
RED HAT®

TRAINING

Comprehensive, hands-on training that solves real world problems

Introduction to Containers,
Kubernetes, and Red Hat
OpenShift
Student Workbook (ROLE)

© 2017 Red Hat, Inc. DO180-OCP3.5-en-1-20170524

INTRODUCTION
TO CONTAINERS,

KUBERNETES,
AND RED HAT
OPENSHIFT

Introduction to Containers, Kubernetes, and Red Hat OpenShift

OCP 3.5 DO180
Introduction to Containers, Kubernetes, and Red Hat
OpenShift
Edition 1 20170524 20170524

Authors: Ravishankar Srinivasan, Fernando Lozano, Richard Allred,
Ricardo Taniguchi, Jim Rigsbee

Editor: David O'Brien, Dave Sacco

Copyright © 2017 Red Hat, Inc.

The contents of this course and all its modules and related materials, including handouts to
audience members, are Copyright © 2017 Red Hat, Inc.

No part of this publication may be stored in a retrieval system, transmitted or reproduced in
any way, including, but not limited to, photocopy, photograph, magnetic, electronic or other
record, without the prior written permission of Red Hat, Inc.

This instructional program, including all material provided herein, is supplied without any
guarantees from Red Hat, Inc. Red Hat, Inc. assumes no liability for damages or legal action
arising from the use or misuse of contents or details contained herein.

If you believe Red Hat training materials are being used, copied, or otherwise improperly
distributed please e-mail training@redhat.com or phone toll-free (USA) +1 (866) 626-2994
or +1 (919) 754-3700.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, Hibernate, Fedora, the
Infinity Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and
other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other
countries.

Java® is a registered trademark of Oracle and/or its affiliates.

XFS® is a registered trademark of Silicon Graphics International Corp. or its subsidiaries in
the United States and/or other countries.

The OpenStack® Word Mark and OpenStack Logo are either registered trademarks/service
marks or trademarks/service marks of the OpenStack Foundation, in the United States
and other countries and are used with the OpenStack Foundation's permission. We are not
affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack
community.

All other trademarks are the property of their respective owners.

Contributors: Jim Rigsbee, George Hacker, Philip Sweany, Rob Locke

DO180-OCP3.5-en-1-20170524 vii

Document Conventions ix
Notes and Warnings ... ix

Introduction xi
Introduction to Containers, Kubernetes, and Red Hat OpenShift .. xi
Orientation to the Classroom Environment ... xii
Internationalization ... xv

1. Getting Started with Container Technology 1
Overview of the Container Architecture ... 2
Quiz: Overview of the Container Architecture ... 5
Overview of the Docker Architecture ... 9
Quiz: Overview of the Docker Architecture ... 12
Describing Kubernetes and OpenShift .. 14
Quiz: Describing Kubernetes and OpenShift .. 19
Summary ... 23

2. Creating Containerized Services 25
Building a Development Environment ... 26
Guided Exercise: Starting an OpenShift Cluster ... 33
Provisioning a Database Server ... 39
Guided Exercise: Creating a MySQL Database Instance ... 45
Lab: Creating Containerized Services ... 48
Summary ... 53

3. Managing Containers 55
Managing the Life Cycle of Containers ... 56
Guided Exercise: Managing a MySQL Container ... 67
Attaching Docker Persistent Storage ... 70
Guided Exercise: Persisting a MySQL Database ... 73
Accessing Docker Networks ... 76
Guided Exercise: Loading the Database ... 79
Lab: Managing Containers ... 82
Summary ... 90

4. Managing Container Images 91
Accessing Registries ... 92
Quiz: Working With Registries ... 98
Manipulating Container Images ... 102
Guided Exercise: Creating a Custom Apache Container Image ... 107
Lab: Managing Images ... 112
Summary ... 118

5. Creating Custom Container Images 119
Design Considerations for Custom Container Images ... 120
Quiz: Approaches to Container Image Design ... 124
Building Custom Container Images with Dockerfile .. 126
Guided Exercise: Creating a Basic Apache Container Image ... 135
Lab: Creating Custom Container Images ... 139
Summary ... 147

6. Deploying Containerized Applications on OpenShift 149
Installing the OpenShift Command-line Tool .. 150
Quiz: OpenShift CLI .. 153
Creating Kubernetes Resources ... 155

Introduction to Containers, Kubernetes, and Red Hat OpenShift

viii DO180-OCP3.5-en-1-20170524

Guided Exercise: Deploying a Database Server on OpenShift .. 168
Creating Applications with Source-to-Image ... 174
Guided Exercise: Creating a Containerized Application with Source-to-Image 183
Creating Routes ... 188
Guided Exercise: Exposing a Service as a Route ... 192
Creating Applications with the OpenShift Web Console ... 195
Guided Exercise: Creating an Application with the Web Console ... 197
Lab: Deploying Containerized Applications on OpenShift .. 204
Summary ... 207

7. Deploying Multi-Container Applications 209
Considerations for Multi-Container Applications ... 210
Quiz: Multi-Container Application Considerations ... 215
Deploying a Multi-Container Application with Docker ... 217
Guided Exercise: Linking the Web Application and MySQL Containers ... 219
Deploying a Multi-Container Application on OpenShift .. 226
Guided Exercise: Creating an Application with a Template ... 233
Lab: Deploying Multi-Container Applications ... 238
Summary ... 246

8. Troubleshooting Containerized Applications 247
Troubleshooting S2I Builds and Deployments ... 248
Guided Exercise: Troubleshooting an OpenShift Build ... 253
Troubleshooting Containerized Applications ... 259
Guided Exercise: Configuring Apache Container Logs for Debugging ... 267
Lab: Troubleshooting Containerized Applications ... 270
Summary ... 277

9. Comprehensive Review of Introduction to Containers, Kubernetes, and Red Hat
OpenShift 279

Comprehensive Review ... 280
Lab: Containerizing and Deploying a Software Application ... 283

A. Implementing Microservices Architecture 293
Implementing Microservices Architectures ... 294
Guided Exercise: Refactoring the To Do List Application ... 297
Summary ... 302

DO180-OCP3.5-en-1-20170524 ix

Document Conventions

Notes and Warnings

Note
"Notes" are tips, shortcuts or alternative approaches to the task at hand. Ignoring a
note should have no negative consequences, but you might miss out on a trick that
makes your life easier.

Important
"Important" boxes detail things that are easily missed: configuration changes that
only apply to the current session, or services that need restarting before an update
will apply. Ignoring a box labeled "Important" will not cause data loss, but may cause
irritation and frustration.

Warning
"Warnings" should not be ignored. Ignoring warnings will most likely cause data loss.

References
"References" describe where to find external documentation relevant to a subject.

x

DO180-OCP3.5-en-1-20170524 xi

Introduction

Introduction to Containers, Kubernetes, and
Red Hat OpenShift

DO180: Introduction to Containers, Kubernetes, and Red Hat OpenShift is a hands-on course that
teaches students how to create, deploy, and manage containers using Docker, Kubernetes, and
the Red Hat OpenShift Container Platform.

One of the key tenants of the DevOps movement is continuous integration and continuous
deployment. Containers have become a key technology for the configuration and deployment of
applications and microservices. Red Hat OpenShift Container Platform is an implementation of
Kubernetes, a container orchestration system.

Objectives
• Demonstrate knowledge of the container ecosystem.

• Manage Docker containers.

• Deploy containers on a Kubernetes cluster using the OpenShift Container Platform.

• Demonstrate basic container design and the ability to build container images.

• Implement a container-based architecture using knowledge of containers, Kubernetes, and
OpenShift.

Audience
• System Administrators

• Developers

• IT Leaders and Infrastructure Architects

Prerequisites
Students should meet one or more of the following prerequisites:

• Be able to use a Linux terminal session and issue operating system commands. An RHCSA
certification is recommended but not required.

• Have experience with web application architectures and their corresponding technologies.

Introduction

xii DO180-OCP3.5-en-1-20170524

Orientation to the Classroom Environment

In this course, students will do most hands-on practice exercises and lab work with a computer
system referred to as workstation. This is a virtual machine (VM), which has the host name
workstation.lab.example.com.

A second VM, infrastructure, with the host name infrastructure.lab.example.com,
hosts supporting services that would be provided by a typical corporation for its developers:

• A private docker registry containing the images needed for the course.

• A Git server that stores the source code for the applications developed during the course.

• A Nexus server with a repository of modules for Node.js development.

A third VM, ocp, with the host name ocp.lab.example.com, hosts the OpenShift Container
Platform (OCP) cluster.

All student machines have a standard user account, student, with the password student.
Access to the root account is available from the student account, using the sudo command.

Students do not need access to the infrastructure VM to perform tasks for this course, but
it needs to be up and running. Students will need to access the ocp VM to start the OpenShift
cluster and configure persistent storage for OpenShift pods. Most other actions related to
OpenShift will be performed from the workstation VM using the OpenShift client.

The following table lists the virtual machines that are available in the classroom environment:

Classroom Machines

Machine name IP addresses Role

content.example.com,
materials.example.com,
classroom.example.com

172.25.254.254,
172.25.252.254

Classroom utility server

workstation.lab.example.com,
workstationX.example.com

172.25.250.254,
172.25.252.X

Student graphical
workstation

infrastructure.lab.example.com 172.25.250.10 Student development
infrastructure server

ocp.lab.example.com 172.25.250.11 OpenShift Container
Platform cluster server

The environment runs a central utility server, classroom.example.com, which acts as a
NAT router for the classroom network to the outside world. It provides DNS, DHCP, HTTP,
and other content services to students. It uses two names, content.example.com and
materials.example.com, to provide course content used in the practice and lab exercises.

The workstation.lab.example.com student virtual machine acts as a NAT router
between the student network (172.25.250.0/24) and the classroom physical
network (172.25.252.0/24). workstation.lab.example.com is also known as
workstationX.example.com, where X in the host name will be a number that varies from
student to student.

Lab Exercise Setup and Grading

DO180-OCP3.5-en-1-20170524 xiii

Lab Exercise Setup and Grading
Most activities use the lab command, executed on workstation, to prepare and evaluate the
exercise. The lab command takes two arguments: the activity's name and a subcommand of
setup, grade, or reset.

• The setup subcommand is used at the beginning of an exercise. It verifies that the systems
are ready for the activity, possibly making some configuration changes to them.

• The grade subcommand is executed at the end of an exercise. It provides external
confirmation that the activity's requested steps were performed correctly.

• The reset subcommand can be used to turn back the clock and start the activity over again,
usually followed by setup.

In a Red Hat Online Learning classroom, students are assigned remote computers that are
accessed through a web application hosted at rol.redhat.com [http://rol.redhat.com]. Students
should log in to this machine using the user credentials they provided when registering for the
class.

Controlling the stations

The state of each virtual machine in the classroom is displayed on the page found under the
Online Lab tab.

Machine States

Machine State Description

STARTING The machine is in the process of booting.

STARTED The machine is running and available (or, when booting, soon will be).

STOPPING The machine is in the process of shutting down.

STOPPED The machine is completely shut down. Upon starting, the machine will
boot into the same state as when it was shut down (the disk will have
been preserved).

PUBLISHING The initial creation of the virtual machine is being performed.

WAITING_TO_START The virtual machine is waiting for other virtual machines to start.

Depending on the state of a machine, a selection of the following actions will be available.

Classroom/Machine Actions

Button or Action Description

PROVISION LAB Create the ROL classroom. This creates all of the virtual machines
needed for the classroom and starts them. This will take several
minutes to complete.

DELETE LAB Delete the ROL classroom. This destroys all virtual machines in the
classroom. Caution: Any work generated on the disks is lost.

START LAB Start all machines in the classroom.

SHUTDOWN LAB Stop all machines in the classroom.

OPEN CONSOLE Open a new tab in the browser and connect to the console of
the virtual machine. Students can log in directly to the machine
and run commands. In most cases, students should log in to the

http://rol.redhat.com
http://rol.redhat.com

Introduction

xiv DO180-OCP3.5-en-1-20170524

Button or Action Description

workstation.lab.example.com machine and use ssh to connect
to the other virtual machines.

ACTION > Start Start (“power on”) the machine.

ACTION > Shutdown Gracefully shut down the machine, preserving the contents of its disk.

ACTION > Power Off Forcefully shut down the machine, preserving the contents of its disk.
This is equivalent to removing the power from a physical machine.

ACTION > Reset Forcefully shut down the machine and reset the disk to its initial state.
Caution: Any work generated on the disk is lost.

At the start of a lab exercise, if an instruction to reset workstation appears, click
ACTION > Reset for the workstation virtual machine. Likewise, if an instruction to reset
infrastructure appears, click ACTION > Reset for the infrastructure virtual machine.

At the start of a lab exercise, if an instruction to reset all virtual machines appears, click DELETE
LAB to delete the classroom environment. After it has been deleted, click PROVISION LAB to
create a fresh version of the classroom systems.

The Autostop Timer

The Red Hat Online Learning enrollment entitles students to a certain amount of computer time.
To help conserve time, the ROL classroom has an associated countdown timer, which will shut
down the classroom environment when the timer expires.

To adjust the timer, click MODIFY. A New Autostop Time dialog opens. Set the autostop time in
hours and minutes (note: there is a ten hour maximum time). Click ADJUST TIME to adjust the
time accordingly.

Internationalization

DO180-OCP3.5-en-1-20170524 xv

Internationalization

Language Support
Red Hat Enterprise Linux 7 officially supports 22 languages: English, Assamese, Bengali, Chinese
(Simplified), Chinese (Traditional), French, German, Gujarati, Hindi, Italian, Japanese, Kannada,
Korean, Malayalam, Marathi, Odia, Portuguese (Brazilian), Punjabi, Russian, Spanish, Tamil, and
Telugu.

Per-user Language Selection
Users may prefer to use a different language for their desktop environment than the system-
wide default. They may also want to set their account to use a different keyboard layout or input
method.

Language Settings

In the GNOME desktop environment, the user may be prompted to set their preferred language
and input method on first login. If not, then the easiest way for an individual user to adjust their
preferred language and input method settings is to use the Region & Language application. Run
the command gnome-control-center region, or from the top bar, select (User) > Settings.
In the window that opens, select Region & Language. The user can click the Language box and
select their preferred language from the list that appears. This will also update the Formats
setting to the default for that language. The next time the user logs in, these changes will take
full effect.

These settings affect the GNOME desktop environment and any applications, including gnome-
terminal, started inside it. However, they do not apply to that account if accessed through an
ssh login from a remote system or a local text console (such as tty2).

Note
A user can make their shell environment use the same LANG setting as their graphical
environment, even when they log in through a text console or over ssh. One way to do
this is to place code similar to the following in the user's ~/.bashrc file. This example
code will set the language used on a text login to match the one currently set for the
user's GNOME desktop environment:

i=$(grep 'Language=' /var/lib/AccountService/users/${USER} \
 | sed 's/Language=//')
if ["$i" != ""]; then
 export LANG=$i
fi

Japanese, Korean, Chinese, or other languages with a non-Latin character set may not
display properly on local text consoles.

Individual commands can be made to use another language by setting the LANG variable on the
command line:

[user@host ~]$ LANG=fr_FR.utf8 date

Introduction

xvi DO180-OCP3.5-en-1-20170524

jeu. avril 24 17:55:01 CDT 2014

Subsequent commands will revert to using the system's default language for output. The locale
command can be used to check the current value of LANG and other related environment
variables.

Input Method Settings

GNOME 3 in Red Hat Enterprise Linux 7 automatically uses the IBus input method selection
system, which makes it easy to change keyboard layouts and input methods quickly.

The Region & Language application can also be used to enable alternative input methods. In the
Region & Language application's window, the Input Sources box shows what input methods are
currently available. By default, English (US) may be the only available method. Highlight English
(US) and click the keyboard icon to see the current keyboard layout.

To add another input method, click the + button at the bottom left of the Input Sources window.
An Add an Input Source window will open. Select your language, and then your preferred input
method or keyboard layout.

Once more than one input method is configured, the user can switch between them quickly by
typing Super+Space (sometimes called Windows+Space). A status indicator will also appear
in the GNOME top bar, which has two functions: It indicates which input method is active, and
acts as a menu that can be used to switch between input methods or select advanced features of
more complex input methods.

Some of the methods are marked with gears, which indicate that those methods have advanced
configuration options and capabilities. For example, the Japanese Japanese (Kana Kanji) input
method allows the user to pre-edit text in Latin and use Down Arrow and Up Arrow keys to
select the correct characters to use.

US English speakers may find also this useful. For example, under English (United States) is the
keyboard layout English (international AltGr dead keys), which treats AltGr (or the right Alt)
on a PC 104/105-key keyboard as a "secondary-shift" modifier key and dead key activation key
for typing additional characters. There are also Dvorak and other alternative layouts available.

Note
Any Unicode character can be entered in the GNOME desktop environment if the user
knows the character's Unicode code point, by typing Ctrl+Shift+U, followed by the
code point. After Ctrl+Shift+U has been typed, an underlined u will be displayed to
indicate that the system is waiting for Unicode code point entry.

For example, the lowercase Greek letter lambda has the code point U+03BB, and can be
entered by typing Ctrl+Shift+U, then 03bb, then Enter.

System-wide Default Language Settings
The system's default language is set to US English, using the UTF-8 encoding of Unicode as its
character set (en_US.utf8), but this can be changed during or after installation.

From the command line, root can change the system-wide locale settings with the localectl
command. If localectl is run with no arguments, it will display the current system-wide locale
settings.

Language Packs

DO180-OCP3.5-en-1-20170524 xvii

To set the system-wide language, run the command localectl set-locale LANG=locale,
where locale is the appropriate $LANG from the "Language Codes Reference" table in this
chapter. The change will take effect for users on their next login, and is stored in /etc/
locale.conf.

[root@host ~]# localectl set-locale LANG=fr_FR.utf8

In GNOME, an administrative user can change this setting from Region & Language and clicking
the Login Screen button at the upper-right corner of the window. Changing the Language of
the login screen will also adjust the system-wide default language setting stored in the /etc/
locale.conf configuration file.

Important
Local text consoles such as tty2 are more limited in the fonts that they can display
than gnome-terminal and ssh sessions. For example, Japanese, Korean, and Chinese
characters may not display as expected on a local text console. For this reason, it may
make sense to use English or another language with a Latin character set for the
system's text console.

Likewise, local text consoles are more limited in the input methods they support, and
this is managed separately from the graphical desktop environment. The available
global input settings can be configured through localectl for both local text virtual
consoles and the X11 graphical environment. See the localectl(1), kbd(4), and
vconsole.conf(5) man pages for more information.

Language Packs
When using non-English languages, you may want to install additional "language packs" to
provide additional translations, dictionaries, and so forth. To view the list of available langpacks,
run yum langavailable. To view the list of langpacks currently installed on the system,
run yum langlist. To add an additional langpack to the system, run yum langinstall
code, where code is the code in square brackets after the language name in the output of yum
langavailable.

References
locale(7), localectl(1), kbd(4), locale.conf(5), vconsole.conf(5),
unicode(7), utf-8(7), and yum-langpacks(8) man pages

Conversions between the names of the graphical desktop environment's X11 layouts and
their names in localectl can be found in the file /usr/share/X11/xkb/rules/
base.lst.

Introduction

xviii DO180-OCP3.5-en-1-20170524

Language Codes Reference

Language Codes

Language $LANG value

English (US) en_US.utf8

Assamese as_IN.utf8

Bengali bn_IN.utf8

Chinese (Simplified) zh_CN.utf8

Chinese (Traditional) zh_TW.utf8

French fr_FR.utf8

German de_DE.utf8

Gujarati gu_IN.utf8

Hindi hi_IN.utf8

Italian it_IT.utf8

Japanese ja_JP.utf8

Kannada kn_IN.utf8

Korean ko_KR.utf8

Malayalam ml_IN.utf8

Marathi mr_IN.utf8

Odia or_IN.utf8

Portuguese (Brazilian) pt_BR.utf8

Punjabi pa_IN.utf8

Russian ru_RU.utf8

Spanish es_ES.utf8

Tamil ta_IN.utf8

Telugu te_IN.utf8

DO180-OCP3.5-en-1-20170524 1

TRAINING

CHAPTER 1

GETTING STARTED WITH
CONTAINER TECHNOLOGY

Overview

Goal Describe how software can run in containers orchestrated by
Red Hat OpenShift Container Platform.

Objectives • Describe the architecture of Linux containers.

• Describe how containers are implemented using Docker.

• Describe the architecture of a Kubernetes cluster running
on the Red Hat OpenShift Container Platform.

Sections • Container Architecture (and Quiz)

• Docker Architecture (and Quiz)

• Container Orchestration with Kubernetes and OpenShift
(and Quiz)

Chapter 1. Getting Started with Container Technology

2 DO180-OCP3.5-en-1-20170524

Overview of the Container Architecture

Objectives
After completing this section, students should be able to:

• Describe the architecture of Linux containers.

• Describe the characteristics of software applications.

• List the approaches of using a container.

Containerized Applications
Software applications are typically deployed as a single set of libraries and configuration files
to a runtime environment. They are traditionally deployed to an operating system with a set of
services running, such as a database server or an HTTP server, but they can also be deployed
to any environment that can provide the same services, such as a virtual machine or a physical
host.

The major drawback to using a software application is that it is entangled with the runtime
environment and any updates or patches applied to the base OS might break the application.
For example, an OS update might include multiple dependency updates, including libraries (that
is, operating system libraries shared by multiple programming languages) that might affect the
running application with incompatible updates.

Moreover, if another application is sharing the same host OS and the same set of libraries, as
described in the next diagram, there might be a risk of breaking it if an update that fixes the first
application libraries affects the second application.

Thus, for a company developing typical software applications, any maintenance on the running
environment might require a full set of tests to guarantee that any OS update does not affect the
application as well.

Depending on the complexity of an application, the regression verification might not be an
easy task and might require a major project. Furthermore, any update normally requires a full
application stop. Normally, this implies an environment with high-availability features enabled to
minimize the impact of any downtime, and increases the complexity of the deployment process.
The maintenance might become cumbersome, and any deployment or update might become a
complex process.

Containerized Applications

DO180-OCP3.5-en-1-20170524 3

Figure 1.1: Container versus operating system differences

Alternatively, a system administrator can work with containers, which are a kind of isolated
partition inside a single operating system. Containers provide many of the same benefits as
virtual machines, such as security, storage, and network isolation, while requiring far fewer
hardware resources and being quicker to launch and terminate. They also isolate the libraries
and the runtime environment (such as CPU and storage) used by an application to minimize the
impact of any OS update to the host OS, as described in the previous diagram.

The use of containers helps not only with the efficiency, elasticity, and reusability of the hosted
applications, but also with portability of the platform and applications. There are many container
providers available, such as Rocket, Drawbridge, and LXC, but one of the major providers is
Docker.

Some of the major advantages of containers are listed below.

Low hardware footprint
Uses OS internal features to create an isolated environment where resources are managed
using OS facilities such as namespaces and cgroups. This approach minimizes the amount
of CPU and memory overhead compared to a virtual machine hypervisor. Running an
application in a VM is a way to create isolation from the running environment, but it requires
a heavy layer of services to support the same low hardware footprint isolation provided by
containers.

Environment isolation
Works in a closed environment where changes made to the host OS or other applications
do not affect the container. Because the libraries needed by a container are self-contained,
the application can run without disruption. For example, each application can exist in its
own container with its own set of libraries. An update made to one container does not affect
other containers, which might not work with the update.

Quick deployment
Deploys any container quickly because there is no need for a full OS install or restart.
Normally, to support the isolation, a new OS installation is required on a physical host or VM,
and any simple update might require a full OS restart. A container only requires a restart
without stopping any services on the host OS.

Chapter 1. Getting Started with Container Technology

4 DO180-OCP3.5-en-1-20170524

Multiple environment deployment
In a traditional deployment scenario using a single host, any environment differences
might potentially break the application. Using containers, however, the differences and
incompatibilities are mitigated because the same container image is used.

Reusability
The same container can be reused by multiple applications without the need to set up a full
OS. A database container can be used to create a set of tables for a software application,
and it can be quickly destroyed and recreated without the need to run a set of housekeeping
tasks. Additionally, the same database container can be used by the production environment
to deploy an application.

Often, a software application with all its dependent services (databases, messaging, filesystems)
are made to run in a single container. However, container characteristics and agility requirements
might make this approach challenging or ill-advised. In these instances, a multi-container
deployment may be more suitable. Additionally, be aware that some application actions may
not be suited for a containerized environment. For example, applications accessing low-level
hardware information, such as memory, file-systems and devices may fail due to container
constraints.

Finally, containers boost the microservices development approach because they provide
a lightweight and reliable environment to create and run services that can be deployed to
a production or development environment without the complexity of a multiple machine
environment.

Quiz: Overview of the Container Architecture

DO180-OCP3.5-en-1-20170524 5

Quiz: Overview of the Container Architecture

Choose the correct answers to the following questions:

1. Which two options are examples of software applications that might run in a container?
(Select two.)

a. A database-driven Python application accessing services such as a MySQL database, a
file transfer protocol (FTP) server, and a web server on a single physical host.

b. A Java Enterprise Edition application, with an Oracle database, and a message broker
running on a single VM.

c. An I/O monitoring tool responsible for analyzing the traffic and block data transfer.
d. A memory dump application tool capable of taking snapshots from all the memory

CPU caches for debugging purposes.

2. Which of the two following use cases are better suited for containers? (Select two.)

a. A software provider needs to distribute software that can be reused by other
companies in a fast and error-free way.

b. A company is deploying applications on a physical host and would like to improve its
performance by using containers.

c. A data center is looking for alternatives to shared hosting for database applications to
minimize the amount of hardware processing needed.

d. A financial company is implementing a CPU-intensive risk analysis tool on their own
containers to minimize the number of processors needed.

3. A company is migrating their PHP and Python applications running on the same host
to a new architecture. Due to internal policies, both are using a set of custom-made
shared libraries from the OS, but the latest update applied to them as a result of a Python
development team request broke the PHP application. Which two architectures would
provide the best support for both applications? (Select two.)

a. Deploy each application to different VMs and apply the custom-made shared libraries
individually to each VM host.

b. Deploy each application to different containers and apply the custom-made shared
libraries individually to each container.

c. Deploy each application to different VMs and apply the custom-made shared libraries
to all VM hosts.

d. Deploy each application to different containers and apply the custom-made shared
libraries to all containers.

4. Which three kinds of applications can be packaged as containers for immediate
consumption? (Select three.)

a. A virtual machine hypervisor
b. Blog software (such as WordPress)
c. Database
d. A local file system recovery tool

Chapter 1. Getting Started with Container Technology

6 DO180-OCP3.5-en-1-20170524

e. A web server

Solution

DO180-OCP3.5-en-1-20170524 7

Solution

Choose the correct answers to the following questions:

1. Which two options are examples of software applications that might run in a container?
(Select two.)

a. A database-driven Python application accessing services such as a MySQL
database, a file transfer protocol (FTP) server, and a web server on a single physical
host.

b. A Java Enterprise Edition application, with an Oracle database, and a message
broker running on a single VM.

c. An I/O monitoring tool responsible for analyzing the traffic and block data transfer.
d. A memory dump application tool capable of taking snapshots from all the memory

CPU caches for debugging purposes.

2. Which of the two following use cases are better suited for containers? (Select two.)

a. A software provider needs to distribute software that can be reused by other
companies in a fast and error-free way.

b. A company is deploying applications on a physical host and would like to improve its
performance by using containers.

c. A data center is looking for alternatives to shared hosting for database
applications to minimize the amount of hardware processing needed.

d. A financial company is implementing a CPU-intensive risk analysis tool on their own
containers to minimize the number of processors needed.

3. A company is migrating their PHP and Python applications running on the same host
to a new architecture. Due to internal policies, both are using a set of custom-made
shared libraries from the OS, but the latest update applied to them as a result of a Python
development team request broke the PHP application. Which two architectures would
provide the best support for both applications? (Select two.)

a. Deploy each application to different VMs and apply the custom-made shared
libraries individually to each VM host.

b. Deploy each application to different containers and apply the custom-made shared
libraries individually to each container.

c. Deploy each application to different VMs and apply the custom-made shared libraries
to all VM hosts.

d. Deploy each application to different containers and apply the custom-made shared
libraries to all containers.

4. Which three kinds of applications can be packaged as containers for immediate
consumption? (Select three.)

a. A virtual machine hypervisor
b. Blog software (such as WordPress)
c. Database
d. A local file system recovery tool

Chapter 1. Getting Started with Container Technology

8 DO180-OCP3.5-en-1-20170524

e. A web server

Overview of the Docker Architecture

DO180-OCP3.5-en-1-20170524 9

Overview of the Docker Architecture

Objectives
After completing this section, students should be able to:

• Describe how containers are implemented using Docker.

• List the key components of the Docker architecture.

• Describe the architecture behind the Docker command-line interface (CLI).

Docker Architecture
Docker is one of the container implementations available for deployment and supported by
companies such as Red Hat in their Red Hat Enterprise Linux Atomic Host platform. Docker Hub
provides a large set of containers developed by the community.

Docker uses a client-server architecture, described below:

Client
The command-line tool (docker) is responsible for communicating with a server using a
RESTful API to request operations.

Server
This service, which runs as a daemon on an operating system, does the heavy lifting of
building, running, and downloading container images.

The daemon can run either on the same system as the docker client or remotely.

Note
For this course, both the client and the server will be running on the workstation
machine.

Note
In a Red Hat Enterprise Linux environment, the daemon is represented by a systemd
unit called docker.service.

Docker Core Elements
Docker depends on three major elements:

Images
Images are read-only templates that contain a runtime environment that includes application
libraries and applications. Images are used to create containers. Images can be created,
updated, or downloaded for immediate consumption.

Chapter 1. Getting Started with Container Technology

10 DO180-OCP3.5-en-1-20170524

Registries
Registries store images for public or private use. The well-known public registry is Docker
Hub, and it stores multiple images developed by the community, but private registries can be
created to support internal image development under a company's discretion. This course
runs on a private registry in a virtual machine where all the required images are stored for
faster consumption.

Containers
Containers are segregated user-space environments for running applications isolated from
other applications sharing the same host OS.

References
Docker Hub website
https://hub.docker.com

Note
In a RHEL environment, the registry is represented by a systemd unit called docker-
registry.service.

Containers and the Linux Kernel
Containers created by Docker, from Docker-formatted container images, are isolated from each
other by several standard features of the Linux kernel. These include:

Namespaces
The kernel can place specific system resources that are normally visible to all processes
into a namespace. Inside a namespace, only processes that are members of that namespace
can see those resources. Resources that can be placed into a namespace include network
interfaces, the process ID list, mount points, IPC resources, and the system's own hostname
information. As an example, two processes in two different mounted namespaces have
different views of what the mounted root file system is. Each container is added to a specific
set of namespaces, which are only used by that container.

Control groups (cgroups)
Control groups partition sets of processes and their children into groups in order to manage
and limit the resources they consume. Control groups place restrictions on the amount of
system resources the processes belonging to a specific container might use. This keeps one
container from using too many resources on the container host.

SELinux
SELinux is a mandatory access control system that is used to protect containers from each
other and to protect the container host from its own running containers. Standard SELinux
type enforcement is used to protect the host system from running containers. Container
processes run as a confined SELinux type that has limited access to host system resources.
In addition, sVirt uses SELinux Multi-Category Security (MCS) to protect containers from
each other. Each container's processes are placed in a unique category to isolate them from
each other.

https://hub.docker.com

Docker Container Images

DO180-OCP3.5-en-1-20170524 11

Docker Container Images
Each image in Docker consists of a series of layers that are combined into what is seen by the
containerized applications a single virtual file system. Docker images are immutable; any extra
layer added over the pre-existing layers overrides their contents without changing them directly.
Therefore, any change made to a container image is destroyed unless a new image is generated
using the existing extra layer. The UnionFS file system provides containers with a single file
system view of the multiple image layers.

References
UnionFS wiki page
https://en.wikipedia.org/wiki/UnionFS

In a nutshell, to create a new image, there are two approaches:

• Using a running container: An immutable image is used to start a new container instance and
any changes or updates needed by this container are made to a read/write extra layer. Docker
commands can be issued to store that read/write layer over the existing image to generate
a new image. Due to its simplicity, this approach is the easiest way to create images, but it is
not a recommended approach because the image size might become large due to unnecessary
files, such as temporary files and logs.

• Using a Dockerfile: Alternatively, container images can be built from a base image using a set
of steps called instructions. Each instruction creates a new layer on the image that is used to
build the final container image. This is the suggested approach to building images, because it
controls which files are added to each layer.

https://en.wikipedia.org/wiki/UnionFS

Chapter 1. Getting Started with Container Technology

12 DO180-OCP3.5-en-1-20170524

Quiz: Overview of the Docker Architecture

Choose the correct answers to the following questions:

1. Which of the following three tasks are managed by a component other than the Docker
client? (Select three.)

a. Downloading container image files from a registry.
b. Requesting a container image deployment from a server.
c. Searching for images from a registry.
d. Building a container image.

2. Which of the following best describes a container image?

a. A virtual-machine image from which a container will be created.
b. A container blueprint from which a container will be created.
c. A runtime environment where an application will run.
d. The container's index file used by a registry.

3. Which two kernel components does Docker use to create and manage the runtime
environment for any container? (Choose two.)

a. Namespaces
b. iSCSI
c. Control groups
d. LVM
e. NUMA support

4. An existing image of a WordPress blog was updated on a developer's machine to include new
homemade extensions. Which is the best approach to create a new image with those updates
provided by the developer? (Select one.)

a. The updates made to the developer's custom WordPress should be copied and
transferred to the production WordPress, and all the patches should be made within
the image.

b. The updates made to the developer's custom WordPress should be assembled as a
new image using a Dockerfile to rebuild the container image.

c. A diff should be executed on the production and the developer's WordPress image,
and all the binary differences should be applied to the production image.

d. Copy the updated files from the developer's image to the /tmp directory from the
production environment and request an image update.

Solution

DO180-OCP3.5-en-1-20170524 13

Solution

Choose the correct answers to the following questions:

1. Which of the following three tasks are managed by a component other than the Docker
client? (Select three.)

a. Downloading container image files from a registry.
b. Requesting a container image deployment from a server.
c. Searching for images from a registry.
d. Building a container image.

2. Which of the following best describes a container image?

a. A virtual-machine image from which a container will be created.
b. A container blueprint from which a container will be created.
c. A runtime environment where an application will run.
d. The container's index file used by a registry.

3. Which two kernel components does Docker use to create and manage the runtime
environment for any container? (Choose two.)

a. Namespaces
b. iSCSI
c. Control groups
d. LVM
e. NUMA support

4. An existing image of a WordPress blog was updated on a developer's machine to include new
homemade extensions. Which is the best approach to create a new image with those updates
provided by the developer? (Select one.)

a. The updates made to the developer's custom WordPress should be copied and
transferred to the production WordPress, and all the patches should be made within
the image.

b. The updates made to the developer's custom WordPress should be assembled as a
new image using a Dockerfile to rebuild the container image.

c. A diff should be executed on the production and the developer's WordPress image,
and all the binary differences should be applied to the production image.

d. Copy the updated files from the developer's image to the /tmp directory from the
production environment and request an image update.

Chapter 1. Getting Started with Container Technology

14 DO180-OCP3.5-en-1-20170524

Describing Kubernetes and OpenShift

Objectives
After completing this section, students should be able to:

• Describe the architecture of a Kubernetes cluster running on the Red Hat OpenShift Container
Platform (OCP).

• List the main resource types provided by Kubernetes and OCP.

• Identify the network characteristics of Docker, Kubernetes, and OCP.

• List mechanisms to make a pod externally available.

OpenShift Terminology
Red Hat OpenShift Container Platform (OCP) is a set of modular components and services built
on top of Red Hat Enterprise Linux and Docker. OCP adds PaaS capabilities such as remote
management, multitenancy, increased security, application life-cycle management, and self-
service interfaces for developers.

Throughout this course, the terms OCP and OpenShift are used to refer to the Red Hat OpenShift
Container Platform. The following figure illustrates the OpenShift software stack.

Figure 1.2: OpenShift architecture

In the figure, going from bottom to top, and from left to right, the basic container infrastructure
is shown, integrated and enhanced by Red Hat:

• The base OS is Red Hat Enterprise Linux (RHEL).

• Docker provides the basic container management API and the container image file format.

OpenShift Terminology

DO180-OCP3.5-en-1-20170524 15

• Kubernetes manages a cluster of hosts (physical or virtual) that run containers. It works with
resources that describe multicontainer applications composed of multiple resources, and
how they interconnect. If Docker is the "core" of OCP, Kubernetes is the "heart" that keeps it
moving.

• Etcd is a distributed key-value store, used by Kubernetes to store configuration and state
information about the containers and other resources inside the Kubernetes cluster.

OpenShift adds the capabilities required to provide a production PaaS platform to the Docker +
Kubernetes container infrastructure. Continuing from bottom to top and from left to right:

• OCP-Kubernetes extensions are additional resource types stored in Etcd and managed by
Kubernetes. These additional resource types form the OCP internal state and configuration.

• Containerized services fulfill many PaaS infrastructure functions, such as networking and
authorization. OCP leverages the basic container infrastructure from Docker and Kubernetes
for most internal functions. That is, most OCP internal services run as containers orchestrated
by Kubernetes.

• Runtimes and xPaaS are base container images ready for use by developers, each
preconfigured with a particular runtime language or database. The xPaaS offering is a set of
base images for JBoss middleware products such as JBoss EAP and ActiveMQ.

• DevOps tools and user experience: OCP provides Web and CLI management tools for managing
user applications and OCP services. The OpenShift Web and CLI tools are built from REST APIs
which can be leveraged by external tools such as IDEs and CI platforms.

A Kubernetes cluster is a set of node servers that run containers and are centrally managed by
a set of master servers. A server can act as both a server and a node, but those roles are usually
segregated for increased stability.

Kubernetes Keywords

Term Definition

Master A server that manages the workload and
communications in a Kubernetes cluster.

Node A server that performs work in a Kubernetes
cluster.

Label A key/value pair that can be assigned to any
Kubernetes resource. A selector uses labels
to filter eligible resources for scheduling and
other operations.

Chapter 1. Getting Started with Container Technology

16 DO180-OCP3.5-en-1-20170524

Figure 1.3: OpenShift and Kubernetes architecture

An OpenShift cluster is a Kubernetes cluster, and can be managed the same way, but using the
management tools provided OpenShift (CLI/Web Console) allows for more productive workflows
and makes common tasks much easier.

Kubernetes Resource Types
Kubernetes has five main resource types that can be created and configured using a YAML or a
JSON file, or using OpenShift management tools:

Pods
Represent a collection of containers that share resources, such as IP addresses and
persistent storage volumes. It is the basic unit of work for Kubernetes.

Services
Define a single IP/port combination that provides access to a pool of pods. By default,
services connect clients to pods in a round-robin fashion.

Replication Controllers
A framework for defining pods that are meant to be horizontally scaled. A replication
controller includes a pod definition that is to be replicated, and the pods created from it can
be scheduled to different nodes.

Persistent Volumes (PV)
Provision persistent networked storage to pods that can be mounted inside a container to
store data.

Persistent Volume Claims (PVC)
Represent a request for storage by a pod to Kubernetes.

OpenShift Resource Types

DO180-OCP3.5-en-1-20170524 17

Note
For this course, the PVs are provisioned on local storage, not on networked storage.
This is a valid approach for development purposes, but it is not a recommended
approach for a production environment.

Although Kubernetes pods can be created standalone, they are usually created by higher-level
resources such as replication controllers.

OpenShift Resource Types
The main resource types added by OCP to Kubernetes are as follows:

Deployment Configurations (dc)
Represent a set of pods created from the same container image, managing workflows such
as rolling updates. A dc also provides a basic but extensible Continuous Delivery workflow.

Build Configurations (bc)
Used by the OpenShift Source-to-Image (S2I) feature to build a container image from
application source code stored in a Git server. A bc works together with a dc to provide a
basic but extensible Continuous Integration/Continuous Delivery workflow.

Routes
Represent a DNS host name recognized by the OpenShift router as an ingress point for
applications and microservices.

Although Kubernetes replication controllers can be created standalone in OpenShift, they are
usually created by higher-level resources such as deployment controllers.

Networking
Each container deployed by a docker daemon has an IP address assigned from an internal
network that is accessible only from the host running the container. Because of the container's
ephemeral nature, IP addresses are constantly assigned and released.

Kubernetes provides a software-defined network (SDN) that spawns the internal container
networks from multiple nodes and allows containers from any pod, inside any host, to access
pods from other hosts. Access to the SDN only works from inside the same Kubernetes cluster.

Containers inside Kubernetes pods are not supposed to connect to each other's dynamic IP
address directly. It is recommended that they connect to the more stable IP addresses assigned
to services, and thus benefit from scalability and fault tolerance.

External access to containers, without OpenShift, requires redirecting a port on from host to the
internal container IP address, or from the node to a service IP address in the SDN. A Kubernetes
service can specify a NodePort attribute that is a network port redirected by all the cluster
nodes to the SDN. Unfortunately, none of these approaches scale well.

OpenShift makes external access to containers both scalable and simpler, by defining route
resources. HTTP and TLS accesses to a route are forwarded to service addresses inside the
Kubernetes SDN. The only requirement is that the desired DNS host names are mapped to the
OCP routers nodes' external IP addresses.

Chapter 1. Getting Started with Container Technology

18 DO180-OCP3.5-en-1-20170524

References
Docker documentation website
https://docs.docker.com/

Kubernetes documentation website
https://kubernetes.io/docs/

OpenShift documentation website
https://docs.openshift.com/

https://docs.docker.com/
https://kubernetes.io/docs/
https://docs.openshift.com/

Quiz: Describing Kubernetes and OpenShift

DO180-OCP3.5-en-1-20170524 19

Quiz: Describing Kubernetes and OpenShift

Choose the correct answers to the following questions:

1. Which three sentences are correct regarding Kubernetes architecture? (Choose three.)

a. Kubernetes nodes can be managed without a master.
b. Kubernetes masters manage pod scaling.
c. Kubernetes masters schedule pods to specific nodes.
d. A pod is a set of containers managed by Kubernetes as a single unit.
e. Kubernetes tools cannot be used to manage resources in an OpenShift cluster.

2. Which two sentences are correct regarding Kubernetes and OpenShift resource types?
(Choose two.)

a. A pod is responsible for provisioning its own persistent storage.
b. All pods generated from the same replication controller have to run in the same node.
c. A route is responsible for providing IP addresses for external access to pods.
d. A replication controller is responsible for increasing/decreasing the number of pods

from a particular application.
e. Containers created from Kubernetes pods cannot be managed using standard Docker

tools.

3. Which two statements are true regarding Kubernetes and OpenShift networking? (Select
two.)

a. A Kubernetes service can provide an IP address to access a set of pods.
b. Kubernetes is responsible for providing internal IP addresses for each container.
c. Kubernetes is responsible for providing a fully qualified domain name for a pod.
d. A replication controller is responsible for routing external requests to the pods.
e. A route is responsible for providing DNS names for external access.

4. Which statement is correct regarding persistent storage in OpenShift and Kubernetes?
(Select one.)

a. A PVC represents a storage area that a pod can use to store data and is provisioned
by the application developer.

b. PVC represents a storage area that can be requested by a pod to store data but is
provisioned by the cluster administrator.

c. A PVC represents the amount of memory that can be allocated on a node, so that a
developer can state how much memory he requires for his application to run.

d. A PVC represents the number of CPU processing units that can be allocated on a
node, subject to a limit managed by the cluster administrator.

5. Which statement is correct regarding OpenShift additions over Kubernetes? (Select one.)

a. OpenShift adds features required for real-world usage of Kubernetes.
b. Container images created for OpenShift cannot be used with plain Kubernetes much

less with Docker alone.

Chapter 1. Getting Started with Container Technology

20 DO180-OCP3.5-en-1-20170524

c. Red Hat maintains forked versions of Docker and Kubernetes internal to the OCP
product.

d. Doing Continuous Integration and Continuous Deployment with OCP requires external
tools.

Solution

DO180-OCP3.5-en-1-20170524 21

Solution

Choose the correct answers to the following questions:

1. Which three sentences are correct regarding Kubernetes architecture? (Choose three.)

a. Kubernetes nodes can be managed without a master.
b. Kubernetes masters manage pod scaling.
c. Kubernetes masters schedule pods to specific nodes.
d. A pod is a set of containers managed by Kubernetes as a single unit.
e. Kubernetes tools cannot be used to manage resources in an OpenShift cluster.

2. Which two sentences are correct regarding Kubernetes and OpenShift resource types?
(Choose two.)

a. A pod is responsible for provisioning its own persistent storage.
b. All pods generated from the same replication controller have to run in the same node.
c. A route is responsible for providing IP addresses for external access to pods.
d. A replication controller is responsible for increasing/decreasing the number of pods

from a particular application.
e. Containers created from Kubernetes pods cannot be managed using standard Docker

tools.

