -v 10.88.0.12:8081/nexus/ 2>&1 \

> | grep -E 'HTTP|<title>'
> GET /nexus/ HTTP/1.1
< HTTP/1.1 200 OK
<title>Nexus Repository Manager</title>

2.4. Remove the test container.

[student@workstation local]$ sudo podman kill inspiring_poincare
81f480f21d475af683b4b003cabed02d37e6aaa581393d3f2f95al1a7b7eb768b
3. Deploy the Nexus server container image to the OpenShift cluster. You must:

+ Tag the Nexus server container image as quay . 10/${RHT_OCP4_QUAY_USER}/
nexus: latest, and push it the private registry.

+ Create an OpenShift project with a name of ${RHT_0OCP4_DEV_USER}-review.

+ Process the deploy/openshift/resources/nexus-template.json template and
create the Kubernetes resources.

+ Create a route for the Nexus service. Verify that you can access http://nexus-
${RHT_OCP4_DEV_USER}-review.${RHT_OCP4_WILDCARD_DOMAIN}/nexus/ from

workstation.

Chapter 9 | Comprehensive Review
31. Login to your Quay.io account.

[student@workstation local]$ sudo podman login -u ${RHT_OCP4_QUAY_USER} quay.io
Password: your_quay_password
Login Succeeded!

3.2. Publish the Nexus server container image to your quay . 10 registry.

[student@workstation local]$ sudo podman push localhost/nexus:latest \
> quay.io/${RHT_OCP4_QUAY_USER}/nexus: latest

Getting image source signatures

...output omitted. ..

Writing manifest to image destination

Storing signatures

3.3. Repositories created by pushing images to quay . 10 are private by default. Refer to
the Repositories Visibilitysection of the Appendix C to read details about how
change repository visibility.

3.4. Create the OpenShift project:

[student@workstation local]$ cd ~/D0180/1labs/comprehensive-review/deploy/openshift
[student@workstation openshift]$ oc login -u ${RHT_OCP4_DEV_USER} \

> -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_MASTER_API}

Login successful.

...output omitted. ..

[student@workstation openshift]$ oc new-project ${RHT_OCP4_DEV_USER}-review

Now using project ...output omitted...

3.5. Process the template and create the Kubernetes resources:

[student@workstation openshift]$ oc process -f resources/nexus-template.json \
> -p RHT_OCP4_QUAY_USER=${RHT_OCP4_QUAY_USER} \

> | oc create -f -

service/nexus created

persistentvolumeclaim/nexus created

deploymentconfig.apps.openshift.io/nexus created

[student@workstation openshift]$ oc get pods

NAME READY STATUS RESTARTS AGE
nexus-1-wk8rv 1/1 Running 1 1m
nexus-1-deploy 0/1 Completed 0 2m

3.6. Expose the service by creating a route:

[student@workstation openshift]$ oc expose svc/nexus
route.route.openshift.io/nexus exposed.
[student@workstation openshift]$ oc get route -o yaml
apiVersion: vi

items:
- apiVersion: route.openshift.io/v1
kind: Route

...output omitted. ..

Chapter 9 | Comprehensive Review
spec:

host: nexus-${RHT_OCP4_DEV_USER}-review.${RHT_OCP4_WILDCARD_DOMAIN}
...output omitted. ..

3.7. Use abrowser to connect to the Nexus server web application athttp://nexus-
${RHT_OCP4_DEV_USER}-review.${RHT_OCP4_WILDCARD_DOMAIN}/nexus/.

Evaluation

After deploying the Nexus server container image to the OpenShift cluster, verify your work by
running the lab grading script:

[student@workstation ~]$ lab comprehensive-review grade
Finish
Onworkstation, runthe lab comprehensive-review finish command to complete this

lab.

[student@workstation ~]$ lab comprehensive-review finish

This concludes the lab.

Appendix A

Implementing Microservices
Architecture

Goal Refactor an application into microservices.

Objectives + Divide an application across multiple
containers to separate distinct layers and
services.

Sections + Implementing Microservices Architectures

(with Guided Exercise)

'/

DO180-0OCP4.5-en-3-20201217

Appendix A | Implementing Microservices Architecture

Implementing Microservices
Architectures

Objectives

After completing this section, you should be able to:
+ Divide an application across multiple containers to separate distinct layers and services.

+ Describe typical approaches to breaking up a monolithic application into multiple deployable
units.

+ Describe how to break the To Do List application into three containers matching its logical tiers.

Benefits of Breaking Up a Monolithic Application into
Containers

Traditional application development typically has many distinct functions packaged as a single
deployment unit, or a monolithic application. Traditional development may also deploy supporting
services, such as databases and other middleware services, on the same server as the application.
While monolithic applications can still be deployed into a container, many of the advantages of a
container architecture, such as scalability and agility, are not as prevalent. Breaking up monoliths
requires careful consideration and it is recommended that in microservices applications each
microservice runs the minimum functionality that can be executed in isolation on each container.

Having smaller containers and breaking up an application and its supporting services into multiple
containers provides many advantages, such as:

+ Higher hardware utilization, because smaller containers are easier to fit into available host
capacity.

+ Easier scaling, because parts of the application can be scaled to support an increased workload
without scaling other parts of the application.

+ Easier upgrades, because developers can update parts of the application without affecting
other parts of the same application.

Two popular ways of breaking up an application are as follows:
+ Tiers: based on architectural layers.

+ Services: based on application functionality.

Dividing Based on Layers (Tiers)

A common way developers organize applications is in tiers, based on how close the functions are
to end users and how far from data stores. A good example of the traditional 3-tier architecture is
presentation, business logic, and persistence.

This logical architecture usually corresponds to a physical deployment architecture, where the
presentation layer would be deployed to a web server, the business layer to an application server,
and the persistence layer to a database server.

Appendix A | Implementing Microservices Architecture

Breaking up an application into tiers allows developers to specialize in particular technologies
based on the application's tiers. For example, some developers focus on web applications, while
others prefer database development. Another advantage is the ability to provide alternative tier
implementations based on different technologies; for example, creating a mobile application

as another front end for an existing application. The mobile application would be an alternative
presentation tier, reusing the business and persistence tiers of the original web application.

Smaller applications usually have the presentation and business tiers deployed as a single unit. For
example, to the same web server, but as the load increases, the presentation layer is moved to its
own deployment unit to spread the load. Smaller applications might even embed the database.
Developers often build and deploy more demanding applications in this monolithic fashion.

When developers break up a monolithic application into tiers, they usually apply several changes:

+ Connection parameters to a database and other middleware services, such as messaging,
were hard-coded to fixed IP addresses or host names, usually Llocalhost. They need to
be parameterized to point to external servers that might be different from development to
production.

+ In the case of web applications, Ajax calls cannot be made using relative URLs. They need to use
an absolute URL pointing to a fixed public DNS host name.

+ Modern web browsers refuse Ajax calls to servers different from the one containing the script
that makes the call, as a security measure. The application needs to have permissions for cross-
origin resource sharing (CORS).

After application tiers are divided so that they can run from different servers, there should be no
problem running them from different containers.

Dividing Based on Discrete Services

Most complex applications are composed of many semi-independent services. For example, an
online store would have a product catalog, shopping cart, payment, shipping, and so on.

When a particular service in a monolithic application degrades, scaling the service to improve
performance implies scaling all of the other constituent application services. If however

the degraded service is part of a microservices architecture, the affected service is scaled
independent of the other application services. The following figure illustrates service scaling for
both a monolithic and microservices-based architecture:

Appendix A | Implementing Microservices Architecture

MONOLITHIC APP

BAVA

A monolithic application
puts all services into a
single process...

MICRO SERVICES

In a microservices architec-
ture, each service element is
put into a separate process...

SCALING SCALING
O O O O
O A @ MVA O
O O O

O

...and scales by replicating the
monolith on multiple servers

.. and scales by replicating
services independently across
servers, as needed.

Figure A.1: Comparison of application scaling in a monolithic
architecture versus a microservices architecture

Both traditional service-oriented architectures (SOA) and more recent microservices architectures
package and deploy those function sets as distinct units. This allows each function set to be
developed by its own team, updated, and scaled without disturbing other function sets (or
services). Cross-functional concerns such as authentication can also be packaged and deployed
as services that are consumed by other service implementations.

Splitting each concern into a separated server might result in many applications. They are logically
architected, packaged, and deployed as a small number of units, sometimes even as a single
monolithic unit using a service approach.

Containers enable architectures based on services to be materialized during deployment. That is
the reason microservices and containers usually come together. However, containers alone are not
enough; they need to be complemented by orchestration tools to manage dependencies among
services.