3. Which two statements are true regarding Kubernetes and OpenShift networking? (Select
two.)

a. A Kubernetes service can provide an IP address to access a set of pods.
b. Kubernetes is responsible for providing internal IP addresses for each container.
c. Kubernetes is responsible for providing a fully qualified domain name for a pod.
d. A replication controller is responsible for routing external requests to the pods.
e. A route is responsible for providing DNS names for external access.

4. Which statement is correct regarding persistent storage in OpenShift and Kubernetes?
(Select one.)

a. A PVC represents a storage area that a pod can use to store data and is provisioned
by the application developer.

b. PVC represents a storage area that can be requested by a pod to store data but is
provisioned by the cluster administrator.

c. A PVC represents the amount of memory that can be allocated on a node, so that a
developer can state how much memory he requires for his application to run.

d. A PVC represents the number of CPU processing units that can be allocated on a
node, subject to a limit managed by the cluster administrator.

5. Which statement is correct regarding OpenShift additions over Kubernetes? (Select one.)

a. OpenShift adds features required for real-world usage of Kubernetes.
b. Container images created for OpenShift cannot be used with plain Kubernetes much

less with Docker alone.

Chapter 1. Getting Started with Container Technology

22 DO180-OCP3.5-en-1-20170524

c. Red Hat maintains forked versions of Docker and Kubernetes internal to the OCP
product.

d. Doing Continuous Integration and Continuous Deployment with OCP requires external
tools.

Summary

DO180-OCP3.5-en-1-20170524 23

Summary

In this chapter, you learned:

• Containers are an isolated application runtime created with very little overhead.

• A container image packages an application with all its dependencies, making it easier to run
the application in different environments.

• Docker creates containers using features of the standard Linux kernel.

• Container image registries are the preferred mechanism for distributing container images to
multiple users and hosts.

• OpenShift orchestrates applications composed of multiple containers using Kubernetes.

• Kubernetes manages load balancing, high availability and persistent storage for containerized
applications.

• OpenShift adds to Kubernetes multitenancy, security, ease of use, and Continuous Integration/
Continuous Development features.

• OpenShift routes are key to exposing containerized applications to external users in a
manageable way.

24

DO180-OCP3.5-en-1-20170524 25

TRAINING

CHAPTER 2

CREATING CONTAINERIZED
SERVICES

Overview

Goal Provision a server using container technology.

Objectives • Describe three container development environment
scenarios and build one using OpenShift.

• Create a database server from a container image stored
on Docker Hub.

Sections • Building a Development Environment (and Guided
Exercise)

• Provisioning a Database Server (and Guided Exercise)

Lab • Creating Containerized Services

Chapter 2. Creating Containerized Services

26 DO180-OCP3.5-en-1-20170524

Building a Development Environment

Objectives
After completing this section, students should be able to:

• Identify three ways to build an environment where you can build, test, and deploy containers.

• Describe the process for deploying containers with an installed OpenShift cluster.

• Describe the process for developing containerized applications locally using Red Hat Container
Development Kit 3 (Minishift).

• Run an OpenShift cluster locally with the OpenShift command-line interface and Docker.

Container Development Environment Scenarios
Container images are usually developed locally on the developer's workstation. After a container
image has been tested and accepted, there are many ways to automate building container
images. In this course we develop container images using Docker. Containers are deployed and
tested on both Docker and Red Hat OpenShift Container Platform.

The following scenarios represent three development environments to containerize applications:

• Installed OpenShift Cluster

• Red Hat Container Development Kit

• Local OpenShift Cluster

Installed OpenShift Cluster

An installed OpenShift cluster is one in which the OpenShift software is installed using the RPM
method. The OpenShift and Kubernetes processes run as services on the operating system.
The cluster might be installed by the customer or the customer might use the Red OpenShift
Online or Red Hat OpenShift Dedicated environments. All of these types of clusters are
accessed remotely using the OpenShift web console or the command-line interface. This
method of installing OpenShift is designed for permanent clusters, usually used by many users
simultaneously. This installation method is beyond the scope of this course.

Note
Red Hat Training offers the Red Hat OpenShift Administration (DO280) course which
provides instruction and hands-on experience installing and configuring Red Hat
OpenShift Container Platform.

Local OpenShift Cluster

Anywhere Docker is supported and the OpenShift client can be installed, a local OpenShift
cluster can be created using the oc cluster up command. In this configuration, OpenShift
runs a single-node, single-master cluster in a single container. Internal cluster services such as
the router runs as additional containers. The cluster can be ephemeral or persistent.

Developing with Red Hat Container Development Kit

DO180-OCP3.5-en-1-20170524 27

Red Hat Container Development Kit

Red Hat Container Development Kit (CDK) version 3 is developed from an upstream project
called Minishift. The CDK contains a single binary called minishift. From this binary a virtual
machine disk image can be extracted. This disk image is built using Red Hat Enterprise Linux 7.
The minishift command is used to create a virtual machine that runs Docker and a local
OpenShift cluster. Developers can access the OpenShift cluster with the command-line interface
installed by the minishift command. Minishift supports the Linux, MacOS, and Windows
operating systems and many types of virtualization technologies, including KVM, VirtualBox,
HyperV, and more.

Developing with Red Hat Container Development Kit
This section covers creating a development environment using the CDK version 3. The CDK can
be downloaded from the Red Hat Developers portal at http://developers.redhat.com.
Look for it in the technologies section of the web site. The minishift binary comes in three
different forms: Linux, MacOS, and Windows. Download the appropriate binary for your system.

In addition to the CDK binary, you need to install and configure virtualization software
compatible with the operating system. The following is a list of the supported hypervisors, sorted
by operating system.

Hypervisors supported by Minishift

OS Hypervisor

xhyve (default)

VirtualBox

MacOS

VMware Fusion (supported in upstream Minishift only)

KVM (default)GNU/Linux

VirtualBox

Hyper-V (default)Windows

VirtualBox

The following procedures assume that the CDK is running on MacOS or GNU/Linux. Prepare
the Minishift binary by renaming it to minishift and setting the execute permission using the
chmod command. Run the following command to allow Minishift to do its required setup:

$./minishift setup-cdk

This command unpacks the RHEL 7 ISO file and OpenShift command line, oc, in the
~/.minishift/cache directory. Make sure that ~/.minishift/cache/oc/v1.5.0 is in the
environment PATH so that the OpenShift command-line interface can be executed. The version
number in the path may vary with the specific version of the CDK.

The ./minishift config view command shows all the properties that are set for the
creation of the virtual machine and OpenShift cluster. To update values, use the ./minishift
config set {property} {value} command. The most common properties include:

• vm-driver

Specify which virtual machine driver Minishift will use to create, run, and manage the VM in
which Docker and OpenShift runs. See the documentation for valid values.

Chapter 2. Creating Containerized Services

28 DO180-OCP3.5-en-1-20170524

• cpus

Specify the number of virtual CPUs the virtual machine will allocate.

• memory

The amount of memory, in MB, that the virtual machine will allocate.

• openshift-version

The specific version of OpenShift Origin to run. It is a string starting with the letter "v", for
example, v1.5.0.

More options can be displayed with the ./minishift config command.

To start an OpenShift cluster and create the virtual machine, run the following command:

$./minishift --username {RH-USERNAME} --password {RH-PASSWORD} start
Starting local OpenShift cluster using 'virtualbox' hypervisor...
-- Checking OpenShift client ... OK
-- Checking Docker client ... OK
-- Checking Docker version ... OK
-- Checking for existing OpenShift container ...
-- Checking for openshift/origin:v1.5.0 image ... OK
-- Checking Docker daemon configuration ... OK
-- Checking for available ports ... OK
-- Checking type of volume mount ...
Using Docker shared volumes for OpenShift volumes
-- Creating host directories ... OK
-- Finding server IP ...
Using 192.168.99.100 as the server IP
-- Starting OpenShift container ...
Starting OpenShift using container 'origin'
Waiting for API server to start listening
OpenShift server started
-- Removing temporary directory ... OK
-- Checking container networking ... OK
-- Server Information ...
OpenShift server started.
The server is accessible via web console at:
 https://192.168.99.100:8443

To login as administrator:
 oc login -u system:admin

The RH-USERNAME and RH-PASSWORD represent the user's Red Hat subscription credentials
that allow Minishift to register the virtual machine to the Red Hat Customer Portal. These are
required parameters and allow packages to be installed on the virtual machine. Developers can
sign up for a developer account at http://developers.redhat.com.

The oc command can now be used to access the OpenShift cluster using the server address
listed in the output of the ./minishift start command. When the developer is finished with
the cluster, the command ./minishift stop can be issued. To destroy the virtual machine and
lose all work, run the ./minishift delete command. If the developer needs access to the
virtual machine directly, run the ./minishift ssh command. To determine the status of the
virtual machine, run the ./minishift status command.

To launch the web console in the default browser, run the ./minishift console command.

Developing with a Local OpenShift Cluster

DO180-OCP3.5-en-1-20170524 29

Developing with a Local OpenShift Cluster
If the developer's workstation can run Docker and the OpenShift command-line interface, a
cluster can be created without a virtual machine. The OpenShift client is available for Linux,
MacOS, and Windows. The client can be downloaded from the Red Hat Customer Portal. Install
the client following the directions for the relevant operating system. Run the oc version
command to verify the installation.

The Docker daemon default configuration considers the local OpenShift cluster registry an
insecure one because it uses a self-signed SSL certificate, and refuses to pull images from it.

To allow creating containers from images created using OpenShift Source-to-Image feature, the
Docker configuration has to changed to allow using the OpenShift insecure registry. Edit the /
etc/sysconfig/docker file and modify the INSECURE_REGISTRY parameter as follows:

INSECURE_REGISTRY='--insecure-registry 172.30.0.0/16'

It is acceptable to have more than one insecure registry defined. List each insecure registry on
the same line. On Docker for Mac, this setting is made through the Docker for Mac preferences
on the Daemon tab. After making this configuration change, restart the Docker daemon.

The cluster is started on the local machine using the oc cluster up command. For
information on this command, run the oc cluster up -h command. It is often desirable to
configure a persistent cluster. A persistent cluster is one in which the configuration and runtime
data is preserved over a shutdown of the cluster. For a persistent cluster, the following command
line options are recommended:

--use-existing-config
If a configuration already exists, it is reused. Otherwise, a new default configuration is
created.

--host-config-dir
Specifies an absolute path for storing/retrieving the cluster configuration files. The default
value is /var/lib/origin.

--host-data-dir
Specifies where the etcd (OpenShift cache) data will be written. If the --host-data-dir
option is not specified, no data will be saved and the cluster state will not be preserved over
a shutdown.

--host-volumes-dir
Specifies where Kubernetes volumes will be written. The default value is /var/lib/
origin/openshift.local.volumes.

The version of OpenShift can be controlled by the --version option. An example version is
v3.5.5.5. If the developer needs to retrieve the OpenShift container images from a location
other than registry.access.redhat.com, the complete image can be specified using the --
image option. The following is an example of using a custom image location:

$ oc cluster up --image='myreg:5000/openshift3/ose'

The complete suite of OpenShift containers will be pulled from the same registry as specified in
this parameter.

Chapter 2. Creating Containerized Services

30 DO180-OCP3.5-en-1-20170524

To control the router default subdomain, use the --routing-suffix option. The host name for
the web console can be set using the --public-hostname option.

Demonstration: Building a Container Development
Environment
1. From the workstation machine, ssh into ocp.lab.example.com as the user student.

2. Establish that docker has been installed, enabled, and is running.

[student@ocp ~]$ sudo systemctl status docker
● docker.service - Docker Application Container Engine
 Loaded: loaded (/usr/lib/systemd/system/docker.service; enabled; vendor preset:
 disabled)
 Active: active (running) since Wed 2017-04-12 15:45:41 UTC; 1h 4min ago
...
[student@ocp ~]$ docker version
Client:
 Version: 1.12.6
 API version: 1.24
 Package version: docker-common-1.12.6-16.el7.x86_64
 Go version: go1.7.4
 Git commit: 3a094bd/1.12.6
 Built: Tue Mar 21 13:30:59 2017
 OS/Arch: linux/amd64

Server:
 Version: 1.12.6
 API version: 1.24
 Package version: docker-common-1.12.6-16.el7.x86_64
 Go version: go1.7.4
 Git commit: 3a094bd/1.12.6
 Built: Tue Mar 21 13:30:59 2017
 OS/Arch: linux/amd64

The current Docker version may differ from the output given above.

3. Establish that the OpenShift command line interface has been installed.

[student@ocp ~]$ oc version
oc v3.5.5.5
kubernetes v1.5.2+43a9be4
features: Basic-Auth GSSAPI Kerberos SPNEGO

The current OpenShift version may differ from the output given above.

4. Verify that 172.30.0.0/16 has been set up as an insecure registry for Docker.

[student@ocp ~]$ grep -i insecure /etc/sysconfig/docker
adding the registry to the INSECURE_REGISTRY line and uncommenting it.
INSECURE_REGISTRY='--insecure-registry infrastructure.lab.example.com:5000
--insecure-registry 172.30.0.0/16'

5. Review the output of the oc cluster up -h command. Notice the following items:

Demonstration: Building a Container Development Environment

DO180-OCP3.5-en-1-20170524 31

• The configuration and cluster data is, by default, ephemeral. The --host-config-dir,
--host-data-dir, and --use-existing-config command options preserve the
cluster state across cluster shutdown.

• The specific version of OpenShift to run can be controlled by the --version command
option.

• The host name for the web console can be specified by the --public-hostname
command option.

6. Examine the oc cluster up command in the /home/student/ocp-up.sh shell
script. Discuss the purpose of the values for each command-line option in the script. This
classroom is set up to run offline, and so the OpenShift container images have to be loaded
from a private registry running at infrastructure.lab.example.com:5000.

7. Bring the cluster up by running the ./ocp-up.sh command. Wait for the cluster to
complete its initialization. A successful start produces output similar to the following:

-- Checking OpenShift client ... OK
-- Checking Docker client ... OK
-- Checking Docker version ... OK
-- Checking for existing OpenShift container ... OK
-- Checking for infrastructure.lab.example.com:5000/openshift3/ose:v3.5.5.5
 image ... OK
...
 OpenShift server started.
 The server is accessible via web console at:
 https://172.25.250.11:8443

 To login as administrator:
 oc login -u system:admin

8. Log in as the system:admin user and list the pods running in the default namespace.

[student@ocp ~]$ oc login -u system:admin
[student@ocp ~]$ oc get pods -n default
NAME READY STATUS RESTARTS AGE
docker-registry-1-2z9v5 1/1 Running 2 3h
persistent-volume-setup-q87j0 1/1 Running 2 3h
router-1-zlzp0 1/1 Running 2 3h

9. Display the containers that are running the OpenShift Cluster:

[student@ocp ~]$ docker ps | grep ose

With this method of running an OpenShift cluster, the only thing installed on the operating
system is the OpenShift command-line interface. The OpenShift cluster runs entirely in
containers.

10. Exit from the ssh shell on the ocp server. You should now be logged in as student on the
workstation server.

11. Access the OpenShift cluster remotely using the oc login command and display the same
pods again.

Chapter 2. Creating Containerized Services

32 DO180-OCP3.5-en-1-20170524

[student@workstation ~]$ oc login -u developer -p developer \
https://ocp.lab.example.com:8443
[student@workstation ~]$ oc get pods -n default

12. From the workstation machine, open an SSH session into ocp.lab.example.com as the
user student.

13. Bring the cluster down.

[student@ocp ~]$ oc cluster down

14. Show where the configuration and cluster data is being stored at /var/lib/origin. The
student must bring the cluster down and remove this folder recursively as root to start up
a fresh cluster again if they use the persistent options we have used in this demonstration.

This concludes this demonstration.

References
Minishift Documentation
https://www.openshift.org/minishift/

Download CDK 3
https://developers.redhat.com/products/cdk/download/

Using Red Hat CDK 3
https://developers.redhat.com/blog/2017/02/28/using-red-hat-container-
development-kit-3-beta/

https://www.openshift.org/minishift/
https://developers.redhat.com/products/cdk/download/
https://developers.redhat.com/blog/2017/02/28/using-red-hat-container-development-kit-3-beta/
https://developers.redhat.com/blog/2017/02/28/using-red-hat-container-development-kit-3-beta/

Guided Exercise: Starting an OpenShift Cluster

DO180-OCP3.5-en-1-20170524 33

Guided Exercise: Starting an OpenShift Cluster

In this exercise, you will start an all-in-one OpenShift cluster for a developer user.

Resources

Files: N/A

Application URL: https://ocp.lab.example.com:8443

Outcomes

You should be able to start and access an all-in-one OCP instance for a developer.

Before you begin

There are no prerequisites for this exercise.

Steps

1. Check if Docker is installed and running.

1.1. Open a terminal on workstation and start an SSH session to the ocp host:

[student@workstation ~]$ ssh ocp

The ocp VM is already configured to accept SSH connections from workstation
without requiring a password.

1.2. Check that the docker RPM package is installed:

[student@ocp ~]$ rpm -q docker
docker-1.12.6-11.el7.x86_64

1.3. Check that the docker service is loaded and active:

[student@ocp ~]$ systemctl status docker
● docker.service - Docker Application Container Engine
 Loaded: loaded (/usr/lib/systemd/system/docker.service; enabled; vendor
 preset: disabled)
 Active: active (running) since Mon 2017-04-03 14:58:42 UTC; 7h ago
 Docs: http://docs.docker.com
 Main PID: 1225 (dockerd-current)
...

1.4. Check that the OpenShift client RPM (atomic-openshift-clients) package is installed:

[student@ocp ~]$ rpm -q atomic-openshift-clients
atomic-openshift-clients-3.5.5.5-1.git.0.f2e87ab.el7.x86_64

2. Start a persistent all-in-one OCP cluster

2.1. Inspect the ocp-up.sh script and review the oc cluster up command-line options
required by the classroom environment.

Chapter 2. Creating Containerized Services

34 DO180-OCP3.5-en-1-20170524

[student@ocp ~]$ cat ~/ocp-up.sh
#!/bin/bash
up=$(oc cluster status | grep started | wc -l)
if [$up -eq 0]; then
 oc cluster up --public-hostname='ocp.lab.example.com'
--host-data-dir='/var/lib/origin/etcd' --use-existing-config
--image='infrastructure.lab.example.com:5000/openshift3/ose'
--version='v3.5.5.5' --routing-suffix='cloudapps.lab.example.com'
...

These options ensure that the cluster works without an active internet connection,
using the container images from the private registry in the infrastructure VM, and
configures a default DNS suffix for OpenShift routes that follows the classroom network
settings.

A few other tasks are performed by the ocp-up.sh script for your convenience:

• Add OCP cluster administrator privileges to the developer user.

• Patch predefined image streams to pull s2i builder images from the classroom private
registry.

2.2. Invoke the script to start the OCP cluster.

[student@ocp ~]$ ~/ocp-up.sh
-- Checking OpenShift client ... OK
-- Checking Docker client ... OK
-- Checking Docker version ... OK
-- Checking for existing OpenShift container ... OK
-- Checking for infrastructure.lab.example.com:5000/openshift3/ose:v3.5.5.5
 image ... OK
...
-- Starting OpenShift container ...
...
-- Installing registry ... OK
-- Installing router ... OK
...
-- Creating initial project "myproject" ... OK
...
 OpenShift server started.
...

2.3. Check that the origin container is running:

[student@ocp ~]$ docker ps
CONTAINER ID IMAGE
 COMMAND CREATED STATUS PORTS NAMES
...
c4fe03a8d7f0 infrastructure.lab.example.com:5000/openshift3/ose:v3.5.5.5
 "/usr/bin/openshift s" 51 seconds ago Up 49 seconds origin

The OCP cluster starts several other containers apart from the origin container, but
this is the container that runs OpenShift master and node services. The openshift3/
ose image is the all-in-one OCP container image.

3. Check that the registry and router pods are ready and running.

DO180-OCP3.5-en-1-20170524 35

These pods provide essential OCP features. If they are not working you may still be able to
create simple pods but will not be able to use other OpenShift features such as Source-to-
Image (S2I).

[student@ocp ~]$ oc get pod -n default
NAME READY STATUS RESTARTS AGE
docker-registry-1-10e3r 1/1 Running 0 10m
persistent-volume-setup-q87j0 1/1 Running 0 11m
router-2-2v5ko 1/1 Running 0 9m

The pod names will have different suffixes each time the cluster is started.

4. Access the web console as a developer user.

4.1. Open the OCP web console.

Open a web browser on workstation and navigate to https://
ocp.lab.example.com:8443. The web browser will indicate that the connection
is insecure, because it uses a self-signed SSL certificate. Accept this certificate and
proceed with the connection.

You will see the web console login page.

4.2. Log in as the developer user. The password is developer.

You will see the web console projects page. The My Project project is created the first
time you start the all-in-one OCP cluster.

Chapter 2. Creating Containerized Services

36 DO180-OCP3.5-en-1-20170524

All the projects in the list, except for My Project, are internal OCP projects used by
the OpenShift infrastructure. Normal users should not make changes to OpenShift
internal project, but because the developer user was given the cluster administration
role, he has permission to change these projects.

4.3. Enter the My Project page.

Click My Project to enter the project page. Notice that the initial project is empty.

DO180-OCP3.5-en-1-20170524 37

5. Clean up.

5.1. Stop the all-in-one OCP cluster.

Close the web browser and go back to the terminal connected to the ocp VM. Run the
following command:

[student@ocp ~]$ oc cluster down

5.2. Check that no containers are left, either running or stopped.

[student@ocp ~]$ docker ps -a

5.3. Check that the OCP container images are still in the local Docker cache.

[student@ocp ~]$ docker images
REPOSITORY TAG
 IMAGE ID CREATED SIZE
infrastructure.lab.example.com:5000/openshift3/ose-haproxy-router v3.5.5.5
 7a430959c00c 4 weeks ago 745.2 MB
infrastructure.lab.example.com:5000/openshift3/ose-deployer v3.5.5.5
 fa7264fa4dea 4 weeks ago 726.6 MB
infrastructure.lab.example.com:5000/openshift3/ose-docker-registry v3.5.5.5
 3809e30272a6 4 weeks ago 806.5 MB

Chapter 2. Creating Containerized Services

38 DO180-OCP3.5-en-1-20170524

infrastructure.lab.example.com:5000/openshift3/ose v3.5.5.5
 e0f949132baa 4 weeks ago 726.6 MB
infrastructure.lab.example.com:5000/openshift3/ose-pod v3.5.5.5
 9c11230663aa 4 weeks ago 205 MB

The oc cluster down command leaves the container images in the local Docker
cache to speed up the next oc cluster up command. If the user removes them, they
will be pulled again.

5.4. Close the SSH session and go back to the workstation VM prompt.

[student@ocp ~]$ logout
Connection to ocp closed.
[student@workstation ~]$

This concludes the guided exercise.

Provisioning a Database Server

DO180-OCP3.5-en-1-20170524 39

Provisioning a Database Server

Objectives
After completing this section, students should be able to:

• Create a database server from a container image stored on Docker Hub.

• Search for containers on the Docker Hub site.

• Start containers using the docker command.

• Access containers from the command line.

Finding an Image on Docker Hub
Many container images are available for download from the Docker community website at
https://docker.io. It is a large repository where developers and administrators can get a
number of container images developed by the community and some companies.

Anyone can publish images to Docker Hub after they register. For larger projects (with multiple
images), a paid subscription is needed.

By default, Docker downloads image layers from the Docker Hub image registry. However, images
do not provide textual information about themselves, and a search engine tool called Docker Hub
was created to look for information about each image and its functionality.

Note
Red Hat also provides a private registry with tested and certified container images. By
default, RHEL 7 is configured to look for the Red Hat registry in addition to Docker Hub.

The Docker Hub search engine is a simple but effective search engine used to find container
images. It looks for a project name and all similar image names from the Docker Hub container
image registry. The search results page lists the string used to pull the image files. For example,
for the following screen output, the first column is the name of the container image.

Chapter 2. Creating Containerized Services

40 DO180-OCP3.5-en-1-20170524

Figure 2.4: Search results page from Docker Hub

Clicking an image name to display the container image details page. The details page is not
guaranteed to display any particular information. Different authors provide different levels of
information about the images they create.

Searching From the Docker Client

DO180-OCP3.5-en-1-20170524 41

Figure 2.5: Detailed information about the image

Searching From the Docker Client
The docker command can also be used to search for container images:

[student@workstation ~]$ docker search mysql

The search uses the Docker Hub registry and also any other version 1-compatible registries
configured in the local Docker daemon.

Running the docker command requires special privileges. A development environment usually
manages that requirement by assigning the developer to the docker group. Without the correct
privileges to run the docker command, an error message such as the following appears:

Get http:///var/run/docker.sock/v1.20/version: dial unix /var/run/docker.sock:
 permission denied.

Chapter 2. Creating Containerized Services

42 DO180-OCP3.5-en-1-20170524

* Are you trying to connect to a TLS-enabled daemon without TLS?
* Is your docker daemon up and running?

Note
For a production environment, the docker command access should be given via
the sudo command because the docker group is vulnerable to privilege escalation
attacks.

Fetching an Image
To download an image from the Docker Hub container image registry, look for the first column
name from the Docker Hub search results page, or the second column from the docker search
command and use docker pull command:

[student@workstation ~]$ docker pull mysql

Many versions of the same image can be provided. Each one receives a different tag name. For
example, from the MySQL image details page, there are three different image names available,
each one having multiple tag names assigned to them.

If no tag name is provided, then docker pull assumes the tag called latest by default.

To download a specific tag, append the tag name to the image name separated by a colon (:) in
the docker pull command:

[student@workstation ~]$ docker pull mysql:5.5

Listing the Images Available in the Local Cache
To list all images that were already downloaded by the local Docker daemon, use the docker
images command:

docker images
REPOSITORY TAG IMAGE ID CREATED
 VIRTUAL SIZE
docker.io/mysql 5.5 5bf0aea4b3e1 3 weeks ago
 256.4 MB
docker.io/mysql latest a5ad9eb2ff48 4 weeks ago
 359.8 MB

The REPOSITORY column contains the image name as the last path component. A Docker
daemon installation comes without any images, so the images list will be empty until the system
administrator downloads images.

An image name is prefixed with a registry name, which is usually the FQDN name of the registry
host, but could be any string. An image name can also include a tag. Thus, the full syntax for an
image name, including all optional parameters, is as follows:

[registry_uri/][user_name/]image_name[:tag]

For example: docker.io/library/mysql:latest.

Creating a Container

DO180-OCP3.5-en-1-20170524 43

Image names from the Docker Hub without a user name actually use the library user, so the
previous image name is the same as: docker.io/mysql:latest.

Multiple tags can be applied to the same image, as noted previously on MySQL container images,
and each tag will be listed individually, even though they may represent the same image.

The docker images command shows that each image has a unique ID. This allows checking
which image names and tag names refer to the same container image contents. Most docker
commands that work on images can take either an image name or an image ID as argument.

Creating a Container
To create and start a process within a new container, use the docker run command. The
container is created from the container image name passed as argument.

docker run mysql

If the image is not available from the local Docker daemon cache, the docker run command
tries to pull the image as if a docker pull command had been used.

Whatever output the docker run command shows is generated by the process inside the
container, which is a regular process from the host OS perspective. Killing that process stops
the container. In the previous example output, the container was started with a noninteractive
process, and stopping that process with Ctrl+C (SIGINT) also stopped the container.

To start a container image as a background process, pass the -d to the docker run command:

docker run -d mysql:5.5

Each container has to be assigned a name when it is created; Docker automatically generates a
name if not provided. To make container tracking easier, the --name option may be passed to
the docker run command:

docker run --name mysql-container mysql:5.5

The container image itself specifies the command to start the process inside the container, but a
different one can be specified after the container image name in the docker run command:

docker run --name mysql-container -it mysql:5.5 /bin/bash
[root@8682f6516d6f /]#

The -t and -i options are usually needed for interactive text-based programs, so they get
allocated a pseudo-terminal, but not for background daemons. The program must exist inside the
container image.

Many container images require parameters to be started, such as the MySQL official image.
They should be provided using the -e option from the docker command, and are seen as
environment variables by the processes inside the container. The next image is a snapshot from
the MySQL official image documentation listing all the environment variables recognized by the
container image:

Chapter 2. Creating Containerized Services

44 DO180-OCP3.5-en-1-20170524

Figure 2.6: Environment variables supported by the MySQL official Docker Hub image

To start the MySQL server with different user credentials, pass the following parameters to the
docker run command:

docker run --name mysql-custom \
-e MYSQL_USER=redhat -e MYSQL_PASSWORD=r3dh4t \
-d mysql:5.5

References
Docker Hub website
https://hub.docker.com

Red Hat Registry website
https://registry.access.redhat.com

https://hub.docker.com
https://registry.access.redhat.com

Guided Exercise: Creating a MySQL Database Instance

DO180-OCP3.5-en-1-20170524 45

Guided Exercise: Creating a MySQL Database
Instance

In this exercise, you will start a MySQL database inside a container, and then create and populate
a database.

Resources

Files: N/A

Resources: Docker Hub Official MySQL 5.6 image (mysql:5.6)

Outcomes

You should be able to start a database from a container image and store information inside the
database.

Before you begin

The workstation should have Docker running. To check if this is true, run the following command
in a terminal:

[student@workstation ~]$ lab create-basic-mysql setup

Steps

1. Create a MySQL container instance.

1.1. Start a container from the Docker Hub MySQL image.

Open a terminal on workstation (Applications > Utilities > Terminal) and run the
following command:

[student@workstation ~]$ docker run --name mysql-basic \
-e MYSQL_USER=user1 -e MYSQL_PASSWORD=mypa55 \
-e MYSQL_DATABASE=items -e MYSQL_ROOT_PASSWORD=r00tpa55 \
-d mysql:5.6

This command downloads (pulls) the mysql container image with the 5.6 tag, and
starts a container based on it. It creates a database named items, owned by a user
named user1, with mypa55 as the password. The database administrator user
password is set to r00tpa55. The container runs in the background.

1.2. Check that the container started without errors.

Open a terminal on workstation and check if the container was started correctly. Run
the following command:

[student@workstation ~]$ docker ps

An output similar to the following should appear:

CONTAINER ID IMAGE COMMAND CREATED STATUS
 PORTS NAMES

Chapter 2. Creating Containerized Services

46 DO180-OCP3.5-en-1-20170524

13568029202d mysql:5.6 "docker-entrypoint.sh" 6 seconds ago Up 4
 seconds 3306/tcp mysql-basic

2. Access the container sandbox by running the following command:

[student@workstation ~]$ docker exec -it mysql-basic bash

The command starts a Bash shell, running as root inside the MySQL container:

root@13568029202d:/#

Note
The prompt displays the container ID. This is a characteristic of the official MySQL
image from Docker Hub, and other images may display a different Bash prompt.

3. Add data to the database.

3.1. Log in to MySQL as the database administrator user (root).

Run the following command from the container terminal to connect to the database:

root@13568029202d:/# mysql -pr00tpa55

The mysql command opens the MySQL database interactive prompt. Run the following
command to check the database availability:

mysql> show databases;
+--------------------+
| Database |
+--------------------+
| information_schema |
| items |
| mysql |
| performance_schema |
+--------------------+
4 rows in set (0.00 sec)

3.2. Create a new table in the items database. From the MySQL prompt, run the following
command to access the database:

mysql> use items;

3.3. From the MySQL prompt, create a table called Projects in the items database:

mysql> CREATE TABLE Projects (id int(11) NOT NULL, name varchar(255) DEFAULT
 NULL, code varchar(255) DEFAULT NULL, PRIMARY KEY (id));

3.4. Run the following command to verify that the table was created:

DO180-OCP3.5-en-1-20170524 47

mysql> show tables;
+---------------------+
| Tables_in_items |
+---------------------+
| Projects |
+---------------------+

3.5. Insert a row in the table by running the following command:

mysql> insert into Projects (id, name, code) values (1,'DevOps','DO180');

3.6. Run the following command to verify that the project information was added to the
table:

mysql> select * from Projects;
+----+-----------+-------+
| id | name | code |
+----------------+-------+
| 1 | DevOps | DO180 |
+----------------+-------+

3.7. Exit from the MySQL prompt and the MySQL container:

mysql> exit
Bye
root@13568029202d:/# exit
exit

4. Verify that the database was correctly set up. Run the following command:

[student@workstation ~]$ lab create-basic-mysql grade

5. Undo the changes made by the lab when you are finished:

5.1. Stop the running container by running the following command:

[student@workstation ~]$ docker stop mysql-basic

5.2. Remove the data from the stopped container by running the following command:

[student@workstation ~]$ docker rm mysql-basic

5.3. Remove the container image by running the following command:

[student@workstation ~]$ docker rmi mysql:5.6

This concludes the guided exercise.

Chapter 2. Creating Containerized Services

48 DO180-OCP3.5-en-1-20170524

Lab: Creating Containerized Services

In this lab, you will create an Apache HTTP Server container with a custom welcome page.

Resources

Files: N/A

Application URL: http://localhost:8081

Resources: Official Docker Hub Apache httpd image (httpd)

Outcomes

You should be able to start and customize a container using a container image from Docker Hub.

Before you begin

Open a terminal and run the following command to check that Docker is running:

[student@workstation ~]$ lab httpd-basic setup

Steps

1. Find the documentation for the Apache HTTP Server container image in Docker Hub.

Open a web browser (Applications > Internet > Firefox) and navigate to https://
hub.docker.com/_/httpd/. This will open the Docker Hub documentation for the official
Apache HTTP Server container image.

If your classroom has no access to the internet, the Docker Hub Apache Http Server
container documentation is available from ~/DO180/labs/httpd-basic/httpd-
container-image.pdf.

1.1. Check how to start a container from the Apache HTTP Server container image using the
docker command.

Insight
The command provided by the Docker Hub documentation is complex and it
publishes web pages from a volume. A simpler approach is used in this lab.

The documentation provides the following command:

Do not run!
docker run -it --rm --name my-apache-app \
-v "$PWD":/usr/local/apache2/htdocs/httpd:2.4

1.2. Start a container named httpd-basic and forward port 8081 from workstation to
port 80 in the container. Use the httpd container and the 2.4 tag.

DO180-OCP3.5-en-1-20170524 49

Note
Use the docker run -p 8081:80 command to forward the port.

This command starts the Apache HTTP Server in the foreground and does not return to
the Bash prompt. Leave it running.

2. Test the httpd-basic container.

Open a new web browser on workstation and navigate to http://localhost:8081.

An "It works" message is displayed, which is the default welcome page from the Apache
HTTP Server community container.

3. Customize the httpd-basic container.

3.1. Start a Bash session inside the container to create a web page.

3.2. From the Bash session, check the directory structure using the ls -la command.

3.3. Search in the Docker Hub Apache HTTP Server container image documentation for the
folder where web pages are stored.

The pages are stored in the /usr/local/apache2/htdocs folder.

3.4. Change the index.html page to contain the text Hello World, without HTML tags.

3.5. Check if the updated web page contents can be accessed by refreshing the open web
browser.

4. Grade your work.

Open a terminal on workstation and run the following command:

[student@workstation ~]$ lab httpd-basic grade

5. Clean up.

5.1. Stop and remove the httpd-basic container.

5.2. Remove the httpd-basic container image from the local Docker cache.

This concludes this lab.

Chapter 2. Creating Containerized Services

50 DO180-OCP3.5-en-1-20170524

Solution
In this lab, you will create an Apache HTTP Server container with a custom welcome page.

Resources

Files: N/A

Application URL: http://localhost:8081

Resources: Official Docker Hub Apache httpd image (httpd)

Outcomes

You should be able to start and customize a container using a container image from Docker Hub.

Before you begin

Open a terminal and run the following command to check that Docker is running:

[student@workstation ~]$ lab httpd-basic setup

Steps

1. Find the documentation for the Apache HTTP Server container image in Docker Hub.

Open a web browser (Applications > Internet > Firefox) and navigate to https://
hub.docker.com/_/httpd/. This will open the Docker Hub documentation for the official
Apache HTTP Server container image.

If your classroom has no access to the internet, the Docker Hub Apache Http Server
container documentation is available from ~/DO180/labs/httpd-basic/httpd-
container-image.pdf.

1.1. Check how to start a container from the Apache HTTP Server container image using the
docker command.

Insight
The command provided by the Docker Hub documentation is complex and it
publishes web pages from a volume. A simpler approach is used in this lab.

The documentation provides the following command:

Do not run!
docker run -it --rm --name my-apache-app \
-v "$PWD":/usr/local/apache2/htdocs/httpd:2.4

1.2. Start a container named httpd-basic and forward port 8081 from workstation to
port 80 in the container. Use the httpd container and the 2.4 tag.

Note
Use the docker run -p 8081:80 command to forward the port.

Run the following command from workstation:

Solution

DO180-OCP3.5-en-1-20170524 51

[student@workstation ~]$ docker run -p 8081:80 \
--name httpd-basic httpd:2.4

This command starts the Apache HTTP Server in the foreground and does not return to
the Bash prompt. Leave it running.

2. Test the httpd-basic container.

Open a new web browser on workstation and navigate to http://localhost:8081.

An "It works" message is displayed, which is the default welcome page from the Apache
HTTP Server community container.

3. Customize the httpd-basic container.

3.1. Start a Bash session inside the container to create a web page.

Open a terminal on workstation and run the following command:

[student@workstation ~]$ docker exec -it httpd-basic bash

3.2. From the Bash session, check the directory structure using the ls -la command.

root@e91768d643dd:/usr/local/apache2# ls -la

The expected output is similar to the following:

total 28
drwxr-sr-x. 12 www-data www-data 139 Mar 21 20:50 .
drwxrwsr-x. 11 root staff 129 Mar 21 20:50 ..
drwxr-sr-x. 2 root www-data 276 Mar 21 20:50 bin
drwxr-sr-x. 2 root www-data 167 Mar 21 20:50 build
drwxr-sr-x. 2 root www-data 78 Mar 21 20:50 cgi-bin
drwxr-sr-x. 4 root www-data 84 Mar 21 20:50 conf
drwxr-sr-x. 3 root www-data 4096 Mar 21 20:50 error
drwxr-sr-x. 2 root www-data 24 Mar 21 20:50 htdocs
drwxr-sr-x. 3 root www-data 8192 Mar 21 20:50 icons
drwxr-sr-x. 2 root www-data 4096 Mar 21 20:50 include
drwxr-sr-x. 2 root www-data 23 Apr 19 00:58 logs
drwxr-sr-x. 2 root www-data 4096 Mar 21 20:50 modules

3.3. Search in the Docker Hub Apache HTTP Server container image documentation for the
folder where web pages are stored.

The pages are stored in the /usr/local/apache2/htdocs folder.

Check the index.html page contents.

root@e91768d643dd:/usr/local/apache2# cat /usr/local/apache2/htdocs/index.html

The expected output is shown below:

Chapter 2. Creating Containerized Services

52 DO180-OCP3.5-en-1-20170524

<html><body><h1>It works!</h1></body></html>

3.4. Change the index.html page to contain the text Hello World, without HTML tags.

From the Bash session, run the following command:

root@e91768d643dd:/usr/local/apache2# echo "Hello World" > \
 /usr/local/apache2/htdocs/index.html

3.5. Check if the updated web page contents can be accessed by refreshing the open web
browser.

4. Grade your work.

Open a terminal on workstation and run the following command:

[student@workstation ~]$ lab httpd-basic grade

5. Clean up.

5.1. Stop and remove the httpd-basic container.

[student@workstation ~]$ docker stop httpd-basic
[student@workstation ~]$ docker rm httpd-basic

5.2. Remove the httpd-basic container image from the local Docker cache.

[student@workstation ~]$ docker rmi httpd:2.4

This concludes this lab.

Summary

DO180-OCP3.5-en-1-20170524 53

Summary

In this chapter, you learned:

• Red Hat OpenShift Container Platform can be installed from RPM packages, from the client as
a container, and in a dedicated virtual machine from Red Hat Container Development Kit (CDK).

◦ The RPM installation usually configures a cluster of multiple Linux nodes for production, QA
and testing environments.

◦ The containerized and CDK installations can be performed on a developer workstation,
supporting Linux, MacOS, and Windows operating systems.

• The minishift command from the CDK unpacks the virtual machine images, installs client
tools, and starts the OpenShift cluster inside the virtual machine.

• The oc cluster up command from the OpenShift client starts the local all-in-one cluster
inside a container. It provides many command-line options to adapt to offline environments.

• Before starting the local all-in-one cluster, the Docker daemon needs to be configured to allow
accessing the local insecure registry.

• The Docker Hub website provides a web interface to search for container images developed by
the community and corporations. The Docker client can also search for images in Docker Hub.

• The docker run command creates and starts a container from an image that can be pulled
by the local Docker daemon.

• Container images might require environment variables that are set using the -e option from
the docker run command.

54

DO180-OCP3.5-en-1-20170524 55

TRAINING

CHAPTER 3

MANAGING CONTAINERS

Overview

Goal Manipulate pre-built container images to create and manage
containerized services.

Objectives • Manage the life cycle of a container from creation to
deletion.

• Save application data across container restarts through
the use of persistent storage.

• Describe how Docker provides network access to
containers, and access a container through port
forwarding.

Sections • Managing the Life Cycle of Containers (and Guided
Exercise)

• Attaching Docker Persistent Storage (and Guided
Exercise)

• Accessing Docker Networks (and Guided Exercise)

Lab • Managing Containers

Chapter 3. Managing Containers

56 DO180-OCP3.5-en-1-20170524

Managing the Life Cycle of Containers

Objectives
After completing this section, students should be able to manage the life cycle of a container
from creation to deletion.

Docker Client Verbs
The Docker client, implemented by the docker command, provides a set of verbs to create and
manage containers. The following figure shows a summary of the most commonly used verbs
that change container state.

Figure 3.1: Docker client action verbs

The Docker client also provides a set of verbs to obtain information about running and stopped
containers. The following figure shows a summary of the most commonly used verbs that query
information related to Docker containers.

Creating Containers

DO180-OCP3.5-en-1-20170524 57

Figure 3.2: Docker client query verbs

Use these two figures as a reference while you learn about the docker command verbs along
this course.

Creating Containers
The docker run command creates a new container from an image and starts a process inside
the new container. If the container image is not available, this command also tries to download it:

$ docker run rhscl/httpd-24-rhel7
Unable to find image 'rhscl/httpd-24-rhel7:latest' locally
Trying to pull repository infrastructure.lab.example.com:5000/rhscl/httpd-24-rhel7 ...
latest: Pulling from infrastructure.lab.example.com:5000/rhscl/httpd-24-rhel7
3436c67883ad: Pull complete
c85416a3d375: Pull complete
aa724488ad02: Pull complete
b70312066a34: Pull complete
Digest: sha256:6c92ae9f2cd45923a6e8013282028263529a7d29cd1a34774abf3ee5614fec5e
...
[Thu Mar 30 13:58:16.375095 2017] [core:notice] [pid 1] AH00094: Command line: 'httpd -D
 FOREGROUND'
$ ^C

Whatever output docker run shows is generated by the process inside the container, which
is just a regular process from the host OS perspective. Killing that process stops the container.
In the previous output sample, the container was started with a noninteractive process, and
stopping that process with Ctrl+C (SIGINT) also stops the container.

The management docker commands require an ID or a name. The docker run command
generates a random ID and a random name that are unique. The docker ps command is
responsible for displaying these attributes:

Chapter 3. Managing Containers

58 DO180-OCP3.5-en-1-20170524

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED
 STATUS PORTS NAMES

347c9aad6049 rhscl/httpd-24-rhel7 "httpd -D FOREGROUND" 31 seconds ago

 Up 30 seconds 80/tcp focused_fermat

This ID is generated automatically and must be unique.

This name can be generated automatically or manually specified.

If desired, the container name can be explicitly defined. The --name option is responsible for
defining the container name:

$ docker run --name my-httpd-container do180/httpd

Important
The name must be unique. An error is thrown if another container has the same name,
including containers that are stopped.

Another important option is to run the container as a daemon, running the containerized process
in the background. The -d option is responsible for running in detached mode. Using this option,
the container ID is displayed on the screen:

$ docker run --name my-httpd-container -d do180/httpd
77d4b7b8ed1fd57449163bcb0b78d205e70d2314273263ab941c0c371ad56412

The container image itself specifies the command to run to start the containerized process, but a
different one can be specified after the container image name in docker run:

$ docker run do180/httpd ls /tmp
anaconda-post.log
ks-script-1j4CXN
yum.log

The specified command must exist inside the container image.

Note
Since a specified command was provided in the previous example, the HTTPD service
does not start.

Sometimes it is desired to run a container executing a Bash shell. This can be achieved with:

$ docker run --name my-httpd-container -it do180/httpd /bin/bash
 bash-4.2#

Options -t and -i are usually needed for interactive text-based programs, so they get a proper
terminal, but not for background daemons.