The microservices architecture takes service-based architectures to the extreme. A service

is as small as it can be (without breaking a function set) and is deployed and managed as an
independent unit, instead of part of a bigger application. This allows existing microservices to be
reused to create new applications.

To break an application into services, it needs the same kind of change as when breaking into tiers;
for example, parameterize connection parameters to databases and other middleware services
and deal with web browser security protections.

DO180-0OCP4.5-en-3-20201217

Appendix A | Implementing Microservices Architecture

Refactoring the To Do List Application

The To Do List application is a simple application with a single function set, so breaking it up into
services is not really meaningful. However, refactoring it into presentation and business tiers, that
is, into a front end and a back end to deploy into distinct containers, illustrates the same kind of
changes that breaking up a typical application into services would need.

The following figure shows the To Do List application deployed into three containers, one for each

tier:

User Web
Browser
ui container api | container db container
HTML5 REST Items
Single-page app Services Database
+—>
AngularJS HTTP API
Front end Back end L

Figure A.2: To Do List application broken into tiers and each deployed as containers

Comparing the source code of the original monolithic application with the refactored one, this is
an overview of the changes:

+ The front-end JavaScript in script/items. js usesworkstation. lab.example.comas
the host name to reach the back end.

+ The back end uses environment variables to get the database connection parameters.

+ The back end has to reply to requests using the HTTP OPTIONS verb with headers telling the
web browser to accept requests coming from different DNS domains using CORS .

Other versions of the back end service might have similar changes. Each programming language
and REST framework have their own syntax and features.

References
Monolithic application page in Wikipedia
https://en.wikipedia.org/wiki/Monolithic_application

CORS page in Wikipedia
https://en.wikipedia.org/wiki/Cross-origin_resource_sharing

DO180-0OCP4.5-en-3-20201217 w

https://en.wikipedia.org/wiki/Monolithic_application
https://en.wikipedia.org/wiki/Cross-origin_resource_sharing

Appendix A | Implementing Microservices Architecture

» Guided Exercise

Refactoring the To Do List Application

In this lab, you will refactor the To Do List application into multiple containers that are linked
together, allowing the front-end HTML 5 application, the Node.js REST API, and the MySQL
server to run in their own containers.

Outcomes

You should be able to refactor a monolithic application into its tiers and deploy each tier as a
microservice.

Before You Begin

Run the following command to set up the working directories for the lab with the To Do List
application files:

[student@workstation ~]$ lab appendix-microservices start

) 1. Move the HTML Files

The first step in refactoring the To Do List application is to move the front-end code from
the application into its own running container. This step guides you through moving the
HTML application and its dependent files into their own directory for deployment to an
Apache server running in a container.

11, Move the HTML and static files to the src/ directory from the monolithic Node.js To
Do List application:

[student@workstation ~]$ cd ~/D0180/labs/appendix-microservices/apps/html5/
[student@workstation htm15]$% mv \

> ~/D0180/labs/appendix-microservices/apps/nodejs/todo/* \

> ~/D0180/labs/appendix-microservices/apps/html5/src/

1.2. The current front-end application interacts with the APl service using a relative URL.
Because the APl and front-end code will now run in separate containers, the front-
end needs to be adjusted to point to the absolute URL of the To Do List application
API.

Open the /home/student/D0180/1labs/appendix-microservices/apps/
html5/src/script/item. js file. At the bottom of the file, look for the following
method:

app.factory('itemService', function ($resource) {
return $resource('api/items/:id');

1)

Replace that code with the following content:

Appendix A | Implementing Microservices Architecture

app.factory('itemService', function ($resource) {
return $resource('http://workstation.lab.example.com:30080/todo/api/
items/:id');

1)

Make sure there are no line breaks in the new URL, save the file, and exit the editor.

) 2. Build the HTML Image

21. Run the build script to build the Apache parentimage.

[student@workstation html5]$ cd ~/D0180/1labs/appendix-microservices/images/apache
[student@workstation apache]$./build.sh

STEP 1: FROM ubi7/ubi:7.7

...output omitted. ..