Running Commands in a Container

DO180-OCP3.5-en-1-20170524 59

Running Commands in a Container
When a container is created, a default command is executed according to what is specified by
the container image. However, it may be necessary to execute other commands to manage the
running container.

The docker exec command starts an additional process inside a running container:

$ docker exec 7ed6e671a600 cat /etc/hostname
7ed6e671a600

The previous example used the container ID to execute the command. It is also possible to use
the container name:

$ docker exec my-httpd-container cat /etc/hostname
7ed6e671a600

Demonstration: Creating Containers
1. Open a terminal window from the workstation VM (Applications > Favorites > Terminal) and

run the following command to prepare files used by this demonstration.

[student@workstation ~]$ demo create-containers setup

2. Run the following command:

[student@workstation ~]$ docker run --name demo-container rhel7.3 \
dd if=/dev/zero of=/dev/null

This command downloads the official Red Hat Enterprise Linux 7.3 container and starts it
using the dd command. The container exits when the dd command returns the result. For
educational purposes, the provided dd never stops.

3. Open a new terminal window from the workstation VM and check if the container is running:

[student@workstation ~]$ docker ps

Some information about the container, including the container name demo-container
specified in the last step, is displayed.

4. Open a new terminal window and stop the container using the provided name:

[student@workstation ~]$ docker stop demo-container

This is the best practice for stopping containers.

5. Return to the original terminal window and verify that the container was stopped:

[student@workstation ~]$ docker ps

6. Start a new container without specifying a name:

Chapter 3. Managing Containers

60 DO180-OCP3.5-en-1-20170524

[student@workstation ~]$ docker run rhel7.3 dd if=/dev/zero of=/dev/null

If a container name is not provided, docker generates a name for the container
automatically.

7. Open a terminal window and verify the name that was generated:

[student@workstation ~]$ docker ps

An output similar to the following will be listed:

CONTAINER ID IMAGE COMMAND CREATED
 STATUS PORTS NAMES
05b725c0fd5a rhel7.3 "dd if=/dev/zero of=/" 13 seconds ago
 Up 11 seconds reverent_blackwell

The reverent_blackwell is the generated name. Students probably will have a different name
for this step.

8. Stop the container with the generated name:

[student@workstation ~]$ docker stop reverent_blackwell

9. Containers can have a default long-running command. For these cases, it is possible to run a
container as a daemon using the -d option. For example, when a MySQL container is started
it creates the databases and keeps the server actively listening on its port. Another example
using dd as the long-running command is as follows:

[student@workstation ~]$ docker run --name demo-container-2 -d rhel7.3 \
dd if=/dev/zero of=/dev/null

10. Stop the container:

[student@workstation ~]$ docker stop demo-container-2

11. Another possibility is to run a container to just execute a specific command:

[student@workstation ~]$ docker run --name demo-container-3 rhel7.3 ls /etc

This command starts a new container, lists all files available in the /etc directory in the
container, and exits.

12. Verify that the container is not running:

[student@workstation ~]$ docker ps

13. It is possible to run a container in interactive mode. This mode allows for staying in the
container when the container runs:

Managing Containers

DO180-OCP3.5-en-1-20170524 61

[student@workstation ~]$ docker run --name demo-container-4 -it rhel7.3 \
/bin/bash

The -i option specifies that this container should run in interactive mode, and the -t
allocates a pseudo-TTY.

14. Exit the Bash shell from the container:

[root@8b1580851134 /]# exit

15. Remove all stopped containers from the environment by running the following from a
terminal window:

[student@workstation ~]$ docker rm demo-container demo-container-2 \
 demo-container-3 demo-container-4

16. Remove the container started without a name. Replace the <container_name> with the
container name from the step 7:

[student@workstation ~]$ docker rm <container_name>

17. Remove the rhel7.3 container image:

[student@workstation ~]$ docker rmi rhel7.3

This concludes the demonstration.

Managing Containers
Docker provides the following commands to manage containers:

• docker ps: This command is responsible for listing running containers:

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED
 STATUS PORTS NAMES

77d4b7b8ed1f do180/httpd "httpd -D FOREGROUND" 15 hours ago

 Up 15 hours 80/tcp my-httpd-container

Each container, when created, gets a container ID, which is a hexadecimal number and
looks like an image ID, but is actually unrelated.
Container image that was used to start the container.

Command that was executed when the container started.

Date and time the container was started.

Total container uptime, if still running, or time since terminated.

Ports that were exposed by the container or the port forwards, if configured.

The container name.

Chapter 3. Managing Containers

62 DO180-OCP3.5-en-1-20170524

Stopped containers are not discarded immediately. Their local file systems and other states
are preserved so they can be inspected for post-mortem analysis. Option -a lists all containers,
including containers that were not discarded yet:

$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED
 STATUS PORTS NAMES
4829d82fbbff do180/httpd "httpd -D FOREGROUND" 15 hours ago
 Exited (0) 3 seconds ago my-httpd-container

• docker inspect: This command is responsible for listing metadata about a running or
stopped container. The command produces a JSON output:

$ docker inspect my-httpd-container
[
{
 "Id": "980e45b5376a4e966775fb49cbef47ee7bbd461be8bfd1a75c2cc5371676c8be",
...OUTPUT OMITTED...
 "NetworkSettings": {
 "Bridge": "",
 "EndpointID":
 "483fc91363e5d877ea8f9696854a1f14710a085c6719afc858792154905d801a",
 "Gateway": "172.17.42.1",
 "GlobalIPv6Address": "",
 "GlobalIPv6PrefixLen": 0,
 "HairpinMode": false,
 "IPAddress": "172.17.0.9",
...OUTPUT OMITTED...

This command allows formatting of the output string using the given go template with the -f
option. For example, to retrieve only the IP address, the following command can be executed:

$ docker inspect -f '{{ .NetworkSettings.IPAddress }}' my-httpd-container

• docker stop: This command is responsible for stopping a running container gracefully:

$ docker stop my-httpd-container

Using docker stop is easier than finding the container start process on the host OS and
killing it.

• docker kill: This command is responsible for stopping a running container forcefully:

$ docker kill my-httpd-container

It is possible to specify the signal with the -s option:

$ docker kill -s SIGKILL my-httpd-container

The following signals are available:

Demonstration: Managing a Container

DO180-OCP3.5-en-1-20170524 63

SIGNAL Default action Description

SIGHUP Terminate process Terminate line hangup

SIGINT Terminate process Interrupt program

SIGQUIT Create core image Quit program

SIGABRT Create core image Abort program

SIGKILL Terminate process Kill program

SIGTERM Terminate process Software termination signal

SIGUSR1 Terminate process User-defined signal 1

SIGUSR2 Terminate process User-defined signal 2

• docker restart: This command is responsible for restarting a stopped container:

$ docker restart my-httpd-container

The docker restart command creates a new container with the same container ID, reusing
the stopped container state and filesystem.

• docker rm: This command is responsible for deleting a container, discarding its state and
filesystem:

$ docker rm my-httpd-container

It is possible to delete all containers at the same time. The docker ps command has the -
q option that returns only the ID of the containers. This list can be passed to the docker rm
command:

$ docker rm $(docker ps -aq)

Before deleting all containers, all running containers must be stopped. It is possible to stop all
containers with:

$ docker stop $(docker ps -q)

Note
The commands docker inspect, docker stop, docker kill, docker restart,
and docker rm can use the container ID instead of the container name.

Demonstration: Managing a Container
1. Open a terminal window from the workstation VM (Applications > Favorites > Terminal) and

run the following command to prepare files used by this demonstration.

[student@workstation ~]$ demo manage-containers setup

Chapter 3. Managing Containers

64 DO180-OCP3.5-en-1-20170524

2. Run the following command:

[student@workstation ~]$ docker run --name demo-container -d rhscl/httpd-24-rhel7

This command will start a HTTPD container as a daemon.

3. List all running containers:

[student@workstation ~]$ docker ps

4. Stop the container with the following command:

[student@workstation ~]$ docker stop demo-container

5. Verify that the container is not running:

[student@workstation ~]$ docker ps

6. Run a new container with the same name:

[student@workstation ~]$ docker run --name demo-container -d rhscl/httpd-24-rhel7

A conflict error is displayed. Remember that a stopped container is not discarded
immediately and their local file systems and other states are preserved so they can be
inspected for post-mortem analysis.

7. It is possible to list all containers with the following command:

[student@workstation ~]$ docker ps -a

8. Start a new HTTPD container:

[student@workstation ~]$ docker run --name demo-1-httpd -d rhscl/httpd-24-rhel7

9. An important feature is the ability to list metadata about a running or stopped container.
The following command returns the metadata:

[student@workstation ~]$ docker inspect demo-1-httpd

10. It is possible to format and retrieve a specific item from the inspect command. To retrieve
the IPAddress attribute from the NetworkSettings object, use the following command:

[student@workstation ~]$ docker inspect -f '{{ .NetworkSettings.IPAddress }}' \
demo-1-httpd

Make a note about the IP address from this container. It will be necessary for a further step.

11. Run the following command to access the container bash:

Demonstration: Managing a Container

DO180-OCP3.5-en-1-20170524 65

[student@workstation ~]$ docker exec -it demo-1-httpd /bin/bash

12. Create a new HTML file on the container and exit:

bash-4.2# echo do180 > \
/opt/rh/httpd24/root/var/www/html/do180.html
bash-4.2# exit

13. Using the IP address from step 8, try to access the previously created page:

[student@workstation ~]$ curl IP:8080/do180.html

The following output is be displayed:

do180

14. It is possible to restart the container with the following command:

[student@workstation ~]$ docker restart demo-1-httpd

15. When the container is restarted, the data is preserved. Verify the IP address from the
restarted container and check that the do180 page is still available:

[student@workstation ~]$ docker inspect demo-1-httpd | grep IPAddress
[student@workstation ~]$ curl IP:8080/do180.html

16. Stop the HTTP container:

[student@workstation ~]$ docker stop demo-1-httpd

17. Start a new HTTP container:

[student@workstation ~]$ docker run --name demo-2-httpd -d rhscl/httpd-24-rhel7

18. Verify the IP address from the new container and check if the do180 page is available:

[student@workstation ~]$ docker inspect demo-2-httpd | grep IPAddress
[student@workstation ~]$ curl IP:8080/do180.html

The page is not available because this page was created just for the previous container. New
containers will not have the page since the container image did not change.

19. In case of a freeze, it is possible to kill a container like any process. The following command
will kill a container:

[student@workstation ~]$ docker kill demo-2-httpd

Chapter 3. Managing Containers

66 DO180-OCP3.5-en-1-20170524

This command kills the container with the SIGKILL signal. It is possible to specify the signal
with the -s option.

20. Containers can be removed, discarding their state and filesystem. It is possible to remove a
container by name or by its ID. Remove the demo-httpd container:

[student@workstation ~]$ docker ps -a
[student@workstation ~]$ docker rm demo-1-httpd

21. It is also possible to remove all containers at the same time. The -q option returns the list of
container IDs and the docker rm accepts a list of IDs to remove all containers:

[student@workstation ~]$ docker rm $(docker ps -aq)

22. Verify that all containers were removed:

[student@workstation ~]$ docker ps -a

23. Clean up the images downloaded by running the following from a terminal window:

[student@workstation ~]$ docker rmi rhscl/httpd-24-rhel7

This concludes the demonstration.

Guided Exercise: Managing a MySQL Container

DO180-OCP3.5-en-1-20170524 67

Guided Exercise: Managing a MySQL Container

In this exercise, you will create and manage a MySQL database container.

Resources

Files: NA

Application URL: NA

Resources: RHSCL MySQL 5.6 container image (rhscl/mysql-56-
rhel7)

Outcomes

You should be able to create and manage a MySQL database container.

Before you begin

The workstation should have docker running. To check if this is true, run the following command
from a terminal window:

[student@workstation ~]$ lab managing-mysql setup

1. Open a terminal window from the workstation VM (Applications > Utilities > Terminal) and
run the following command:

[student@workstation ~]$ docker run --name mysql-db rhscl/mysql-56-rhel7

This command downloads the MySQL database container image and tries to start it, but it
does not start. The reason for this is the image requires a few environment variables to be
provided.

Note
If you try to run the container as a daemon (-d), the error message about the
required variables is not displayed. However, this message is included as part of
the container logs, which can be viewed using the following command:

[student@workstation ~]$ docker logs mysql-db

2. Start the container again, providing the required variables. Specify each variable using the -
e parameter.

[student@workstation ~]$ docker run --name mysql \
-d -e MYSQL_USER=user1 -e MYSQL_PASSWORD=mypa55 \
-e MYSQL_DATABASE=items -e MYSQL_ROOT_PASSWORD=r00tpa55 \
rhscl/mysql-56-rhel7

3. Verify that the container was started correctly. Run the following command:

Chapter 3. Managing Containers

68 DO180-OCP3.5-en-1-20170524

[student@workstation ~]$ docker ps
CONTAINER ID IMAGE COMMAND CREATED
 STATUS PORTS NAMES
5cd89eca81dd rhscl/mysql-56-rhel7 "container-entrypoint" 9 seconds ago
 Up 8 seconds 3306/tcp mysql

4. Inspect the container metadata to obtain the IP address from the MySQL database:

[student@workstation ~]$ docker inspect -f '{{ .NetworkSettings.IPAddress }}' mysql
172.17.0.2

Note
You can get other important information with the docker inspect command.
For example, if you forgot the root password, it is available in the Env section.

5. Connect to the MySQL database from the host:

[student@workstation ~]$ mysql -uuser1 -h IP -p items

Use mypa55 as password.

6. You are connected to the items database. Create a new table:

MySQL [items]> CREATE TABLE Projects (id int(11) NOT NULL, \
name varchar(255) DEFAULT NULL, code varchar(255) DEFAULT NULL, \
PRIMARY KEY (id));

7. Insert a row into the table by running the following command:

MySQL [items]> insert into Projects (id, name, code) values (1,'DevOps','DO180');

8. Exit from the MySQL prompt:

MySQL [items]> exit

9. Create another container using the same container image from the previous container
executing the /bin/bash shell:

[student@workstation ~]$ docker run --name mysql-2 -it rhscl/mysql-56-rhel7 \
/bin/bash
bash-4.2$

10. Try to connect to the MySQL database:

bash-4.2$ mysql -uroot

DO180-OCP3.5-en-1-20170524 69

The following error is displayed:

ERROR 2002 (HY000): Can't connect to local MySQL server through socket '/var/lib/
mysql/mysql.sock' (2)

The reason for this error is that the MySQL database server is not running because we
changed the default command responsible for starting the database to /bin/bash.

11. Exit from the bash shell:

bash-4.2$ exit

12. When you exit the bash shell, the container was stopped. Verify that the container mysql-2
is not running:

[student@workstation ~]$ docker ps
CONTAINER ID IMAGE COMMAND CREATED
 STATUS PORTS NAMES
8b2c0ee86419 rhscl/mysql-56-rhel7 "container-entrypoint" 4 minutes ago
 Up 4 minutes 3306/tcp mysql

13. Verify that the database was correctly set up. Run the following from a terminal window:

[student@workstation ~]$ lab managing-mysql grade

14. Delete the containers and resources created by this lab.

14.1. Stop the running container, by running the following commands:

[student@workstation ~]$ docker stop mysql

14.2.Remove the container data by running the following commands:

[student@workstation ~]$ docker rm mysql
[student@workstation ~]$ docker rm mysql-2
[student@workstation ~]$ docker rm mysql-db

14.3.Remove the container image by running the following command:

[student@workstation ~]$ docker rmi rhscl/mysql-56-rhel7

This concludes the guided exercise.

Chapter 3. Managing Containers

70 DO180-OCP3.5-en-1-20170524

Attaching Docker Persistent Storage

Objectives
After completing this section, students should be able to:

• Save application data across container restarts through the use of persistent storage.

• Configure host directories for use as container volumes.

• Mount a volume inside the container.

Preparing Permanent Storage Locations
Container storage is said to be ephemeral, meaning its contents are not preserved after the
container is removed. Containerized applications are supposed to work on the assumption
that they always start with empty storage, and this makes creating and destroying containers
relatively inexpensive operations.

Ephemeral container storage is not sufficient for applications that need to keep data over
restarts, like databases. To support such applications, the administrator must provide a container
with persistent storage.

Previously in this course, container images were characterized as immutable and layered,
meaning they are never changed, but composed of layers that add or override the contents of
layers below.

A running container gets a new layer over its base container image, and this layer is the
container storage. At first, this layer is the only read-write storage available for the container,
and it is used to create working files, temporary files, and log files. Those files are considered
volatile. An application does not stop working if they are lost. The container storage layer is
exclusive to the running container, so if another container is created from the same base image,
it gets another read-write layer.

Figure 3.3: Container layers

Preparing Permanent Storage Locations

DO180-OCP3.5-en-1-20170524 71

Containerized applications should not try to use the container storage to store persistent data,
as they cannot control how long its contents will be preserved. Even if it were possible to keep
container storage around for a long time, the layered file system does not perform well for
intensive I/O workloads and would not be adequate for most applications requiring persistent
storage.

Reclaiming Storage

Docker tries to keep old stopped container storage available for a while to be used by
troubleshooting operations, such as reviewing a failed container logs for error messages. But this
container storage can be reclaimed at any time to create new containers, including replacements
for the old ones; for example, when the host is rebooted.

If the administrator needs to reclaim old containers storage sooner, the stopped container IDs
can be found using docker ps -a, and the container then can be deleted using docker rm
container_id. This last command also deletes the container storage.

Preparing the Host Directory

The Docker daemon can be requested to bind mount a host directory inside a running container.
The host directory is seen by the containerized application as part of the container storage,
much like a remote network volume is seen by applications as if it were part of the host file
system. But these host directory contents will not be reclaimed after the container is stopped,
and it can be bind mounted to new containers whenever needed.

For example, a database container could be started using a host directory to store database files.
If this database container dies, a new container can be created using the same host directory,
keeping the database data available to client applications. To the database container, it does not
matter where this host directory is stored from the host point of view; it could be anything from a
local hard disk partition to a remote networked file system.

A container runs as a host operating system process, under a host operating system user
and group ID, so the host directory needs to be configured with ownership and permissions
allowing access to the container. In RHEL, the host directory also needs to be configured with the
appropriate SELinux context, which is svirt_sandbox_file_t.

One way to set up the host directory is:

• Create a directory with owner and group root (notice the root prompt #):

mkdir /var/dbfiles

• The container user must be capable of writing files on the directory. If the host machine does
not have the container user, the permission should be defined with the numeric user ID (UID)
from the container. In case of the mysql service provided by Red Hat, the UID is 27:

chown -R 27:27 /var/dbfiles

• Allow containers (and also virtual machines) access to the directory:

chcon -t svirt_sandbox_file_t /var/dbfiles

Of course, the host directory has to be configured before starting the container using it.

Chapter 3. Managing Containers

72 DO180-OCP3.5-en-1-20170524

Mounting a Volume

After creating and configuring the host directory, the next step is to mount this directory to a
container. To bind mount a host directory to a container, add the -v option to the docker run
command, specifying the host directory path and the container storage path, separated by a
colon (:).

For example, to use the /var/dbfiles host directory for MySQL server database files, which
are expected to be under /var/lib/mysql inside a MySQL container image named mysql, use
the following command:

docker run -v /var/dbfiles:/var/lib/mysql mysql # other options required by the MySQL
 image omitted

In the previous command, if the /var/lib/mysql already exists inside the mysql container
image, the /var/dbfiles mount overlays but does not remove the content from the container
image. If the mount is removed, the original content is accessible again.

Guided Exercise: Persisting a MySQL Database

DO180-OCP3.5-en-1-20170524 73

Guided Exercise: Persisting a MySQL Database

In this lab, you will create a container that persists the MySQL database data into a host
directory.

Resources

Files: NA

Application URL: NA

Resources: RHSCL MySQL 5.6 image (rhscl/mysql-56-rhel7)

Outcomes

You should be able to deploy a persistent database.

Before you begin

The workstation should not have any container images running. To achieve this goal, run from a
terminal window the command:

[student@workstation ~]$ lab persist-mysqldb setup

1. Create a directory with the correct permissions.

1.1. Open a terminal window from the workstation VM (Applications > Utilities > Terminal)
and run the following command:

[student@workstation ~]$ sudo mkdir -p /var/local/mysql

1.2. Apply the appropriate SELinux context to the mount point.

[student@workstation ~]$ sudo chcon -R -t svirt_sandbox_file_t /var/local/mysql

1.3. Change the owner of the mount point to the mysql user and mysql group:

[student@workstation ~]$ sudo chown -R 27:27 /var/local/mysql

Note
The container user must be capable of writing files in the directory. If the host
machine does not have the container user, set the permission to the numeric
user ID (UID) from the container. In case of the mysql service provided by Red
Hat, the UID is 27.

2. Create a MySQL container instance with persistent storage.

2.1. Pull the MySQL container image from the internal registry:

[student@workstation ~]$ docker pull rhscl/mysql-56-rhel7

Chapter 3. Managing Containers

74 DO180-OCP3.5-en-1-20170524

2.2. Create a new container specifying the mount point to store the MySQL database data:

[student@workstation ~]$ docker run --name persist-mysqlddb \
-d -v /var/local/mysql:/var/lib/mysql/data \
-e MYSQL_USER=user1 -e MYSQL_PASSWORD=mypa55 \
-e MYSQL_DATABASE=items -e MYSQL_ROOT_PASSWORD=r00tpa55 \
rhscl/mysql-56-rhel7

This command mounts the host /var/local/mysql directory in the container /var/
lib/mysql/data directory. The /var/lib/mysql/data is the directory where the
MySQL database stores the data.

2.3. Verify that the container was started correctly. Run the following command:

[student@workstation ~]$ docker ps

An output similar to the following will be listed:

CONTAINER ID IMAGE COMMAND CREATED
 STATUS PORTS NAMES
8d6acfaa55a5 rhscl/mysql-56-rhel7 "container-entrypoint" 11 seconds ago
 9 seconds ago 3306/tcp persist-mysqlddb

3. Verify that the /var/local/mysql directory contains an items directory:

[student@workstation ~]$ ls -l /var/local/mysql
total 28688
-rw-rw----. 1 27 27 2 Apr 19 16:52 10ddcb9edec5.pid
-rw-rw----. 1 27 27 56 Apr 19 16:52 auto.cnf
-rw-rw----. 1 27 27 12582912 Apr 19 16:52 ibdata1
-rw-rw----. 1 27 27 8388608 Apr 19 16:52 ib_logfile0
-rw-rw----. 1 27 27 8388608 Apr 19 16:52 ib_logfile1
drwx------. 2 27 27 20 Apr 19 16:52 items
drwx------. 2 27 27 4096 Apr 19 16:52 mysql
drwx------. 2 27 27 4096 Apr 19 16:52 performance_schema

This directory persists data related to the items database that was created by this
container. If this directory is not available, the mount point was not defined correctly in the
container creation.

4. Verify if the database was correctly set up. Run the following from a terminal window:

[student@workstation ~]$ lab persist-mysqldb grade

5. Delete the containers and resources created by this lab.

5.1. Stop the running container, by running the following commands:

[student@workstation ~]$ docker stop persist-mysqlddb

5.2. Remove the container data by running the following commands:

DO180-OCP3.5-en-1-20170524 75

[student@workstation ~]$ docker rm persist-mysqlddb

5.3. Remove the container image by running the following command:

[student@workstation ~]$ docker rmi rhscl/mysql-56-rhel7

5.4. Delete the volume directory created earlier in the exercise b y running the following
command:

[student@workstation ~]$ sudo rm -rf /var/local/mysql

This concludes the guided exercise.

Chapter 3. Managing Containers

76 DO180-OCP3.5-en-1-20170524

Accessing Docker Networks

Objectives
After completing this section, students should be able to:

• Describe the basics of networking with containers.

• Connect to services within a container remotely.

Introducing Networking with Containers
By default, the Docker engine uses a bridged network mode, which through the use of iptables
and NAT, allows containers to connect to the host machines network.

Figure 3.4: Basic Linux containers networking

Each container gets a networking stack, and Docker provides a bridge for these containers to
communicate using a virtual switch. Containers running on a shared host each have a unique
IP address and containers running on different Docker hosts can share an IP address. Also, all

Mapping Network Ports

DO180-OCP3.5-en-1-20170524 77

containers that connect to the same bridge on the same host can talk to each other freely by IP
address.

It is also important to note that by default all container networks are hidden from the real
network. That is, containers typically can access the network outside, but without explicit
configuration, there is no access back into the container network.

Mapping Network Ports
Accessing the container from the external world can be a challenge. It is not possible to specify
the IP address for the container that will be created, and the IP address changes for every new
container. Another problem is that the container network is only accessible by the container host.

To solve these problems, it is possible to use the container host network model combined with
network address translation (NAT) rules to allow the external access. To achieve this, the -p
option should be used:

docker run -d --name httpd -p 8080:80 do276/httpd

In the previous example, requests received by the container host on port 8080 from any IP
address will be forwarded to port 80 in the container.

Chapter 3. Managing Containers

78 DO180-OCP3.5-en-1-20170524

Figure 3.5: Allowing external accesses to Linux containers

It is also possible to determine a specific IP address for the port forward:

docker run -d --name httpd -p 192.168.1.5:8080:80 do276/httpd

If a port is not specified for the host port, the container picks a random available port:

docker run -d --name httpd -p 192.168.1.5::80 do276/httpd

Finally, it is possible to listen on all interfaces and have an available port picked automatically:

docker run -d --name httpd -p 80 do276/httpd

Guided Exercise: Loading the Database

DO180-OCP3.5-en-1-20170524 79

Guided Exercise: Loading the Database

In this lab, you will create a MySQL database container. You forward ports from the container to
the host in order to load the database with a SQL script.

Resources

Files: NA

Application URL: NA

Resources: RHSCL MySQL 5.6 image (rhscl/mysql-56-rhel7)

Outcomes

You should be able to deploy a database container and load a SQL script.

Before you begin

The workstation should have a directory to persist data from the database container. To ensure
these requirements are supported by the workstation, the setup script creates the necessary
directory. Run the following command from a terminal window:

[student@workstation ~]$ lab load-mysqldb setup

1. Create a MySQL container instance with persistent storage and port forward:

[student@workstation ~]$ docker run --name mysqldb-port \
-d -v /var/local/mysql:/var/lib/mysql/data \
-p 13306:3306 \
-e MYSQL_USER=user1 -e MYSQL_PASSWORD=mypa55 \
-e MYSQL_DATABASE=items -e MYSQL_ROOT_PASSWORD=r00tpa55 \
rhscl/mysql-56-rhel7

The -p parameter is responsible for the port forward. In this case, every connection on the
host IP using the port 13306 is forwarded to this container in port 3306.

Note
The /var/local/mysql directory was created and configured by the setup script
to have the permissions required by the containerized database.

2. Verify that the container was started correctly. Run the following command:

[student@workstation ~]$ docker ps

An output similar to the following will be listed. Look at the PORTS column and see the port
forward.

CONTAINER ID IMAGE COMMAND CREATED
 STATUS PORTS NAMES

Chapter 3. Managing Containers

80 DO180-OCP3.5-en-1-20170524

ad697775565b rhscl/mysql-56-rhel7 "container-entrypoint" 4 seconds ago Up
 2 seconds 0.0.0.0:13306->3306/tcp mysqlddb-port

3. Load the database:

[student@workstation ~]$ mysql -uuser1 -h 127.0.0.1 -pmypa55 \
-P13306 items < /home/student/DO180/labs/load-mysqldb/db.sql

4. Verify that the database was successfully loaded:

[student@workstation ~]$ mysql -uuser1 -h 127.0.0.1 -pmypa55 \
-P13306 items -e "SELECT * FROM Item"

An output similar to the following will be listed:

+----+-------------------+------+
| id | description | done |
+----+-------------------+------+
| 1 | Pick up newspaper | |
| 2 | Buy groceries | X |
+----+-------------------+------+

5. Another way to verify that the database was successfully loaded is by running the mysql
command inside the container. To do that, access the container bash:

[student@workstation ~]$ docker exec -it mysqldb-port /bin/bash

6. Verify that the database contains data:

bash-4.2$ mysql -uroot items -e "SELECT * FROM Item"

7. Exit from the bash shell inside the container:

bash-4.2$ exit

8. There is a third option to verify that the database was successfully loaded. It is possible to
inject a process into the container to check if the database contains data:

[student@workstation ~]$ docker exec -it mysqldb-port \
/opt/rh/rh-mysql56/root/usr/bin/mysql -uroot items -e "SELECT * FROM Item"

Note
The mysql command is not in the $PATH variable and, for this reason, you must
use an absolute path.

9. Verify that the databases were correctly set up. Run the following from a terminal window:

DO180-OCP3.5-en-1-20170524 81

[student@workstation ~]$ lab load-mysqldb grade

10. Delete the container and volume created by this lab.

10.1. To stop the container, run the following command:

[student@workstation ~]$ docker stop mysqldb-port

10.2.To remove the data stored by the stopped container, run the following command:

[student@workstation ~]$ docker rm mysqldb-port

10.3.To remove the container image, run the following command:

[student@workstation ~]$ docker rmi rhscl/mysql-56-rhel7

10.4.To remove the directory with the database data, run the following command:

[student@workstation ~]$ sudo rm -rf /var/local/mysql

This concludes the guided exercise.

Chapter 3. Managing Containers

82 DO180-OCP3.5-en-1-20170524

Lab: Managing Containers

In this lab, you will deploy a container that persists the MySQL database data into a host folder,
load the database, and manage the container.

Resources

Files: /home/student/DO180/labs/work-containers

Application URL: NA

Resources: RHSCL MySQL 5.6 image (rhscl/mysql-56-rhel7)

Outcomes

You should be able to deploy and manage a persistent database using a shared volume. You
should also be able to start a second database using the same shared volume and observe that
the data is consistent between the two containers as they are using the same directory on the
host to store the MySQL data.

Before you begin

The workstation should have Docker running already. To verify this and download the necessary
files for the lab, run the following command from a terminal window:

[student@workstation ~]$ lab work-containers setup

1. Create the /var/local/mysql directory with the correct permission.

1.1. Create the host folder to store the MySQL database data.

1.2. Apply the appropriate SELinux context to the host folder.

1.3. Change the owner of the host folder to the mysql user (uid=27) and mysql group (gid =
27).

2. Deploy a MySQL container instance using the following characteristics:

• Name: mysql-1;

• Run as daemon: yes;

• Volume: from /var/local/mysql host folder to /var/lib/mysql/data container
folder;

• Container image: rhscl/mysql-56-rhel7;

• Port forward: no;

• Environment variables:
◦ MYSQL_USER: user1;

◦ MYSQL_PASSWORD: mypa55;

◦ MYSQL_DATABASE: items;

◦ MYSQL_ROOT_PASSWORD: r00tpa55

DO180-OCP3.5-en-1-20170524 83

2.1. Create and start the container.

2.2. Verify that the container was started correctly.

3. Load the items database using the /home/student/DO180/labs/work-containers/
db.sql script.

3.1. Get the container IP.

3.2. Load the database.

3.3. Verify that the database was loaded.

4. Stop the container gracefully.

Warning
This step is very important since a new container will be created sharing the same
volume for database data. Having two containers using the same volume can
corrupt the database. Do not restart the mysql-1 container.

5. Create a new container with the following characteristics:

• Name: mysql-2;

• Run as a daemon: yes;

• Volume: from /var/local/mysql host folder to /var/lib/mysql/data container
folder;

• Container image: rhscl/mysql-56-rhel7;

• Port forward: yes, from host port 13306 to container port 3306;

• Environment variables:
◦ MYSQL_USER: user1;

◦ MYSQL_PASSWORD: mypa55;

◦ MYSQL_DATABASE: items;

◦ MYSQL_ROOT_PASSWORD: r00tpa55

5.1. Create and start the container.

5.2. Verify that the container was started correctly.

6. Save the list of all containers (including stopped ones) to the /tmp/my-containers file.

7. Access the bash shell inside the container and verify that the items database and the Item
table are still available. Confirm also that the table contains data.

7.1. Access the bash shell inside the container.

Chapter 3. Managing Containers

84 DO180-OCP3.5-en-1-20170524

7.2. Connect to the MySQL server.

7.3. List all databases and confirm that the items database is available.

7.4. List all tables from the items database and verify that the Item table is available.

7.5. View the data from the table.

7.6. Exit from the MySQL client and from the container shell.

8. Using the port forward, insert a new row in the Item table.

8.1. Connect to the MySQL database.

8.2. Insert the new row.

8.3. Exit from the MySQL client.

9. Since the first container is not required any more, remove it from the Docker daemon to
release resources.

10. Verify that the lab was correctly executed. Run the following from a terminal window:

[student@workstation ~]$ lab work-containers grade

11. Delete the containers and resources created by this lab.

11.1. Stop the running container.

11.2. Remove the container storage.

11.3. Remove the container image.

11.4. Remove the file created to store the information about the containers.

11.5. Remove the host directory used by the container volumes.

This concludes the lab.

Solution

DO180-OCP3.5-en-1-20170524 85

Solution

In this lab, you will deploy a container that persists the MySQL database data into a host folder,
load the database, and manage the container.

Resources

Files: /home/student/DO180/labs/work-containers

Application URL: NA

Resources: RHSCL MySQL 5.6 image (rhscl/mysql-56-rhel7)

Outcomes

You should be able to deploy and manage a persistent database using a shared volume. You
should also be able to start a second database using the same shared volume and observe that
the data is consistent between the two containers as they are using the same directory on the
host to store the MySQL data.

Before you begin

The workstation should have Docker running already. To verify this and download the necessary
files for the lab, run the following command from a terminal window:

[student@workstation ~]$ lab work-containers setup

1. Create the /var/local/mysql directory with the correct permission.

1.1. Create the host folder to store the MySQL database data.

Open a terminal window from the workstation VM (Applications > Utilities > Terminal)
and run the following command:

[student@workstation ~]$ sudo mkdir -p /var/local/mysql

1.2. Apply the appropriate SELinux context to the host folder.

[student@workstation ~]$ sudo chcon -R -t svirt_sandbox_file_t /var/local/mysql

1.3. Change the owner of the host folder to the mysql user (uid=27) and mysql group (gid =
27).

[student@workstation ~]$ sudo chown -R 27:27 /var/local/mysql

2. Deploy a MySQL container instance using the following characteristics:

• Name: mysql-1;

• Run as daemon: yes;

• Volume: from /var/local/mysql host folder to /var/lib/mysql/data container
folder;

• Container image: rhscl/mysql-56-rhel7;

Chapter 3. Managing Containers

86 DO180-OCP3.5-en-1-20170524

• Port forward: no;

• Environment variables:
◦ MYSQL_USER: user1;

◦ MYSQL_PASSWORD: mypa55;

◦ MYSQL_DATABASE: items;

◦ MYSQL_ROOT_PASSWORD: r00tpa55

2.1. Create and start the container.

[student@workstation ~]$ docker run --name mysql-1 \
-d -v /var/local/mysql:/var/lib/mysql/data \
-e MYSQL_USER=user1 -e MYSQL_PASSWORD=mypa55 \
-e MYSQL_DATABASE=items -e MYSQL_ROOT_PASSWORD=r00tpa55 \
rhscl/mysql-56-rhel7

2.2. Verify that the container was started correctly.

[student@workstation ~]$ docker ps

An output similar to the following will be listed:

CONTAINER ID IMAGE COMMAND CREATED
 STATUS PORTS NAMES
6l6azfaa55x8 rhscl/mysql-56-rhel7 "container-entrypoint" 11 seconds ago
 9 seconds ago 3306/tcp mysql-1

3. Load the items database using the /home/student/DO180/labs/work-containers/
db.sql script.

3.1. Get the container IP.

[student@workstation ~]$ docker inspect -f '{{ .NetworkSettings.IPAddress }}' \
mysql-1

3.2. Load the database.

[student@workstation ~]$ mysql -uuser1 -h CONTAINER_IP -pmypa55 items \
< /home/student/DO180/labs/work-containers/db.sql

Where CONTAINER_IP is the IP address returned by the previous command.

3.3. Verify that the database was loaded.

[student@workstation ~]$ mysql -uuser1 -h CONTAINER_IP -pmypa55 items \
-e "SELECT * FROM Item"

4. Stop the container gracefully.

Solution

DO180-OCP3.5-en-1-20170524 87

Warning
This step is very important since a new container will be created sharing the same
volume for database data. Having two containers using the same volume can
corrupt the database. Do not restart the mysql-1 container.

Stop the container using the following command:

[student@workstation ~]$ docker stop mysql-1

5. Create a new container with the following characteristics:

• Name: mysql-2;

• Run as a daemon: yes;

• Volume: from /var/local/mysql host folder to /var/lib/mysql/data container
folder;

• Container image: rhscl/mysql-56-rhel7;

• Port forward: yes, from host port 13306 to container port 3306;

• Environment variables:
◦ MYSQL_USER: user1;

◦ MYSQL_PASSWORD: mypa55;

◦ MYSQL_DATABASE: items;

◦ MYSQL_ROOT_PASSWORD: r00tpa55

5.1. Create and start the container.

[student@workstation ~]$ docker run --name mysql-2 \
-d -v /var/local/mysql:/var/lib/mysql/data \
-p 13306:3306 \
-e MYSQL_USER=user1 -e MYSQL_PASSWORD=mypa55 \
-e MYSQL_DATABASE=items -e MYSQL_ROOT_PASSWORD=r00tpa55 \
rhscl/mysql-56-rhel7

5.2. Verify that the container was started correctly.

[student@workstation ~]$ docker ps

An output similar to the following will be listed:

CONTAINER ID IMAGE COMMAND CREATED
 STATUS PORTS NAMES
281c0e2790e5 rhscl/mysql-56-rhel7 "container-entrypoint" 14 seconds ago
 11 seconds ago 0.0.0.0:13306->3306/tcp mysql-2

Chapter 3. Managing Containers

88 DO180-OCP3.5-en-1-20170524

6. Save the list of all containers (including stopped ones) to the /tmp/my-containers file.

Save the information with the following command:

[student@workstation ~]$ docker ps -a > /tmp/my-containers

7. Access the bash shell inside the container and verify that the items database and the Item
table are still available. Confirm also that the table contains data.

7.1. Access the bash shell inside the container.

[student@workstation ~]$ docker exec -it mysql-2 /bin/bash

7.2. Connect to the MySQL server.

bash-4.2$ mysql -uroot

7.3. List all databases and confirm that the items database is available.

mysql> show databases;

7.4. List all tables from the items database and verify that the Item table is available.

mysql> use items;
mysql> show tables;

7.5. View the data from the table.

mysql> SELECT * FROM Item;

7.6. Exit from the MySQL client and from the container shell.

mysql> exit
bash-4.2$ exit

8. Using the port forward, insert a new row in the Item table.

8.1. Connect to the MySQL database.

[student@workstation ~]$ mysql -uuser1 -h workstation.lab.example.com \
-pmypa55 -P13306 items

8.2. Insert the new row.

MySQL[items]> insert into Item (description, done) values ('Walk the dogs',
 true);

8.3. Exit from the MySQL client.

Solution

DO180-OCP3.5-en-1-20170524 89

MySQL[items]> exit

9. Since the first container is not required any more, remove it from the Docker daemon to
release resources.

Remove the container with the following command:

[student@workstation ~]$ docker rm mysql-1

10. Verify that the lab was correctly executed. Run the following from a terminal window:

[student@workstation ~]$ lab work-containers grade

11. Delete the containers and resources created by this lab.

11.1. Stop the running container.

[student@workstation ~]$ docker stop mysql-2

11.2. Remove the container storage.

[student@workstation ~]$ docker rm mysql-2

11.3. Remove the container image.

[student@workstation ~]$ docker rmi rhscl/mysql-56-rhel7

11.4. Remove the file created to store the information about the containers.

[student@workstation ~]$ rm /tmp/my-containers

11.5. Remove the host directory used by the container volumes.

[student@workstation ~]$ sudo rm -rf /var/local/mysql

This concludes the lab.

Chapter 3. Managing Containers

90 DO180-OCP3.5-en-1-20170524

Summary

In this chapter, you learned:

• A set of commands are provided to create and manage containers.

◦ docker run: Create a new container.

◦ docker ps: List containers.

◦ docker inspect: List metadata about a container.

◦ docker stop: Stop a container.

◦ docker kill: Stop a container forcefully.

◦ docker restart: Restart a stopped container.

◦ docker rm: Delete a container.

• Container storage is said to be ephemeral, meaning its contents are not preserved after the
container is removed.

• To work with persistent data, a folder from the host can be used.

• It is possible to mount a volume with the -v option in the docker run command.

• The docker exec command starts an additional process inside a running container.

• A port mapping can be used with the -p option in the docker run command.

DO180-OCP3.5-en-1-20170524 91

TRAINING

CHAPTER 4

MANAGING CONTAINER IMAGES

Overview

Goal Manage the life cycle of a container image from creation to
deletion.

Objectives • Search for and pull images from remote registries.

• Export, import, and manage container images locally and
in a registry.

Sections • Accessing Registries (and Quiz)

• Manipulating Container Images (and Guided Exercise)

Lab • Managing Container Images

Chapter 4. Managing Container Images

92 DO180-OCP3.5-en-1-20170524

Accessing Registries

Objectives
After completing this section, students should be able to:

• Search for and pull images from remote registries.

• List the advantages of using a certified public registry to download secure images.

• Customize the docker daemon to access alternative container image registries.

• Search for container images using docker command and the REST API.

• Pull images from a registry.

• List images downloaded from a registry to the daemon cache.

• Work with tags to pull tagged images.

Public Registries
The docker daemon searches for and downloads container images from a public registry
provided by Docker. Docker Hub is the public registry managed by Docker, and it hosts a large set
of container images, including those provided by major open source projects, such as Apache,
MySQL, and Jenkins. It also hosts customized container images developed by the community.

Unfortunately, some images provided by the community do not take security concerns into
consideration, and might put data or the application running in a production environment at risk,
because anyone can get an account and publish custom images.

For example, root-based access containers and security-flawed tools (such as the Bash with
ShellShock security vulnerability) might be some of the issues encountered in such containers.

Alternatively, Red Hat also has a public registry where certified and tested container images are
available for consumption by customers with a valid Red Hat subscription.

Red Hat container images provide the following benefits:

• Trusted source: All container images are built from a known source by Red Hat.

• Original dependencies: None of the container packages have been tampered with, and only
include known libraries.

• Vulnerability-free: Container images are free of known vulnerabilities in the platform
components or layers.

• Red Hat Enterprise Linux (RHEL) compatible: Container images are compatible with all Red Hat
Enterprise Linux platforms, from bare metal to cloud.

• Red Hat support: The complete stack is commercially supported by Red Hat.

Private Registry

DO180-OCP3.5-en-1-20170524 93

Private Registry
Some teams might need to distribute custom container images for internal use. Even though
it is possible to use a public registry to make them available for download, a better approach
would be to publish them to a private registry. A private registry can be installed as a service to
a host, and all docker daemons from a development team should add a new registry to make it
searchable.

Note
The docker-registry service installation and customization process is beyond the
scope of this course.

To configure extra registries for the docker daemon, you need to update the /etc/
sysconfig/docker file. On a RHEL host, add the following extra parameter:

ADD_REGISTRY='--add-registry registry.access.redhat.com --add-registry

 infrastructure.lab.example.com:5000 '

The --add-registry parameter requires the registry FQDN host and port.

The FQDN host and port number where the docker-registry service is running.

Note
The docker daemon requires a full restart to make them effective by running
systemctl restart docker.service command.

To access a registry, a secure connection is needed with a certificate. For a closed environment
where only known hosts are allowed, the /etc/sysconfig/docker file can be customized to
support insecure connections from a RHEL host:

INSECURE_REGISTRY='--insecure-registry infrastructure.lab.example.com:5000 '

The --insecure-registry parameter requires the registry FQDN host and port.

The FQDN host and port number where the docker-registry service is running.

Accessing Registries
A container image registry is accessed via the docker daemon service from a docker
command. Because the docker command line uses a RESTful API to request process execution
by the daemon, most of the commands from the client are translated into an HTTP request, and
can be sent using curl.

Note
This capability can be used to get additional information from the registries and
troubleshoot docker client problems that are not clearly stated by the logs.

Chapter 4. Managing Container Images

94 DO180-OCP3.5-en-1-20170524

Searching for Images in Public Registries

The subcommand search is provided by the docker command to find images by image name,
user name, or description from all the registries listed in the /etc/sysconfig/docker
configuration file. The syntax for the verb is:

docker search [OPTIONS] <term>

The following table shows the options available for the search verb to limit the output from the
command:

Option Description

--automated=true List only automated builds, where the image
files are built using a Dockerfile.

--no-trunc=true Do not truncate the output.

--stars=N Display images with at least N stars provided
by users from the registry.

Note
The command returns up to 25 results from the registry and does not display which
tags are available for download.

To overcome the limitations of the search verb, the RESTful API can be used instead.

Note
To send an HTTP request to a container registry, a tool with HTTP support should be
used, such as curl or a web browser.

For example, to run a search command using the RESTful API, the following HTTP request can
be sent to the registry:

GET /v1/search?q=<term>

To customize the number of container images listed from a registry, a parameter called n is used
to return a different number of images:

GET /v1/search?q=<term>&n=<number>

For example, to get the list of images from Docker Hub called mysql, the following curl
command can be used:

curl https://registry.hub.docker.com/v1/search?q=mysql&n=30

{
 "num_pages": 101,
 "num_results": 2511,
 "results":

Accessing Registries

DO180-OCP3.5-en-1-20170524 95

 [
 {"is_automated": false,
 "name": "mysql",
 "is_trusted": false,
 "is_official": true,
 "star_count": 1604,
 "description": "MySQL is a widely used, open-source relational database
 management system (RDBMS)."
 },
 ... Output omitted
}

Searching for Image Tags in Public Registries

To get the tags from any image, use the RESTful API. The HTTP request must be similar to:

GET /v1/repositories/<imageName>/tags

To list the tags from the official MySQL image container registry, use the following curl
command:

curl https://registry.hub.docker.com/v1/repositories/mysql/tags

Searching for Images in Private Registries

Public registries, such as registry.access.redhat.com, support the search verb from
docker. However, for private registries, such as the one provided by this classroom, do not
provide the search facility compatible with docker, because it is running the version 2 release of
the docker registry, whereas the public registries are using the version 1 registry.

To search in private registries, using the latest API version, a Python script can be used. The
script is provided as an open source project hosted at https://github.com and it is referred in the
References section.

In the classroom environment, the script is provided as a bash script named docker-
registry-cli. To get all the images available at a private registry, use the following syntax:

docker-registry-cli <docker-registry-host>:<port> <list|search> [options]

For example, to get the list of all images available at
infrastructure.lab.example.com:5000:

docker-registry-cli infrastructure.lab.example.com:5000 list all

To search for a specific string, use the following command:

docker-registry-cli infrastructure.lab.example.com:5000 search mysql

Pulling Images

To pull container images from a registry, the docker command line supports the pull verb. The
verb syntax is:

docker pull [OPTIONS] NAME[:TAG] | [REGISTRY_HOST[:REGISTRY_PORT]/]NAME[:TAG]

Chapter 4. Managing Container Images

96 DO180-OCP3.5-en-1-20170524

The following table shows the options available for the pull verb:

Option Description

--all-tags=true Download all tagged images in the repository.

--disable-content-trust=true Skip image verification.

To pull an image from a registry, docker pull will use the image name obtained from the
search verb. docker pull supports the fully qualified domain name to identify from which
registry the image should be pulled. This option is supported because multiple registries can
be used by docker for searching purposes, and the same image name can be used by multiple
registries for different images,

For example, to pull an NGINX container from the docker.io registry, use the following
command:

docker pull docker.io/nginx

Note
If no registry is provided, the first registry listed in the /etc/sysconfig/docker
configuration file from the ADD_REGISTRY line is used.

Listing Cached Copies of Images

Any image files pulled from a registry are stored on the same host where the docker daemon
is running to avoid multiple downloads, and to minimize the deployment time for a container.
Also, any custom container image built by a developer is saved to the same cache. To list all the
container images cached by the daemon, docker provides a verb called images.

docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
docker.io/httpd latest 1c0076966428 4 weeks ago 193.4 MB

Note
The image files are stored in the /var/lib/docker directory from the docker
daemon's host if the default configuration is used. On the other hand, if LVM thin
storage is used to store images, the LVM volume mount point is used instead.

Image Tags

An image tag is a mechanism from the docker-registry service to support multiple releases
of the same project. This facility is useful when multiple versions of the same software are
provided, such as a production-ready container or the latest updates of the same software
developed for community evaluation. Any operation where a container image is requested from
a registry accepts a tag parameter to differentiate between multiple tags. If no tag is provided,
then latest is used. For example, to pull an image with the tag 5.5 from mysql, use the
following command:

docker pull mysql:5.5

Accessing Registries

DO180-OCP3.5-en-1-20170524 97

To start a new container based on the mysql:5.5 image, use the following command:

docker run mysql:5.5

References
Docker Hub website
https://hub.docker.com

The Docker Registry API documentation
https://docs.docker.com/v1.6/reference/api/registry_api/#search

Docker registry v2 CLI
https://github.com/vivekjuneja/docker_registry_cli/

Docker remote API documentation
https://docs.docker.com/engine/reference/api/docker_remote_api/

Red Hat certified container images website
https://registry.access.redhat.com

Red Hat container certification program website
https://connect.redhat.com/zones/containers/why-certify-containers

Setting up a docker-registry container
https://docs.docker.com/registry/deploying/

https://hub.docker.com
https://docs.docker.com/v1.6/reference/api/registry_api/#search
https://github.com/vivekjuneja/docker_registry_cli/
https://docs.docker.com/engine/reference/api/docker_remote_api/
https://registry.access.redhat.com
https://connect.redhat.com/zones/containers/why-certify-containers
https://docs.docker.com/registry/deploying/

Chapter 4. Managing Container Images

98 DO180-OCP3.5-en-1-20170524

Quiz: Working With Registries

Choose the correct answers to the following questions, based on the following information:

A docker daemon is installed on a RHEL host with the following /etc/sysconfig/docker file:

ADD_REGISTRY="--add-registry registry.access.redhat.com --add-registry docker.io"

The registry.access.redhat.com and docker.io hosts have a registry running, both have
valid certificates, and use the version 1 registry. The following images are available for each host:

• registry.access.redhat.com:

image names/tags:

◦ nginx/1.0

◦ mysql/5.6

◦ httpd/2.2

• docker.io:

image names/tags:

◦ mysql/5.5

◦ httpd/2.4

No images were downloaded by the daemon.

1. Which two commands search for the mysql image available for download from
registry.access.redhat.com? (Select two.)

a. docker search registry.access.redhat.com/mysql
b. docker images
c. docker pull mysql
d. docker search mysql

2. What is the command to list all the available image tags from the httpd container image?

a. docker search httpd
b. docker images httpd
c. docker pull --all-tags=true httpd
d. There is no docker command available to search for tags.

3. Which two commands pull the httpd image with the 2.2 tag? (Select two.)

a. docker pull httpd:2.2
b. docker pull httpd:latest
c. docker pull docker.io/httpd

DO180-OCP3.5-en-1-20170524 99

d. docker pull registry.access.redhat.com/httpd:2.2

4. After running the following commands, what will be the output from the docker images
command?

docker pull registry.access.redhat.com/httpd:2.2
docker pull docker.io/mysql:5.6

a. Option 1:

REPOSITORY TAG
docker.io/httpd 2.2
registry.access.redhat.com/mysql 5.6

b. Option 2:

REPOSITORY TAG
registry.access.redhat.com/httpd 2.2
registry.access.redhat.com/mysql 5.6

c. Option 3:

REPOSITORY TAG
registry.access.redhat.com/httpd 2.2

d. Option 4:

REPOSITORY TAG
docker.io/httpd 2.2

Chapter 4. Managing Container Images

100 DO180-OCP3.5-en-1-20170524

Solution

Choose the correct answers to the following questions, based on the following information:

A docker daemon is installed on a RHEL host with the following /etc/sysconfig/docker file:

ADD_REGISTRY="--add-registry registry.access.redhat.com --add-registry docker.io"

The registry.access.redhat.com and docker.io hosts have a registry running, both have
valid certificates, and use the version 1 registry. The following images are available for each host:

• registry.access.redhat.com:

image names/tags:

◦ nginx/1.0

◦ mysql/5.6

◦ httpd/2.2

• docker.io:

image names/tags:

◦ mysql/5.5

◦ httpd/2.4

No images were downloaded by the daemon.

1. Which two commands search for the mysql image available for download from
registry.access.redhat.com? (Select two.)

a. docker search registry.access.redhat.com/mysql
b. docker images
c. docker pull mysql
d. docker search mysql

2. What is the command to list all the available image tags from the httpd container image?

a. docker search httpd
b. docker images httpd
c. docker pull --all-tags=true httpd
d. There is no docker command available to search for tags.

3. Which two commands pull the httpd image with the 2.2 tag? (Select two.)

a. docker pull httpd:2.2
b. docker pull httpd:latest
c. docker pull docker.io/httpd
d. docker pull registry.access.redhat.com/httpd:2.2

Solution

DO180-OCP3.5-en-1-20170524 101

4. After running the following commands, what will be the output from the docker images
command?

docker pull registry.access.redhat.com/httpd:2.2
docker pull docker.io/mysql:5.6

a. Option 1:

REPOSITORY TAG
docker.io/httpd 2.2
registry.access.redhat.com/mysql 5.6

b. Option 2:

REPOSITORY TAG
registry.access.redhat.com/httpd 2.2
registry.access.redhat.com/mysql 5.6

c. Option 3:

REPOSITORY TAG
registry.access.redhat.com/httpd 2.2

d. Option 4:

REPOSITORY TAG
docker.io/httpd 2.2

Chapter 4. Managing Container Images

102 DO180-OCP3.5-en-1-20170524

Manipulating Container Images

Objectives
After completing this section, students should be able to:

• Export, import, and manage container images locally and in a registry.

• Create a new container image using commit.

• Identify the changed artifacts in a container.

• Manage image tags for distribution purposes.

Introduction
Suppose a developer finished testing a custom container in his machine and needs to transfer
this container image to another host, for another developer to use it, or to a production server.
There are two ways this could be accomplished:

1. Save the container image to a tar file.

2. Publish (push) the container image to an image registry.

Note
One of the ways a developer could have created this custom container will be
shown later in this chapter (docker commit), but the preferred way to do so
(Dockerfiles) will be the subject of the following chapters.

Saving and Loading Images
An existing image from the Docker cache can be saved to a tar file using the docker save
command. The generated file is not just a regular tar file; it contains image metadata and
preserves original image layers, so the original image can be later re-created exactly as it was.

The general syntax of the docker command save verb is:

docker save [-o FILE_NAME] IMAGE_NAME[:TAG]

If the -o option is not used the generated image is sent to the standard output as binary data.

In the following example, the MySQL container image from Red Hat Software Collections is saved
to the file mysql.tar:

docker save -o mysql.tar registry.access.redhat.com/rhscl/mysql-56-rhel7

A tar file generated using the save verb can be used for backup purposes. To restore the
container image, use the docker load command. The general syntax of the command is as
follows:

Publishing an Image to a Registry

DO180-OCP3.5-en-1-20170524 103

docker load [-i FILE_NAME]

If the tar file given as an argument is not a container image with metadata, the docker load
command will fail.

Following the previous docker save example, the image may be restored to the Docker cache
using the following command:

docker load -i mysql.tar

Note
To save disk space, the file generated by the save verb can be gzipped. The load verb
will automatically gunzip the file before importing it to the daemon's cache directory.

Publishing an Image to a Registry
To push an image to the registry, it must be stored in the docker's cache, and it should be
tagged for identification purposes. To tag an image, use the tag subcommand:

docker tag IMAGE[:TAG] [REGISTRYHOST/][USERNAME/]NAME[:TAG]

For example, to tag the nginx image with the latest tag, use the following command:

docker tag nginx nginx

To push the image to the registry, run the following command:

docker push nginx

Deleting an Image
Any image downloaded to the Docker cache is kept there even if no containers are using it.
However, images can become outdated, and should be subsequently replaced.

Note
Any updates to images in a registry are not automatically updated in the daemon's
cache. The image must be removed and then pulled again to guarantee that the cache
has all updates made to the registry.

To delete an image from the cache, use the docker rmi command. The syntax for this
command is as follows:

docker rmi [OPTIONS] IMAGE [IMAGE...]

The major option available for the rmi subcommand is --force=true to force the removal of
an image. An image can be referenced using its name or its ID for removal purposes.

Chapter 4. Managing Container Images

104 DO180-OCP3.5-en-1-20170524

The same image can be shared among multiple tags, and to use the rmi verb with the image ID
will fail. To avoid a tag-by-tag removal for an image, the simplest approach would be using the --
force option.

Any container using the image will block any attempt to delete an image. All the containers using
that image must be stopped and removed before it can be deleted.

Deleting All Images
To delete all images that are not used by any container, use the following command:

docker rmi $(docker images -q)

This returns all the image IDs available in the cache and passes them as a parameter to the
docker rmi command for removal. Images that are in use will not be deleted, but this does not
prevent any unused images from being removed.

Modifying Images
Ideally, all container images should be built using a Dockerfile to create a clean and slim set
of image layers, without log files, temporary files, or other artifacts created by the container
customization. Despite these recommendations, some container images may be provided as they
are, without any Dockerfile available. As an alternative approach to creating new images, a
running container can be changed in place and its layers saved to create a new container image.
This feature is provided by the docker commit command.

Warning
Even though the docker commit command is the simplest approach to creating new
images, it is not recommended because of the image size (logs and process ID files
are kept in the captured layers during the commit execution), and the lack of change
traceability. Dockerfile provides a robust mechanism to customize and implement
changes to a container using a readable set of commands without the set of files that
are generated by a running container for OS management purposes.

The syntax for the docker commit command is as follows:

docker commit [OPTIONS] CONTAINER [REPOSITORY[:TAG]]

The following table shows the important options available for the docker commit command:

Option Description

--author="" Identifies the author responsible for the
container image creation.

--message="" Includes a commit message to the registry.

To identify a running container in docker, run the docker ps command:

docker ps

Tagging Images

DO180-OCP3.5-en-1-20170524 105

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
87bdfcc7c656 mysql "/entrypoint.sh mysql" 14 seconds ago Up 13 seconds 3306/tcp mysql-
basic

Eventually, administrators might customize the image and set the container to the desired state.
To identify which files were changed, created, or deleted since the container was started, docker
client has a verb called diff to identify the changes made to a container. The diff verb only
requires the container name or container ID:

docker diff mysql-basic
C /run
C /run/mysqld
A /run/mysqld/mysqld.pid
A /run/mysqld/mysqld.sock
A /run/mysqld/mysqld.sock.lock
A /run/secrets

Any added file is marked with an A, and any changed file is marked with a C.

To commit the changes to another image, run the following command:

docker commit mysql-basic mysql-custom

Tagging Images
A project with multiple images based on the same software could be distributed, creating
individual projects for each image; however, this approach requires extra work to manage and
deploy the images to the correct locations.

Container image registries support the tag concept so that you can distinguish multiple releases
of the same project. For example, a customer might use a container image to run with a MySQL
or PostgreSQL database, using a tag as a way to differentiate which database will be used by a
container image.

Usually, the tags are used by container developers to distinguish between multiple versions of
the same software, such as the one observed for MySQL container image documentation.

Note
Multiple tags are provided to easily identify a release. On the official MySQL container
image website, the version is used as the tag's name (5.5.16). In addition, the same
image has a second tag with the minor version (5.5) to minimize the need to get the
latest release for a certain version.

To tag an image, use the docker tag command:

docker tag [OPTIONS] IMAGE[:TAG] [REGISTRYHOST/][USERNAME/]NAME[:TAG]

The IMAGE argument is the image name with an optional tag that was locally stored to the
docker daemon. The following argument refers to alternative names for the image that are
stored locally. If no tag is provided, the latest tag will be considered. For example, to tag an
image, the following command may be used:

Chapter 4. Managing Container Images

106 DO180-OCP3.5-en-1-20170524

docker tag mysql-custom devops/mysql

The mysql-custom option is the image name that is stored in the docker daemon's cache.

To use a different tag name, use the following command instead:

docker tag mysql-custom devops/mysql:snapshot

Removing Tags from the Image

To associate multiple tags with a single image, use the docker tag command. Tags can be
removed using the docker rmi command mentioned previously. Therefore, to delete a specific
image tag from the daemon, run the following command:

docker rmi devops/mysql:snapshot

Note
Because multiple tags can point to the same image, to remove an image referred to
by multiple tags, each tag should be individually removed first. Alternatively, use the
docker rmi --force command.

Tagging Practices
Normally, the latest tag is automatically added by docker if nothing is provided, because it
is considered to be the image's latest build. However, this may not be true depending on how
the tags are used. For example, most open source projects consider "latest" as the most recent
release, not the latest build.

Moreover, multiple tags are provided to minimize the need to recall the latest release of a certain
version of a project. Thus, if there is a project version release (for example, 2.1.10), another tag
called 2.1 can be created and pointed to the same image from the 2.1.10 release to simplify how
the image is pulled from the registry.

References
Docker documentation
https://docs.docker.com/

https://docs.docker.com/

Guided Exercise: Creating a Custom Apache Container Image

DO180-OCP3.5-en-1-20170524 107

Guided Exercise: Creating a Custom Apache
Container Image

In this lab, you will create a custom Apache container image using the docker commit
command.

Resources

Files: N/A

Application URL: http://127.0.0.1:8180/do180.html,
http://127.0.0.1:8280/do180.html

Resources: CentOS httpd image (centos/httpd)

Outcomes

You should be able to create a custom container image.

Before you begin

To verify that the workstation has the docker daemon running, open a terminal and run the
following command:

[student@workstation ~]$ lab container-images-manipulating setup

Steps

1. Open a terminal on workstation (Applications > Utilities > Terminal) and start a container
from the centos/httpd image with the following command:

[student@workstation ~]$ docker run -d --name official-httpd -p 8180:80 \
centos/httpd

2. Create a new HTML page in the official-httpd container.

2.1. Access the container bash shell:

[student@workstation ~]$ docker exec -it official-httpd /bin/bash

2.2. Create the HTML page:

[root@00fd8d4d1846 /]# echo "DO180 Page" > /var/www/html/do180.html

2.3. Exit the bash shell:

[root@00fd8d4d1846 /]# exit

2.4. Test if the page is reachable:

[student@workstation ~]$ curl 127.0.0.1:8180/do180.html

Chapter 4. Managing Container Images

108 DO180-OCP3.5-en-1-20170524

You should see the following output:

DO180 Page

3. Examine the differences in the container between the image and the new layer created by
the container:

[student@workstation ~]$ docker diff official-httpd

The expected output is similar to:

...
C /run
C /run/httpd
...
A /var/www/html/do180.html
...

The previous output lists the directories and files that were changed or added to the
official-httpd container. Remember that these changes are only for this container.

4. It is possible to create a new image with the changes created by the previous container. One
way is by saving the container to a tar file.

4.1. Stop the official-httpd container:

[student@workstation ~]$ docker stop official-httpd

4.2. Commit the changes to a new container image:

[student@workstation ~]$ docker commit -a 'Your Name' \
-m 'Added do180.html page' official-httpd
sha256:46f0349b897f89843c2c15b429c2eab29358887421d97f5e35a6b7fa35576888

4.3. List the available container images:

[student@workstation ~]$ docker images

The expected output is similar to the following:

REPOSITORY TAG IMAGE ID
<none> <none> 46f0349b897f
infrastructure... /httpd latest 77946d4aa0c2
... output omitted...

Compare the output to that from the previous step to see which image was created by
docker commit. It is the one created more recently and will be the first one listed.

4.4. The new container image has neither a name (REPOSITORY column) nor a tag. Use the
following command to add this information:

DO180-OCP3.5-en-1-20170524 109

[student@workstation ~]$ docker tag 46f0349b897f do180/custom-httpd

Note
The 46f0349b897f container image ID is the truncated version of the ID
returned by the previous step.

4.5. List the available container images again to confirm that the name and tag were applied
to the correct image:

[student@workstation ~]$ docker images

The expected output is similar to the following:

REPOSITORY TAG IMAGE ID
do180/custom-httpd latest 34145b0ca3e4
infrastructure... /httpd latest 77946d4aa0c2
... output omitted...

4.6.

Note
Additional images may be listed, but they are not relevant to this exercise.

5. Publish the saved container image to the infrastructure registry.

5.1. To tag the image with the registry host name and port, run the following command:

[student@workstation ~]$ docker tag do180/custom-httpd \
infrastructure.lab.example.com:5000/do180/custom-httpd:v1.0

5.2. Ensure that the new name was added to the cache:

[student@workstation ~]$ docker images

The expected output is similar to the following:

REPOSITORY TAG ...
do180/custom-httpd latest ...
infrastructure.lab.example.com:5000/do180/custom-httpd v1.0 ...
infrastructure.lab.example.com:5000/centos/HTTP latest ...

5.3. Push the image to the private registry on the infrastructure VM:

[student@workstation ~]$ docker push \
infrastructure.lab.example.com:5000/do180/custom-httpd:v1.0

Chapter 4. Managing Container Images

110 DO180-OCP3.5-en-1-20170524

Note
Each student gets their own private registries on the infrastructure VM so
there is no chance students will interfere with each other's work. These
private registries require no authentication, but most public registries require
that you log in before the push operation.

5.4. Verify that the image can be found by a search in the classroom registry:

[student@workstation ~]$ docker-registry-cli \
infrastructure.lab.example.com:5000 search custom-httpd

The expected output is as follows:

available options:-

1) Name: do180/custom-httpd
Tags: v1.0

1 images found !

6. Test the image that got pushed to the registry.

6.1. Start a new container using the recently uploaded image to the docker registry.

From the terminal, run the following command:

[student@workstation ~]$ docker run -d --name test-httpd -p 8280:80 \
do180/custom-httpd:v1.0

6.2. Check that the do180 page is accessible.

From the terminal, run the following command:

[student@workstation ~]$ curl http://localhost:8280/do180.html

The DO180 page created in the previous steps is displayed.

7. Grade your work. Run the following command from a terminal:

[student@workstation ~]$ lab container-images-manipulating grade

8. Delete the containers and images created by this lab:

8.1. Stop the containers that are running:

[student@workstation ~]$ docker stop test-httpd

DO180-OCP3.5-en-1-20170524 111

8.2. Remove the containers from the cache:

[student@workstation ~]$ docker rm official-httpd test-httpd

8.3. Remove the exported container image:

[student@workstation ~]$ docker rmi do180/custom-httpd

Remove the committed container image:

[student@workstation ~]$ docker rmi \
infrastructure.lab.example.com:5000/do180/custom-httpd:v1.0

8.4. Remove the centos/httpd container image:

[student@workstation ~]$ docker rmi centos/httpd

8.5. Check the reset was executed with success. Run the following from a terminal:

[student@workstation ~]$ lab container-images-manipulating gradeclean

This concludes the guided exercise.

Chapter 4. Managing Container Images

112 DO180-OCP3.5-en-1-20170524

Lab: Managing Images

In this lab, you will create and manage container images.

Resources

Files: N/A

Application URL: http://127.0.0.1:8380, http://127.0.0.1:8280

Resources Official nginx image (nginx)

Outcomes

You should be able to create a custom container image and manage container images.

Before you begin

To verify the Docker daemon is running on workstation, run the following command:

[student@workstation ~]$ lab container-images-lab setup

Steps

1. Open a terminal on the workstation VM (Applications > Utilities > Terminal) and pull the
official nginx container image.

1.1. Search the nginx container image:

1.2. Pull the nginx container image:

Note
The image is pulled from the classroom registry, but the container image is
the same one that is in the docker.io registry. This is to save time in the
download process.

1.3. Check that the container image is available in the cache:

2. To start a new container, forward the server port 80 to port 8080 from the host using the -
p option. You can use syntax similar to the following:

DO NOT RUN THIS COMMAND
$ docker run --name some-nginx -d -p 8080:80 some-content-nginx

3. Create a new container with the following characteristics:

• Name: official-nginx

• Run as daemon: yes

• Container image: nginx

• Port forward: yes, from host port 8380 to container port 80

DO180-OCP3.5-en-1-20170524 113

4. Replace the current index.html content with the following content: "DO180 Page". Use the
container documentation to find the folder that contains the HTML pages.

4.1. Access the container bash shell.

4.2. Replace the index.html file with the "DO180 Page"' string.

4.3. Exit the container.

4.4. Test if the index.html content was updated.

5. Stop the official-nginx container and commit the changes to create a new container
image. Set the name of this container image to do180/mynginx and tag it as v1.0.

5.1. Stop the official-nginx container.

5.2. Commit the changes to a new container image.

5.3. List the available container images to get the ID from the new container.

5.4. Set the name and tag the new container image.

6. Create a new container with the following characteristics:

• Name: my-nginx

• Run as daemon: yes

• Container image: do180/mynginx:v1.0

• Port forward: yes, from host port 8280 to container port 80

7. Test if the index.html page is available with the custom content.

8. Verify that the lab was correctly set up. Run the following command from a terminal:

[student@workstation ~]$ lab container-images-lab grade

9. Delete the containers and resources created by this lab:

9.1. Stop the my-nginx container:

9.2. Remove the containers from the cache:

9.3. Remove the container images:

9.4. Verify that the lab was correctly cleaned up. Run the following from a terminal:

[student@workstation ~]$ lab container-images-lab gradeclean

This concludes the laboratory.

Chapter 4. Managing Container Images

114 DO180-OCP3.5-en-1-20170524

Solution

In this lab, you will create and manage container images.

Resources

Files: N/A

Application URL: http://127.0.0.1:8380, http://127.0.0.1:8280

Resources Official nginx image (nginx)

Outcomes

You should be able to create a custom container image and manage container images.

Before you begin

To verify the Docker daemon is running on workstation, run the following command:

[student@workstation ~]$ lab container-images-lab setup

Steps

1. Open a terminal on the workstation VM (Applications > Utilities > Terminal) and pull the
official nginx container image.

1.1. Search the nginx container image:

[student@workstation ~]$ docker-registry-cli \
infrastructure.lab.example.com:5000 search nginx

The following output is displayed:

available options:-

1) Name: nginx
Tags: latest

1 images found !

1.2. Pull the nginx container image:

[student@workstation ~]$ docker pull nginx

Note
The image is pulled from the classroom registry, but the container image is
the same one that is in the docker.io registry. This is to save time in the
download process.

1.3. Check that the container image is available in the cache:

Solution

DO180-OCP3.5-en-1-20170524 115

[student@workstation ~]$ docker images

This command produces output similar to the following:

REPOSITORY TAG...
...
infrastructure.lab.example.com:5000/nginx latest...
...

2. To start a new container, forward the server port 80 to port 8080 from the host using the -
p option. You can use syntax similar to the following:

DO NOT RUN THIS COMMAND
$ docker run --name some-nginx -d -p 8080:80 some-content-nginx

3. Create a new container with the following characteristics:

• Name: official-nginx

• Run as daemon: yes

• Container image: nginx

• Port forward: yes, from host port 8380 to container port 80

[student@workstation ~]$ docker run --name official-nginx -d -p 8380:80 nginx

4. Replace the current index.html content with the following content: "DO180 Page". Use the
container documentation to find the folder that contains the HTML pages.

4.1. Access the container bash shell.

[student@workstation ~]$ docker exec -it official-nginx /bin/bash

4.2. Replace the index.html file with the "DO180 Page"' string.

root@cf6ccf453cde:/# echo 'DO180 Page' > /usr/share/nginx/html/index.html

4.3. Exit the container.

root@cf6ccf453cde:/# exit

4.4. Test if the index.html content was updated.

[student@workstation ~]$ curl 127.0.0.1:8380

5. Stop the official-nginx container and commit the changes to create a new container
image. Set the name of this container image to do180/mynginx and tag it as v1.0.

Chapter 4. Managing Container Images

116 DO180-OCP3.5-en-1-20170524

5.1. Stop the official-nginx container.

[student@workstation ~]$ docker stop official-nginx

5.2. Commit the changes to a new container image.

[student@workstation ~]$ docker commit -a 'Your Name' \
-m 'Changed index.html page' official-nginx
sha256:28bb1696c4cf61b5258e56a79ce71fc5a2ed055b4875f0848eb403e7c16a8058

Note the container ID that is returned. This ID will be necessary to the tag the container
image.

5.3. List the available container images to get the ID from the new container.

[student@workstation ~]$ docker images

You should see the following output:

REPOSITORY TAG IMAGE ID ...
<none> <none> 28bb1696c4cf ...
infrastructure.lab.example.com:5000/nginx latest 5e69fe4b3c31 ...

5.4. Set the name and tag the new container image.

[student@workstation ~]$ docker tag 28bb1696c4cf do180/mynginx:v1.0

The 28bb1696c4cf container image ID is the truncated version of the ID returned by Step
5.2.

6. Create a new container with the following characteristics:

• Name: my-nginx

• Run as daemon: yes

• Container image: do180/mynginx:v1.0

• Port forward: yes, from host port 8280 to container port 80

[student@workstation ~]$ docker run -d --name my-nginx -p 8280:80 \
 do180/mynginx:v1.0

7. Test if the index.html page is available with the custom content.

[student@workstation ~]$ curl 127.0.0.1:8280

8. Verify that the lab was correctly set up. Run the following command from a terminal:

Solution

DO180-OCP3.5-en-1-20170524 117

[student@workstation ~]$ lab container-images-lab grade

9. Delete the containers and resources created by this lab:

9.1. Stop the my-nginx container:

[student@workstation ~]$ docker stop my-nginx

9.2. Remove the containers from the cache:

[student@workstation ~]$ docker rm my-nginx official-nginx

9.3. Remove the container images:

[student@workstation ~]$ docker rmi nginx do180/mynginx:v1.0

9.4. Verify that the lab was correctly cleaned up. Run the following from a terminal:

[student@workstation ~]$ lab container-images-lab gradeclean

This concludes the laboratory.

Chapter 4. Managing Container Images

118 DO180-OCP3.5-en-1-20170524

Summary

In this chapter, you learned:

• Registries must be used to pull and push container images for internal use (known as a private
registry) or for outside consumption (known as a public registry).

◦ The Red Hat registry provides tested and certified images at
registry.access.redhat.com.

◦ A docker daemon supports extra registries by editing the /etc/sysconfig/docker file;
customize the ADD_REGISTRY line accordingly.

◦ For registries without a certificate, docker will fail. In order to support such registries, the
INSECURE_REGISTRY variable in the /etc/sysconfig/docker file must be customized.

◦ Registries implement a RESTful API to pull, push, and manipulate contents and this API is
used by the docker daemon or by a tool capable of generating an HTTP request (such as
curl or a web browser).

◦ To search for an image in a public registry, use the docker search command.

◦ To search for an image in a private registry, use the docker-registry-cli command.

◦ To pull an image from a registry, use the docker pull command.

◦ Registries use tags as a mechanism to support multiple image releases.

• The docker daemon supports export and import procedures for image files using the docker
export, docker import, docker save, and docker load commands.

◦ For most scenarios, using docker save and docker load is the preferred approach.

• The docker daemon cache can be used as a staged area to customize and push images to a
registry.

• Docker images in the local cache can be tagged using the docker tag command.

• Docker also supports container image publication to a registry using the docker push
command.

• Container images from a daemon cache can be removed using the docker rmi command.

DO180-OCP3.5-en-1-20170524 119

TRAINING

CHAPTER 5

CREATING CUSTOM CONTAINER
IMAGES

Overview

Goal Design and code a Dockerfile to build a custom container
image.

Objectives • Describe the approaches for creating custom container
images.

• Create a container image using common Dockerfile
commands.

Sections • Design Considerations for Custom Container Images (and
Quiz)

• Building Custom Container Images with Dockerfile (and
Guided Exercise)

Lab • Creating Custom Container Images

Chapter 5. Creating Custom Container Images

120 DO180-OCP3.5-en-1-20170524

Design Considerations for Custom Container
Images

Objectives
After completing this section, students should be able to:

• Describe the approaches for creating custom container images.

• Find existing Dockerfiles to use as a starting point for creating a custom container image.

• Define the role played by the Red Hat Software Collections Library (RHSCL) in designing
container images from the Red Hat registry.

• Describe the Source-to-Image (S2I) alternative to Dockerfiles.

Reusing Existing Dockerfiles
Two common ways of building a new container image are as follows:

1. Run operating system commands inside a container and then commit the image.

2. Run a Dockerfile that uses operating system commands and uses an operating system
image as the parent.

Both methods involve extra effort when the same runtimes and libraries are required by different
application images. There is not much to be done to improve the first option, but the second
option can be improved by selecting a better parent image.

Many popular application platforms are already available in public image registries like Docker
Hub. It is not trivial to customize an application configuration to follow recommended practices
for containers, and so starting from a proven parent image usually saves a lot of work.

Using a high quality parent image enhances maintainability, especially if the parent image is kept
updated by its author to account for bug fixes and security issues.

Typical scenarios to create a Dockerfile as a child of an existing container image include:

• Add new runtime libraries, such as database connectors.

• Include organization-wide customizations such as SSL certificates and authentication
providers.

• Add internal libraries, to be shared as a single image layer by multiple container images for
different applications.

Changing an existing Dockerfile to create a new image can also be a sensible approach in other
scenarios. For example:

• Trim the container image by removing unused material (such as libraries).

• Lock either the parent image or some included software package to a specific release to lower
the risk related to future software updates.

Working with the Red Hat Software Collections Library

DO180-OCP3.5-en-1-20170524 121

Two sources of container images to use either as parent images or for changing their Dockerfiles
are the Docker Hub and the Red Hat Software Collections Library (RHSCL).

Working with the Red Hat Software Collections Library
The Red Hat Software Collections Library (RHSCL), or simply Software Collections, is Red Hat's
solution for developers who need to use the latest development tools, and which usually do not
fit the standard RHEL release schedule.

Red Hat Enterprise Linux (RHEL) provides a stable environment for enterprise applications. This
requires RHEL to keep the major releases of upstream packages at the same level to prevent
API and configuration file format changes. Security and performance fixes are back-ported from
later upstream releases, but new features that would break backward-compatibility are not back-
ported.

The RHSCL allows software developers to use the latest version without impacting RHEL,
because the RHSCL packages do not replace or conflict with default RHEL packages. Default
RHEL packages and RHSCL packages are installed side-by-side.

Note
All RHEL subscribers have access to the RHSCL. To enable a particular software
collection for a specific user or application environment (for example, MySQL 5.6,
which is named rh-mysql56), enable the RHSCL software Yum repositories and follow
a few simple steps.

Finding Dockerfiles from the Red Hat Software
Collections Library
The RHSCL is the source of most container images provided by the Red Hat image registry for
use by RHEL Atomic Host and OpenShift Container Platform customers.

Red Hat provides the RHSCL Dockerfiles and related sources in the rhscl-dockerfiles package
available from the RHSCL repository. Community users can get the Dockerfiles for CentOS-based
equivalent container images from https://github.com/sclorg/rhscl-dockerfiles.

Many RHSCL container images include support for Source-to-Image (S2I) which is best known as
an OpenShift Container Platform feature. Having support for S2I does not affect the usage of
these container images with docker.

Finding Dockerfiles on Docker Hub
The Docker Hub web site is a popular search site for container images. Anyone can create a
Docker Hub account and publish container images there. There are no general assurances about
quality and security; images on Docker Hub range from professionally supported to one-time
experiments. Each image has to be evaluated individually.

After searching for an image, the documentation page might provide a link to its Dockerfile. For
example, the first result when searching for mysql is the documentation page for the MySQL
official image at https://hub.docker.com/_/mysql/.

Chapter 5. Creating Custom Container Images

122 DO180-OCP3.5-en-1-20170524

On that page, the link for the 5.5/Dockerfile image points to the docker-library GitHub
project, which hosts Dockerfiles for images built by the Docker community automatic build
system.

The direct URL for the Docker Hub MySQL 5.5 Dockerfile tree is https://github.com/
docker-library/mysql/blob/master/5.5/.

Using the OpenShift Source-to-Image Tool
Source-to-Image (S2I) provides an alternative to using Dockerfiles to create new container images
and can be used either as a feature from OpenShift or as the standalone s2i utility. S2I allows
developers to work using their usual tools, instead of learning Dockerfile syntax and using
operating system commands such as yum, and usually creates slimmer images, with fewer layers.

S2I uses the following process to build a custom container image for an application:

1. Start a container from a base container image called the builder image, which includes a
programming language runtime and essential development tools such as compilers and
package managers.

2. Fetch the application source code, usually from a Git server, and send it to the container.

3. Build the application binary files inside the container.

4. Save the container, after some clean up, as a new container image, which includes the
programming language runtime and the application binaries.

The builder image is a regular container image that follows a standard directory structure and
provides scripts that are called during the S2I process. Most of these builder images can also be
used as base images for Dockerfiles, outside the S2I process.

The s2i command is used to run the S2I process outside of OpenShift, in a Docker-only
environment. It can be installed on a RHEL system from the source-to-image RPM package, and
on other platforms, including Windows and MacOS, from the installers available in the S2I project
on GitHub.

Using the OpenShift Source-to-Image Tool

DO180-OCP3.5-en-1-20170524 123

References
Red Hat Software Collections Library (RHSCL)
https://access.redhat.com/documentation/en/red-hat-software-collections/

RHSCL Dockerfiles on GitHub
https://github.com/sclorg/rhscl-dockerfiles

Using Red Hat Software Collections Container Images
https://access.redhat.com/articles/1752723

Docker Hub
https://hub.docker.com/

Docker Library GitHub project
https://github.com/docker-library

The S2I GitHub project
https://github.com/openshift/source-to-image

https://access.redhat.com/documentation/en/red-hat-software-collections/
https://github.com/sclorg/rhscl-dockerfiles
https://access.redhat.com/articles/1752723
https://hub.docker.com/
https://github.com/docker-library
https://github.com/openshift/source-to-image

Chapter 5. Creating Custom Container Images

124 DO180-OCP3.5-en-1-20170524

Quiz: Approaches to Container Image Design

Choose the correct answers to the following questions:

1. Which method for creating container images is recommended by the Docker community?
(Choose one.)

a. Run commands inside basic OS containers, commit the container, and save or export
it as a new container image.

b. Run commands from a Dockerfile and push the generated container image to an
image registry.

c. Create the container image layers manually from tar files.
d. Run the docker build command to process a container image description in YAML

format.

2. What are two advantages of using the standalone S2I process as an alternative to
Dockerfiles? (Choose two.)

a. Requires no additional tools apart from a basic Docker setup.
b. Creates smaller container images, having fewer layers.
c. Reuses high-quality builder images.
d. Automatically updates the child image as the parent image changes (for example,

with security fixes).
e. Creates images compatible with OpenShift, unlike container images created from

Docker tools.

3. What are the three common valid security concerns a container image must address?
(Choose three.)

a. Whether the image is updated regularly for security issues.
b. Whether the image requires elevated privileges to run, such as running as the root

user.
c. Whether the image is designed to be secure by default, for example without accepting

default user credentials for remote access.
d. Whether the image is an S2I-compatible builder image.
e. Whether the Dockerfile for the image is available for customization.

Solution

DO180-OCP3.5-en-1-20170524 125

Solution

Choose the correct answers to the following questions:

1. Which method for creating container images is recommended by the Docker community?
(Choose one.)

a. Run commands inside basic OS containers, commit the container, and save or export
it as a new container image.

b. Run commands from a Dockerfile and push the generated container image to an
image registry.

c. Create the container image layers manually from tar files.
d. Run the docker build command to process a container image description in YAML

format.

2. What are two advantages of using the standalone S2I process as an alternative to
Dockerfiles? (Choose two.)

a. Requires no additional tools apart from a basic Docker setup.
b. Creates smaller container images, having fewer layers.
c. Reuses high-quality builder images.
d. Automatically updates the child image as the parent image changes (for example,

with security fixes).
e. Creates images compatible with OpenShift, unlike container images created from

Docker tools.

3. What are the three common valid security concerns a container image must address?
(Choose three.)

a. Whether the image is updated regularly for security issues.
b. Whether the image requires elevated privileges to run, such as running as the root

user.
c. Whether the image is designed to be secure by default, for example without

accepting default user credentials for remote access.
d. Whether the image is an S2I-compatible builder image.
e. Whether the Dockerfile for the image is available for customization.

Chapter 5. Creating Custom Container Images

126 DO180-OCP3.5-en-1-20170524

Building Custom Container Images with
Dockerfile

Objectives
After completing this section, students should be able to create a container image using common
Dockerfile commands.

Base Containers
A Dockerfile is the mechanism that the Docker packaging model provides to automate the
building of container images. Building an image from a Dockerfile is a three-step process:

1. Create a working directory.

2. Write the Dockerfile specification.

3. Build the image with the docker command.

Create a Working Directory

The docker command can use the files in a working directory to build an image. An empty
working directory should be created to keep from incorporating unnecessary files into the image.
For security reasons, the root directory, /, should never be used as a working directory for image
builds.

Write the Dockerfile Specification

A Dockerfile is a text file that should exist in the working directory. The basic syntax of a
Dockerfile is shown below:

Comment
INSTRUCTION arguments

Lines that begin with a pound sign (#) are comments. Inline comments are not supported.
INSTRUCTION is a Dockerfile keyword. Keywords are not case-sensitive, but a common
convention is to make instructions all uppercase to improve visibility.

Instructions in a Dockerfile are executed in the order they appear. The first non-comment
instruction must be a FROM instruction to specify the base image to build upon. Each Dockerfile
instruction is run independently (so RUN cd /var/tmp will not have an effect on the commands
that follow).

The following is an example Dockerfile for building a simple Apache web server container:

This is a comment line

FROM rhel7.3

LABEL description="This is a custom httpd container image"

MAINTAINER John Doe <jdoe@xyz.com>

RUN yum install -y httpd

EXPOSE 80

ENV LogLevel "info"

Using CMD and ENTRYPOINT Instructions in the Dockerfile

DO180-OCP3.5-en-1-20170524 127

ADD http://someserver.com/filename.pdf /var/www/html

COPY ./src/ /var/www/html/

USER apache

ENTRYPOINT ["/usr/sbin/httpd"]

CMD ["-D", "FOREGROUND"]

Lines that begin with a pound sign (#) are comments.

The new container image will be constructed on the rhel7.3 container image. You can
use any other container image as a base image, not only images from operating system
distributions. Red Hat provides a set of container images that are certified and tested.
Red Hat highly recommends that you use these container images as a base.
LABEL is responsible for adding generic metadata to an image. A LABEL is a simple key/
value pair.
MAINTAINER is responsible for setting the Author field of the generated container image.
You can use the docker inspect command to view image metadata.
RUN executes commands in a new layer on top of the current image, then commits the
results. The committed result is used in the next step in the Dockerfile. The shell that is
used to execute commands is /bin/sh.
EXPOSE indicates that the container listens on the specified network ports at runtime. The
Docker containerized environment uses this information to interconnect containers using
the linked containers feature. The EXPOSE instruction is only metadata; it does not make
ports accessible from the host. The -p option in the docker run command exposes a port
from the host and the port does not need to be listed in an EXPOSE instruction.
ENV is responsible for defining environment variables that will be available to the container.
You can declare multiple ENV instructions within the Dockerfile. You can use the env
command inside the container to view each of the environment variables.
ADD copies new files, directories, or remote URLs and adds them to the container file
system.
COPY also copies new files and directories and adds them to the container file system.
However, it is not possible to use a URL.
USER specifies the username or the UID to use when running the container image for the
RUN, CMD, and ENTRYPOINT instructions in the Dockerfile. It is a good practice to define
a different user other than root for security reasons.
ENTRYPOINT specifies the default command to execute when the container is created. By
default, the command that is executed is /bin/sh -c unless an ENTRYPOINT is specified.
CMD provides the default arguments for the ENTRYPOINT instruction.

Using CMD and ENTRYPOINT Instructions in the
Dockerfile
The ENTRYPOINT and CMD instructions have two formats:

• Using a JSON array:

ENTRYPOINT ["command", "param1", "param2"]

CMD ["param1","param2"]

This is the preferred form.

Chapter 5. Creating Custom Container Images

128 DO180-OCP3.5-en-1-20170524

• Using a shell form:

ENTRYPOINT command param1 param2

CMD param1 param2

The Dockerfile should contain at most one ENTRYPOINT and one CMD instruction. If more
than one of each is written, then only the last instruction takes effect. Because the default
ENTRYPOINT is /bin/sh -c, a CMD can be passed in without specifying an ENTRYPOINT.

The CMD instruction can be overridden when starting a container. For example, the following
instruction causes any container that is run to ping the local host:

ENTRYPOINT ["/bin/ping", "localhost"]

The following example provides the same functionality, with the added benefit of being
overwritable when a container is started:

ENTRYPOINT ["/bin/ping"]
CMD ["localhost"]

When a container is started without providing a parameter, localhost is pinged:

[student@workstation ~]$ docker run -it do180/rhel

If a parameter is provided after the image name in the docker run command, however, it
overwrites the CMD instruction. For example, the following command will ping redhat.com
instead of localhost:

[student@workstation demo-basic]$ docker run -it do180/rhel redhat.com

As previously mentioned, because the default ENTRYPOINT is /bin/sh -c, the following
instruction also pings localhost, without the added benefit of being able to override the
parameter at run time.