STEP 13: COMMIT dol180/httpd

2.2. \Verify that the image is built correctly:

[student@workstation apache]$ sudo podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
localhost/do180/httpd latest 34376f2a318f 2 minutes ago 282.6 MB

2.3. Build the child Apache image:

[student@workstation apache]$ cd ~/D0180/labs/appendix-microservices/deploy/html5
[student@workstation html5]$./build.sh

STEP 1: FROM do180/httpd

STEP 2: COPY ./src/ ${HOME}/

--> cf11...ddel

STEP 3: COMMIT dol180/todo_frontend

2.4. Verify that the image is built correctly:

[student@workstation html5]$ sudo podman images

REPOSITORY TAG IMAGE ID CREATED SIZE
localhost/do180/todo_frontend latest 30b3fc531bc6 2 minutes ago 286.9 MB
localhost/do180/httpd latest 34376f2a318f 4 minutes ago 282.6 MB

P 3. Modify the REST API to Connect to External Containers

31 The REST API currently uses hard-coded values to connect to the MySQL database.
Edit the /home/student/D0180/ labs/appendix-microservices/apps/
nodejs/models/db. js file, which holds the database configuration. Update the
dbname, username, and password values to use environment variables instead.
Also, update the params. host to point to the host name of the host running the
MySQL container and update the params. port to reflect the redirected port
to the container. Both values are available as the MYSQL_SERVICE_HOST and
MYSQL_SERVICE_PORT environment variables, respectively. Replaced contents
should look like this:

Appendix A | Implementing Microservices Architecture

module.exports.params = {
dbname: process.env.MYSQL_DATABASE,
username: process.env.MYSQL_USER,
password: process.env.MYSQL_PASSWORD,
params: {

3

host: process.env.MYSQL_SERVICE_HOST,
port: process.env.MYSQL_SERVICE_PORT,
dialect: 'mysql'

Note
E This file can be copied and pasted from /home/student/D0180/solutions/
appendix-microservices/apps/nodejs/models/db.js.

3.2

Configure the back end to handle Cross-origin resource sharing (CORS). This occurs
when a resource request is made from a different domain from the one in which the
request was made. Because the API needs to handle requests from a different DNS
domain (the front-end application), it is necessary to create security exceptions to
allow these requests to succeed. Make the following modifications to the application
in the language of your preference in order to handle CORS.

Add "restify-cors-middleware": "1.1.1" asanew dependency to the
package. json file located at /home/student/D0180/labs/appendix-
microservices/apps/nodejs/package.json. Remember to put a comma at
the end of the previous dependency. Make sure the end of the file looks like this:

"sequelize": "5.21.1",
"mysql2": "2.0.0",
"restify-cors-middleware": "1.1.1"

Update the app. js file located at /home/student/D0180/ labs/appendix-
microservices/apps/nodejs/app.js to configure CORS usage. Require the
restify-cors-middleware module at the second line, and then update the
contents of the file to match the following:

var restify = require('restify');

var corsMiddleware = require('restify-cors-middleware');

var controller = require('./controllers/items');

...output omitted. ..

var server = restify.createServer()
.use(restify.plugins.fullResponse())
.use(restify.plugins.queryParser())
.use(restify.plugins.bodyParser());

Appendix A | Implementing Microservices Architecture

const cors = corsMiddleware({
origins: ['*']

1)

server.pre(cors.preflight);
server.use(cors.actual);

controller.context(server, '/todo/api', model);

The origins with value ["*"] instructs the server to allow any domains. In a
production server, this value would usually be an array of domains known to require
access to the API.

) 4. Build the REST APlImage

4. Build the REST API child image using the following command. This image uses the
Node.js image.

[student@workstation html5]$ cd ~/D0180/1labs/appendix-microservices/deploy/nodejs
[student@workstation nodejs]$./build.sh

STEP 1: FROM rhscl/nodejs-4-rhel7: latest

...output omitted...

STEP 11: COMMIT dol80/todonodejs

4.2. Runthe podman images command to verify that all of the required images are built
successfully:

[student@workstation nodejs]$ sudo podman images

REPOSITORY TAG IMAGE ID CREATED SIZE
localhost/do180/httpd latest 2963ca8l1ac51 5 seconds ago 249 MB
localhost/do180/todonodejs latest 7b64ef105c50 7 minutes ago 533 MB

localhost/do1860/todo_frontend latest 53ad57d2306c 9 minutes ago 254 MB
...output omitted...