CMD ["ping", "localhost"]

Using ADD and COPY Instructions in the Dockerfile
The ADD and COPY instructions have two forms:

• Using a shell form:

ADD <source>... <destination>

COPY <source>... <destination>

• Using a JSON array:

Image Layering

DO180-OCP3.5-en-1-20170524 129

ADD ["<source>",... "<destination>"]

COPY ["<source>",... "<destination>"]

The source path must be inside the same folder as the Dockerfile. The reason for this is that
the first step of a docker build command is to send all files from the Dockerfile folder to
the docker daemon, and the docker daemon cannot see folders or files that are in another
folder.

The ADD instruction also allows you to specify a resource using a URL:

ADD http://someserver.com/filename.pdf /var/www/html

If the source is a compressed file, the ADD instruction decompresses the file to the destination
folder. The COPY instruction does not have this functionality.

Warning
Both the ADD and COPY instructions copy the files, retaining the permissions, and with
root as the owner, even if the USER instruction is specified. Red Hat recommends that
you use a RUN instruction after the copy to change the owner and avoid "permission
denied" errors.

Image Layering
Each instruction in a Dockerfile creates a new layer. Having too many instructions in a
Dockerfile causes too many layers, resulting in large images. For example, consider the
following RUN instruction in a Dockerfile:

RUN yum --disablerepo=* --enablerepo="rhel-7-server-rpms"
RUN yum update
RUN yum install -y httpd

The previous example is not a good practice when creating container images, because three
layers are created for a single purpose. Red Hat recommends that you minimize the number of
layers. You can achieve the same objective using the && conjunction:

RUN yum --disablerepo=* --enablerepo="rhel-7-server-rpms" && yum update && yum install -
y httpd

The problem with this approach is that the readability of the Dockerfile is compromised, but it
can be easily fixed:

RUN yum --disablerepo=* --enablerepo="rhel-7-server-rpms" && \
yum update && \
yum install -y httpd

The example creates only one layer and the readability is not compromised. This layering
concept also applies to instructions such as ENV and LABEL. To specify multiple LABEL or ENV

Chapter 5. Creating Custom Container Images

130 DO180-OCP3.5-en-1-20170524

instructions, Red Hat recommends that you use only one instruction per line, and separate each
key-value pair with an equals sign (=):

LABEL version="2.0" \
description="This is an example container image" \
creationDate="01-09-2017"

ENV MYSQL_ROOT_PASSWORD="my_password" \
MYSQL_DATABASE "my_database"

Building Images with the docker Command
The docker build command processes the Dockerfile and builds a new image based on the
instructions it contains. The syntax for this command is as follows:

-bash-4.2# docker build -t NAME:TAG DIR

DIR is the path to the working directory. It can be the current directory as designated by a period
(.) if the working directory is the current directory of the shell. NAME:TAG is a name with a tag
that is assigned to the new image. It is specified with the -t option. If the TAG is not specified,
then the image is automatically tagged as latest.

Demonstration: Building a Simple Container
1. Open a terminal on the workstation VM (Applications > Favorites > Terminal) and run the

following command to download the lab files:

[student@workstation ~]$ demo simple-container setup

2. Briefly review the provided Dockerfile by opening it in a text editor:

[student@workstation ~]$ vim /home/student/DO180/labs/simple-container/Dockerfile

3. Observe the FROM instruction on the first line of the Dockerfile:

FROM rhel7.3

rhel7.3 is the base image from which the container is built and where subsequent
instructions in the Dockerfile are executed.

4. Observe the MAINTAINER instruction:

MAINTAINER John Doe <jdoe@abc.com>

The MAINTAINER instruction generally indicates the author of the Dockerfile. It sets the
Author field of the generated images. You can run the docker inspect command on the
generated image to view the Author field.

5. Observe the LABEL instruction, which sets multiple key-value pair labels as metadata for
the image:

Demonstration: Building a Simple Container

DO180-OCP3.5-en-1-20170524 131

LABEL version="1.0" \
 description="This is a simple container image" \
 creationDate="31 March 2017"

You can run the docker inspect command to view the labels in the generated image.

6. Observe the ENV instruction, which injects environment variables into the container at
runtime. These environment variables can be overridden in the docker run command:

ENV VAR1="hello" \
 VAR2="world"

7. In the ADD instruction, add the training.repo file, which points to the classroom yum
repository:

ADD training.repo /etc/yum.repos.d/training.repo

Note
The training.repo file configures yum to use the local repository instead of
attempting to use subscription manager.

8. Observe the RUN instruction where the yum update command is executed, and the bind-
utils package is installed in the container image:

RUN yum update -y && \
yum install -y bind-utils && \
yum clean all

The yum update command updates the RHEL 7.3 operating system, while the second
command installs the DNS utility package bind-utils. Notice that both commands are
executed with a single RUN instruction. Each RUN instruction in a Dockerfile creates
a new image layer to execute the subsequent commands. Minimizing the number of RUN
commands therefore makes for less overhead when actually running the container.

9. Save the Dockerfile and run the following commands in the terminal to begin building
the new image:

[student@workstation ~]$ cd /home/student/DO180/labs/simple-container
[student@workstation simple-container]$ docker build -t do180/rhel .
Sending build context to Docker daemon 3.584 kB
Step 1 : FROM rhel7.3
 ---> 41a4953dbf95
Step 2 : MAINTAINER John Doe <jdoe@abc.com>
 ---> Running in dc51ab993f8d
 ---> 8323ca92801d
Removing intermediate container dc51ab993f8d
Step 3 : LABEL version "1.0" description "This is a simple container image"
 creationDate "31 March 2017"
 ---> Running in ca52442dd68e
 ---> 61a7cf7539b2

Chapter 5. Creating Custom Container Images

132 DO180-OCP3.5-en-1-20170524

Removing intermediate container ca52442dd68e
Step 4 : ENV VAR1 "hello" VAR2 "world"
 ---> Running in 947711d586f5
 ---> 7608612e25ca
Removing intermediate container 947711d586f5
Step 5 : ADD training.repo /etc/yum.repos.d/training.repo
 ---> 07c4cc769601
Removing intermediate container ee7f9de68ca5
Step 5 : RUN yum update -y && yum install -y bind-utils && yum clean all
 ---> Running in 84d40f3c9a6c
...
Installed:
 bind-utils.x86_64 32:9.9.4-38.el7_3.2

Dependency Installed:
 GeoIP.x86_64 0:1.5.0-11.el7 bind-libs.x86_64 32:9.9.4-38.el7_3.2
 bind-license.noarch 32:9.9.4-38.el7_3.2

Complete!
Loaded plugins: ovl, product-id, search-disabled-repos, subscription-manager
This system is not registered to Red Hat Subscription Management. You can use
 subscription-manager to register.
Cleaning repos: rhel-7-server-extras-rpms rhel-7-server-optional-rpms
 : rhel-7-server-ose-3.4-rpms rhel-server-rhscl-7-rpms rhel_dvd
Cleaning up everything
 ---> f5d4f131191c
Removing intermediate container 84d40f3c9a6c
Successfully built f5d4f131191c

10. After the build completes, run the docker images command. It should produce output
similar to the following:

[student@workstation simple-container]$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
do180/rhel latest f5d4f131191c About a minute ago 877.1 MB
...

11. Inspect the created image for the MAINTAINER and LABEL metadata:

[student@workstation simple-container]$ docker inspect do180/rhel | grep Author
 "Author": "John Doe \u003cjdoe@abc.com\u003e",
[student@workstation simple-container]$ docker inspect do180/rhel \
 | grep 'version\|description\|creationDate'
 "creationDate": "31 March 2017",
 "description": "This is a simple container image",
 "version": "1.0"
...

Note
The MAINTAINER instruction sets the Author field in the image metadata.

12. Execute the following command to run the new image and to open an interactive Bash
terminal:

[student@workstation simple-container]$ docker run --name simple-container \

Demonstration: Building a Simple Container

DO180-OCP3.5-en-1-20170524 133

 -it do180/rhel /bin/bash

13. In the RHEL 7.3 container, verify that the environment variables set in the Dockerfile are
injected into the container:

[root@8b1580851134 /]# env | grep 'VAR1\|VAR2'
VAR1=hello
VAR2=world

14. Execute a dig command to verify that the bind-utils package is installed and working
correctly:

[root@8b1580851134 /]# dig materials.example.com
; <<>> DiG 9.9.4-RedHat-9.9.4-37.el7 <<>> materials.example.com
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 20867
;; flags: qr aa rd ra ad; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;materials.example.com. IN A

;; ANSWER SECTION:
materials.example.com. 3600 IN A 172.25.254.254

;; Query time: 0 msec
;; SERVER: 172.25.250.254#53(172.25.250.254)
;; WHEN: Fri Mar 31 16:33:38 UTC 2017
;; MSG SIZE rcvd: 55

Examine the output to confirm that the answer section provides the IP address of the
classroom materials server.

15. Exit from the Bash shell in the container:

[root@8b1580851134 /]# exit

Exiting Bash terminates the running container.

16. Remove the simple-container container:

[student@workstation simple-container]$ docker rm simple-container

17. Remove the do180/rhel container image:

[student@workstation simple-container]$ docker rmi do180/rhel

18. Remove the intermediate containers images generated by the docker build command.

[student@workstation simple-container]$ docker rmi -f $(docker images -q)

This concludes the demonstration.

Chapter 5. Creating Custom Container Images

134 DO180-OCP3.5-en-1-20170524

References
OpenShift Container Platform documentation: Creating Images
https://docs.openshift.com/container-platform/3.5/creating_images

Dockerfile Reference Guide
https://docs.docker.com/engine/reference/builder/

Creating base images
https://docs.docker.com/engine/userguide/eng-image/baseimages/

Implementing a base image based on RHEL-based distros
https://github.com/docker/docker/blob/master/contrib/mkimage-yum.sh

https://docs.openshift.com/container-platform/3.5/creating_images
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/userguide/eng-image/baseimages/
https://github.com/docker/docker/blob/master/contrib/mkimage-yum.sh

Guided Exercise: Creating a Basic Apache Container Image

DO180-OCP3.5-en-1-20170524 135

Guided Exercise: Creating a Basic Apache
Container Image

In this exercise, you will create a basic Apache container image.

Resources

Files: /home/student/DO180/labs/basic-apache/
Dockerfile

Application URL: http://127.0.0.1:10080

Outcomes

You should be able to create a basic Apache container image built on a RHEL 7.3 image.

Before you begin

Run the following command to download the relevant lab files and to verify that docker is
running:

[student@workstation ~]$ lab basic-apache setup

Steps

1. Create the Apache Dockerfile

1.1. Open a terminal on workstation (Applications > Utilities > Terminal) and run the
following command to create a new Dockerfile:

[student@workstation ~]$ vim /home/student/DO180/labs/basic-apache/Dockerfile

1.2. Use RHEL 7.3 as a base image by adding the following FROM instruction at the top of the
new Dockerfile:

FROM rhel7.3

1.3. Below the FROM instruction, include the MAINTAINER instruction to set the Author field
in the new image. Replace the values to include your name and email address:

MAINTAINER Your Name <youremail>

1.4. Below the MAINTAINER instruction, add the following LABEL instruction to add
description metadata to the new image:

LABEL description="A basic Apache container on RHEL 7"

1.5. Add a RUN instruction with a yum install command to install Apache on the new
container:

ADD training.repo /etc/yum.repos.d/training.repo
RUN yum -y update && \

Chapter 5. Creating Custom Container Images

136 DO180-OCP3.5-en-1-20170524

 yum install -y httpd && \
 yum clean all

Note
The ADD instruction configures yum to use the local repository instead of
relying on the default Red Hat yum repositories.

1.6. Use the EXPOSE instruction below the RUN instruction to document the port that the
container listens to at runtime. In this instance, set the port to 80, because it is the
default for an Apache server:

EXPOSE 80

Note
The EXPOSE instruction does not actually make the specified port available to
the host; rather, the instruction serves more as metadata about which ports
the container is listening to.

1.7. At the end of the file, use the following CMD instruction to set httpd as the default
executable when the container is run:

CMD ["httpd", "-D", "FOREGROUND"]

1.8. Verify that your Dockerfile matches the following before saving and proceeding with the
next steps:

FROM rhel7.3

MAINTAINER Your Name <youremail>

LABEL description="A basic Apache container on RHEL 7"

ADD training.repo /etc/yum.repos.d/training.repo
RUN yum -y update && \
 yum install -y httpd && \
 yum clean all

EXPOSE 80

CMD ["httpd", "-D", "FOREGROUND"]

2. Build and Verify the Apache Image

2.1. Use the following commands to create a basic Apache container image using the newly
created Dockerfile:

DO180-OCP3.5-en-1-20170524 137

[student@workstation ~]$ cd /home/student/DO180/labs/basic-apache
[student@workstation basic-apache]$ docker build -t do180/apache .
Sending build context to Docker daemon 3.584 kB
Step 1 : FROM rhel7.3
 ---> 41a4953dbf95
Step 2 : MAINTAINER Your Name <youremail>
 ---> Running in c5ea56af133d
 ---> 3888ce170fbd
Removing intermediate container c5ea56af133d
Step 3 : LABEL description "A basic Apache container on RHEL 7"
 ---> Running in acbbc1a76bab
 ---> 5e3af99cb70e
Removing intermediate container acbbc1a76bab
Step 4 : ADD training.repo /etc/yum.repos.d/training.repo
 ---> 860244ece018
Removing intermediate container f13f16e0b5e5
Step 5 : RUN yum -y update && yum install -y httpd && yum clean all
 ---> Running in 9b374ef232f3
...
Installed:
 httpd.x86_64 0:2.4.6-45.el7
...
Complete!
...
Cleaning up everything
 ---> aeaa00f3e683
Removing intermediate container 9b374ef232f3
Step 6 : EXPOSE 80
 ---> Running in 08f4ade2c978
 ---> d52e0a0f8cfe
Removing intermediate container 08f4ade2c978
Step 7 : CMD httpd -D FOREGROUND
 ---> Running in d315804d9795
 ---> 6249f4144f67
Removing intermediate container d315804d9795
Successfully built 6249f4144f67

2.2. After the build process has finished, run docker images to see the new image in the
image repository:

[student@workstation basic-apache]$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
do180/apache latest 6249f4144f67 4 minutes ago 885.8 MB
...

3. Run the Apache Container

3.1. Use the following command to run a container using the Apache image:

[student@workstation basic-apache]$ docker run --name lab-apache \
-d -p 10080:80 do180/apache
693da7820edb...

3.2. Run the docker ps command to see the running container:

[student@workstation basic-apache]$ docker ps

Chapter 5. Creating Custom Container Images

138 DO180-OCP3.5-en-1-20170524

CONTAINER ID IMAGE COMMAND ... PORTS
 NAMES
693da7820edb do180/apache "httpd -D FOREGROUND" 0.0.0.0:10080-
>80/tcp lab-apache

3.3. Use a curl command to verify that the server is running:

[student@workstation basic-apache]$ curl 127.0.0.1:10080

If the server is running, you should see HTML output for an Apache server test home
page.

4. Run the following command to verify that the image was correctly built:

[student@workstation basic-apache]$ lab basic-apache grade

5. Stop and then remove the lab-apache container:

[student@workstation basic-apache]$ docker stop lab-apache
[student@workstation basic-apache]$ docker rm lab-apache

6. Remove the do180/apache container image:

[student@workstation basic-apache]$ docker rmi -f do180/apache

7. Remove the intermediate container images generated by the docker build command.

[student@workstation simple-container]$ docker rmi -f $(docker images -q)

This concludes the guided exercise.

Lab: Creating Custom Container Images

DO180-OCP3.5-en-1-20170524 139

Lab: Creating Custom Container Images

In this lab, you will create a Dockerfile to run an Apache Web Server container that hosts a static
HTML file. The Apache image will be based on a base RHEL 7.3 image that serves a custom
index.html page.

Resources

Files: /home/student/DO180/labs/custom-images/

Application URL: http://127.0.0.1:20080

Outcomes

You should be able to create a custom Apache Web Server container that hosts static HTML files.

Before you begin

Run the following command to download the relevant lab files and to verify that there are no
running or stopped containers that will interfere with completing the lab:

[student@workstation ~]$ lab custom-images setup

Steps

1. Review the provided Dockerfile stub in the /home/student/DO180/labs/custom-
images/ folder. Edit the Dockerfile and ensure that it meets the following specifications:

• Base image: rhel7.3

• Environment variable: PORT set to 8080

• Update the RHEL packages and install Apache (httpd package) using the classroom Yum
repository. Also ensure you run the yum clean all command as a best practice.

• Change the Apache configuration file /etc/httpd/conf/httpd.conf to listen to port
8080 instead of the default port 80.

• Change ownership of the /etc/httpd/logs and /run/httpd folders to user and group
apache (UID and GID are 48).

• So that container users know how to access the Apache Web Server, expose the value set
in the PORT environment variable.

• Copy the contents of the src/ folder in the lab directory to the Apache DocumentRoot
(/var/www/html/) inside the container.

The src folder contains a single index.html file that prints a Hello World! message.

• Start Apache httpd in the foreground using the following command:

httpd -D FOREGROUND

1.1. Open a terminal (Applications > Utilities > Terminal) and edit the Dockerfile located in
the /home/student/DO180/labs/custom-images/ folder.

Chapter 5. Creating Custom Container Images

140 DO180-OCP3.5-en-1-20170524

1.2. Set the base image for the Dockerfile to rhel7.3.

1.3. Set your name and email with a MAINTAINER instruction.

1.4. Create an environment variable called PORT and set it to 8080.

1.5. Add the classroom Yum repositories configuration file. Update the RHEL packages and
install Apache with a single RUN instruction.

1.6. Change the Apache HTTP Server configuration file to listen to port 8080 and change
ownership of the server working folders with a single RUN instruction.

1.7. Use the USER instruction to run the container as the apache user. Use the EXPOSE
instruction to document the port that the container listens to at runtime. In this
instance, set the port to the PORT environment variable, which is the default for an
Apache server.

1.8. Copy all the files from the src folder to the Apache DocumentRoot path at /var/
www/html.

1.9. Finally, insert a CMD instruction to run httpd in the foreground. Save the Dockerfile.

2. Build the custom Apache image with the name do180/custom-apache.

2.1. Verify the Dockerfile for the custom Apache image.

2.2. Run a docker build command to build the custom Apache image and name it
do180/custom-apache.

2.3. Run the docker images command to verify that the custom image was built.

3. Create a new container with the following characteristics:

• Name: lab-custom-images;

• Container image: do180/custom-apache

• Port forward: from host port 20080 to container port 8080

3.1. Create and run the container.

3.2. Verify that the container is ready and running.

4. Verify that the server is running and that it is serving the HTML file.

4.1. Run a curl command on 127.0.0.1:20080:

5. Verify that the lab was correctly executed. Run the following from a terminal:

[student@workstation custom-images]$ lab custom-images grade

6. Stop and then remove the container started in this lab.

7. Remove the container images created in this lab.

DO180-OCP3.5-en-1-20170524 141

8. Remove the intermediate containers images generated by the docker build command.

[student@workstation simple-container]$ docker rmi -f $(docker images -q)

This concludes the lab.

Chapter 5. Creating Custom Container Images

142 DO180-OCP3.5-en-1-20170524

Solution
In this lab, you will create a Dockerfile to run an Apache Web Server container that hosts a static
HTML file. The Apache image will be based on a base RHEL 7.3 image that serves a custom
index.html page.

Resources

Files: /home/student/DO180/labs/custom-images/

Application URL: http://127.0.0.1:20080

Outcomes

You should be able to create a custom Apache Web Server container that hosts static HTML files.

Before you begin

Run the following command to download the relevant lab files and to verify that there are no
running or stopped containers that will interfere with completing the lab:

[student@workstation ~]$ lab custom-images setup

Steps

1. Review the provided Dockerfile stub in the /home/student/DO180/labs/custom-
images/ folder. Edit the Dockerfile and ensure that it meets the following specifications:

• Base image: rhel7.3

• Environment variable: PORT set to 8080

• Update the RHEL packages and install Apache (httpd package) using the classroom Yum
repository. Also ensure you run the yum clean all command as a best practice.

• Change the Apache configuration file /etc/httpd/conf/httpd.conf to listen to port
8080 instead of the default port 80.

• Change ownership of the /etc/httpd/logs and /run/httpd folders to user and group
apache (UID and GID are 48).

• So that container users know how to access the Apache Web Server, expose the value set
in the PORT environment variable.

• Copy the contents of the src/ folder in the lab directory to the Apache DocumentRoot
(/var/www/html/) inside the container.

The src folder contains a single index.html file that prints a Hello World! message.

• Start Apache httpd in the foreground using the following command:

httpd -D FOREGROUND

1.1. Open a terminal (Applications > Utilities > Terminal) and edit the Dockerfile located in
the /home/student/DO180/labs/custom-images/ folder.

[student@workstation ~]$ cd /home/student/DO180/labs/custom-images/

Solution

DO180-OCP3.5-en-1-20170524 143

[student@workstation custom-images]$ vim Dockerfile

1.2. Set the base image for the Dockerfile to rhel7.3.

FROM rhel7.3

1.3. Set your name and email with a MAINTAINER instruction.

MAINTAINER Your Name <youremail>

1.4. Create an environment variable called PORT and set it to 8080.

ENV PORT 8080

1.5. Add the classroom Yum repositories configuration file. Update the RHEL packages and
install Apache with a single RUN instruction.

ADD training.repo /etc/yum.repos.d/training.repo
RUN yum update -y && \
yum install -y httpd && \
yum clean all

1.6. Change the Apache HTTP Server configuration file to listen to port 8080 and change
ownership of the server working folders with a single RUN instruction.

RUN sed -ri -e '/^Listen 80/c\Listen ${PORT}' /etc/httpd/conf/httpd.conf \
&& chown -R apache:apache /etc/httpd/logs/ \
&& chown -R apache:apache /run/httpd/

1.7. Use the USER instruction to run the container as the apache user. Use the EXPOSE
instruction to document the port that the container listens to at runtime. In this
instance, set the port to the PORT environment variable, which is the default for an
Apache server.

USER apache
EXPOSE ${PORT}

1.8. Copy all the files from the src folder to the Apache DocumentRoot path at /var/
www/html.

COPY ./src/ /var/www/html/

1.9. Finally, insert a CMD instruction to run httpd in the foreground. Save the Dockerfile.

CMD ["httpd", "-D", "FOREGROUND"]

2. Build the custom Apache image with the name do180/custom-apache.

2.1. Verify the Dockerfile for the custom Apache image.

Chapter 5. Creating Custom Container Images

144 DO180-OCP3.5-en-1-20170524

The Dockerfile for the custom Apache image should look like the following:

FROM rhel7.3

MAINTAINER Your Name <youremail>

ENV PORT 8080

ADD training.repo /etc/yum.repos.d/training.repo
RUN yum update -y && \
yum install -y httpd && \
yum clean all

RUN sed -ri -e '/^Listen 80/c\Listen ${PORT}' /etc/httpd/conf/httpd.conf \
&& chown -R apache:apache /etc/httpd/logs/ \
&& chown -R apache:apache /run/httpd/

USER apache
EXPOSE ${PORT}

COPY ./src/ /var/www/html/

CMD ["httpd", "-D", "FOREGROUND"]

2.2. Run a docker build command to build the custom Apache image and name it
do180/custom-apache.

[student@workstation custom-images]$ docker build -t do180/custom-apache .
Sending build context to Docker daemon 5.12 kB
Step 1 : FROM rhel7.3
 ---> 41a4953dbf95
Step 2 : MAINTAINER Your Name <youremail>
 ---> Using cache
 ---> 5d82aa1c07fb
Step 3 : ENV PORT 8080
 ---> Using cache
 ---> 79f6695c630e
Step 4 : RUN yum update -y && yum install -y httpd yum && lean all
 ---> Running in 106fbaa38eac

 Installed:
 httpd.x86_64 0:2.4.6-45.el7
...
Complete!
 ---> c4477302415d
Removing intermediate container 106fbaa38eac
Step 5 : RUN sed -ri -e '/^Listen 80/c\Listen ${PORT}' /etc/httpd/
conf/httpd.conf && chown -R apache:apache /etc/httpd/logs/ && chown -R
 apache:apache /run/httpd/
 ---> Running in 180dd2a70e28
 ---> 6bbced8a9d23
Removing intermediate container 180dd2a70e28
Step 6 : USER apache
 ---> Running in ff13e13e0842
 ---> 8a790c853a32
Removing intermediate container ff13e13e0842
Step 7 : EXPOSE ${PORT}
 ---> Running in 10fcab2529f9
 ---> 6592c276138e
Removing intermediate container 10fcab2529f9

Solution

DO180-OCP3.5-en-1-20170524 145

Step 8 : COPY ./src/ /var/www/html/
 ---> fa4824ed19cf
Removing intermediate container 92433738ae71
Step 9 : CMD httpd -D FOREGROUND
 ---> Running in 10ff53b33796
 ---> e772db759680
Removing intermediate container 10ff53b33796
Successfully built e772db759680

2.3. Run the docker images command to verify that the custom image was built.

[student@workstation custom-images]$ docker images
REPOSITORY TAG IMAGE ID ...
do180/custom-apache latest e772db759680 ...
infrastructure.lab.example.com:5000/rhel7.3 latest 41a4953dbf95 ...

3. Create a new container with the following characteristics:

• Name: lab-custom-images;

• Container image: do180/custom-apache

• Port forward: from host port 20080 to container port 8080

3.1. Create and run the container.

[student@workstation custom-images]$ docker run --name lab-custom-images -d \
-p 20080:8080 do180/custom-apache
367823e35c4a...

3.2. Verify that the container is ready and running.

[student@workstation custom-images]$ docker ps
CONTAINER ID IMAGE COMMAND ... PORTS
 NAMES
367823e35c4a do180/custom-apache "httpd -D FOREGROUND" ... 0.0.0.0:20080-
>8080/tcp lab-custom-images

4. Verify that the server is running and that it is serving the HTML file.

4.1. Run a curl command on 127.0.0.1:20080:

[student@workstation custom-images]$ curl 127.0.0.1:20080

The output should be as follows:

<html>
<header><title>DO180 Hello!</title></header>
<body>
Hello World! The custom-images lab works!
</body>
</html>

5. Verify that the lab was correctly executed. Run the following from a terminal:

Chapter 5. Creating Custom Container Images

146 DO180-OCP3.5-en-1-20170524

[student@workstation custom-images]$ lab custom-images grade

6. Stop and then remove the container started in this lab.

[student@workstation custom-images]$ docker stop lab-custom-images
[student@workstation custom-images]$ docker rm lab-custom-images

7. Remove the container images created in this lab.

[student@workstation custom-images]$ docker rmi -f do180/custom-apache

8. Remove the intermediate containers images generated by the docker build command.

[student@workstation simple-container]$ docker rmi -f $(docker images -q)

This concludes the lab.

Summary

DO180-OCP3.5-en-1-20170524 147

Summary

In this chapter, you learned:

• The usual method of creating container images is using Dockerfiles.

• Dockerfiles provided by Red Hat or Docker Hub are a good starting point for creating custom
images using a specific language or technology.

• The Source-to-Image (S2I) process provides an alternative to Dockerfiles. S2I spares
developers the need to learn low-level operating system commands and usually generates
smaller images.

• Building an image from a Dockerfile is a three-step process:

1. Create a working directory.

2. Write the Dockerfile specification.

3. Build the image using the docker build command.

• The RUN instruction is responsible for modifying image contents.

• The following instructions are responsible for adding metadata to images:

◦ LABEL

◦ MAINTAINER

◦ EXPOSE

• The default command that runs when the container starts can be changed with the RUN and
ENTRYPOINT instructions.

• The following instructions are responsible for managing the container environment:

◦ WORKDIR

◦ ENV

◦ USER

• The VOLUME instruction creates a mount point in the container.

• The Dockerfile provides two instructions to include resources in the container image:

◦ ADD

◦ COPY

148

DO180-OCP3.5-en-1-20170524 149

TRAINING

CHAPTER 6

DEPLOYING CONTAINERIZED
APPLICATIONS ON OPENSHIFT

Overview

Goal Deploy single container applications on OpenShift Container
Platform.

Objectives • Install the OpenShift CLI tool and execute basic
commands.

• Create standard Kubernetes resources.

• Build an application using the source-to-image facility of
OCP.

• Create a route to a service.

• Create an application using the OpenShift web console.

Sections • Installing the OpenShift Command-line Tool (and Quiz)

• Creating Kubernetes Resources (and Guided Exercise)

• Creating Applications with the Source-to-Image Facility
(and Guided Exercise)

• Creating Routes (and Guided Exercise)

• Creating Applications with the OpenShift Web Console
(and Guided Exercise)

Lab • Deploying Containerized Applications on OpenShift

Chapter 6. Deploying Containerized Applications on OpenShift

150 DO180-OCP3.5-en-1-20170524

Installing the OpenShift Command-line Tool

Objectives
After completing this section, students should be able to install the OpenShift CLI tool and
execute basic commands.

Introduction
OpenShift Container Platform (OCP) ships with a command-line tool that enables systems
administrators and developers to work with an OCP cluster. The oc command-line tool provides
the ability to modify and manage resources throughout the delivery life cycle of a software
development project. Common operations with this tool include deploying applications, scaling
applications, checking the status of projects, and similar tasks.

Installing the oc Command-Line Tool
During OCP installation, the oc command-line tool is installed on all master and node machines.
You can install the oc client on systems that are not part of the OCP cluster, such as developer
machines. Once installed, you can issue commands after authenticating against any master node
with a user name and password.

There are several different methods available for installing the oc command-line tool, depending
on which platform is used:

• On Red Hat Enterprise Linux (RHEL) systems with valid subscriptions, the tool is available
directly as an RPM and installable using the yum install command.

[user@host ~]$ sudo yum install -y atomic-openshift-clients

• For alternative Linux distributions and other operating systems such as Windows and MacOS,
native clients are available for download from the Red Hat Customer Portal. This also requires
an active OCP subscription. These downloads are statically compiled to reduce incompatibility
issues.

Once the oc CLI tool is installed, the oc help command displays help information. There are oc
subcommands for tasks such as:

• Logging in and out of an OCP cluster.

• Creating, changing, and deleting projects.

• Creating applications inside a project. For example, creating a deployment configuration from a
container image, or a build configuration from application source, and all associated resources.

• Creating, deleting, inspecting, editing, and exporting individual resources such as pods,
services, and routes inside a project.

• Scaling applications.

• Starting new deployments and builds.

• Checking logs from application pods, deployments, and build operations.

Core CLI Commands

DO180-OCP3.5-en-1-20170524 151

Core CLI Commands
You can use the oc login command to log in interactively, which prompts you for a server
name, a user name, and a password, or you can include the required information on the
command line.

[student@workstation ~]$ oc login https://ocp.lab.example.com:8443 \
 -u developer -p developer

Note
Note that the backslash character (\) in the previous command is a command
continuation character and should only be used if you are not entering the command
as a single line.

After successful authentication from a client, OCP saves an authorization token in the user home
folder. This token is used for subsequent requests, negating the need to re-enter credentials or
the full master URL.

To check your current credentials, run the oc whoami command:

[student@workstation ~]$ oc whoami

This command outputs the user name that you used when logging in.

developer

To create a new project, use the oc new-project command:

[student@workstation ~]$ oc new-project working

Use run the oc status command to verify the status of the project:

[student@workstation ~]$ oc status

Initially, the output from the status command reads:

In project working on server https://ocp.lab.example.com:8443

You have no services, deployment configs, or build configs.
Run 'oc new-app' to create an application.

The output of the above command changes as you create new projects, and resources like
Services, DeploymentConfigs, or BuildConfigs are added throughout this course.

To delete a project, use the oc delete project command:

[student@workstation ~]$ oc delete project working

To log out of the OpenShift cluster, use the oc logout command:

Chapter 6. Deploying Containerized Applications on OpenShift

152 DO180-OCP3.5-en-1-20170524

[student@workstation ~]$ oc logout
Logged "developer" out on "https://ocp.lab.example.com:8443"

It is possible to log in as the OCP cluster administrator from any master node without a password
by using the system:admin argument for the -u option. This gives you full privileges over all
the operations and resources in the OCP instance and should be used with care.

[root@ocp ~]# oc login -u system:admin

If running the all-in-one OCP cluster, the user who started the cluster can also log in as the
system:admin user without a password, because the oc cluster up command saves an
cluster administrator authentication token in the user home folder.

References
Further information is available in the OpenShift Container Platform documentation:

CLI Reference
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/
html/cli_reference/

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html/cli_reference/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html/cli_reference/

Quiz: OpenShift CLI

DO180-OCP3.5-en-1-20170524 153

Quiz: OpenShift CLI

Choose the correct answer or answers to the following questions:

1. Which of the following two statements are true regarding the oc CLI tool? (Choose two.)

a. The oc command is used exclusively only to create new projects and applications. For
other tasks, like deployment and scaling, you must use the OCP web console.

b. The oc command is used exclusively to perform administrative and operational tasks,
like deployment and scaling. To create new projects and applications, you must use
the OCP web console.

c. On RHEL based systems, the oc CLI tool is provided by the atomic-openshift-clients
RPM package.

d. You cannot install the oc tool on Windows or MacOS systems. Only RHEL based
systems are supported.

e. Pre-compiled native binaries of the oc CLI tool are available for Windows and MacOS
systems.

2. Which of the following two statements are true regarding the OpenShift Container Platform
(OCP) authentication mechanism? (Choose two.)

a. The OCP master is accessible to all users without any authentication or authorization.
Any user can issue any command from the oc client.

b. OCP requires the user to authenticate with a user name and password prior to issuing
any authorized command.

c. For security reasons, OCP requires you to authenticate with a user name and
password every single time you issue a command.

d. OCP generates an authentication token upon successful login, and subsequent
requests need not provide credentials again.

3. As the root user, which command below allows you to log in as an OCP cluster administrator
on any master node?

a. oc login -u cluster:admin
b. oc login -u system -p admin
c. oc login -u system:admin
d. oc login system:admin -p
e. oc login -u root:admin -p

Chapter 6. Deploying Containerized Applications on OpenShift

154 DO180-OCP3.5-en-1-20170524

Solution

Choose the correct answer or answers to the following questions:

1. Which of the following two statements are true regarding the oc CLI tool? (Choose two.)

a. The oc command is used exclusively only to create new projects and applications. For
other tasks, like deployment and scaling, you must use the OCP web console.

b. The oc command is used exclusively to perform administrative and operational tasks,
like deployment and scaling. To create new projects and applications, you must use
the OCP web console.

c. On RHEL based systems, the oc CLI tool is provided by the atomic-openshift-clients
RPM package.

d. You cannot install the oc tool on Windows or MacOS systems. Only RHEL based
systems are supported.

e. Pre-compiled native binaries of the oc CLI tool are available for Windows and
MacOS systems.

2. Which of the following two statements are true regarding the OpenShift Container Platform
(OCP) authentication mechanism? (Choose two.)

a. The OCP master is accessible to all users without any authentication or authorization.
Any user can issue any command from the oc client.

b. OCP requires the user to authenticate with a user name and password prior to
issuing any authorized command.

c. For security reasons, OCP requires you to authenticate with a user name and
password every single time you issue a command.

d. OCP generates an authentication token upon successful login, and subsequent
requests need not provide credentials again.

3. As the root user, which command below allows you to log in as an OCP cluster administrator
on any master node?

a. oc login -u cluster:admin
b. oc login -u system -p admin
c. oc login -u system:admin
d. oc login system:admin -p
e. oc login -u root:admin -p

Creating Kubernetes Resources

DO180-OCP3.5-en-1-20170524 155

Creating Kubernetes Resources

Objectives
After completing this section, students should be able to create standard Kubernetes resources.

OpenShift Container Platform (OCP) Resources
The OpenShift Platform organizes entities in the OCP cluster as objects stored on the master
node. These are collectively known as resources. The most common ones are:

Pod

A set of one or more containers that run in a node and share a unique IP and volumes
(persistent storage). Pods also define the security and runtime policy for each container.

Label

Labels are key-value pairs that can be assigned to any resource in the system for grouping
and selection. Many resources use labels to identify sets of other resources.

Persistent Volume (PV)

Containers data are ephemeral. Their contents are lost when they are removed. Persistent
Volumes represent storage that can be accessed by pods to persist data and are mounted as
a file system inside a pod container.

Regular OCP users cannot create persistent volumes. They need to be created and
provisioned by a cluster administrator.

Persistent Volume Claim (PVC)

A Persistent Volume Claim is a request for storage from a project. The claim specifies
desired characteristics of the storage, such a size, and the OCP cluster matches it to one of
the available Persistent Volumes created by the administrator.

If the claim is satisfied, any pod in the same project that references the claim by name gets
the associated PV mounted as a volume by containers inside the pod.

Pods can, alternatively, reference volumes of type EmptyDir, which is a temporary directory
on the node machine and its contents are lost when the pod is stopped.

Service (SVC)

A name representing a set of pods (or external servers) that are accessed by other pods.
A service is assigned an IP address and a DNS name, and can be exposed externally to the
cluster via a port or a route. It is also easy to consume services from pods, because an
environment variable with the name SERVICE_HOST is automatically injected into other
pods.

Route

A route is an external DNS entry (either a top-level domain or a dynamically allocated name)
that is created to point to a service so that it can be accessed outside the OCP cluster.
Administrators configure one or more routers to handle those routes.

Replication Controller (RC)

A replication controller ensures that a specific number of pods (or replicas) running. These
pods are created from a template, which is part of the replication controller definition. If

Chapter 6. Deploying Containerized Applications on OpenShift

156 DO180-OCP3.5-en-1-20170524

pods lost by any reason, for example, a cluster node failure, then the controller creates new
pods to replace the lost ones.

Deployment Configuration (DC)

Manages replication controllers to keep a set of pods updated regarding container image
changes. A single deployment configuration is usually analogous to a single microservice.
A DC can support many different deployment patterns, including full restart, customizable
rolling updates, and fully custom behaviors, as well as hooks for integration with external
Continuous Integration (CI) and Continuous Development (CD) systems.

Build Configuration (BC)

Manages building a container image from source code stored in a Git server. Builds can be
based on the Source-to-Image (S2I) process or be Dockerfile-based. Build configurations also
support hooks for integration with external CI and CD systems.

Project

Projects have a list of members and their roles. Most of the previous terms in this list exist
inside of an OCP project, in Kubernetes terminology, namespace. Projects have a list of
members and their roles, such as viewer, editor, or admin, as well as a set of security controls
on the running pods, and limits on how many resources the project can use. Resource names
are unique within a project. Developers may request projects be created, but administrators
control the resource quotas allocated to projects.

Regardless of the type of resource that the administrator is managing, the OCP command-
line tool (oc) provides a unified and consistent way to update, modify, delete, and otherwise
administer these resources, as well as helpers for working with the most frequently used
resource types.

The oc types command provides a quick refresher on all the resource types available in OCP.

Pod Resource Definition Syntax
OpenShift Container Platform runs containers inside Kubernetes pods, and to create a pod from
a container image, OCP needs a pod resource definition. This can be provided either as a JSON or
YAML text file, or can be generated from defaults by the oc new-app command or the OCP web
console.

A pod is a collection of containers and other resources that are grouped together. An example of
a WildFly application server pod definition in YAML format is as follows:

apiVersion: v1

kind: Pod
metadata:

 name: wildfly
 labels:

 name: wildfly
spec:
 containers:
 - resources:
 limits :
 cpu: 0.5
 image: do276/todojee
 name: wildfly
 ports:

Service Resource Definition Syntax

DO180-OCP3.5-en-1-20170524 157

 - containerPort: 8080
 name: wildfly

 env:
 - name: MYSQL_ENV_MYSQL_DATABASE
 value: items
 - name: MYSQL_ENV_MYSQL_USER
 value: user1
 - name: MYSQL_ENV_MYSQL_PASSWORD
 value: mypa55

Declares a pod Kubernetes resource type.

A unique name for a pod in Kubernetes that allows administrators to run commands on it.

Creates a label with a key called name that can be used to be found by other resources,
usually a service, from Kubernetes.
A container-dependent attribute identifying which port from the container is exposed.

Defines a collection of environment variables.

Some pods may require environment variables that can be read by a container. Kubernetes
transforms all the name and value pairs to environment variables. For instance, the
MYSQL_ENV_MYSQL_USER is declared internally by the Kubernetes runtime with a value called
user1, and is forwarded to the container image definition. Since the container uses the same
variable name to get the user's login, the value is used by the WildFly container instance to set
the username that accesses a MySQL database instance.

Service Resource Definition Syntax
Kubernetes provides a virtual network that allows pods from different nodes to connect. But
Kubernetes provides no easy way for a pod to learn the IP addresses of other pods.

Chapter 6. Deploying Containerized Applications on OpenShift

158 DO180-OCP3.5-en-1-20170524

Figure 6.1: Kubernetes basic networking

Services are essential resources to any OCP application. They allow containers in one pod to open
network connections to containers in another pod. A pod can be restarted for many reasons,
and gets a different internal IP each time. Instead of a pod having to discover the IP address of
another pod after each restart, a service provides a stable IP address for other pods to use, no
matter what node runs the pod after each restart.

Service Resource Definition Syntax

DO180-OCP3.5-en-1-20170524 159

Figure 6.2: Kubernetes services networking

Most real world applications do not run as a single pod. They need to scale horizontally, so many
pods run the same containers from the same pod resource definition to meet a growing user
demand. A service is tied to a set of pods, providing a single IP address for the whole set, and a
load-balancing client request among member pods.

The set of pods running behind a service is managed by a DeploymentConfig resource.
A DeploymentConfig resource embeds a ReplicationController that manages how
many pod copies (replicas) have to be created, and creates new ones if some of them fail.
DeploymentConfig and ReplicationControllers are explained later in this chapter.

The following listing shows a minimal service definition in JSON syntax:

{

 "kind": "Service",
 "apiVersion": "v1",
 "metadata": {

 "name": "quotedb"
 },
 "spec": {

Chapter 6. Deploying Containerized Applications on OpenShift

160 DO180-OCP3.5-en-1-20170524

 "ports": [
 {
 "port": 3306,
 "targetPort": 3306
 }
],
 "selector": {

 "name": "mysqldb"
 }
 }
}

The kind of Kubernetes resource. In this case, a Service.

A unique name for the service.

ports is an array of objects that describes network ports exposed by the service. The
targetPort attribute has to match a containerPort from a pod container definition,
while the port attribute is the port that is exposed by the service. Clients connect to the
service port and the service forwards packets to the pod targetPort.
selector is how the service finds pods to forward packets to. The target pods need to
have matching labels in their metadata attributes. If the service finds multiple pods with
matching labels, it load balances network connections among them.

Each service is assigned a unique IP address for clients to connect. This IP address comes from
another internal OCP SDN, distinct from the pods internal network, but visible only to pods. Each
pod matching the "selector" is added to the service resource as an end point.

Discovering Services
An application typically finds a service IP address and port by using environment variables.
For each service inside an OCP project, the following environment variables are automatically
defined and injected into containers for all pods inside the same project:

• SVC_NAME_SERVICE_HOST is the service IP address.

• SVC_NAME_SERVICE_PORT is the service TCP port.

Note
The SVC_NAME is changed to comply with DNS naming restrictions: letters are
capitalized and underscores (_) are replaced by dashes (-).

Another way to discover a service from a pod is by using the OCP internal DNS server, which is
visible only to pods. Each service is dynamically assigned an SRV record with a FQDN of the form:

SVC_NAME.PROJECT_NAME.svc.cluster.local

When discovering services using environment variables, a pod has to be created (and started)
only after the service is created. But if the application was written to discover services using DNS
queries, it can find services created after the pod was started.

For applications that need access to the service outside the OCP cluster, there are two ways to
achieve this objective:

Creating Applications Using oc new-app

DO180-OCP3.5-en-1-20170524 161

1. NodePort type: This is an older Kubernetes-based approach, where the service is exposed
to external clients by binding to available ports on the node host, which then proxies
connections to the service IP address. You can use the oc edit svc command to edit
service attributes and specify NodePort as the type and provide a port value for the
nodePort attribute. OCP then proxies connections to the service via the public IP address
of the node host and the port value set in nodePort.

2. OCP Routes: This is the preferred approach in OCP to expose services using a unique URL.
You can use the oc expose command to expose a service for external access or expose a
service from the OCP web console.

The following figure shows how NodePort services allows external access to Kubernetes
services. Later this course will present OpenShift routes in more detail.

Figure 6.3: Kubernetes NodePort services

Creating Applications Using oc new-app
Simple applications, complex multi-tier applications, and microservice applications can be
described by a single resource definition file. This single file would contain many pod definitions,
service definitions to connect the pods, replication controllers or DeploymentConfigs to

Chapter 6. Deploying Containerized Applications on OpenShift

162 DO180-OCP3.5-en-1-20170524

horizontally scale the application pods, PersistentVolumeClaims to persist application data,
and anything else needed that can be managed by OpenShift.

The oc new-app command can be used, with the option -o json or -o yaml, to create
a skeleton resource definition file in JSON or YAML format, respectively. This file can be
customized and used to create an application using the oc create -f <filename>
command, or merged with other resource definition files to create a composite application.