) 5. Runthe Containers

51. Use the run. sh script to run the containers:

[student@workstation nodejs]$ cd linked/
[student@workstation linked]$./run.sh

e Creating database volume: OK

¢ Launching database: OK

« Importing database: OK

¢ Launching To Do application: OK

5.2. Runthe podman ps command to confirm that all three containers are running:

[student@workstation linked]$ sudo podman ps

IMAGE ... PORTS NAMES
localhost/do180/todo_frontend ... 0.0.0.0:30000->80/tcp todo_frontend
localhost/do180/todonodejs ... 8080/tcp, 0.0.0.0:30080... todoapi
localhost/rhscl/mysql-57-rhel7 ... 0.0.0.0:30306->3306/tcp mysql

Appendix A | Implementing Microservices Architecture

) 6. Testthe Application

6.. Use the curl command to verify that the REST API for the To Do List application is
working correctly:

[student@workstation linked]$ curl -w "\n" 127.0.0.1:30080/todo/api/items/1
{"description": "Pick up newspaper", "done": false, "id":1}

6.2. Open Firefox onworkstation and navigate tohttp://127.0.0.1:30000, where
you should see the To Do List application.

Finish
Onworkstation, runthe lab appendix-microservices finish scriptto complete this

lab.

[student@workstation ~]$ lab appendix-microservices finish

This concludes the guided exercise.

w DO180-0OCP4.5-en-3-20201217

Appendix A | Implementing Microservices Architecture

Summary

In this chapter, you learned:

Breaking a monolithic application into multiple containers allows for greater application
scalability, makes upgrades easier, and allows higher hardware utilization.

The three common tiers for logical division of an application are the presentation tier, the
business tier, and the persistence tier.

Cross-Origin Resource Sharing (CORS) can prevent Ajax calls to servers different from the
one where the pages were downloaded. Be sure to make provisions to allow CORS from other
containers in the application.

Container images are intended to be immutable, but configurations can be passed in either at
image build time or by creating persistent storage for configurations.

DO180-0OCP4.5-en-3-20201217

y 2AR(IA

3 n ."'".'"".l
o

A

=

i)

=]
L

LUOD JeUL

—
|
&)]

) ILBILIAL

n

.
[

-
L

—
L

) 1eH pay T

W DO180-OCP4.5-en-3-20201217

Appendix B

Creating a GitHub Account

Goal Describe how to create a GitHub account for labs
in the course.

DO180-0OCP4.5-en-3-20201217

Appendix B | Creating a GitHub Account

Creating a GitHub Account

Objectives

After completing this section, you should be able to create a GitHub account and create public Git
repositories for the labs in the course.

Creating a GitHub Account

You need a GitHub account to create one or more public Git repositories for the labs in this course.
If you already have a GitHub account, you can skip the steps listed in this appendix.

i~ | Important

— If you already have a GitHub account, ensure that you only create public Git
repositories for the labs in this course. The lab grading scripts and instructions
require unauthenticated access to clone the repository. The repositories must be
accessible without providing passwords, SSH keys, or GPG keys.

To create a new GitHub account, perform the following steps:
1. Navigate to https://github.com using a web browser.
2. Enter the required details and then click Sign up for GitHub.

o Why GitHub? Enterprise Explore Marketplace Pricing Signin ‘S\gn up‘

Username:

Pick a usemame

Built for

pers

ent

develo

From open source to business east 15 R at least 8 characters incluing
a Leamn more

Sign up for GitHub

By clicking “Sign up ur terms of ses
privacy statement. We'll occas

Figure B.I: Creating a GitHub account

3. You will receive an email with instructions on how to activate your GitHub account. Verify your
email address and then sign in to the GitHub website using the username and password you
provided during account creation.

4. After you have logged in to GitHub, you can create new Git repositories by clicking New in the
Repositories pane on the left of the GitHub home page.

w DO180-0OCP4.5-en-3-20201217

https://github.com

Appendix B | Creating a GitHub Account

O

Repositories

TS A I O A =

Figure B.2: Creating a new Git repository

Alternatively, click the plusicon (+) in the upper-right corner (to the right of the bell icon) and

then click New repository.

x

New repository

(—— Importrepository §
(@ Welcome to the 3 »
to the stuffyou ~ New gist

MNew organization

Discover repositori New project

openshiftibuilder
The image run by build pods to execute image
building+pushing

®Go %12

openshifticluster-samples-operator
The samples operator installs+maintains the sample
templates+imagestreams on a cluster

®Go %6

openshiftimust-gather
A client tool for gathering information about an operator
managed component.