The oc new-app command can create application pods to run on OCP in many different ways. It
can create pods from existing docker images, from Dockerfiles, and from raw source code using
the Source-to-Image (S2I) process.

Run the oc new-app -h command to briefly understand all the different options available for
creating new applications on OCP. The most common options are:

To create an application based on an image from Docker Hub:

oc new-app mysql MYSQL_USER=user MYSQL_PASSWORD=pass MYSQL_DATABASE=testdb -l db=mysql

The following figure shows the Kubernetes and OpenShift resources created by the oc new-app
command when the argument is a container image:

Figure 6.4: Deployment Configuration and dependent resources

To create an application based on an image from a private registry:

oc new-app --docker-image=myregistry.com/mycompany/myapp --name=myapp

To create an application based on source code stored in a Git repository:

Useful Commands to Manage OCP Resources

DO180-OCP3.5-en-1-20170524 163

oc new-app https://github.com/openshift/ruby-hello-world --name=ruby-hello

You will learn more about the Source-to-Image (S2I) process, it's associated concepts, and more
advanced ways to use oc new-app to build applications for OCP in the next section.

Useful Commands to Manage OCP Resources
There are several essential commands used to manage OpenShift resources. The following list
describes these commands.

Typically, as an administrator, the tool you will most likely to use is oc get command. This allows
a user to get information about resources in the cluster. Generally, this command outputs only
the most important characteristics of the resources and omits more detailed information.

If the RESOURCE_NAME parameter is omitted, then all resources of the specified
RESOURCE_TYPE are summarized. The following output is a sample of an execution of oc get
pods:

NAME READY STATUS RESTARTS AGE
nginx-1-5r583 1/1 Running 0 1h
myapp-1-l44m7 1/1 Running 0 1h

oc get all

If the administrator wants a summary of all the most important components of a cluster, the oc
get all command can be executed. This command iterates through the major resource types
and prints out a summary of their information. For example:

NAME DOCKER REPO TAGS UPDATED
is/nginx 172.30.1.1:5000/basic-kubernetes/nginx latest About an hour ago

NAME REVISION DESIRED CURRENT TRIGGERED BY
dc/nginx 1 1 1 config,image(nginx:latest)

NAME DESIRED CURRENT READY AGE
rc/nginx-1 1 1 1 1h

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
svc/nginx 172.30.72.75 <none> 80/TCP,443/TCP 1h

NAME READY STATUS RESTARTS AGE
po/nginx-1-ypp8t 1/1 Running 0 1h

oc describe RESOURCE RESOURCE_NAME

If the summaries provided by oc get are insufficient, additional information about the resource
can be retrieved by using the oc describe command. Unlike the oc get command, there
is no way to simply iterate through all the different resources by type. Although most major
resources can be described, this functionality is not available across all resources. The following
is an example output from describing a pod resource:

Name: docker-registry-4-ku34r
Namespace: default
Security Policy: restricted
Node: node.lab.example.com/172.25.250.11
Start Time: Mon, 23 Jan 2017 12:17:28 -0500

Chapter 6. Deploying Containerized Applications on OpenShift

164 DO180-OCP3.5-en-1-20170524

Labels: deployment=docker-registry-4
 deploymentconfig=docker-registry
 docker-registry=default
Status: Running
...
No events

oc export

This command can be used to export a definition of a resource. Typical use cases include creating
a backup, or to aid in modification of a definition. By default, the export command prints out the
object representation in YAML format, but this can be changed by providing a -o option.

oc create

This command allows the user to create resources from a resource definition. Typically, this is
paired with the oc export command for editing definitions.

oc edit

This command allows the user to edit resources of a resource definition. By default, this
command opens up a vi buffer for editing the resource definition.

oc delete RESOURCE_TYPE name

The oc delete command allows the user to remove a resource from an OCP cluster. Note that
a fundamental understanding of the OpenShift architecture is needed here, because deletion of
managed resources like pods result in newer instances of those resources being automatically
recreated. When a project is deleted, it deletes all of the resources and applications contained
within it.

oc exec <CONTAINER_ID> <options> <command>

The oc exec command allows the user to execute commands inside a container. You can use
this command to run interactive as well as non-interactive batch commands as part of a script.

Demonstration: Creating Basic Kubernetes Resources
1. Open an SSH session to the ocp VM and start the OpenShift cluster, if not running.

[student@workstation ~]$ ssh ocp
[student@ocp ~]$./ocp-up.sh
[student@ocp ~]$ Ctrl+D
[student@workstation ~]$

2. Log in to OCP as the developer user on the workstation VM:

[student@workstation ~]$ oc login -u developer -p developer \
https://ocp.lab.example.com:8443

3. Create a new project for the resources you will create during this demonstration:

[student@workstation ~]$ oc new-project basic-kubernetes

4. Relax the default cluster security policy.

The nginx image from Docker Hub runs as root, but this is not allowed by the default
OpenShift security policy.

Demonstration: Creating Basic Kubernetes Resources

DO180-OCP3.5-en-1-20170524 165

Change the default security policy to allow containers to run as root:

[student@workstation ~]$ oc adm policy add-scc-to-user anyuid -z default

5. Create a new application from the nginx container image using the oc new-app
command.

Use the --docker-images option from oc new-app and the classroom private registry
URI so that OpenShift does not try and pull the image from the Internet:

[student@workstation ~]$ oc new-app \
 --docker-image=infrastructure.lab.example.com:5000/nginx:latest \
 --insecure-registry=true --name=nginx
--> Found Docker image 5e69fe4 (9 days old) from infrastructure.lab.example.com:5000
 for "infrastructure.lab.example.com:5000/nginx:latest"

 * An image stream will be created as "nginx:latest" that will track this image
 * This image will be deployed in deployment config "nginx"
 * Ports 443/tcp, 80/tcp will be load balanced by service "nginx"
 * Other containers can access this service through the hostname "nginx"
 * WARNING: Image "infrastructure.lab.example.com:5000/nginx:latest" runs as the
 'root' user which may not be permitted by your cluster administrator

--> Creating resources ...
 imagestream "nginx" created
 deploymentconfig "nginx" created
 service "nginx" created
--> Success
 Run 'oc status' to view your app.

6. Run the oc status command to view the status of the new application, and to check if the
deployment of the Nginx image was successful:

[student@workstation ~]$ oc status
In project basic-kubernetes on server https://10.0.2.15:8443

svc/nginx - 172.30.72.75 ports 80, 443
 dc/nginx deploys istag/nginx:latest
 deployment #1 deployed 2 minutes ago - 1 pod

7. List the pods in this project to check if the Nginx pod is ready and running:

[student@workstation ~]$ oc get pods
NAME READY STATUS RESTARTS AGE
nginx-1-ypp8t 1/1 Running 0 25m

8. Use the oc describe command to view more details about the pod:

[student@workstation ~]$ oc describe pod nginx-1-ypp8t
Name: nginx-1-ypp8t
Namespace: basic-kubernetes
Security Policy: anyuid
Node: 10.0.2.15/10.0.2.15
Start Time: Thu, 06 Apr 2017 13:03:37 +0000
Labels: app=nginx

Chapter 6. Deploying Containerized Applications on OpenShift

166 DO180-OCP3.5-en-1-20170524

 deployment=nginx-1
 deploymentconfig=nginx
Status: Running
IP: 172.17.0.3
...

9. List the services in this project and check if a service to access the Nginx pod was created:

[student@workstation ~]$ oc get svc
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
nginx 172.30.72.75 <none> 80/TCP,443/TCP 4m

10. Describe the nginx service and note the Service IP through which the Nginx pod can be
accessed:

[student@workstation ~]$ oc describe service nginx
Name: nginx
Namespace: basic-kubernetes
Labels: app=nginx
Selector: app=nginx,deploymentconfig=nginx
Type: ClusterIP

IP: 172.30.72.75
Port: 80-tcp 80/TCP
Endpoints: 172.17.0.3:80
Port: 443-tcp 443/TCP
Endpoints: 172.17.0.3:443
Session Affinity: None
No events.

11. Open an SSH session to the ocp VM and access the default Nginx home page using the
service IP:

[student@workstation ~]$ ssh ocp curl -s http://172.30.72.75
<!DOCTYPE html>
<html>
...
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>
...

Accessing the Service IP and port directly works in this scenario because the ocp VM is the
machine running the all-in-one OCP cluster.

12. Delete the project, to remove all the resources in the project:

[student@workstation ~]$ oc delete project basic-kubernetes

This concludes the demonstration.

Demonstration: Creating Basic Kubernetes Resources

DO180-OCP3.5-en-1-20170524 167

References
Additional information about pods and services is available in the Pods and Services
section of the OpenShift Container Platform documentation:

Architecture
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/
html/architecture/

Additional information about creating images is available in the OpenShift Container
Platform documentation:

Creating Images
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/
html/creating_images/

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html/architecture/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html/architecture/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html/creating_images/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html/creating_images/

Chapter 6. Deploying Containerized Applications on OpenShift

168 DO180-OCP3.5-en-1-20170524

Guided Exercise: Deploying a Database Server
on OpenShift

In this exercise, you will create and deploy a MySQL database pod on OpenShift using the oc
new-app command.

Resources

Files: /home/student/DO180/labs/mysql-openshift

Resources: Red Hat Software Collections official MySQL 5.6 image
(rhscl/mysql-56-rhel7)

Outcomes

You should be able to create and deploy a MySQL database pod on OpenShift.

Before you begin

This exercise has no prerequisites.

Steps

1. Start an OpenShift cluster in the ocp VM.

1.1. Open an SSH session to the ocp VM and verify that the OpenShift cluster is running.

[student@workstation ~]$ ssh ocp
[student@ocp ~]$./ocp-up.sh

The ocp-up.sh checks that the OCP cluster is running and, if true, exits without
displaying anything, otherwise it starts the cluster.

1.2. Log out from the ocp VM and return to the workstation VM.

[student@ocp ~]$ Ctrl+D
Connection to ocp closed.
[student@workstation ~]$

2. Log in to OCP as a developer user and create a new project for this exercise.

2.1. From the workstation VM, log in to OCP as the developer user:

[student@workstation ~]$ oc login -u developer -p developer \
https://ocp.lab.example.com:8443

If the oc login command prompts about using insecure connections, answer y (yes).

Warning
Be careful with the user name. If a different user is used to run the following
steps, the grading script fails.

DO180-OCP3.5-en-1-20170524 169

2.2. Create a new project for the resources you will create during this exercise:

[student@workstation ~]$ oc new-project mysql-openshift

3. Create a new application from the rhscl/mysql-56-rhel7 container image using the oc
new-app command.

This image requires several environment variables (MYSQL_USER, MYSQL_PASSWORD,
MYSQL_DATABASE, and MYSQL_ROOT_PASSWORD) using the -e option.

Use the --docker-images option for oc new-app and the classroom private registry URI
so that OpenShift does not try and pull the image from the Internet:

[student@workstation ~]$ oc new-app \
--docker-image=infrastructure.lab.example.com:5000/rhscl/mysql-56-rhel7:latest \
--insecure-registry=true --name=mysql-openshift \
-e MYSQL_USER=user1 -e MYSQL_PASSWORD=mypa55 -e MYSQL_DATABASE=testdb \
-e MYSQL_ROOT_PASSWORD=r00tpa55
--> Found Docker image 71ac5db (6 weeks old) from
 infrastructure.lab.example.com:5000 for "infrastructure.lab.example.com:5000/rhscl/
mysql-56-rhel7:latest"
...
--> Creating resources ...
 imagestream "mysql-openshift" created
 deploymentconfig "mysql-openshift" created
 service "mysql-openshift" created
--> Success
 Run 'oc status' to view your app.

4. Verify if the MySQL pod was created successfully and view details about the pod and it's
service.

4.1. Run the oc status command to view the status of the new application, and to check if
the deployment of the MySQL image was successful:

[student@workstation ~]$ oc status
In project mysql-openshift on server https://10.0.2.15:8443

svc/mysql-openshift - 172.30.192.199:3306
 dc/mysql-openshift deploys istag/mysql-openshift:latest
 deployment #1 deployed 21 seconds ago - 1 pod...

4.2. List the pods in this project to check if the MySQL pod is ready and running:

[student@workstation ~]$ oc get pods
NAME READY STATUS RESTARTS AGE
mysql-openshift-1-kb98m 1/1 Running 0 2m

4.3. Use the oc describe command to view more details about the pod:

[student@workstation ~]$ oc describe pod mysql-openshift-1-kb98m
Name: mysql-openshift-1-kb98m
Namespace: mysql-openshift
Security Policy: restricted

Chapter 6. Deploying Containerized Applications on OpenShift

170 DO180-OCP3.5-en-1-20170524

Node: 10.0.2.15/10.0.2.15
Start Time: Mon, 10 Apr 2017 09:28:25 +0000
Labels: app=mysql-openshift
 deployment=mysql-openshift
 deploymentconfig=mysql-openshift
Status: Running
IP: 172.17.0.4
...

4.4. List the services in this project and check if a service to access the MySQL pod was
created:

[student@workstation ~]$ oc get svc
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
mysql-openshift 172.30.192.199 <none> 3306/TCP 5m

4.5. Describe the mysql-openshift service and note that the Service type is ClusterIP
by default:

[student@workstation ~]$ oc describe service mysql-openshift
Name: mysql-openshift
Namespace: mysql-openshift
Labels: app=mysql-openshift
Selector: app=mysql-openshift,deploymentconfig=mysql-openshift
Type: ClusterIP
IP: 172.30.192.199
Port: 3306-tcp 3306/TCP
Endpoints: 172.17.0.4:3306
Session Affinity: None
No events.

4.6. View details about the DeploymentConfig (dc) for this application:

[student@workstation ~]$ oc describe dc mysql-openshift
Name: mysql-openshift
Namespace: mysql-openshift
Created: About a minute ago
Labels: app=mysql-openshift
...
Deployment #1 (latest):
 Name: mysql-openshift-1
 Created: about a minute ago
 Status: Complete
 Replicas: 1 current / 1 desired
 Selector: app=mysql-openshift,deployment=mysql-
openshift-1,deploymentconfig=mysql-openshift
 Labels: app=mysql-openshift,openshift.io/deployment-config.name=mysql-
openshift
 Pods Status: 1 Running / 0 Waiting / 0 Succeeded / 0 Failed
...

5. For external clients to access the database service from outside the OCP cluster, you can
expose the service through a port on the host machine (in this environment, the workstation
VM) where the pod is running. This can be achieved by changing the default type of the
service to the NodePort type.

DO180-OCP3.5-en-1-20170524 171

Note
Exposing a service to the outside world using the NodePort type is the
kubernetes approach, which is no longer the preferred way to achieve this
objective. OpenShift has a simpler and more elegant approach, using the Routes
concept, which is covered later in this chapter.

5.1. Change the type of the mysql-openshift service from the default ClusterIP type
to NodePort. Edit the service using the oc edit svc command:

[student@workstation ~]$ oc edit svc mysql-openshift

5.2. The oc edit command opens up a vi buffer, allowing you to edit the service
attributes. Change the type of the service to NodePort, and add a new attribute called
nodePort to the ports array with a value of 30306 for the attribute:

Please edit the object below. Lines beginning with a '#' will be ignored,
and an empty file will abort the edit. If an error occurs while saving this
 file will be
reopened with the relevant failures.
#
apiVersion: v1
kind: Service
metadata:
...
 ports:
 - name: 3306-tcp
 port: 3306
 protocol: TCP
 targetPort: 3306
 nodePort: 30306
 selector:
 app: mysql-openshift
 deploymentconfig: mysql-openshift
 sessionAffinity: None
 type: NodePort
status:
...

Save the contents of the buffer and exit from the editor.

5.3. Verify your changes by running the oc describe svc command again:

[student@workstation ~]$ oc describe svc mysql-openshift
Name: mysql-openshift
Namespace: mysql-openshift
Labels: app=mysql-openshift
Selector: app=mysql-openshift,deploymentconfig=mysql-openshift
Type: NodePort
IP: 172.30.192.199
Port: 3306-tcp 3306/TCP
NodePort: 3306-tcp 30306/TCP
Endpoints: 172.17.0.4:3306
Session Affinity: None

Chapter 6. Deploying Containerized Applications on OpenShift

172 DO180-OCP3.5-en-1-20170524

No events.

6. Connect to the MySQL database server and verify if the database was created successfully.

6.1. Open an SSH session to the ocp VM.

[student@workstation ~]$ ssh ocp
[student@ocp ~]$

6.2. Connect to the MySQL server using the MySQL client with the public IP of the ocp VM
and the nodePort:

[student@ocp ~]$ mysql -hocp -P30306 -uuser1 -pmypa55
Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MySQL connection id is 1
Server version: 5.6.34 MySQL Community Server (GPL)

Copyright (c) 2000, 2016, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

MySQL [(none)]>

6.3. Verify if the testdb database has been created:

MySQL [(none)]> show databases;
+--------------------+
| Database |
+--------------------+
| information_schema |
| testdb |
+--------------------+
2 rows in set (0.00 sec)

6.4. Exit from the MySQL prompt and terminate the SSH session:

MySQL [(none)]> exit
Bye
[student@ocp ~]$ Ctrl+D
Connection to ocp closed.
[student@workstation ~]$

7. Verify that the database was correctly set up. Run the following grading script from a
terminal window:

[student@workstation ~]$ lab mysql-openshift grade

8. Delete the project and all the resources in the project:

[student@workstation ~]$ oc delete project mysql-openshift

DO180-OCP3.5-en-1-20170524 173

This concludes the exercise.

Chapter 6. Deploying Containerized Applications on OpenShift

174 DO180-OCP3.5-en-1-20170524

Creating Applications with Source-to-Image

Objectives
After completing this section, students should be able to deploy an application using the
Source-to-Image (S2I) facility of OCP.

The Source-to-Image (S2I) process
Source-to-Image (S2I) is a facility that makes it easy to build a container image from application
source code. This facility takes an application's source code from a Git server, injects the source
code into a base container based on the language and framework desired, and produces a new
container image that runs the assembled application.

The following figure shows the resources created by the oc new-app command when the
argument is an application source code repository. Notice that a Deployment Configuration and
all its dependent resources are also created.

Figure 6.5: Deployment Configuration and dependent resources

S2I is the major strategy used for building applications in OpenShift Container Platform. The
main reasons for using source builds are:

• User efficiency: Developers do not need to understand Dockerfiles and operating system
commands such as yum install. They work using their standard programming language
tools.

• Patching: S2I allows for rebuilding all the applications consistently if a base image needs a
patch due to a security issue. For example, if a security issue is found in a PHP base image,

Image Streams

DO180-OCP3.5-en-1-20170524 175

then updating this image with security patches updates all applications that use this image as
a base.

• Speed: With S2I, the assembly process can perform a large number of complex operations
without creating a new layer at each step, resulting in faster builds.

• Ecosystem: S2I encourages a shared ecosystem of images where base images and scripts can
be customized and reused across multiple types of applications.

Image Streams
OpenShift deploys new versions of user applications into pods quickly. To create a new
application, in addition to the application source code, a base image (the S2I builder image) is
required. If either of these two components gets updated, a new container image is created. Pods
created using the older container image are replaced by pods using the new image.

While it is obvious that the container image needs to be updated when application code changes,
it may not be obvious that the deployed pods also need to be updated should the builder image
change.

The image stream resource is a configuration that names specific container images associated
with image stream tags, an alias for these container images. An application is built against
an image stream. The OpenShift installer populates several image streams by default during
installation. To check available image streams, use the oc get command, as follows:

$ oc get is -n openshift
NAME DOCKER REPO
 TAGS
...
jenkins 172.30.0.103:5000/openshift/jenkins
 2,1
mariadb 172.30.0.103:5000/openshift/mariadb
 10.1
mongodb 172.30.0.103:5000/openshift/mongodb
 3.2,2.6,2.4
mysql 172.30.0.103:5000/openshift/mysql
 5.5,5.6
nodejs 172.30.0.103:5000/openshift/nodejs
 0.10,4
perl 172.30.0.103:5000/openshift/perl
 5.20,5.16
php 172.30.0.103:5000/openshift/php
 5.5,5.6
postgresql 172.30.0.103:5000/openshift/postgresql
 9.5,9.4,9.2
python 172.30.0.103:5000/openshift/python
 3.5,3.4,3.3 + 1 more...

ruby 172.30.0.103:5000/openshift/ruby
 2.3,2.2,2.0

Note
Your OCP instance may have more or fewer image streams depending on local
additions and OCP point releases.

Chapter 6. Deploying Containerized Applications on OpenShift

176 DO180-OCP3.5-en-1-20170524

OpenShift has the ability to detect when an image stream changes and to take action based on
that change. If a security issue is found in the nodejs-010-rhel7 image, it can be updated
in the image repository and OpenShift can automatically trigger a new build of the application
code.

An organization will likely choose several supported base S2I images from Red Hat, but may also
create their own base images.

Building an Application with S2I and the CLI
Building an application with S2I can be accomplished using the OCP CLI.

An application can be created using the S2I process with the oc new-app command from the
CLI.

$ oc new-app php~http://infrastructure.lab.example.com/app --name=myapp

The image stream used in the process appears to the left of the tilde (~).

The URL after the tilde indicates the location of the source code's Git repository.

Sets the application name.

The oc new-app command allows for creating applications using source code from a local or
remote Git repository. If only a source repository is specified, oc new-app tries to identify the
correct image stream to use for building the application. In addition to application code, S2I can
also identify and process Dockerfiles to create a new image.

The following example creates an application using the Git repository at the current directory.

$ oc new-app .

Warning
When using a local Git repository, the repository must have a remote origin that points
to a URL accessible by the OpenShift instance.

It is also possible to create an application using a remote Git repository and a context
subdirectory:

$ oc new-app https://github.com/openshift/sti-ruby.git \
 --context-dir=2.0/test/puma-test-app

Finally, it is possible to create an application using a remote Git repository with a specific branch
reference:

$ oc new-app https://github.com/openshift/ruby-hello-world.git#beta4

If an image stream is not specified in the command, new-app attempts to determine which
language builder to use based on the presence of certain files in the root of the repository:

Language Files

ruby Rakefile, Gemfile, config.ru

Building an Application with S2I and the CLI

DO180-OCP3.5-en-1-20170524 177

Language Files

Java EE pom.xml

nodejs app.json, package.json

php index.php, composer.json

python requirements.txt, config.py

perl index.pl, cpanfile

After a language is detected, new-app searches for image stream tags that have support for the
detected language, or an image stream that matches the name of the detected language.

A JSON resource definition file can be created using the -o json parameter and output
redirection:

$ oc -o json new-app php~http://infrastructure.lab.example.com/app --name=myapp >
 s2i.json

A list of resources will be created by this JSON definition file. The first resource is the image
stream:

...
{

 "kind": "ImageStream",
 "apiVersion": "v1",
 "metadata": {

 "name": "myapp",
 "creationTimestamp": null
 "labels": {
 "app": "myapp"
 },
 "annotations": {
 "openshift.io/generated-by": "OpenShiftNewApp"
 }
 },
 "spec": {),
 "status": {
 "dockerImageRepository": ""
 }
},
...

Define a resource type of image stream.

Name the image stream as myapp.

The build configuration (bc) is responsible for defining input parameters and triggers that are
executed to transform the source code into a runnable image. The BuildConfig (BC) is the
second resource and the following example provides an overview of the parameters that are used
by OpenShift to create a runnable image.

...
{

 "kind": "BuildConfig",
 "apiVersion": "v1",
 "metadata": {

Chapter 6. Deploying Containerized Applications on OpenShift

178 DO180-OCP3.5-en-1-20170524

 "name": "myapp",
 "creationTimestamp": null,
 "labels": {
 "app": "myapp"
 },
 "annotations": {
 "openshift.io/generated-by": "OpenShiftNewApp"
 }
 },
 "spec": {
 "triggers": [
 {
 "type": "GitHub",
 "github": {
 "secret": "S5_4BZpPabM6KrIuPBvI"
 }
 },
 {
 "type": "Generic",
 "generic": {
 "secret": "3q8K8JNDoRzhjoz1KgMz"
 }
 },
 {
 "type": "ConfigChange"
 },
 {
 "type": "ImageChange",
 "imageChange": {}
 }
],
 "source": {
 "type": "Git",
 "git": {

 "uri": "http://infrastructure.lab.example.com/app"
 }
 },
 "strategy": {

 "type": "Source",
 "sourceStrategy": {
 "from": {
 "kind": "ImageStreamTag",
 "namespace": "openshift",

 "name": "php:5.5"
 }
 }
 },
 "output": {
 "to": {
 "kind": "ImageStreamTag",

 "name": "myapp:latest"
 }
 },
 "resources": {},
 "postCommit": {},
 "nodeSelector": null
 },
 "status": {
 "lastVersion": 0
 }
 },

Building an Application with S2I and the CLI

DO180-OCP3.5-en-1-20170524 179

...

Define a resource type of BuildConfig.

Name the BuildConfig as myapp.

Define the address to the source code Git repository.

Define the strategy to use S2I.

Define the builder image as the php:latest image stream.

Name the output image stream as myapp:latest.

The third resource is the deployment configuration that is responsible for customizing the
deployment process into OpenShift. They may include parameters and triggers that are
necessary to create new container instances, and are translated into a replication controller from
Kubernetes. Some of the features provided by DeploymentConfigs are:

• User customizable strategies to transition from the existing deployments to new deployments.

• Rollbacks to a previous deployments.

• Manual replication scaling.

...
{

 "kind": "DeploymentConfig",
 "apiVersion": "v1",
 "metadata": {

 "name": "myapp",
 "creationTimestamp": null,
 "labels": {
 "app": "myapp"
 },
 "annotations": {
 "openshift.io/generated-by": "OpenShiftNewApp"
 }
 },
 "spec": {
 "strategy": {
 "resources": {}
 },
 "triggers": [
 {

 "type": "ConfigChange"
 },
 {

 "type": "ImageChange",
 "imageChangeParams": {
 "automatic": true,
 "containerNames": [
 "myapp"
],
 "from": {
 "kind": "ImageStreamTag",
 "name": "myapp:latest"
 }
 }
 }
],
 "replicas": 1,

Chapter 6. Deploying Containerized Applications on OpenShift

180 DO180-OCP3.5-en-1-20170524

 "test": false,
 "selector": {
 "app": "myapp",
 "deploymentconfig": "myapp"
 },
 "template": {
 "metadata": {
 "creationTimestamp": null,
 "labels": {
 "app": "myapp",
 "deploymentconfig": "myapp"
 },
 "annotations": {
 "openshift.io/container.myapp.image.entrypoint":
"[\"container-entrypoint\",\"/bin/sh\",\"-c\",\"$STI_SCRIPTS_PATH/usage\"]",
 "openshift.io/generated-by": "OpenShiftNewApp"
 }
 },
 "spec": {
 "containers": [
 {
 "name": "myapp",

 "image": "myapp:latest",

 "ports": [
 {
 "containerPort": 8080,
 "protocol": "TCP"
 }
],
 "resources": {}
 }
]
 }
 }
 },
 "status": {}
 },
...

Define a resource type of DeploymentConfig.

Name the DeploymentConfig as myapp.

A configuration change trigger causes a new deployment to be created any time the
replication controller template changes.
An image change trigger causes a new deployment to be created each time a new version of
the myapp:latest image is available in the repository.
Define that the library/myapp:latest container image should be deployed.

Specifies the container ports.

The last item is the service, already covered in previous chapters:

...
{
 "kind": "Service",
 "apiVersion": "v1",
 "metadata": {
 "name": "myapp",
 "creationTimestamp": null,
 "labels": {
 "app": "myapp"

Building an Application with S2I and the CLI

DO180-OCP3.5-en-1-20170524 181

 },
 "annotations": {
 "openshift.io/generated-by": "OpenShiftNewApp"
 }
 },
 "spec": {
 "ports": [
 {
 "name": "8080-tcp",
 "protocol": "TCP",
 "port": 8080,
 "targetPort": 8080
 }
],
 "selector": {
 "app": "myapp",
 "deploymentconfig": "myapp"
 }
 },
 "status": {
 "loadBalancer": {}
 }
 }
]
}

Note
By default, no route is created by the oc new-app command. A route can be created
after the application creation. However, a route is automatically created when using the
web console because it uses a template.

After creating a new application, the build process starts. See a list of application builds with oc
get builds:

$ oc get builds
NAME TYPE FROM STATUS STARTED DURATION
myapp-1 Source Git@59d3066 Complete 3 days ago 2m13s

OpenShift allows to viewing of the build logs. The following command shows the last few lines of
the build log:

$ oc logs build/myapp-1

Warning
If the build is not Running yet, or the s2i-build pod has not been deployed yet, the
above command throws an error. Just wait a few moments and retry it.

Trigger a new builder with the oc start-build build_config_name command:

$ oc get buildconfig
NAME TYPE FROM LATEST
myapp Source Git 1

Chapter 6. Deploying Containerized Applications on OpenShift

182 DO180-OCP3.5-en-1-20170524

$ oc start-build myapp
build "myapp-2" started

Relationship Between BuildConfig and
DeploymentConfig
The BuildConfig pod is responsible for creating the images in OpenShift and pushing them to
the internal Docker registry. Any source code or content update normally requires a new build to
guarantee the image is updated.

The DeploymentConfig pod is responsible for deploying pods into OpenShift. The outcome from
a DeploymentConfig pod execution is the creation of pods with the images deployed in the
internal docker registry. Any existing running pod may be destroyed, depending on how the
DeploymentConfig is set.

The BuildConfig and DeploymentConfig resources do not interact directly. The BuildConfig
creates or updates a container image. The DeploymentConfig reacts to this new image or
updated image event and creates pods from the container image.

References
Additional information about S2I builds is available in the Core Concepts section of the
OpenShift Container Platform documentation:

Architecture
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/
html/architecture/

Additional information about the S2I build process is available in the OpenShift
Container Platform documentation:

Developer Guide
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/
html/developer_guide/

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html/architecture/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html/architecture/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html/developer_guide/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html/developer_guide/

Guided Exercise: Creating a Containerized Application with Source-to-Image

DO180-OCP3.5-en-1-20170524 183

Guided Exercise: Creating a Containerized
Application with Source-to-Image

In this exercise, you will explore a Source-to-Image container, build an application from source
code, and deploy the application on an OpenShift cluster.

Resources

Files: /home/student/DO180/labs/s2i

Application URL: N/A

Outcomes

You should be able to:

• Describe the layout of a Source-to-Image container and the scripts used to build and run an
application within the container.

• Build an application from source code using the OpenShift command line interface.

• Verify the successful deployment of the application using the OpenShift command line
interface.

Before you begin

Retrieve the lab files and verify that Docker and OpenShift are up and running, by executing the
lab script:

[student@workstation ~]$ lab s2i setup
[student@workstation ~]$ cd ~/DO180/labs/s2i

Steps

1. Examine the source code for the PHP version 5.6 Source-to-Image container.

1.1. Use the tree command to review the files that make up the container image:

[student@workstation s2i]$ tree s2i-php-container/5.6
s2i-php-container/5.6
├── cccp.yml
├── contrib
│ └── etc
│ ├── conf.d
│ │ ├── 00-documentroot.conf.template
│ │ └── 50-mpm-tuning.conf.template
│ ├── httpdconf.sed
│ ├── php.d
│ │ └── 10-opcache.ini.template
│ ├── php.ini.template
│ └── scl_enable
├── Dockerfile
├── Dockerfile.rhel7
├── README.md
├── s2i
│ └── bin
│ ├── assemble
│ ├── run
│ └── usage

Chapter 6. Deploying Containerized Applications on OpenShift

184 DO180-OCP3.5-en-1-20170524

└── test
 ├── run
 └── test-app
 ├── composer.json
 └── index.php

1.2. Review the s2i-php-container/5.6/s2i/bin/assemble script. Note how it moves
the PHP source code from the /tmp/src/ directory to the container working directory
near the top of the script. The OpenShift Source-to-Image process executes the git
clone command on the Git repository that is provided when the application is built
using the oc new-app command or the web console. The remainder of the script
supports retrieving PHP packages that your application names as requirements, if any.

1.3. Review the s2i-php-container/5.6/s2i/bin/run script. This script is executed
as the command (CMD) for the PHP container built by the Source-to-Image process. It
is responsible for setting up and running the Apache HTTP service which executes the
PHP code in response to HTTP requests.

1.4. Review the s2i-php-container/5.6/Dockerfile.rhel7 file. This Dockerfile
builds the base PHP Source-to-Image container. It installs PHP and Apache HTTP Server
from the Red Hat Software Collections Library, copies the Source-to-Image scripts
you examined in earlier steps to their expected location, and modifies files and file
permissions as needed to run on an OpenShift cluster.

2. Login to OpenShift and create a new project named s2i:

[student@workstation s2i]$ oc login -u developer https://ocp.lab.example.com:8443
Logged into "https://172.25.250.11:8443" as "developer" using existing credentials.
...
[student@workstation s2i]$ oc new-project s2i
Now using project "s2i" on server "https://172.25.250.11:8443".
...

Your current project may differ. You may also be asked to login. If so, the password is
developer.

3. Create a new PHP application using Source-to-Image from the Git repository at http://
infrastructure.lab.example.com/php-helloworld.

3.1. Use the oc new-app command to create the PHP application.

Important
The following example has been split into two lines for printing, type the entire
command on one line.

[student@workstation s2i]$ oc new-app \
 php:5.6~http://infrastructure.lab.example.com/php-helloworld

3.2. Wait for the build to complete and the application to deploy. Review the resources that
were built for you by the oc new-app command. Examine the buildconfig resource
created using oc describe:

DO180-OCP3.5-en-1-20170524 185

[student@workstation s2i]$ oc get pods -w # wait for build/deploy
...
Ctrl+C
[student@workstation s2i]$ oc describe bc/php-helloworld
Name: php-helloworld
Namespace: s2i
Created: 2 minutes ago
Labels: app=php-helloworld
Annotations: openshift.io/generated-by=OpenShiftNewApp
Latest Version: 1

Strategy: Source
URL: http://infrastructure.lab.example.com/php-helloworld
From Image: ImageStreamTag openshift/php:5.6
Output to: ImageStreamTag php-helloworld:latest
...
Build Status Duration Creation Time
php-helloworld-1 complete 3s 2017-04-09 17:18:29 +0000 UTC

The last part of the display gives the build history for this application. So far, there has
been only one build and that build completed successfully.

3.3. Examine the build log for this build. Use the build name given in the listing above and
add -build to the name to create the pod name for this build, php-helloworld-1-
build.

[student@workstation s2i]$ oc logs php-helloworld-1-build
Cloning "http://infrastructure.lab.example.com/php-helloworld" ...
 Commit: ecb93d1e41f2eb8f9a0ba59c1317ec998be17c0f (change test)
 Author: Jim Rigsbee <jrigsbee@redhat.com>
 Date: Sat Apr 8 23:49:21 2017 +0000
---> Installing application source...
Pushing image 172.30.7.74:5000/s2i/php-helloworld:latest ...
Pushed 0/9 layers, 1% complete
Pushed 1/9 layers, 11% complete
Push successful

Notice the clone of the Git repository as the first step of the build. Next, the Source-to-
Image process built a new container called s2i/php-helloworld:latest. The last
step in the build process is to push this container to the OpenShift private registry.

3.4. Review the deploymentconfig for this application:

[student@workstation s2i]$ oc describe dc/php-helloworld
Name: php-helloworld
Namespace: s2i
Created: 12 minutes ago
Labels: app=php-helloworld
Annotations: openshift.io/generated-by=OpenShiftNewApp
Latest Version: 1
Selector: app=php-helloworld,deploymentconfig=php-helloworld
Replicas: 1
Triggers: Config, Image(php-helloworld@latest, auto=true)
Strategy: Rolling
Template:
 Labels: app=php-helloworld
 deploymentconfig=php-helloworld
...

Chapter 6. Deploying Containerized Applications on OpenShift

186 DO180-OCP3.5-en-1-20170524

 Containers:
 php-helloworld:
 Image: 172.30.7.74:5000/s2i/php-helloworld...
 Port: 8080/TCP
 Volume Mounts: <none>
 Environment Variables: <none>
 No volumes.

Deployment #1 (latest):
 Name: php-helloworld-1
 Created: 11 minutes ago
 Status: Complete
 Replicas: 1 current / 1 desired
 Selector: app=php-helloworld,deployment=php-helloworld-1,
 deploymentconfig=php-helloworld
 Labels: app=php-helloworld,
 openshift.io/deployment-config.name=php-helloworld
 Pods Status: 1 Running / 0 Waiting / 0 Succeeded / 0 Failed
...

3.5. Review the service for this application:

[student@workstation s2i]$ oc describe svc/php-helloworld
Name: php-helloworld
Namespace: s2i
Labels: app=php-helloworld
Selector: app=php-helloworld,deploymentconfig=php-helloworld
Type: ClusterIP
IP: 172.30.161.172
Port: 8080-tcp 8080/TCP
Endpoints: 172.17.0.4:8080
Session Affinity: None
No events.

3.6. Test the application by sending it an HTTP GET request (replace this IP address with the
one shown in your service listing):

[student@workstation s2i]$ ssh student@ocp curl -s 172.30.161.172:8080
Hello, World! php version is 5.6.25

4. Explore starting application builds by changing the application in its Git repository and
executing the proper commands to start a new Source-to-Image build.

4.1. Clone the project locally using git:

[student@workstation s2i]$ git clone \
http://infrastructure.lab.example.com/php-helloworld
Cloning into 'php-helloworld'...
remote: Counting objects: 9, done.
remote: Compressing objects: 100% (6/6), done.
remote: Total 9 (delta 1), reused 0 (delta 0)
Unpacking objects: 100% (9/9), done.
[student@workstation s2i]$ cd php-helloworld

4.2. Edit the index.php file and make the contents look like this:

<?php
print "Hello, World! php version is " . PHP_VERSION . "\n";

DO180-OCP3.5-en-1-20170524 187

print "A change is a coming!\n";
?>

Save the file.

4.3. Commit the changes and push the code back to the remote Git repository:

[student@workstation php-helloworld]$ git add .
[student@workstation php-helloworld]$ git commit -m \
'Changed index page contents.'
[master eb438ba] Changed index page contents.
 1 file changed, 1 insertion(+), 1 deletion(-)
[student@workstation php-helloworld]$ git push origin master
...
Counting objects: 5, done.
Delta compression using up to 2 threads.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 287 bytes | 0 bytes/s, done.
Total 3 (delta 1), reused 0 (delta 0)
To http://infrastructure.lab.example.com/php-helloworld
 ecb93d1..eb438ba master -> master
[student@workstation php-helloworld]$ cd ..

4.4. Start a new Source-to-Image build process and wait for it to build and deploy:

[student@workstation s2i]$ oc start-build php-helloworld
build "php-helloworld-2" started
[student@workstation s2i]$ oc get pods -w
...
NAME READY STATUS RESTARTS AGE
php-helloworld-1-build 0/1 Completed 0 33m
php-helloworld-2-2n70q 1/1 Running 0 1m
php-helloworld-2-build 0/1 Completed 0 1m
^C

4.5. Test that your changes are served by the application:

[student@workstation s2i]$ ssh student@ocp curl -s 172.30.161.172:8080
Hello, World! php version is 5.6.25
A change is a coming!

5. Grade the lab:

[student@workstation s2i]$ lab s2i grade
Accessing PHP web application............. SUCCESS

6. Clean up the lab by deleting the OpenShift project, which in turn deletes all the Kubernetes
and OpenShift resources:

[student@workstation s2i]$ oc delete project s2i
project "s2i" deleted

This concludes this guided exercise.

Chapter 6. Deploying Containerized Applications on OpenShift

188 DO180-OCP3.5-en-1-20170524

Creating Routes

Objectives
After completing this section, students should be able to create a route to a service.

Working with Routes
While services allow for network access between pods inside an OCP instance, routes allow for
network access to pods from users and applications outside the OCP instance.

Figure 6.6: OpenShift routes and Kubernetes services

A route connects a public-facing IP address and DNS host name to an internal-facing service IP.
At least, this is the concept. In practice, to improve performance and reduce latency, the OCP
router connects directly to the pods using the internal pod software-defined network (SDN),
using the service only to find the end points, that is, the pods exposed by the service.

Creating Routes

DO180-OCP3.5-en-1-20170524 189

OCP routes are implemented by a shared router service, which runs as pods inside the OCP
instance and can be scaled and replicated like any other regular pod. This router service is based
on the open source software HAProxy.

An important consideration for the OCP administrator is that the public DNS host names
configured for routes need to point to the public-facing IP addresses of the nodes running the
router. Router pods, unlike regular application pods, bind to their nodes' public IP addresses,
instead of to the internal pod SDN.

The following listings shows a minimal route defined using JSON syntax:

{
 "apiVersion": "v1",
 "kind": "Route",
 "metadata": {
 "name": "quoteapp"
 },
 "spec": {
 "host": "quoteapp.cloudapps.example.com",
 "to": {
 "kind": "Service",
 "name": "quoteapp"
 }
 }
}

Starting the route resource, there are the standard, apiVersion, kind, and metadata
attributes. The Route value for kind shows that this is a resource attribute, and the
metadata.name attributes gives this particular route the identifier quoteapp.

As with pods and services, the interesting part is the "spec" attribute, which is an object
containing the following attributes:

• host is a string containing the FQDN name associated with the route. It has to be
preconfigured to resolve to the OCP router IP address.

• to is an object stating the "kind" of resource this route points to, which in this case is an OCP
Service and the "name" of that resource.

Note
Remember the names of different resource types do not collide. It is perfectly legal to
have a route named quoteapp that points to a service also named quoteapp.

Important
Unlike services, which uses selectors to link to pod resources containing specific labels,
a route links directly to the service resource name.

Creating Routes
Route resources can be created like any other OCP resource by providing oc create with a
JSON or YAML resource definition file.

Chapter 6. Deploying Containerized Applications on OpenShift

190 DO180-OCP3.5-en-1-20170524

The oc new-app command does not create a route resource when building a pod from
container images, Dockerfiles, or application source code. After all, oc new-app does not know
if the pod is intended to be accessible from outside the OCP instance or not. When oc new-app
creates a group of pods from a template, nothing prevents the template from including a route
resource as part of the application. The same is true for the web console.

Another way to create a route is to use the oc expose command, passing a service resource
name as the input. The --name option can be used to control the name of the route resource.
For example:

$ oc expose service quotedb --name quote

Routes created from templates or from oc expose generate DNS names of the form:

route-name-project-name.default-domain

Where:

• route-name is the name explicitly assigned to the route, or the name of the originating
resource (template for oc new-app and service for oc expose or from the --name option).

• project-name is the name of the project containing the resource.

• default-domain is configured on the OpenShift master and corresponds to the wildcard DNS
domain listed as prerequisite for installing OCP.

For example, creating route quote in project test from an OCP instance where
the wildcard domain is cloudapps.example.com results in the FQDN quote-
test.cloudapps.example.com.

Insight
The DNS server that hosts the wild-card domain knows nothing about route host
names. It simply resolves any name to the configured IPs. Only the OCP router knows
about route host names, treating each one as an HTTP virtual host. Invalid wildcard
domain host names, that is, host names that do not correspond to any route, will be
blocked by the OCP router and result in an HTTP 404 error.

Finding the Default Domain

The subdomain or, default domain, is defined in the OpenShift configuration file master-
config.yaml in the routingConfig section with the keyword subdomain. For example:

routingConfig:
 subdomain: 172.25.250.254.xip.io

When using the oc cluster up command to run the OpenShift cluster as we do in this course,
this configuration file can be found at /var/lib/origin/openshift.local.config/
master/master-config.yaml.

Creating Routes

DO180-OCP3.5-en-1-20170524 191

References
Additional information about the architecture of routes in OCP is available in the
Routes section of the OpenShift Container Platform documentation:

Architecture
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/
html/architecture/

Additional developer information about routes is available in the Routes section of the
OpenShift Container Platform documentation:

Developer Guide
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/
html/developer_guide

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html/architecture/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html/architecture/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html/developer_guide
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html/developer_guide

Chapter 6. Deploying Containerized Applications on OpenShift

192 DO180-OCP3.5-en-1-20170524

Guided Exercise: Exposing a Service as a Route

In this exercise, you will create, build, and deploy an application on an OpenShift cluster and
expose its service as a route.

Resources

Files: N/A

Application URL: http://xyz-route.cloudapps.lab.example.com

Outcomes

You should be able to expose a service as a route for a deployed OpenShift application.

Before you begin

Retrieve the lab files and verify that Docker and OpenShift are up and running, by executing the
lab script:

[student@workstation ~]$ lab route setup

Steps

1. Login to OpenShift and create a new project named route:

[student@workstation ~]$ oc login -u developer https://ocp.lab.example.com:8443
Logged into "https://ocp.lab.example.com:8443" as "developer" using existing
 credentials.
...
[student@workstation ~]$ oc new-project route
Now using project "route" on server "https://ocp.lab.example.com:8443".