®Go %8

Go to Explore —

Figure B.3: Creating new Git repository

DO180-0OCP4.5-en-3-20201217

Appendix B | Creating a GitHub Account

References

Signing up for a new GitHub account
https://help.github.com/en/articles/signing-up-for-a-new-github-account

w DO180-0OCP4.5-en-3-20201217

https://help.github.com/en/articles/signing-up-for-a-new-github-account

Appendix C

Creating a Quay Account

Goal Describe how to create a Quay account for labs in
the course.

DO180-0OCP4.5-en-3-20201217

Appendix C | Creating a Quay Account

Creating a Quay Account

Objectives

After completing this section, you should be able to create a Quay account and create public
container image repositories for the labs in the course.

Creating a Quay Account

You need a Quay account to create one or more public container image repositories for the labs
in this course. If you already have a Quay account, you can skip the steps to create a new account
listed in this appendix.

| Important
— If you already have a Quay account, ensure that you only create public container

image repositories for the labs in this course. The lab grading scripts and
instructions require unauthenticated access to pull container images from the
repository.

To create a new Quay account, perform the following steps:

1. Navigate to https://quay.io using a web browser.

2. Click Signinin the upper-right corner (next to the search bar).

3. On the Signin page, you can log in using your Google or GitHub credentials (created in
Appendix A).

(0 QUAY

Figure C.1: Sign in using Google or GitHub credentials.

Alternatively, click Create Account to create a new account.

https://quay.io

Appendix C | Creating a Quay Account

(0 QUAY

with Google Sign in with GitHub

Username or E-mail Address

Sign in to Quay Container Registry

Forgot Password?

Figure C.2: Creating a new account

4. If you chose to skip the Google or GitHub log-in method and instead opted to create a new
account, you will receive an email with instructions on how to activate your Quay account.
Verify your email address and then sign in to the Quay website with the username and
password you provided during account creation.

5. After you have logged in to Quay you can create new image repositories by clicking Create
New Repository on the Repositories page.

L ‘ rsriniva -

=+ Create New Repository

Users and Organizations

rsriniva

E redhattraining

Create New Organization

{0 QUAY Enterprise Leam More >

Figure C.3: Creating a new image repository

Alternatively, click the plusicon (+) in the upper-right corner (to the left of the bell icon), and
then click New Repository.

DO180-0OCP4.5-en-3-20201217 u

Appendix C | Creating a Quay Account

&+ - ‘ rsriniva -

New Organization

B New Repository

Users and Organizations

psitory

rsriniva

E redhattraining

Create New Organization

{0 QUAY tnterprise Lea More >

Figure C.4: Creating a new image repository

References

Getting Started with Quay.io
https://docs.quay.io/solution/getting-started.html

W DO180-0OCP4.5-en-3-20201217

https://docs.quay.io/solution/getting-started.html

Appendix C | Creating a Quay Account

Repositories Visibility

Objectives

After completing this section, you should be able to control repository visibility on Quay.io.

Quay.io Repositories Visibility

Quay.io offers the possibility of creating public and private repositories. Public repositories can be
read by anyone without restrictions, despite write permissions must be explicitly granted. Private
repositories have both read and write permissions restricted. Nevertheless, the number of private
repositories in quay . 10 is limited depending on the namespace's plan.

Default Repository Visibility

Repositories created by pushing images to quay . 10 are private by default. In order OpenShift (or
any other tool) to fetch those images you can either configure a private key in both OpenShift and
Quay, or make the repository public, so no authentication is required. Setting up private keys is out
of scope of this document.

DO180-0OCP4.5-en-3-20201217 w

Appendix C | Creating a Quay Account

& = (C & htpsi//quay.io/repository/

@RED HAT Quay.io EXPLORE APPLICATIONS REPOSITORIES TUTORIAL

Repositories

Starred

You haven't starred any repositories yet.

Stars allow you to easily access your favorite repositories

@ RHT_OCP4_QUAY_USER

£ do180-mysql-57-rhel7 £ do180-todonodejs

8 do180-quote-php f_:*n nexus

Updating Repository Visibility

In order to set repository visibility to public select the appropriate repository in https://
quay.io/repository/ (login to your account if needed) and open the Settings page by
clicking on the gear on the left-bottom edge. Scroll down to the Repository Visibility
section and click on the Make Public button.

W DO180-0OCP4.5-en-3-20201217

Appendix C | Creating a Quay Account

(& = 1 @ https://quay.io/repository/ /nexus?tab=settings w

‘& Trust Disabled -

Signing is disabled on this repository.

a Enable Trust

A Events and Notifications + Create Notification

No notifications have been setup for this repository.

Click the "Create Notification" button above to add a new notification for a repository event

& Repository Visibility

This Repository is currently private. Only users on the permissions list may view and interact with it.

o' Make Public
]

i Delete Repository

o Deleting a Repository cannot be undone. Here be dragons! @ Delete Repository

Get back the the list of repositories. The lock icon besides the repository name have disappeared,
indicating the repository became public.

DO180-0OCP4.5-en-3-20201217 w

y 2AR(IA

3 n ."'".'"".l
o

A

=

i)

=]
L

LUOD JeUL

—
|
&)]

) ILBILIAL

n

.
[

-
L

—
L

) 1eH pay T

W DO180-OCP4.5-en-3-20201217

Appendix D

Useful Git Commands

Goal Describe useful Git commands that are used for
the labs in this course.

DO180-0OCP4.5-en-3-20201217

Appendix D | Useful Git Commands

Git Commands

Objectives

After completing this section, you should be able to restart and redo exercises in this course. You
should also be able to switch from one incomplete exercise to perform another, and later continue
the previous exercise where you left off.

Working with Git Branches

This course uses a Git repository hosted on GitHub to store the application course code source
code. At the beginning of the course, you create your own fork of this repository, which is also
hosted on GitHub.

During this course, you work with a local copy of your fork, which you clone to the workstation
VM. The term origin refers to the remote repository from which a local repository is cloned.

As you work through the exercises in the course, you use separate Git branches for each exercise.
All changes you make to the source code happen in a new branch that you create only for that
exercise. Never make any changes on the master branch.

A list of scenarios and the corresponding Git commands that you can use to work with branches,
and to recover to a known good state are listed below.

Redoing an Exercise from Scratch

To redo an exercise from scratch after you have completed it, perform the following steps:

1. You commit and push all the changes in your local branch as part of performing the exercise.
You finished the exercise by running its finish subcommand to clean up all resources:

[student@workstation ~]$ lab your-exercise finish

2. Change to your local clone of the D0180-apps repository and switch to the master branch:

[student@workstation ~]$ cd ~/D0180-apps
[student@workstation D0180-apps]$ git checkout master

3. Delete your local branch:

[student@workstation D0180-apps]$ git branch -d your-branch

4. Delete the remote branch on your personal GitHub account:

[student@workstation D0180-apps]$ git push origin --delete your-branch

5. Use the start subcommand to restart the exercise:

Appendix D | Useful Git Commands

[student@workstation D0180-apps]$ cd ~
[student@workstation ~]$ lab your-exercise start

Abandoning a Partially Completed Exercise and Restarting it
from Scratch

You may run into a scenario where you have partially completed a few steps in the exercise, and
you want to abandon the current attempt, and restart it from scratch. Perform the following steps:

1. Run the exercise's finish subcommand to clean up all resources.

[student@workstation ~]$ lab your-exercise finish

2. Enteryourlocal clone of the D0180-apps repository and discard any pending changes on the
current branch using git stash:

[student@workstation ~]$ cd ~/D0180-apps
[student@workstation D0180-apps]$ git stash

3. Switch to the master branch of your local repository:

[student@workstation D0180-apps]$ git checkout master

4. Delete your local branch:

[student@workstation D0180-apps]$ git branch -d your-branch

5. Delete the remote branch on your personal GitHub account:

[student@workstation D0180-apps]$ git push origin --delete your-branch

6. You can now restart the exercise by running its start subcommand:

[student@workstation D0180-apps]$ cd ~
[student@workstation ~]$ lab your-exercise start

Switching to a Different Exercise from an Incomplete Exercise

You may run into a scenario where you have partially completed a few steps in an exercise, but you
want to switch to a different exercise, and revisit the current exercise at a later time.

Avoid leaving too many exercises uncompleted to revisit later. These exercises tie up cloud
resources and you may use up your allotted quota on the cloud provider and on the OpenShift
cluster you share with other students. If you think it may be a while until you can go back to the
current exercise, consider abandoning it and later restarting from scratch.

If you prefer to pause the current exercise and work on the next one, perform the following steps:

1. Commit any pending changes in your local repository and push them to your personal GitHub
account. You may want to record the step where you stopped the exercise:

Appendix D | Useful Git Commands

[student@workstation ~]$ cd ~/D0180-apps
[student@workstation D0180-apps]$ git commit -a -m 'Paused at step X.Y'
[student@workstation D0180-apps]$ git push

2. Donotrunthe finish command of the original exercise. This is important to leave your
existing OpenShift projects unchanged, so you can resume later.