You can add applications to this project with the 'new-app' command. For example,
 try:

 oc new-app centos/ruby-22-centos7~https://github.com/openshift/ruby-ex.git

to build a new example application in Ruby.

You may have to enter credentials for the developer account. The password is
developer. The current project in your command output may differ from the listing above.

2. Create a new PHP application using Source-to-Image from the Git repository at http://
infrastructure.lab.example.com/php-helloworld.

2.1. Use the oc new-app command to create the PHP application.

Important
The following example has been split into two lines for printing. Type the
entire command on one line.

[student@workstation ~]$ oc new-app \
 php:5.6~http://infrastructure.lab.example.com/php-helloworld

DO180-OCP3.5-en-1-20170524 193

2.2. Wait until the application finishes building and deploying by monitoring the progress
with the oc get pods -w command:

[student@workstation ~]$ oc get pods -w
...
^C

2.3. Review the service for this application using oc describe:

[student@workstation ~]$ oc describe svc/php-helloworld
Name: php-helloworld
Namespace: route
Labels: app=php-helloworld
Selector: app=php-helloworld,deploymentconfig=php-helloworld
Type: ClusterIP
IP: 172.30.161.172
Port: 8080-tcp 8080/TCP
Endpoints: 172.17.0.4:8080
Session Affinity: None
No events.

The IP address displayed in the output of the command may differ.

3. Expose the service creating a route with a default name and fully qualified domain name
(FQDN):

[student@workstation ~]$ oc expose svc/php-helloworld
route "php-helloworld" exposed
[student@workstation ~]$ oc get route
NAME HOST/PORT PATH SERVICES

 PORT TERMINATION
php-helloworld php-helloworld-route.cloudapps.lab.example.com php-
helloworld
 8080-tcp
[student@workstation ~]$ curl php-helloworld-route.cloudapps.lab.example.com

Notice the FQDN is comprised of the application name and project name by default. The
remainder of the FQDN, the subdomain, is defined when OpenShift is installed. Use curl to
verify that the application can be accessed with its route address.

4. Replace this route with a route named xyz.

4.1. Delete the current route:

[student@workstation ~]$ oc delete route/php-helloworld
route "php-helloworld" deleted

4.2. Expose the service creating a route named xyz:

[student@workstation ~]$ oc expose svc/php-helloworld --name=xyz
route "xyz" exposed
[student@workstation ~]$ oc get route
NAME HOST/PORT PATH SERVICES

Chapter 6. Deploying Containerized Applications on OpenShift

194 DO180-OCP3.5-en-1-20170524

 PORT TERMINATION
xyz xyz-route.cloudapps.lab.example.com php-helloworld
 8080-tcp

Note the new FQDN that was generated.

4.3. Make an HTTP request using the FQDN on port 80:

[student@workstation ~]$ curl xyz-route.cloudapps.lab.example.com
Hello, World! php version is 5.6.25
A change is a coming!

Note
The output of the PHP application will be different if you did not complete the
previous exercise in this chapter.

5. Grade your lab progress:

[student@workstation ~]$ lab route grade
Accessing PHP web application............. SUCCESS

6. Clean up the lab environment by deleting the project:

[student@workstation ~]$ oc delete project route
project "route" deleted

This concludes this guided exercise.

Creating Applications with the OpenShift Web Console

DO180-OCP3.5-en-1-20170524 195

Creating Applications with the OpenShift Web
Console

Objectives
After completing this section, students should be able to:

• Create an application with the OpenShift web console.

• Examine resources for an application.

• Manage and monitor the build cycle of an application.

Accessing the OpenShift Web Console
The OpenShift web console allows a user to execute many of the same tasks as the OpenShift
command line. Projects can be created, applications created within those projects, and
application resources examined and manipulated as needed.

Accessing the Web Console

The web console runs in a web browser. The URL is of the format https://{hostname of
OCP master}:8443/console. By default, OpenShift generates a self-signed certificate
for the web console. The user must trust this certificate in order to gain access. The console
requires authentication. In a cluster started by the oc cluster up command, the user name
developer is created with a password of developer. The URL of the web console can be
retrieved by issuing this command:

$ oc cluster status
The OpenShift cluster was started 4 minutes ago

Web console URL: https://workstation.lab.example.com:8443
...

Managing Projects

Upon successful login, the user may select, edit, delete, and create projects on the home
page. Once a project is selected, the user is taken to the Overview page which shows all of the
applications created within that project space.

Application Overview Page

The application overview page is the heart of the web console.

Chapter 6. Deploying Containerized Applications on OpenShift

196 DO180-OCP3.5-en-1-20170524

Figure 6.7: Application overview page

From this page, the user can view the route, build, service, and deployment information.
The scale tool (arrows) can be used to increase and decrease the number of replicas of the
application that are running in the cluster. All of the hyperlinks lead to detailed information
about that particular application resource including the ability to manipulate that resource. For
example, clicking on the link for the build allows the user to start a new build.

Creating New Applications
The user can select the Add to Project link to create a new application. The user can create
an application using a template (Source-to-Image), deploy an existing image, and define a new
application by importing YAML or JSON formatted resources. Once an application has been
created with one of these three methods, it can be managed on the overview page.

Other Web Console Features
The web console allows the user to:

• Manage resources such as project quotas, user membership, secrets, and a other advanced
resources.

• Create persistent volume claims.

• Monitor builds, deployments, pods, and system events.

• Create continuous integration and deployment pipelines with Jenkins.

Guided Exercise: Creating an Application with the Web Console

DO180-OCP3.5-en-1-20170524 197

Guided Exercise: Creating an Application with
the Web Console

In this exercise, you will create, build, and deploy an application on an OpenShift cluster using the
OpenShift Web Console.

Resources

Files: N/A

Application URL: http://php-helloworld-
console.cloudapps.lab.example.com

Outcomes

You should be able to create, build, and deploy an application on an OpenShift cluster using the
web console.

Before you begin

Get the lab files by executing the lab script:

[student@workstation ~]$ lab console setup

The lab setup script makes sure that the OpenShift cluster is running.

Steps

1. Access the OpenShift Web Console via a browser. Log in and create a new project.

1.1. Find the web console address:

[student@workstation ~]$ ssh student@ocp oc cluster status
The OpenShift cluster was started 4 minutes ago

Web console URL: https://ocp.lab.example.com:8443
...

1.2. Enter the web console URL in the browser and trust the self-signed certificate
generated by OpenShift when the cluster was established with the oc cluster
up command. The cluster generates certificates every time it is started with a new
configuration store. In this course, the cluster uses a persistent configuration store at /
var/lib/origin. You should only have to trust this certificate once.

1.3. Login with developer as the user name and developer as the password.

Chapter 6. Deploying Containerized Applications on OpenShift

198 DO180-OCP3.5-en-1-20170524

Figure 6.8: Web console login

1.4. Create a new project named console. You may type any values you wish in the other
fields.

Figure 6.9: Create a new project - step 1

Figure 6.10: Create a new project - step 2

2. Create the new php-helloworld application with a PHP template.

2.1. Select the PHP Template.

DO180-OCP3.5-en-1-20170524 199

Figure 6.11: Select the PHP template

2.2. Select PHP version 5.6.

Figure 6.12: Select PHP version 5.6

2.3. Enter php-helloworld as the name for the application and the location of the
source code git repository: http://infrastructure.lab.example.com/php-
helloworld.

Chapter 6. Deploying Containerized Applications on OpenShift

200 DO180-OCP3.5-en-1-20170524

Figure 6.13: PHP application details

2.4. On the confirmation page, click on the Continue to overview link.

Figure 6.14: Application created confirmation page

3. Explore application components from the Overview page. The build may still be running
when you reach this page, so the build section may look slightly different from the image
below.

DO180-OCP3.5-en-1-20170524 201

Figure 6.15: Application overview page

3.1. Identify the components of the application and their corresponding OpenShift and
Kubernetes resources.

• Route URL

Clicking on this link opens a browser tab to view your application.

• Build

Clicking on the relevant links show the build configuration, specific build information,
and build log.

• Service

Clicking on the relevant link shows the service configuration.

• Deployment Configuration

Clicking on the relevant links show the deployment configuration and current
deployment information.

• Scale Tool

Clicking on the up arrow will increase the number of running pods. Clicking on the
down arrow decreases the number of running pods.

3.2. Examine the build log. In the build section of the Overview page, click the View Log link
to view the build log. Return to the Overview page by clicking Overview in the left-hand
menu.

Chapter 6. Deploying Containerized Applications on OpenShift

202 DO180-OCP3.5-en-1-20170524

3.3. Examine the deployment configuration. Click on the php-helloworld link beside the label
Deployment Config. Examine the information and features on this page and return to
the Overview page.

3.4. Examine the service configuration. Click on the php-helloworld link in the service
section. See the circled number 3 in the previous image. Examine the service
configuration page and return to the Overview page.

3.5. Click on the route link to view the application output in a new browser tab. This is the
URL under the title of the application (near the top).

4. Modify the application code, commit the change, push the code to the remote Git repository,
and trigger a new application build.

4.1. Clone the Git repository:

[student@workstation ~]$ git clone \
http://infrastructure.lab.example.com/php-helloworld
Cloning into 'php-helloworld'...
remote: Counting objects: 12, done.
remote: Compressing objects: 100% (8/8), done.
remote: Total 12 (delta 2), reused 0 (delta 0)
Unpacking objects: 100% (12/12), done.
[student@workstation ~]$ cd php-helloworld

4.2. Change or add the second print line statement in the index.php page to read "A
change is in the air!" and save the file. Add the change to the Git index, commit the
change, and push the changes to the remote Git repository.

[student@workstation php-helloworld]$ git add index.php
[student@workstation php-helloworld]$ git commit -m 'updated app'
[master d198fb5] updated app
 1 file changed, 1 insertion(+), 1 deletion(-)
[student@workstation console]$ git push origin master
Counting objects: 5, done.
Delta compression using up to 2 threads.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 286 bytes | 0 bytes/s, done.
Total 3 (delta 1), reused 0 (delta 0)
To http://infrastructure.lab.example.com/php-helloworld
 eb438ba..d198fb5 master -> master

4.3. Trigger an application build manually from the web console.

Navigate to the build page from the Overview page by clicking on php-helloworld in the
build section. Click the upper-right menu, and select Start Build. Wait for the build to
complete. Examine the build log on the build page or the Overview page to determine
when the build completes.

DO180-OCP3.5-en-1-20170524 203

Figure 6.16: Start a new application build

4.4. Use the route link on the Overview page to verify that your code change was deployed.

5. Grade your work:

[student@workstation php-helloworld]$ lab console grade
Accessing PHP web application............. SUCCESS

6. Delete the project. Click the home icon to go back to the list of projects. Click the trash can
icon and enter the name of the project to confirm its deletion.

Figure 6.17: Delete the project

This concludes this guided exercise.

Chapter 6. Deploying Containerized Applications on OpenShift

204 DO180-OCP3.5-en-1-20170524

Lab: Deploying Containerized Applications on
OpenShift

In this lab, you will create an application using the OpenShift Source-to-Image facility.

Resources

Files: N/A

Application URL: http://temps-ocp.cloudapps.lab.example.com

Outcomes

You should be able to create an OpenShift application and access it through a web browser.

Before you begin

Get the lab files by executing the lab script:

[student@workstation ~]$ lab openshift setup

Steps

1. Login as developer and create the project ocp.

2. Create a temperature converter application written in PHP using the php:5.6
image stream tag. The source code is in the Git repository at http://
infrastructure.lab.example.com/temps. You may use the OpenShift command line
interface or the web console to create the application. Make sure a route is created so that
you can access the application from a web browser.

3. Test the application in a web browser using the route URL.

4. Grade your work:

[student@workstation openshift]$ lab openshift grade
Accessing PHP web application............. SUCCESS

5. Delete the application.

Solution

DO180-OCP3.5-en-1-20170524 205

Solution

In this lab, you will create an application using the OpenShift Source-to-Image facility.

Resources

Files: N/A

Application URL: http://temps-ocp.cloudapps.lab.example.com

Outcomes

You should be able to create an OpenShift application and access it through a web browser.

Before you begin

Get the lab files by executing the lab script:

[student@workstation ~]$ lab openshift setup

Steps

1. Login as developer and create the project ocp.

Issue the following commands:

[student@workstation openshift]$ oc login -u developer \
https://ocp.lab.example.com:8443
[student@workstation openshift]$ oc new-project ocp

2. Create a temperature converter application written in PHP using the php:5.6
image stream tag. The source code is in the Git repository at http://
infrastructure.lab.example.com/temps. You may use the OpenShift command line
interface or the web console to create the application. Make sure a route is created so that
you can access the application from a web browser.

If using the command line interface, issue the following commands:

[student@workstation openshift]$ oc new-app \
 php:5.6~http://infrastructure.lab.example.com/temps
[student@workstation openshift]$ oc logs -f bc/temps # wait until build is
 successful
[student@workstation openshift]$ oc get pods -w # wait until pod is deployed
[student@workstation openshift]$ oc expose svc/temps

3. Test the application in a web browser using the route URL.

Discover the URL for the route.

[student@workstation openshift]$ oc get route/temps

4. Grade your work:

[student@workstation openshift]$ lab openshift grade
Accessing PHP web application............. SUCCESS

Chapter 6. Deploying Containerized Applications on OpenShift

206 DO180-OCP3.5-en-1-20170524

5. Delete the application.

There are two solutions:

[student@workstation openshift]$ oc delete all -l app=temps

or

[student@workstation openshift]$ oc delete project ocp

Summary

DO180-OCP3.5-en-1-20170524 207

Summary

In this chapter, you learned:

• The OpenShift command line client oc is used to perform the following tasks in an OCP cluster:

◦ Logging in and out of an OCP cluster.

◦ Creating, changing, and deleting projects.

◦ Creating applications inside a project, including creating a deployment configuration from
a container image, or a build configuration from application source and all associated
resources.

◦ Creating, deleting, inspecting, editing, and exporting individual resources such as pods,
services, and routes inside a project.

◦ Scaling applications.

◦ Starting new deployments and builds.

◦ Checking logs from application pods, deployments, and build operations.

• The OpenShift Platform organizes entities in the OCP cluster as objects stored on the master
node. These are collectively known as resources. The most common ones are:

◦ Pod

◦ Label

◦ Persistent Volume (PV)

◦ Persistent Volume Claim (PVC)

◦ Service

◦ Route

◦ Replication Controller (RC)

◦ Deployment Configuration (DC)

◦ Build Configuration (BC)

◦ Project

• The oc new-app command can create application pods to run on OCP in many different ways.
It can create pods from existing Docker images, from Dockerfiles, and from raw source code
using the Source-to-Image (S2I) process.

• Source-to-Image (S2I) is a facility that makes it easy to build a container image from
application source code. This facility takes an application's source code from a Git server,
injects the source code into a base container based on the language and framework desired,
and produces a new container image that runs the assembled application.

Chapter 6. Deploying Containerized Applications on OpenShift

208 DO180-OCP3.5-en-1-20170524

• A Route connects a public-facing IP address and DNS host name to an internal-facing service
IP. While services allow for network access between pods inside an OCP instance, routes allow
for network access to pods from users and applications outside the OCP instance.

• You can create, build, deploy and monitor applications using the OCP web console.

DO180-OCP3.5-en-1-20170524 209

TRAINING

CHAPTER 7

DEPLOYING MULTI-CONTAINER
APPLICATIONS

Overview

Goal Deploy applications that are containerized using multiple
container images.

Objectives • Describe the considerations for containerizing
applications with multiple container images.

• Deploy a multi-container application with Docker link.

• Deploy a multi-container application on OpenShift using a
template.

Sections • Considerations for Multi-Container Applications (and Quiz)

• Deploying a Multi-Container Application with Docker (and
Guided Exercise)

• Deploying a Multi-Container Application on OpenShift (and
Guided Exercise)

Lab • Deploying Multi-Container Applications

Chapter 7. Deploying Multi-Container Applications

210 DO180-OCP3.5-en-1-20170524

Considerations for Multi-Container
Applications

Objectives
After completing this section, students should be able to:

• Describe considerations for containerizing applications with multiple container images.

• Inject environment variables into a container.

• Describe the architecture of the To Do List application.

Discovering Services in a Multi-Container Application
Due to the dynamic nature of container IP addresses, applications cannot rely on either fixed
IP addresses or fixed DNS host names to communicate with middleware services and other
application services. Containers with dynamic IP addresses can become a problem when working
with multi-container applications in which each container must be able to find the others, to use
the services on which it depends.

For example, there is an application which is composed of a front-end container, a back-end
container, and a database. The front-end container needs to know the IP address of the back-
end container. Similarly, the back-end container needs to know the IP address of the database
container. Additionally, the IP address could change if a container was to be restarted, so a
process is needed to ensure any change in IP triggers an update to existing containers.

Both Docker and Kubernetes provide potential solutions to the issue of service discoverability
and the dynamic nature of container networking, some of these solutions will be covered later in
the section.

Injecting Environment Variables into a Docker
Container
It is a well-known recommended practice to parameterize application connection information to
outside services, and one common way to do that is using operating system (OS) environment
variables. The docker command provides a few options for interacting with container
environment variables:

• The docker run command provides the -e option to define environment variables when
starting a container, and this could be used to pass parameters to an application such as a
database server IP address or user credentials. The -e option can be used multiple times to
define more than one environment variable for the same container.

• The docker inspect command can be used to check a running container for environment
variables specified either when starting the container or defined by the container image
Dockerfile instructions. But it does not show environment variables inherited by the
container by the OS or defined by shell scripts inside the image.

• The docker exec command can be used to inspect all environment variables known to a
running container using regular shell commands. For example:

Comparing Plain Docker and Kubernetes

DO180-OCP3.5-en-1-20170524 211

$ docker exec mysql env | grep MYSQL

Additionally, the Dockerfile for a container image may contain instructions related for
managing the container environment. Using the ENV instruction, you can define an environment
variable that is available to the container:

ENV MYSQL_ROOT_PASSWORD="my_password"
ENV MYSQL_DATABASE="my_database"

It is recommended to declare all environment variables using only one ENV instruction to avoid
creating multiple layers:

ENV MYSQL_ROOT_PASSWORD="my_password" \
 MYSQL_DATABASE="my_database"

Comparing Plain Docker and Kubernetes
Even though using environment variables to share information between containers with Docker
makes service discovery technically possible, there are still some limitations, and lots of manual
work involved in ensuring that all environment variables stay in sync, especially when you are
working with many containers. Kubernetes provides an approach to solve this problem when you
create services for your containers as covered in previous chapters.

Pods are attached to a Kubernetes namespace, which OpenShift calls a project. When a pod
starts, Kubernetes automatically adds a set of environment variables for each service defined on
the same namespace.

Any service defined on Kubernetes generates environment variables for the IP address and
port number where the service is available. Kubernetes automatically injects these environment
variables into the containers from pods in the same namespace. These environment variables
ordinarily follow a convention:

• Uppercase: All environment variables are set using uppercase names.

• Words separated with underscore: Any environment variable created by a service normally are
created with multiple words and they are separated with a underscore (_).

• Service name first: The first word for an environment variable created by a service is the
service name.

• Protocol type: Most network environment variables will be declared with the protocol type (TCP
or UDP).

These are the environment variables generated by Kubernetes for a service:

• <SERVICE_NAME>_SERVICE_HOST: Represents the IP address enabled by a service to access
a pod.

• <SERVICE_NAME>_SERVICE_PORT: Represents the port where the server port will be listed.

• <SERVICE_NAME>_PORT: Represents the address, port, and protocol provided by the service
for external access.

Chapter 7. Deploying Multi-Container Applications

212 DO180-OCP3.5-en-1-20170524

• <SERVICE_NAME>_PORT_<PORT_NUMBER>_<PROTOCOL>: Alias for the
<SERVICE_NAME>_PORT.

• <SERVICE_NAME>_PORT_<PORT_NUMBER>_<PROTOCOL>_PROTO: Identifies the protocol
type (TCP or UDP).

• <SERVICE_NAME>_PORT_<PORT_NUMBER>_<PROTOCOL>_PORT: Alias for the
<SERVICE_NAME>_SERVICE_PORT.

• <SERVICE_NAME>_PORT_<PORT_NUMBER>_<PROTOCOL>_ADDR: Alias for the
<SERVICE_NAME>_SERVICE_HOST.

Notice the variables following the convention <SERVICE_NAME>_PORT_* emulate the variables
created by docker for linked containers.

For instance, if the following service is deployed on Kubernetes:

apiVersion: v1
kind: Service
metadata:
 labels:
 name: mysql
 name: mysql
spec:
 ports:
 - protocol: TCP
 - port: 3306
 selector:
 name: mysql

The following environment variables are available for each pod created after the service, on the
same namespace:

MYSQL_SERVICE_HOST=10.0.0.11
MYSQL_SERVICE_PORT=3306
MYSQL_PORT=tcp://10.0.0.11:3306
MYSQL_PORT_3306_TCP=tcp://10.0.0.11:3306
MYSQL_PORT_3306_TCP_PROTO=tcp
MYSQL_PORT_3306_TCP_PORT=3306
 MYSQL_PORT_3306_TCP_ADDR=10.0.0.11

Note
If no protocol is provided, Kubernetes will consider a TCP port.

Examining the To Do List Application
Many labs from this course are based on a To Do List application. This application is architected
in three tiers as illustrated by the following figure:

Examining the To Do List Application

DO180-OCP3.5-en-1-20170524 213

Figure 7.1: To Do List application logical architecture

• The presentation tier is built as a single-page HTML5 front end using AngularJS.

• The business tier is built as an HTTP API back end, with Node.js.

• Persistence tier is based on a MySQL database server.

The following figure is a screen capture of the application web interface.

Chapter 7. Deploying Multi-Container Applications

214 DO180-OCP3.5-en-1-20170524

Figure 7.2: To Do List application screen shot

On the left is a table with items to do, and on the right a form to add a new item or change an
existing item.

The classroom materials server provides the application in two versions:

• One represents how a typical developer would create the application as a single unit, without
caring to break it into tiers or services. Its sources are available at:

http://materials.example.com/todoapp/apps/nodejs

• The other shows the changes needed to break the application presentation and business tiers
so they can be deployed into different containers. Its sources are available at:

http://materials.example.com/todoapp/apps/nodejs_api

Quiz: Multi-Container Application Considerations

DO180-OCP3.5-en-1-20170524 215

Quiz: Multi-Container Application
Considerations

Choose the correct answer(s) to the following questions:

1. Why is it difficult for Docker containers to communicate with each other?

a. There is no connectivity between containers using the default Docker networking.
b. The container's firewall must always be disabled in order to enable intra-container

communication.
c. Containers use dynamic IP addresses and host names, so it is difficult for

one container to reliably find another container's IP address without explicit
configuration.

d. Containers require a VPN client and server in order to connect to each other.

2. What are three benefits of using a multi-container architecture? (Choose three.)

a. Keeping images as simple as possible by only including a single application or service
in each container provides for easier deployment, maintenance, and administration.

b. The more containers used in an application, the better the performance will be.
c. When using multiple containers for an application, each layer of the app can be scaled

independently of the others, conserving resources.
d. Monitoring, troubleshooting, and debugging are simplified when a container only

provides a single purpose.
e. Applications leveraging multiple containers typically contain fewer defects than those

built inside a single container.

3. How does Kubernetes solve the issue of service discovery using environment variables?

a. Kubernetes automatically propagates all environment variables to all pods to ensure
the need environment variables are available.

b. Controllers are responsible for sharing environment variables between pods.
c. Kubernetes maintains a list of all environment variables and pods can request them as

needed.
d. Kubernetes automatically injects environment variables for all services in a given

namespace into all the pods running on that same namespace.

Chapter 7. Deploying Multi-Container Applications

216 DO180-OCP3.5-en-1-20170524

Solution

Choose the correct answer(s) to the following questions:

1. Why is it difficult for Docker containers to communicate with each other?

a. There is no connectivity between containers using the default Docker networking.
b. The container's firewall must always be disabled in order to enable intra-container

communication.
c. Containers use dynamic IP addresses and host names, so it is difficult for

one container to reliably find another container's IP address without explicit
configuration.

d. Containers require a VPN client and server in order to connect to each other.

2. What are three benefits of using a multi-container architecture? (Choose three.)

a. Keeping images as simple as possible by only including a single application or
service in each container provides for easier deployment, maintenance, and
administration.

b. The more containers used in an application, the better the performance will be.
c. When using multiple containers for an application, each layer of the app can be

scaled independently of the others, conserving resources.
d. Monitoring, troubleshooting, and debugging are simplified when a container only

provides a single purpose.
e. Applications leveraging multiple containers typically contain fewer defects than those

built inside a single container.

3. How does Kubernetes solve the issue of service discovery using environment variables?

a. Kubernetes automatically propagates all environment variables to all pods to ensure
the need environment variables are available.

b. Controllers are responsible for sharing environment variables between pods.
c. Kubernetes maintains a list of all environment variables and pods can request them as

needed.
d. Kubernetes automatically injects environment variables for all services in a given

namespace into all the pods running on that same namespace.

Deploying a Multi-Container Application with Docker

DO180-OCP3.5-en-1-20170524 217

Deploying a Multi-Container Application with
Docker

Objectives
After completing this section, students should be able to:

• Deploy a multi-container application with Docker link.

• Describe how environment variables are shared between linked containers.

Using Docker Linking to Share Environment Variables
Between Containers
Environment variables should be enough to start an application composed of multiple containers.
However, this is not a completely sufficient solution because:

• It is very easy to make mistakes when passing multiple -e options to the docker run
command, and frequently multiple containers need the same environment variables to match
exactly.

• It is still not possible for one container to get the IP address of another container, for example,
an application container that needs to connect to a database container.

The linked containers feature from Docker solves both issues. It automatically copies
all environment variables defined within a container to another container. It also defines
environment variables based on the other container IP address and exposed ports.

Using linked containers is done by simply adding the option --link container:alias to the
docker run command. For example, to link to a container named mysql using the db alias, the
command would be:

$ docker run --link mysql:db --name my_container_name my_image_name

The new container (named my_container_name in the previous example) would then get all
variables defined from the linked container (named mysql in the previous example). Those
variable names are prefixed by DB_ENV_ so that they do not conflict with the new container's
own environment variables.

Note
The alias name uses uppercase to follow shell script conventions for environment
variable names.

For example, the RHSCL MySQL container image from previous chapters defines the variable
MYSQL_USER to provide the database user name with permissions to access the database. Any
application container linked to a database container created from this MySQL image, as in the
previous example, gets a variable named DB_ENV_MYSQL_USER.

Chapter 7. Deploying Multi-Container Applications

218 DO180-OCP3.5-en-1-20170524

The variables providing the container IP address and port follow a different naming convention.
Four variables are created, but just two of them are sufficient for most applications. In the
following example, alias is replaced with the alias given in the --link container:alias
option and the exposed-port refers to the port the linked container exposed with the -p option
when executing docker run:

• {alias}_PORT_{exposed-port}_TCP_ADDR

• {alias}_PORT_{exposed-port}_TCP_PORT

Continuing with the RHSCL MySQL image example, the application container would get the
following variables:

• DB_PORT_3306_TCP_ADDR

• DB_PORT_3306_TCP_PORT

If the linked container exposes multiple ports, each of them generates a set of environment
variables.

Guided Exercise: Linking the Web Application and MySQL Containers

DO180-OCP3.5-en-1-20170524 219

Guided Exercise: Linking the Web Application
and MySQL Containers

In this lab, you will create a script that runs and links a Node.js application container and the
MySQL container.

Resources

Files: /home/student/DO180/labs/linking-containers

Application URL: http://127.0.0.1:30080/todo/

Resources: RHSCL MySQL 5.6 image (rhscl/mysql-56-rhel7)

Custom MySQL 5.6 image (do180/mysql-56-rhel7)

RHEL 7.3 image (rhel7.3)

Custom Node.js 4.0 image (do180/nodejs)

Outcomes

You should be able to link containers to create a multitiered application.

Before you begin

The workstation needs the To Do List application source code and lab files available. To achieve
this goal, in a new terminal window run the following command:

[student@workstation ~]$ lab linking-containers setup

1. Build the MySQL image.

A custom MySQL 5.6 image is used for this exercise. It is configured to automatically run any
scripts in /var/lib/mysql/init directory, in order to load the schema and some sample
data into the database for the To Do List application on container start up.

1.1. Review the Dockerfile.

Using your preferred editor, open and examine the completed Dockerfile located
at /home/student/DO180/labs/linking-containers/images/mysql/
Dockerfile.

1.2. Build the MySQL database image.

Examine the /home/student/DO180/labs/linking-containers/images/
mysql/build.sh script to see how the image is built. To build the base image, run the
build.sh script:

[student@workstation images]$ cd ~/DO180/labs/linking-containers/images/
[student@workstation images]$ cd mysql
[student@workstation nodejs]$./build.sh

1.3. Wait for the build to complete, and then run the following command to verify the image
built successfully:

Chapter 7. Deploying Multi-Container Applications

220 DO180-OCP3.5-en-1-20170524

[student@workstation mysql]$ docker images
REPOSITORY TAG
 IMAGE ID CREATED SIZE
do180/mysql-56-rhel7 latest
 5eb10a245ff7 About a minute ago 366.3 MB
infrastructure.lab.example.com:5000/rhscl/httpd-24-rhel7 latest
 533e496998ca 5 weeks ago 438 MB
...

2. Build the To Do List application parent image using the Node.js Dockerfile.

2.1. Review the Dockerfile.

Using your preferred editor, open and examine the completed Dockerfile located
at /home/student/DO180/labs/linking-containers/images/nodejs/
Dockerfile.

Notice the following instructions defined in the Dockerfile:

• Two environment variables, NODEJS_VERSION and HOME, are defined using the ENV
command.

• A custom yum repo pointing to the local offline repository is added using the ADD
command.

• Packages necessary for Node.js are installed with yum using the RUN command.

• A new user and group is created to run the Node.js application along with the app-
root directory using the RUN command.

• The enable-rh-nodejs4.sh script is added to /etc/profile.d/ to run
automatically on login using the ADD command.

• The USER command is used to switch to the newly created appuser

• The WORKDIR command is used to switch to the $HOME directory for application
execution.

• The ONBUILD command is used to define actions which should be run when any
child container image is built from this image. In this case, the COPY command copies
the run.sh file and the build directory into $HOME and the RUN command runs
scl enable rh-nodejs4 as well as npm install. The npm install has a local
Node.js module registry specified to override the default behavior of using http://
npmjs.registry.org to download the dependent node modules, so that the node
application can be built without accessing the internet.

2.2. Build the Parent image.

Examine the /home/student/DO180/labs/linking-containers/images/
nodejs/build.sh script to see how the image is built. To build the base image, run
the build.sh script:

[student@workstation images]$ cd ~/DO180/labs/linking-containers/images/
[student@workstation images]$ cd nodejs

DO180-OCP3.5-en-1-20170524 221

[student@workstation nodejs]$./build.sh

2.3. Wait for the build to complete, and then run the following command to verify that the
image built successfully:

[student@workstation nodejs]$ docker images
REPOSITORY TAG
 IMAGE ID CREATED SIZE
do180/nodejs latest
 8587efed5e92 About a minute ago 465.7 MB
do180/mysql-56-rhel7 latest
 5eb10a245ff7 9 minutes ago 366.3 MB
infrastructure.lab.example.com:5000/rhscl/httpd-24-rhel7 latest
 533e496998ca 5 weeks ago 438 MB
...

3. Build the To Do App Child Image using the Node.js Dockerfile.

Warning
Execute the following commands because they are creating a different container.

3.1. Review the Dockerfile.

Using your preferred editor, open and examine the completed Dockerfile located
at /home/student/DO180/labs/linking-containers/deploy/nodejs/
Dockerfile.

3.2. Build the Child Image.

Examine the /home/student/DO180/labs/linking-containers/deploy/
nodejs/build.sh script to see how the image is built. Run the following in order to
build the child image:

[student@workstation nodejs]$ cd ~/DO180/labs/linking-containers/deploy/
[student@workstation deploy]$ cd nodejs
[student@workstation nodejs]$./build.sh

Note
The build.sh script lowers restriction for write access to the build directory to
allow the installation of dependencies by non-root users.

3.3. Wait for the build to complete and then run the following command to verify the image
built successfully:

[student@workstation nodejs]$ docker images
REPOSITORY TAG
 IMAGE ID CREATED SIZE
do180/todonodejs latest
 91e4ae09d39e 14 seconds ago 490.4 MB

Chapter 7. Deploying Multi-Container Applications

222 DO180-OCP3.5-en-1-20170524

do180/nodejs latest
 8587efed5e92 3 minutes ago 465.7 MB
do180/mysql-56-rhel7 latest
 5eb10a245ff7 11 minutes ago 366.3 MB
infrastructure.lab.example.com:5000/rhscl/httpd-24-rhel7 latest
 533e496998ca 5 weeks ago 438 MB
...

4. Explore the Environment Variables.

Take a closer look at the environment variables that allow the Node.js REST API container to
communicate with the MySQL container.

4.1. View the file /home/student/DO180/labs/linking-containers/deploy/
nodejs/nodejs-source/models/db.js that holds the database configuration:

module.exports.params = {
 dbname: process.env.MYSQL_ENV_MYSQL_DATABASE,
 username: process.env.MYSQL_ENV_MYSQL_USER,
 password: process.env.MYSQL_ENV_MYSQL_PASSWORD,
 params: {
 host: process.env.MYSQL_PORT_3306_TCP_ADDR,
 port: process.env.MYSQL_PORT_3306_TCP_PORT,
 dialect: 'mysql'
 }
};

4.2. Take note of the variables being utilized by the REST API.

These variables are created and populated by the docker run --link option
when running the container, and their names are based on the alias of the container
being linked to. The prefixes for these variables MYSQL_PORT_3306 assume that the
container that is being linked to has an alias mysql and that it exposes port 3306:

• MYSQL_PORT_3306_TCP_PORT

• MYSQL_PORT_3306_TCP_ADDR

The remaining variables are passed in with values at the time that the container
being linked to is run. In this lab, the MySQL container runs with these values passed
in and then run the API container runs with a link to the MySQL container, which
automatically defines these variables with the "MYSQL_ENV_" prefix, assuming that the
alias of the container is "mysql".

• MYSQL_ENV_MYSQL_DATABASE

• MYSQL_ENV_MYSQL_USER

• MYSQL_ENV_MYSQL_PASSWORD

5. Write a script to link the containers.

In this step, you will write a script to start the MySQL container and then start the
application container while linking to the MySQL container.

DO180-OCP3.5-en-1-20170524 223

5.1. Edit the run.sh file located at /home/student/DO180/labs/linking-
containers/deploy/nodejs/linked/.

Note
The existing code in the run.sh script is for providing an SQL script to
initialize the MySQL database when the container is run. In the following
steps, append any commands to the end of the file.

5.2. First, append a docker run command in order to run the MySQL container:

docker run -d --name mysql -e MYSQL_DATABASE=items -e MYSQL_USER=user1 \
-e MYSQL_PASSWORD=mypa55 -e MYSQL_ROOT_PASSWORD=r00tpa55 \
-v $PWD/work/data:/var/lib/mysql/data \
-v $PWD/work/init:/var/lib/mysql/init -p 30306:3306 do180/mysql-56-rhel7

In the previous command, the MYSQL_DATABASE, MYSQL_USER, and MYSQL_PASSWORD
are populated with the credentials to access the MySQL database. While these are
required environment variables for the MySQL container, the variable names are also
hard coded into our API.

5.3. Append a docker run command to start the API container with the --link option to
link with the MySQL container. The --link option takes the following parameters:

--link name:alias

The name refers to the name of the container being linked to, while the alias is the
prefix used for the generated environmental variables. In this case, use mysql for both
values.

Append the following run command to the run.sh script:

docker run -d --link mysql:mysql --name todoapi -p 30080:30080 \
 do180/todonodejs

5.4. After each docker run that was inserted into the run.sh script, make sure there is
also a sleep 9 command.

5.5. Verify that your run.sh script matches the solution script located at /home/student/
DO180/solutions/linking-containers/deploy/nodejs/linked/run.sh.

5.6. Save the file and exit the editor.

6. Run the linked containers.

6.1. Use the following command to execute the script that you wrote to run the MySQL
container, run the Node.js REST API container and link it to the MySQL container, and
then run the Apache front-end container:

[student@workstation ~]$ cd \
/home/student/DO180/labs/linking-containers/deploy/nodejs/linked

Chapter 7. Deploying Multi-Container Applications

224 DO180-OCP3.5-en-1-20170524

[student@workstation linked]$./run.sh

6.2. Verify that the containers all started correctly:

[student@workstation linked]$ docker ps
CONTAINER ID IMAGE COMMAND CREATED
 STATUS PORTS NAMES
11eac06126f7 do180/todonodejs "scl enable rh-nodejs" 28 seconds
 ago Up 26 seconds 0.0.0.0:30080->30080/tcp todoapi
8371dae9cc68 do180/mysql-56-rhel7 "container-entrypoint" 37 seconds
 ago Up 36 seconds 0.0.0.0:30306->3306/tcp mysql

7. Examine the environment variables inside the API container.

Run the following command to explore the environment variables that are in the API
container:

[student@workstation linked]$ docker exec -it todoapi env

The following is an example of the expected output:

...
MYSQL_PORT=tcp://172.17.0.2:3306
MYSQL_PORT_3306_TCP=tcp://172.17.0.2:3306
MYSQL_PORT_3306_TCP_ADDR=172.17.0.2
MYSQL_PORT_3306_TCP_PORT=3306
MYSQL_PORT_3306_TCP_PROTO=tcp
MYSQL_NAME=/todoapi/mysql
MYSQL_ENV_MYSQL_DATABASE=items
MYSQL_ENV_MYSQL_USER=user1
MYSQL_ENV_MYSQL_PASSWORD=mypa55
MYSQL_ENV_MYSQL_ROOT_PASSWORD=r00tpa55
MYSQL_ENV_container=docker
MYSQL_ENV_MYSQL_VERSION=5.6
...

8. Test the application.

8.1. Run a curl to test the REST API for the To Do List application:

[student@workstation linked]$ curl 127.0.0.1:30080/todo/api/items/1
{"description": "Pick up newspaper", "done": false, "id":1}

8.2. Open Firefox on workstation and point your browser to http://127.0.0.1:30080/
todo/ and you should see the To Do List application. The slash (/) at the end of the
URL is necessary.

8.3. Verify that the correct images were built and that the application is running correctly:

[student@workstation linked]$ lab linking-containers grade

9. Clean up.

9.1. Stop the running containers:

DO180-OCP3.5-en-1-20170524 225

[student@workstation linked]$ cd ~
[student@workstation ~]$ docker stop todoapi mysql

9.2. Remove the stopped containers:

[student@workstation ~]$ docker rm todoapi mysql

9.3. Remove the container images:

[student@workstation ~]$ docker rmi do180/todonodejs
[student@workstation ~]$ docker rmi do180/nodejs
[student@workstation ~]$ docker rmi do180/mysql-56-rhel7

10. Remove left-over containers and container images from the docker builds:

[student@workstation ~]$ docker rm $(docker ps -aq)
[student@workstation ~]$ docker rmi $(docker images -q)

11. This concludes the guided exercise.

Chapter 7. Deploying Multi-Container Applications

226 DO180-OCP3.5-en-1-20170524

Deploying a Multi-Container Application on
OpenShift

Objective
After completing this section, students should be able to deploy a multi-container application on
OpenShift using a template.

Examining the Skeleton of a Template
OpenShift Container Platform contains a facility to deploy new applications using templates. A
template can include any OCP resource, provided users have permission to create them within a
project.

A template describes a set of related resource definitions to be created together, as well as a set
of parameters for those objects.

For example, an application might consist of a front-end web application backed by a database.
Each consists of a service resource and a deployment configuration resource. They share a set
of credentials (parameters) for the front end to authenticate to the back end. The template can
be processed, either specifying parameters or allowing them to be automatically generated (for
example, a unique DB password) in order to instantiate the list of resources in the template as a
cohesive application.

The OCP installer creates several templates by default after installation in the openshift
namespace. View these pre-installed templates by using the oc get templates command with
the -n openshift option:

$ oc get templates -n openshift
NAME DESCRIPTION

cakephp-mysql-persistent An example CakePHP application...
dancer-mysql-persistent An example Dancer application...
django-psql-persistent An example Django application...
jenkins-ephemeral Jenkins service, without persistent storage....

jenkins-persistent Jenkins service, with persistent storage....

jenkins-pipeline-example This example showcases the new Jenkins...
logging-deployer-account-template Template for creating the deployer...
logging-deployer-template Template for running the aggregated...
mariadb-persistent MariaDB database service, with persistent storage...

mongodb-persistent MongoDB database service, with persistent storage...

mysql-persistent MySQL database service, with persistent storage...

nodejs-mongo-persistent An example Node.js application with a MongoDB...
postgresql-persistent PostgreSQL database service...
rails-pgsql-persistent An example Rails application...

The following listing shows a template definition:

{
 "kind": "Template",

Examining the Skeleton of a Template

DO180-OCP3.5-en-1-20170524 227

 "apiVersion": "v1",
 "metadata": {

 "name": "mysql-persistent",
 "creationTimestamp": null,
 "annotations": {
 "description": "MySQL database service, with persistent storage...
 "iconClass": "icon-mysql-database",
 "openshift.io/display-name": "MySQL (Persistent)",

 "tags": "database,mysql"
 }
 },
 "message": "The following service(s) have been created ...",
 "objects": [
 {
 "apiVersion": "v1",
 "kind": "Service",
 "metadata": {

 "name": "${DATABASE_SERVICE_NAME}"
 },
 ... Service attributes omitted ...
 },
 {
 "apiVersion": "v1",
 "kind": "PersistentVolumeClaim",
 "metadata": {
 "name": "${DATABASE_SERVICE_NAME}"
 },
 ... PVC attributes omitted ...
 },
 {
 "apiVersion": "v1",
 "kind": "DeploymentConfig",
 "metadata": {
 "name": "${DATABASE_SERVICE_NAME}"
 },
 "spec": {
 "replicas": 1,
 "selector": {
 "name": "${DATABASE_SERVICE_NAME}"
 },
 "strategy": {
 "type": "Recreate"
 },
 "template": {
 "metadata": {
 "labels": {
 "name": "${DATABASE_SERVICE_NAME}"
 }
 },

 ... Other pod and Deployment attributes omitted }
 }
],
 "parameters": [
...
 {
 "name": "DATABASE_SERVICE_NAME",
 "displayName": "Database Service Name",
 "description": "The name of the OpenShift Service exposed for the
 database.",

 "value": "mysql",
 "required": true

Chapter 7. Deploying Multi-Container Applications

228 DO180-OCP3.5-en-1-20170524

 },
 {
 "name": "MYSQL_USER",
 "displayName": "MySQL Connection Username",
 "description": "Username for MySQL user that will be used for accessing the
 database.",
 "generate": "expression",
 "from": "user[A-Z0-9]{3}",
 "required": true
 },
 {
 "name": "MYSQL_PASSWORD",
 "displayName": "MySQL Connection Password",
 "description": "Password for the MySQL connection user.",
 "generate": "expression",

 "from": "[a-zA-Z0-9]{16}",
 "required": true
 },
 {
 "name": "MYSQL_DATABASE",
 "displayName": "MySQL Database Name",
 "description": "Name of the MySQL database accessed.",
 "value": "sampledb",
 "required": true
 },
...
}

Defines the template name.

A list of arbitrary tags that this template will have in the UI.

Defines that the name of the service will be the value assigned by the parameter
DATABASE_SERVICE_NAME.
Defines the default value for the parameter DATABASE_SERVICE_NAME.

Defines an expression used to generate a random password if one is not specified.

It is also possible to upload new templates from a file to the OCP cluster so that other developers
can build applications from the template. This can be done using the oc create command, as
shown in the following example:

[student@workstation deploy-multicontainer]$ oc create -f todo-template.json
template "todonodejs-persistent" created

By default, the template is created under the current project, unless you specify a different one
using the -n option as shown in the following example:

[student@workstation deploy-multicontainer]$ oc create -f todo-template.json -n
 openshift

Important
Any templates created under the openshift namespace is available in the web
console on the "add to project" page.

Examining the Skeleton of a Template

DO180-OCP3.5-en-1-20170524 229

Parameters

Templates define a set of parameters, which are assigned values. OCP resources defined in the
template can get their configuration values by referencing named parameters. Parameters in a
template can have default values, but they are optional. Any default values can be replaced when
processing the template.

Each parameter value can be set either explicitly by using the oc process command, or be
generated by OpenShift according to the parameter configuration.