3. Start the next exercise by running its start subcommand:

[student@workstation ~]$ lab your-exercise start

4. The next exercise switches to the master branch and optionally creates a new branch for its
changes. This means the changes made to the original exercise in the original branch are left
untouched.

5. Later, after you have completed the next exercise, and you want to go back to the original
exercise, switch back to its branch:

[student@workstation ~]$ git checkout original-branch

Then you can continue with the original exercise at the step where you left off.

References

Git branch man page
https://git-scm.com/docs/git-branch

What s a Git branch?
https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell

Git Tools - Stashing
https://git-scm.com/book/en/v2/Git-Tools-Stashing-and-Cleaning

w DO180-0OCP4.5-en-3-20201217

https://git-scm.com/docs/git-branch
https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell
https://git-scm.com/book/en/v2/Git-Tools-Stashing-and-Cleaning

	Red Hat OpenShift I: Containers & Kubernetes
	Table of Contents
	Document Conventions
	Introduction
	DO180: Red Hat OpenShift I: Containers & Kubernetes
	Orientation to the Classroom Environment
	Internationalization

	Chapter 1. Introducing Container Technology
	Overview of Container Technology
	Quiz: Overview of Container Technology
	Overview of Container Architecture
	Quiz: Overview of Container Architecture
	Overview of Kubernetes and OpenShift
	Quiz: Describing Kubernetes and OpenShift
	Guided Exercise: Configuring the Classroom Environment
	Summary

	Chapter 2. Creating Containerized Services
	Provisioning Containerized Services
	Guided Exercise: Creating a MySQL Database Instance
	Lab: Creating Containerized Services
	Summary

	Chapter 3. Managing Containers
	Managing the Life Cycle of Containers
	Guided Exercise: Managing a MySQL Container
	Attaching Persistent Storage to Containers
	Guided Exercise: Persisting a MySQL Database
	Accessing Containers
	Guided Exercise: Loading the Database
	Lab: Managing Containers
	Summary

	Chapter 4. Managing Container Images
	Accessing Registries
	Quiz: Working With Registries
	Manipulating Container Images
	Guided Exercise: Creating a Custom Apache Container Image
	Lab: Managing Images
	Summary

	Chapter 5. Creating Custom Container Images
	Designing Custom Container Images
	Quiz: Approaches to Container Image Design
	Building Custom Container Images with Dockerfiles
	Guided Exercise: Creating a Basic Apache Container Image
	Lab: Creating Custom Container Images
	Summary

	Chapter 6. Deploying Containerized Applications on OpenShift
	Describing Kubernetes and OpenShift Architecture
	Quiz: Describing Kubernetes and OpenShift
	Creating Kubernetes Resources
	Guided Exercise: Deploying a Database Server on OpenShift
	Creating Routes
	Guided Exercise: Exposing a Service as a Route
	Creating Applications with Source-to-Image
	Guided Exercise: Creating a Containerized Application with Source-to-Image
	Creating Applications with the OpenShift Web Console
	Guided Exercise: Creating an Application with the Web Console
	Lab: Deploying Containerized Applications on OpenShift
	Summary

	Chapter 7. Deploying Multi-Container Applications
	Considerations for Multi-Container Applications
	Guided Exercise: Deploying the Web Application and MySQL Containers
	Deploying a Multi-Container Application on OpenShift
	Guided Exercise: Creating an Application with a Template
	Lab: Deploying Multi-Container Applications
	Summary

	Chapter 8. Troubleshooting Containerized Applications
	Troubleshooting S2I Builds and Deployments
	Guided Exercise: Troubleshooting an OpenShift Build
	Troubleshooting Containerized Applications
	Guided Exercise: Configuring Apache Container Logs for Debugging
	Lab: Troubleshooting Containerized Applications
	Summary

	Chapter 9. Comprehensive Review
	Comprehensive Review
	Lab: Containerizing and Deploying a Software Application

	Appendix A. Implementing Microservices Architecture
	Implementing Microservices Architectures
	Guided Exercise: Refactoring the To Do List Application
	Summary

	Appendix B. Creating a GitHub Account
	Creating a GitHub Account

	Appendix C. Creating a Quay Account
	Creating a Quay Account
	Repositories Visibility

	Appendix D. Useful Git Commands
	Git Commands