There are two ways to list the available parameters from a template. The first one is using the oc
describe command:

$ oc describe template mysql-persistent -n openshift
Name: mysql-persistent
Namespace: openshift
Created: 2 weeks ago
Labels: <none>
Description: MySQL database service, with persistent storage. For more information ...
Annotations: iconClass=icon-mysql-database
 openshift.io/display-name=MySQL (Persistent)
 tags=database,mysql

Parameters:
 Name: MEMORY_LIMIT
 Display Name: Memory Limit
 Description: Maximum amount of memory the container can use.
 Required: true
 Value: 512Mi
 Name: NAMESPACE
 Display Name: Namespace
 Description: The OpenShift Namespace where the ImageStream resides.
 Required: false
 Value: openshift
 ... SOME OUTPUT OMITTED ...
 Name: MYSQL_VERSION
 Display Name: Version of MySQL Image
 Description: Version of MySQL image to be used (5.5, 5.6 or latest).
 Required: true
 Value: 5.6

Object Labels: template=mysql-persistent-template

Message: The following service(s) have been created in your project:
 ${DATABASE_SERVICE_NAME}.

 Username: ${MYSQL_USER}
 Password: ${MYSQL_PASSWORD}
 Database Name: ${MYSQL_DATABASE}
 Connection URL: mysql://${DATABASE_SERVICE_NAME}:3306/

For more information about using this template, including OpenShift considerations, see
 https://github.com/sclorg/mysql-container/blob/master/5.6/README.md.

Objects:
 Service ${DATABASE_SERVICE_NAME}
...

The second way is by using the oc process with the --parameters option:

$ oc process --parameters mysql-persistent -n openshift

Chapter 7. Deploying Multi-Container Applications

230 DO180-OCP3.5-en-1-20170524

NAME DESCRIPTION
 GENERATOR VALUE
MEMORY_LIMIT Maximum amount of memory the container can use.
 512Mi
NAMESPACE The OpenShift Namespace where the ImageStream resides.
 openshift
DATABASE_SERVICE_NAME The name of the OpenShift Service exposed for the database.
 mysql
MYSQL_USER Username for MySQL user that will be used for accessing the
 database. expression user[A-Z0-9]{3}
MYSQL_PASSWORD Password for the MySQL connection user.
 expression [a-zA-Z0-9]{16}
MYSQL_DATABASE Name of the MySQL database accessed. sampledb
VOLUME_CAPACITY Volume space available for data, e.g. 512Mi, 2Gi. 1Gi
MYSQL_VERSION Version of MySQL image to be used (5.5, 5.6 or latest).
 5.6

Processing a Template Using the CLI
A template should be processed to generate a list of resources to create a new application. The
oc process command is responsible for processing a template:

$ oc process -f filename

The above command processes a template from a JSON or YAML resource definition file and
returns the list of resources to standard output.

Another option is to process a template from the current project or the openshift project:

$ oc process uploaded-template-name

Note
Remember that the oc process command returns the list of resources to standard
output. This output can be redirected to a file:

$ oc process -f filename -o json > myapp.json

Templates can generate different values based on the parameters. To override a parameter, use
the -v option followed by a comma-separated list of <name>=<value> pairs:

$ oc process -f mysql.json \
 -v MYSQL_USER=dev -v MYSQL_PASSWORD=$P4SSD -v MYSQL_DATABASE=bank \
 -v VOLUME_CAPACITY=10Gi > mysqlProcessed.json

To create the application, use the generated JSON resource definition file:

$ oc create -f mysqlProcessed.json

Alternatively, it is possible to process the template and create the application without saving a
resource definition file by using a UNIX pipe:

Processing a Template Using the CLI

DO180-OCP3.5-en-1-20170524 231

$ oc process -f mysql.json \
 -v MYSQL_USER=dev,MYSQL_PASSWORD=$P4SSD,MYSQL_DATABASE=bank,VOLUME_CAPACITY=10Gi \
 | oc create -f -

It is not possible to process a template from the openshift project as a regular user using the
oc process command:

$ oc process mysql-persistent -n openshift \
 -v MYSQL_USER=dev -v MYSQL_PASSWORD=$P4SSD -v MYSQL_DATABASE=bank \
 -v VOLUME_CAPACITY=10Gi | oc create -f -

The previous command returns an error:

error processing the template "mysql-persistent": User "regularUser" cannot create
 processedtemplates in project "openshift"

One way to solve this problem is to export the template to a file and then process the template
using the file:

$ oc -o json export template mysql-persistent \
 -n openshift > mysql-persistent-template.json

$ oc process -f mysql-persistent-template.json \
 -v MYSQL_USER=dev -v MYSQL_PASSWORD=$P4SSD -v MYSQL_DATABASE=bank \
 -v VOLUME_CAPACITY=10Gi | oc create -f -

Another way to solve this problem is to use two slashes (//) to provide the namespace as part of
the template name:

$ oc process openshift//mysql-persistent-template \
 -v MYSQL_USER=dev -v MYSQL_PASSWORD=$P4SSD -v MYSQL_DATABASE=bank \
 -v VOLUME_CAPACITY=10Gi | oc create -f -

Alternatively, it is possible to create an application using the oc new-app command passing the
template name as the --template option argument:

$ oc new-app --template=mysql-persistent -n openshift \
 -p MYSQL_USER=dev -p MYSQL_PASSWORD=$P4SSD -p MYSQL_DATABASE=bank \
 -p VOLUME_CAPACITY=10Gi

Note
While the oc process command uses -v option for parameter values, the oc new-
app command uses -p.

Chapter 7. Deploying Multi-Container Applications

232 DO180-OCP3.5-en-1-20170524

References
Further information about templates can be found in the Templates section of the
OpenShift Container Platform documentation:

Architecture
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/
html/architecture/

Developer information about templates can be found in the Templates section of the
OpenShift Container Platform documentation:

Developer Guide
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/
html/developer_guide/

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html/architecture/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html/architecture/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html/developer_guide/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html/developer_guide/

Guided Exercise: Creating an Application with a Template

DO180-OCP3.5-en-1-20170524 233

Guided Exercise: Creating an Application with
a Template

In this exercise, you will deploy the To Do List application in OpenShift Container Platform using a
template to define the resources the application needs to run.

Resources

Files: /home/student/DO180/labs/openshift-template

Application URL: http://todoapi-
template.cloudapps.lab.example.com/todo/

Outcomes

You should be able to build and deploy an application to OpenShift Container Platform using a
provided JSON template.

Before you begin

The workstation needs the To Do List application source code and lab files available and both
Docker and the OpenShift cluster need to be running. To download the project files and verify
the status of the Docker service and the OpenShift cluster, run the following command in a new
terminal window:

[student@workstation ~]$ lab openshift-template setup

1. Build the database container image and publish it to the private registry.

1.1. Build the MySQL database image.

Examine the /home/student/DO180/labs/openshift-template/images/
mysql/build.sh script to see how the image is built. To build the base image, run the
build.sh script:

[student@workstation ~]$ cd ~/DO180/labs/openshift-template/images/mysql
[student@workstation mysql]$./build.sh

1.2. Push the image to the private registry.

To make the image available for OpenShift to use in the template, push it up to the
private registry. To tag and push the image run the following commands in the terminal
window:

[student@workstation mysql]$ docker tag do180/mysql-56-rhel7 \
infrastructure.lab.example.com:5000/do180/mysql-56-rhel7
[student@workstation mysql]$ docker push \
infrastructure.lab.example.com:5000/do180/mysql-56-rhel7
The push refers to a repository [infrastructure.lab.example.com:5000/do180/
mysql-56-rhel7]
b3838c109ba6: Pushed
a72cfd1d969d: Mounted from rhscl/mysql-56-rhel7
9ca8c628d8e7: Mounted from rhscl/mysql-56-rhel7
827264d42df6: Mounted from rhscl/mysql-56-rhel7

Chapter 7. Deploying Multi-Container Applications

234 DO180-OCP3.5-en-1-20170524

latest: digest:
 sha256:170e2546270690fded13f3ced0d575a90cef58028abcef8d37bd62a166ba436b size:
 1156

2. Build the parent image for the To Do List app using the Node.js Dockerfile.

To build the base image, run the build.sh script:

[student@workstation mysql]$ cd ~/DO180/labs/openshift-template/images/nodejs
[student@workstation nodejs]$./build.sh

3. Build the To Do List app child image using the Node.js Dockerfile.

Warning
Execute the following commands because they are creating a different container.

3.1. Build the child image.

Run the following in order to build the child image:

[student@workstation nodejs]$ cd ~/DO180/labs/openshift-template/deploy/nodejs
[student@workstation nodejs]$./build.sh

3.2. Push the image to the private registry.

In order to make the image available for OpenShift to use in the template, push it to the
private registry. To tag and push the image run the following commands in the terminal
window:

[student@workstation nodejs]$ docker tag do180/todonodejs \
infrastructure.lab.example.com:5000/do180/todonodejs
[student@workstation nodejs]$ docker push \
infrastructure.lab.example.com:5000/do180/todonodejs
The push refers to a repository [infrastructure.lab.example.com:5000/do180/
todonodejs]
8a8bf0b2e036: Pushed
6d0ce5c0fc9c: Pushed
22ad2b4aa931: Pushed
911719963abb: Pushed
464c51e50340: Pushed
9ca8c628d8e7: Mounted from do180/mysql-56-rhel7
827264d42df6: Mounted from do180/mysql-56-rhel7
latest: digest:
 sha256:fe1d4c2d3834814a5fed91955394e079f2def51b4017e57fb1d96b27992c9512 size:
 1785

4. Create the persistent volume.

4.1. Log in as a system administrator to create a persistent volume.

Similar to the volumes used with plain Docker containers, OpenShift uses the concept of
persistent volumes to provide persistent storage for pods that need it.

DO180-OCP3.5-en-1-20170524 235

[student@workstation nodejs]$ oc login -u developer -p developer \
https://ocp.lab.example.com:8443

4.2. A script is provided for you to create the persistent volumes needed for this exercise.

Run the following commands in the terminal window to create the persistent volume:

[student@workstation nodejs]$ cd ~/DO180/labs/openshift-template
[student@workstation openshift-template]$./create-pv.sh

Note
If you have an issue with one of the later steps in the lab, you can delete the
template project using the oc delete project to remove any existing
resources and restart the exercise from this step.

5. Create the To Do List application from the provided JSON template.

5.1. Create a new project.

Create a new project in OpenShift to use for this exercise. Run the following command
to create the project:

[student@workstation openshift-template]$ oc new-project template
Now using project "template" on server "https://ocp.lab.example.com:8443".

5.2. Set the security policy for the project.

To allow the container to run as the correct user, set the security policy using the
provided script. Run the following command to set the policy:

[student@workstation openshift-template]$./setpolicy.sh

5.3. Review the template.

Using your preferred editor, open and examine the completed template located at /
home/student/DO180/labs/openshift-template/todo-template.json.
Notice the following resources defined in the template and review their configurations:

• todoapi pod to host the running Node.js application

• mysql pod to host the MySQL database

• todoapi service to provide connectivity to the Node.js application pod

• mysql service to provide connectivity to the MySQL database pod

• dbinit persistent volume claim for the MySQL /var/lib/mysql/init volume

• db-volume persistent volume claim for the MySQL /var/lib/mysql/data volume

Chapter 7. Deploying Multi-Container Applications

236 DO180-OCP3.5-en-1-20170524

5.4. Process the template and create the application resources.

Use the oc process command to process the template file and then pipe the result
into the oc create command to create an application from the template.

Run the following command in the terminal window:

[student@workstation openshift-template]$ oc process -f todo-template.json \
 | oc create -f -
pod "mysql" created
pod "todoapi" created
service "todoapi" created
service "mysql" created
persistentvolumeclaim "dbinit" created
persistentvolumeclaim "dbclaim" created

5.5. Check the deployment.

Check the status of the deployment using the oc get pods command with the -w
option to continue to monitor the pod status. Wait until the containers are both running.
It may take some time for both pods to start.

[student@workstation openshift-template]$ oc get pods -w
NAME READY STATUS RESTARTS AGE
mysql 0/1 ContainerCreating 0 9s
todoapi 1/1 Running 0 9s
NAME READY STATUS RESTARTS AGE
mysql 1/1 Running 0 2m
 ^C

Press Ctrl+C to exit the command.

6. Expose the Service

To allow the To Do List application to be accessible through the OCP router and available
behind the public FQDN, use the oc expose command to expose the todoapi service.

Run the following command in the terminal window:

[student@workstation openshift-template]$ oc expose service todoapi
route "todoapi" exposed

7. Test the application.

7.1. Find the FQDN where the application is available using the oc status command by
running the following command in the terminal window and note the FQDN for the app.

Run the following command in the terminal window:

[student@workstation openshift-template]$ oc status
In project template on server https://ocp.lab.example.com:8443

svc/mysql - 172.30.194.34:3306
 pod/mysql runs infrastructure.lab.example.com:5000/do180/mysql-56-rhel7

DO180-OCP3.5-en-1-20170524 237

http://todoapi-template.cloudapps.lab.example.com to pod port 30080 (svc/
todoapi)
 pod/todoapi runs infrastructure.lab.example.com:5000/do180/todonodejs

2 warnings identified, use 'oc status -v' to see details.

7.2. Use curl to test the REST API for the To Do List application:

[student@workstation openshift-template]$ curl \
http://todoapi-template.cloudapps.lab.example.com/todo/api/items/1
{"description": "Pick up newspaper", "done": false, "id":1}

7.3. Open Firefox on workstation and point your browser to http://todoapi-
template.cloudapps.lab.example.com/todo/ and you should see the To Do List
application.

7.4. Verify that the correct images were built, and that the application is running correctly:

[student@workstation openshift-template]$ lab openshift-template grade

8. Clean up.

8.1. Delete the project used by this exercise by running the following commands in your
terminal window:

[student@workstation openshift-template]$ oc delete project template

8.2. Delete the persistent volumes using the provided shell script by running the following
commands in your terminal window:

[student@workstation openshift-template]$./delete-pv.sh
...
persistentvolume "pv0001" deleted
persistentvolume "pv0002" deleted
...

8.3. Delete the container images generated during the Dockerfile builds:

[student@workstation openshift-template]$ docker rmi -f $(docker images -q)

This concludes the guided exercise.

Chapter 7. Deploying Multi-Container Applications

238 DO180-OCP3.5-en-1-20170524

Lab: Deploying Multi-Container Applications

In this lab, you will deploy a PHP Application with a MySQL database using an OpenShift
template to define the resources needed for the application.

Resources

Files: /home/student/DO180/labs/deploy-multicontainer

Application URL: http://quote-php-
deploy.cloudapps.lab.example.com/

Outcomes

You should be able to create a multicontainer OpenShift application and access it through a web
browser.

Before you begin

The workstation needs the PHP application source code and lab files available and both Docker
and the OpenShift cluster need to be running. To download the project files and verify the status
of the Docker service and the OpenShift cluster, run the following command in a new terminal
window:

[student@workstation ~]$ lab deploy-multicontainer setup
[student@workstation ~]$ cd ~/DO180/labs/deploy-multicontainer

Steps

1. Log in to OCP as the developer user and create a new project for this exercise.

1.1. From the workstation VM, log in to OCP as the developer user.

1.2. Create a new project in OpenShift, named deploy, to use for this lab.

1.3. Relax the default cluster security policy.

Change the default security policy to allow containers to run as root using the provided
set-policy.sh shell script.

2. Build the Database container image and publish it to the private registry.

2.1. Build the MySQL Database image using the provided Dockerfile and build script in the
images/mysql directory.

2.2. Push the MySQL Image to the Private Registry

In order to make the image available for OpenShift to use in the template, push it to the
private registry.

3. Build the PHP container image and publish it to the private registry.

3.1. Build the PHP image using the provided Dockerfile and build script in the images/
quote-php directory.

3.2. Tag and push the PHP Image to the private registry.

DO180-OCP3.5-en-1-20170524 239

In order to make the image available for OpenShift to use in the template, push it to the
private registry.

4. Review the provided template file /home/student/DO180/labs/deploy-
multicontainer/quote-php-template.json.

Note the definitions and configuration of the pods, services, and persistent volume claims
defined in the template.

5. Create the persistent volumes needed for the application using the provided create-pv.sh
script.

Note
If you have an issue with one of the later steps in the lab, you can delete the
template project using the oc delete project to remove any existing
resources and restart the exercise from this step.

6. Upload the PHP application template so that it can be used by any developer with access to
your project.

7. Process the uploaded template and create the application resources.

7.1. Use the oc process command to process the template file and then pipe the result
into the oc create command to create an application from the template.

7.2. Check the deployment.

Check the status of the deployment using the oc get pods command with the -w
option to continue to tail the pod status. Wait until the containers are both running, it
may take some time for both pods to start up.

8. Expose the Service

To allow the PHP Quote application to be accessible through the OCP router and available
behind the public FQDN, use the oc expose command to expose the quote-php service.

9. Test the application.

9.1. Find the FQDN where the application is available using the oc get route command by
running the following command in the terminal window and note the FQDN for the app.

9.2. Use curl to test the REST API for the PHP Quote application

9.3. Verify that the correct images were built and that the application is running correctly:

[student@workstation deploy-multicontainer]$ lab deploy-multicontainer grade

10. Clean up.

10.1. Delete the project used by this exercise.

Chapter 7. Deploying Multi-Container Applications

240 DO180-OCP3.5-en-1-20170524

10.2.Delete the persistent volumes using the provided shell script.

10.3.Delete the container images generated during the Dockerfile builds.

Warning
You may see an error deleting one of the images if there are multiple tags for
a single image. This can be safely ignored.

This concludes the lab.

Solution

DO180-OCP3.5-en-1-20170524 241

Solution

In this lab, you will deploy a PHP Application with a MySQL database using an OpenShift
template to define the resources needed for the application.

Resources

Files: /home/student/DO180/labs/deploy-multicontainer

Application URL: http://quote-php-
deploy.cloudapps.lab.example.com/

Outcomes

You should be able to create a multicontainer OpenShift application and access it through a web
browser.

Before you begin

The workstation needs the PHP application source code and lab files available and both Docker
and the OpenShift cluster need to be running. To download the project files and verify the status
of the Docker service and the OpenShift cluster, run the following command in a new terminal
window:

[student@workstation ~]$ lab deploy-multicontainer setup
[student@workstation ~]$ cd ~/DO180/labs/deploy-multicontainer

Steps

1. Log in to OCP as the developer user and create a new project for this exercise.

1.1. From the workstation VM, log in to OCP as the developer user.

Run the following command in your terminal window:

[student@workstation deploy-multicontainer]$ oc login -u developer \
-p developer https://ocp.lab.example.com:8443

If the oc login command prompts about using insecure connections, answer y (yes).

1.2. Create a new project in OpenShift, named deploy, to use for this lab.

Run the following command to create the project:

[student@workstation deploy-multicontainer]$ oc new-project deploy
Now using project "deploy" on server "https://ocp.lab.example.com:8443".

1.3. Relax the default cluster security policy.

Change the default security policy to allow containers to run as root using the provided
set-policy.sh shell script.

Run the following command:

[student@workstation deploy-multicontainer]$./setpolicy.sh

Chapter 7. Deploying Multi-Container Applications

242 DO180-OCP3.5-en-1-20170524

2. Build the Database container image and publish it to the private registry.

2.1. Build the MySQL Database image using the provided Dockerfile and build script in the
images/mysql directory.

To build the base MySQL image, run the build.sh script:

[student@workstation ~]$ cd ~/DO180/labs/deploy-multicontainer/images/mysql
[student@workstation mysql]$./build.sh

2.2. Push the MySQL Image to the Private Registry

In order to make the image available for OpenShift to use in the template, push it to the
private registry.

To tag and push the image run the following commands in the terminal window:

[student@workstation mysql]$ docker tag do180/mysql-56-rhel7 \
 infrastructure.lab.example.com:5000/do180/mysql-56-rhel7
[student@workstation mysql]$ docker push \
 infrastructure.lab.example.com:5000/do180/mysql-56-rhel7
The push refers to a repository [infrastructure.lab.example.com:5000/do180/
mysql-56-rhel7]
...
latest: digest:
 sha256:170e2546270690fded13f3ced0d575a90cef58028abcef8d37bd62a166ba436b size:
 1156

3. Build the PHP container image and publish it to the private registry.

3.1. Build the PHP image using the provided Dockerfile and build script in the images/
quote-php directory.

To build the base PHP image, run the build.sh script:

[student@workstation ~]$ cd ~/DO180/labs/deploy-multicontainer/images/quote-php
[student@workstation quote-php]$./build.sh

3.2. Tag and push the PHP Image to the private registry.

In order to make the image available for OpenShift to use in the template, push it to the
private registry.

To tag and push the image run the following commands in the terminal window:

[student@workstation quote-php]$ docker tag do180/quote-php \
 infrastructure.lab.example.com:5000/do180/quote-php
[student@workstation quote-php]$ docker push \
 infrastructure.lab.example.com:5000/do180/quote-php
The push refers to a repository [infrastructure.lab.example.com:5000/do180/
quote-php]
9e09d226684b: Pushed
a1f11f24380d: Pushed
db28059b7958: Pushed
c528c3fe2e43: Pushed
d921bad4d903: Pushed

Solution

DO180-OCP3.5-en-1-20170524 243

99c7fad34019: Pushed
b9d38d1b3407: Pushed
9ca8c628d8e7: Layer already exists
827264d42df6: Layer already exists
latest: digest:
 sha256:b150a4c46119c412133f7eab3039b653d15fb903d2f181b9efc71b19366c6236 size:
 2194

4. Review the provided template file /home/student/DO180/labs/deploy-
multicontainer/quote-php-template.json.

Note the definitions and configuration of the pods, services, and persistent volume claims
defined in the template.

5. Create the persistent volumes needed for the application using the provided create-pv.sh
script.

Run the following commands in the terminal window to create the persistent volume:

[student@workstation quote-php]$ cd ~/DO180/labs/deploy-multicontainer
[student@workstation deploy-multicontainer]$./create-pv.sh

Note
If you have an issue with one of the later steps in the lab, you can delete the
template project using the oc delete project to remove any existing
resources and restart the exercise from this step.

6. Upload the PHP application template so that it can be used by any developer with access to
your project.

Use the oc create -f command to upload the template file to the project.

[student@workstation deploy-multicontainer]$ oc create -f quote-php-template.json
template "quote-php-persistent" created

7. Process the uploaded template and create the application resources.

7.1. Use the oc process command to process the template file and then pipe the result
into the oc create command to create an application from the template.

Run the following command in the terminal window:

[student@workstation deploy-multicontainer]$ oc process quote-php-persistent \
 | oc create -f -
pod "mysql" created
pod "quote-php" created
service "quote-php" created
service "mysql" created
persistentvolumeclaim "dbinit" created
persistentvolumeclaim "dbclaim" created

Chapter 7. Deploying Multi-Container Applications

244 DO180-OCP3.5-en-1-20170524

7.2. Check the deployment.

Check the status of the deployment using the oc get pods command with the -w
option to continue to tail the pod status. Wait until the containers are both running, it
may take some time for both pods to start up.

Run the following command in the terminal window:

[student@workstation deploy-multicontainer]$ oc get pods -w
NAME READY STATUS RESTARTS AGE
mysql 0/1 ContainerCreating 0 8s
quote-php 1/1 Running 0 8s
NAME READY STATUS RESTARTS AGE
mysql 1/1 Running 0 2m
^C

Press Ctrl+C to exit the command.

8. Expose the Service

To allow the PHP Quote application to be accessible through the OCP router and available
behind the public FQDN, use the oc expose command to expose the quote-php service.

Run the following command in the terminal window:

[student@workstation deploy-multicontainer]$ oc expose svc quote-php
route "quote-php" exposed

9. Test the application.

9.1. Find the FQDN where the application is available using the oc get route command by
running the following command in the terminal window and note the FQDN for the app.

Run the following command in the terminal window:

[student@workstation deploy-multicontainer]$ oc get route
NAME HOST/PORT PATH SERVICES
 PORT TERMINATION
quote-php quote-php-deploy2.cloudapps.lab.example.com quote-php
 8080

9.2. Use curl to test the REST API for the PHP Quote application

[student@workstation ~]$ curl http://quote-php-deploy.cloudapps.lab.example.com
Do not take life too seriously. You will never get out of it alive.

9.3. Verify that the correct images were built and that the application is running correctly:

[student@workstation deploy-multicontainer]$ lab deploy-multicontainer grade

10. Clean up.

Solution

DO180-OCP3.5-en-1-20170524 245

10.1. Delete the project used by this exercise.

Run the following commands in your terminal window:

[student@workstation deploy-multicontainer]$ oc delete project deploy

10.2.Delete the persistent volumes using the provided shell script.

Run the following commands in your terminal window:

[student@workstation deploy-multicontainer]$./delete-pv.sh
...
persistentvolume "pv0001" deleted
persistentvolume "pv0002" deleted
...

10.3.Delete the container images generated during the Dockerfile builds.

[student@workstation deploy-multicontainer]$ docker rmi $(docker images -q)

Warning
You may see an error deleting one of the images if there are multiple tags for
a single image. This can be safely ignored.

This concludes the lab.

Chapter 7. Deploying Multi-Container Applications

246 DO180-OCP3.5-en-1-20170524

Summary

In this chapter, you learned:

• Containerized applications cannot rely on fixed IP addresses or host names to find services.
Docker and Kubernetes provide mechanisms that define environment variables with network
connection parameters.

• The --link option from the docker run command injects into a container environment
variables from other containers as arguments. Containers must be manually started in the
correct order and with the correct values for the --link option.

• Kubernetes services define environment variables injected into all pods from the same project.

• Kubernetes templates automate creating applications consisting of multiple pods
interconnected by services.

• Template parameters define environment variables for multiple pods.

DO180-OCP3.5-en-1-20170524 247

TRAINING

CHAPTER 8

TROUBLESHOOTING
CONTAINERIZED APPLICATIONS

Overview

Goal Troubleshoot a containerized application deployed on
OpenShift.

Objectives • Troubleshoot an application build and deployment on
OpenShift.

• Implement techniques for troubleshooting and debugging
containerized applications.

Sections • Troubleshooting S2I Builds and Deployments (and Guided
Exercise)

• Troubleshooting Containerized Applications (and Guided
Exercise)

Lab • Troubleshooting Containerized Applications

Chapter 8. Troubleshooting Containerized Applications

248 DO180-OCP3.5-en-1-20170524

Troubleshooting S2I Builds and Deployments

Objectives
After completing this section, students should be able to:

• Troubleshoot an application build and deployment steps on OpenShift.

• Analyze OpenShift logs to identify problems during the build and deploy process.

The S2I Process
S2I is a simple way to create images based on programming languages in OpenShift.
Unfortunately, problems may arise during the S2I image creation process, either by the
programming language characteristics or the run time environment that requires both developer
and administrators to work together.

Initially, it is important to understand the basic workflow for most of the programming languages
supported by OpenShift. The S2I image creation process is composed of two major steps:

• Build step: Responsible for compiling source code, downloading library dependencies, and
packaging the application as a Docker image. Furthermore, the build step pushes the image to
the OpenShift registry for the deployment step. The build step is managed by the BuildConfig
(BC) from OpenShift.

• Deployment step: Responsible for starting a pod and making the application available for
OpenShift. This step is executed after the build step, but only if the build step is executed
without problems. The deployment step is managed by the DeploymentConfig (DC) from
OpenShift.

In S2I, every application has its own BuildConfig (BC) and DeploymentConfig (DC). The
BuildConfig (BC) and DeploymentConfig (DC) names match the application name. The
deployment process is aborted if the build fails.

The S2I process starts each step in a separate pod. Therefore, the build step creates a pod named
<application-name>-build-<number>-<string>. On each build attempt, the whole build
step is executed and a log is stored. After a successful execution, the application is started on a
separate pod, normally named as <application-name>-<string>.

OpenShift has a rich web console listing the isolated steps mentioned previously by project.

To identify any build issues, the logs from a build can be evaluated using the Builds link from the
left panel depicted as follows.

The S2I Process

DO180-OCP3.5-en-1-20170524 249

Figure 8.1: Detailed vision of a project

On each attempt to build, a history of the build is provided for administrator evaluation.

Figure 8.2: Detailed vision of a build config

On the other hand, to identify issues during the deployment step, the Applications link from the
left panel can be used.

On each pod deployed, the logs can be obtained accessing the Applications > Deployments from
the left panel

Chapter 8. Troubleshooting Containerized Applications

250 DO180-OCP3.5-en-1-20170524

Figure 8.3: Detailed vision of a deployment config

To identify problems using the oc command-line interface, the logs command may be used.
Likewise in the web interface, it has a set of commands which provides information about each
step. For example, to get the logs from the a build configuration, the following command may be
used:

$ oc logs bc/<application-name>

If a build fails, the bc must be restarted. To request a new build, the following command may be
used:

$ oc start-build <application-name>

A new pod with the build process is automatically started.

After a successful build, a pod is started, in which the application and the deployment process is
executed.

Common Problems
Sometimes, the source code requires some customization that may not be available in
containerized environments. For instance, database credentials, file system access, and message
queue information, normally provided as internal environment variables, may need to be
changed.

The oc logs command provides important outputs about the build, deploy, and run
process of an application during the execution of a pod. The logs normally indicate missing
values or options that must be enabled, incorrect parameters, invalid flags, or environment
incompatibilities.

Common Problems

DO180-OCP3.5-en-1-20170524 251

Note
Application logs must be clearly labeled to identify problems quickly without the need
to learn the container internals.

Permission issues

OpenShift runs S2I containers using RHEL as the base image. so any run time difference
may imply in a run time error. The usual problem identified is the permission denied error
due to wrong permission used by developers or incorrect environment permissions set by
administrators. For example, S2I images enforce the use of a different user than root to access
file systems and external resources. Also, RHEL7 works with an enforcing SELinux policy that
blocks any access to file system resources, network port access, or process access.

Important
SELinux on the Container Development Kit (CDK) VM is set as permissive which is
different from the RHEL 7 and OCP standard policies.

Some containers may require a specific user ID, but S2I is designed to run containers using
a random user as per the default OpenShift security policy. To fix this condition, relax the
OpenShift project security with the command oc adm policy. As an example, see the
setpolicy.sh script used on some of the previous labs allows the user defined in the
Dockerfile file to run the application.

Invalid parameters

Multi-container applications may share parameters, such as login credentials. Verify that the
same values for parameters are passed to all containers in the application. For example, a
Python application running in one container links with a container running a database. Both
containers must use the same user name and password for the database. Normally, logs from the
application pod provide a clear idea of these problems and how to solve them.

Volume mount errors

When redeploying an application that uses a persistent volume on a local file system, a pod may
have problems allocating a persistent volume claim even though the persistent volume indicates
that the claim is released. To solve it, the persistent volume claim and the persistent volume
must be deleted, in this order. Then the persistent volume must be recreated.

Obsolete images

OpenShift pulls images from the source named in an image stream unless it finds a locally
cached image on the node where the pod is scheduled to run. If you push a new image to the
registry with the same name and tag, you must remove the image from each node the pod is
scheduled on with the command docker rmi. Check also the oc adm prune command for
more automated ways to remove obsolete images and other resources.

Chapter 8. Troubleshooting Containerized Applications

252 DO180-OCP3.5-en-1-20170524

References
More information about troubleshooting images is available in the Guidelines section of
the OpenShift Container Platform documentation:

Creating Images
https://docs.openshift.com/container-platform/3.5/creating_images/

https://docs.openshift.com/container-platform/3.5/creating_images/

Guided Exercise: Troubleshooting an OpenShift Build

DO180-OCP3.5-en-1-20170524 253

Guided Exercise: Troubleshooting an OpenShift
Build

In this exercise, you will troubleshoot an OpenShift build and deployment process.

Resources

Files: NA

Application URL: http://nodejs-helloworld-
nodejs.cloudapps.lab.example.com

Outcomes

You should be able to identify and solve the problems raised during the build and deployment
process of a Node.js application.

Before you begin

OpenShift must be installed and running on the ocp VM.

Retrieve the lab files and verify that Docker and OpenShift are up and running, by executing the
lab script:

[student@workstation ~]$ lab bc-and-dc setup

Steps

1. Log in to OpenShift and create a new project named nodejs:

[student@workstation ~]$ oc login -u developer https://ocp.lab.example.com:8443
Logged into "https://ocp.lab.example.com:8443" as "developer" using existing
 credentials.
...
[student@workstation ~]$ oc new-project nodejs
Now using project "nodejs" on server "https://ocp.lab.example.com:8443".
...

You may have to enter credentials for the developer account. The password is
developer. The current project in your command output may differ from the listing above.

2. Create a new Node.js application using Source-to-Image from the git repository at http://
infrastructure.lab.example.com/nodejs-helloworld.

2.1. Use the oc new-app command to create the Node.js application. The command is
provided in the ~/DO180/labs/bc-and-dc/command.txt file.

[student@workstation ~]$ oc new-app --build-env npm_config_registry=\
http://infrastructure.lab.example.com:8081/nexus/content/groups/nodejs/ \
 nodejs:4~http://infrastructure.lab.example.com/nodejs-helloworld

The --build-env option defines an environment variable to the builder pod that
makes the npm command, which is run as part of the build, to fetch NPM modules from
the Nexus server in the infrastructure VM.

Chapter 8. Troubleshooting Containerized Applications

254 DO180-OCP3.5-en-1-20170524

Important
In the previous command, there should be no spaces between registry=
and \. There should also be no spaces before http:. But there is an space
before nodejs:4

2.2. Wait until the application finishes building by monitoring the progress with the oc get
pods -w command:

[student@workstation ~]$ oc get pods -w
NAME READY STATUS RESTARTS AGE
nodejs-helloworld-1-build 0/1 Error 0 35s
^C

The build process failed and therefore no application is running. Build failures are
usually consequence of syntax errors in the source code or missing dependencies. The
next step investigates the specific causes for this failure.

2.3. Evaluate the errors raised during the build process.

The build is triggered by the build configuration (bc) created by OpenShift when the S2I
process is started. By default, the OpenShift S2I process creates a bc named nodejs-
helloworld, which is responsible for triggering the build process. Run this command
in a terminal window to confirm the output of the build process::

[student@workstation ~]$ oc logs -f bc/nodejs-helloworld

The following error is raised as part of the build log:

[student@workstation nodejs-helloworld]$ oc logs -f bc/nodejs-helloworld
Cloning "http://infrastructure.lab.example.com/nodejs-helloworld" ...
 Commit: 87edb8c3266d4d04a5948476350a9b1fdb6ee439 (fixed)
...
---> Installing application source ...
---> Building your Node application from source
...
npm ERR! notarget No compatible version found: express@'>=4.14.2 <4.15.0'
npm ERR! notarget Valid install targets:
npm ERR! notarget ["0.14.0","...,"4.14.0",...]
...
error: build error: non-zero (13) exit code from 172.30.1.1:5000/openshift/
nodejs@sha256:2e3d3bf57e8a4b4cb2b275b324ed314a70303c47aa01579ec151339c2a99a892

As the output indicates the format used by the express dependency is not valid.

3. Fix the build process from the project.

The developer uses a non-standard version of the Express framework that is available
locally on each developer's workstation. Due to the company's standards, the version
must be downloaded from the Node.js official registry and, from the developer's input, it is
compatible with the 4.14.x version.

DO180-OCP3.5-en-1-20170524 255

3.1. Clone the git repository.

Open a new terminal window from the workstation VM (Applications > Favorites >
Terminal) and run the following command:

[student@workstation ~]$ git clone \
http://infrastructure.lab.example.com/nodejs-helloworld

The source code from the application is cloned locally in the ~/nodejs-helloworld
folder.

3.2. Evaluate the package.json.

Using your preferred editor, open the ~/nodejs-helloworld/package.json file.
Check the dependencies versions provided by the developers. It uses an incorrect
version for the Express dependency, which is incompatible with the supported version
provided by the company (~4.14.2). Update the dependency version to become:

 "express": "4.14.x"

3.3. Commit and push the changes made to the project.

From the terminal window, run the following command to commit and push the changes:

[student@workstation ~]$ cd nodejs-helloworld
[student@workstation nodejs-helloworld]$ git commit -am "Fixed Express release"
[master 53d87dc] Updated Changes
 1 file changed, 1 insertion(+), 1 deletion(-)
[student@workstation nodejs-helloworld]$ git push
...
Delta compression using up to 2 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 318 bytes | 0 bytes/s, done.
Total 3 (delta 1), reused 0 (delta 0)
To http://infrastructure.lab.example.com/nodejs-helloworld
 87edb8c..53d87dc master -> master

4. Restart the S2I process.

4.1. To restart the build step, execute the following command.

[student@workstation nodejs-helloworld]$ oc start-build bc/nodejs-helloworld
build "nodejs-helloworld-2" started

The build step is restarted, and a new build pod is created. Check the log using the
following command:

[student@workstation nodejs-helloworld]$ oc logs -f bc/nodejs-helloworld

The following output is displayed:

Cloning "http://infrastructure.lab.example.com/nodejs-helloworld" ...

Chapter 8. Troubleshooting Containerized Applications

256 DO180-OCP3.5-en-1-20170524

...
Push successful

The build was successful. However, it does not mean the application is started.

4.2. Evaluate the status of the current build process. Run the command to check the status
of the Node.js application.

[student@workstation nodejs-helloworld]$ oc get pods

According to the following output, the second build was successful, but the application
pod had errors during start up.

NAME READY STATUS RESTARTS AGE
nodejs-helloworld-1-build 0/1 Error 0 29m
nodejs-helloworld-1-rpx1d 0/1 CrashLoopBackOff 6 6m
nodejs-helloworld-2-build 0/1 Completed 0 7m

4.3. Check the log generated by the nodejs-helloworld-1-rpx1d pod:

[student@workstation nodejs-helloworld]$ oc logs -f nodejs-helloworld-1-rpx1d

Use the same value from the output from the previous step.

The expected output is:

Environment:
...
npm info using node@v4.6.2
npm ERR! Linux 3.10.0-514.el7.x86_64
npm ERR! argv "/opt/rh/rh-nodejs4/root/usr/bin/node" "/opt/rh/rh-nodejs4/root/
usr/bin/npm" "run" "-d" "start"
npm ERR! node v4.6.2
npm ERR! npm v2.15.1
npm ERR! missing script: start
...

The application failed to start up because a script is missing.

5. Fix the problem with starting the application pod.

5.1. Fix the package.json file to define a the start up command.

From the previous output, the ~/nodejs-helloworld/package.json file is missing
the scripts attribute the start field. According to the developers, a minimal effort
was made to adapt the application to run as a Docker image, by running working with
the community Docker image. To run the community Docker image locally, use the
following command:

docker run -it --rm --name my-app -v "$PWD":/usr/src/app -w /usr/
src/app node:4 node app.js

According to the command provided by the developers, the node app.js must be
added to the start field.

DO180-OCP3.5-en-1-20170524 257

To fix the problem, add to the package.json file the following attribute:

...
 "main": "app.js",
 "scripts": {
 "start": "node app.js"
 },
...

5.2. Commit and push the changes made to the project.

From the terminal window, run the following command to commit and push the changes:

[student@workstation nodejs-helloworld]$ git commit -am "added start up script"
[master 20b2fe8] Updated packages
 1 file changed, 3 insertions(+)
[student@workstation nodejs-helloworld]$ git push
warning: push.default is unset; its implicit value is changing in
Git 2.0 from 'matching' to 'simple'. To squelch this message
...
To http://infrastructure.lab.example.com/nodejs-helloworld
 cbeb4f1..20b2fe8 master -> master

Continue the deploy step from the S2I process.

5.3. To restart the build step, execute the following command.

[student@workstation nodejs-helloworld]$ oc start-build bc/nodejs-helloworld
build "nodejs-helloworld-3" started

5.4. Evaluate the status of the current build process. Run the command to check the status
of the Node.js application. Wait for the latest build to finish.

[student@workstation nodejs-helloworld]$ oc get pods

According to the following output, the third build was successful, and this time the
application was started without errors.

NAME READY STATUS RESTARTS AGE
nodejs-helloworld-1-build 0/1 Error 0 20m
nodejs-helloworld-2-build 0/1 Completed 0 18m
nodejs-helloworld-2-g78z8 1/1 Running 0 20s
nodejs-helloworld-3-build 0/1 Completed 0 33s

5.5. Check the log generated by the nodejs-helloworld-2-g78z8 pod:

[student@workstation nodejs-helloworld]$ oc logs -f nodejs-helloworld-2-g78z8

Use the same value from the output from the previous step.

The expected output is:

Chapter 8. Troubleshooting Containerized Applications

258 DO180-OCP3.5-en-1-20170524

npm info start nodejs-helloworld@1.0.0
> nodejs-helloworld@1.0.0 start /opt/app-root/src
> node app.js
Example app listening on port 8080!
...

This time, the application is running on port 8080.

6. Test the application.

6.1. Run the following command to expose the application:

[student@workstation apps]$ oc expose svc/nodejs-helloworld
route "nodejs-helloworld" exposed

6.2. Check the address associated with this application:

[student@workstation ~]$ oc get route
NAME HOST/PORT PATH
 SERVICES
nodejs-helloworld nodejs-helloworld-nodejs.cloudapps.lab.example.com
 nodejs-helloworld

6.3. Access the application from the workstation VM.

From the command line access the workstation:

[student@workstation ~]$ curl \
http://nodejs-helloworld-nodejs.cloudapps.lab.example.com

The expected output is:

Hello world!

7. Verify that the application was correctly set up. Run the following grading script from a
terminal window:

[student@workstation ~]$ lab bc-and-dc grade

8. Delete the project, which deletes all the resources in the project:

[student@workstation ~]$ oc delete project nodejs

This concludes the guided exercise.

Troubleshooting Containerized Applications

DO180-OCP3.5-en-1-20170524 259

Troubleshooting Containerized Applications

Objectives
After completing this section, students should be able to:

• Implement techniques for troubleshooting and debugging containerized applications.

• Use the port-forwarding feature of the OpenShift client tool.

• View container logs.

• View Docker and OpenShift cluster events.

Forwarding Ports for Troubleshooting
Sometimes developers and system administrators need network access to a container that
would not be needed by application users. For example, they may need to use the administration
console for a database or messaging service.

Docker users have the port-forwarding feature provided by the -p option from docker run. In
this case, there is no distinction between network access for regular application access and for
troubleshooting. As a refresher, here is an example of configuring a port-forwarding mapping
from the host to a database server running inside a container:

$ docker run --name db -p 30306:3306 mysql

The above command maps host port 30306 to port 3306 on the container named db. This
container was created from the mysql image, which starts a MySQL server that accepts network
connections on port 3306.

OpenShift provides the oc port-forward command that forwards a local port to a pod port.
This is different than having access to a pod through a service resource:

• The port-forwarding mapping exists only in the workstation where the oc client runs, while a
service maps a port for all network users.

• A service load-balances connections to potentially multiple pods, while a port-forwarding
mapping forwards connections to a single pod.

Here is an example of the oc port-forward command syntax:

$ oc port-forward db 30306 3306

The above command forwards port 30306 from the developer workstation to port 3306 on the
db pod, where a MySQL server (inside a container) accepts network connections.

Note
Be sure to leave this terminal window running. Closing the window or cancelling the
process will stop the port-forwarding mapping.

Chapter 8. Troubleshooting Containerized Applications

260 DO180-OCP3.5-en-1-20170524

While the docker run -p port-forwarding mapping can only be configured when the container
is started, the oc port-forward can be created and destroyed at any time after a pod was
created.

Note
Creating a NodePort service type for a database pod would be similar to using
docker run -p. But most administrators prefer not using NodePort with databases
to avoid exposing the database server to direct connections from users. In this case, a
port-forwarding mapping is considered a more secure alternative.

Using oc port-forward for Debugging Java
Applications
Another use for the port-forwarding feature is enabling remote debugging. Many integrated
development environments (IDEs) provide the capability to remotely debug an application.

For example, JBoss Developer Studio (JBDS) allows users to utilize the Java Debug Wire Protocol
(JDWP) to communicate between a debugger (JBDS) and the Java Virtual Machine. When
enabled, developers can step through each line of code as it is being executed in real time.

For JDWP to work, the Java Virtual Machine (JVM) where the application runs must be
started with options enabling remote debugging. For example, WildFly and JBoss EAP users
need to configure these options on application server startup. The following line in the
standalone.conf file enables remote debugging by opening the JDWP TCP port 8787 for a
WildFly or EAP instance running in standalone mode:

JAVA_OPTS="$JAVA_OPTS -
agentlib:jdwp=transport=dt_socket,address=8787,server=y,suspend=n"

Once the server is started with the debugger listening on port 8787, a port-forwarding map
needs to be created to forward connections from a local unused TCP port to the 8787 port in the
EAP pod. If the developer workstation has no local JVM running with remote debugging enabled,
the local port can also be 8787.

The following command assumes a WildFly pod named jappserver running a container from a
image previously configured to enable remote debugging:

$ oc port-forward jappserver 8787:8787

Once the debugger is enabled and the port forwarding-mapping is running, users can set
breakpoints in their IDE of choice and run the debugger by pointing to the application's host
name and debug port (in this instance, 8787).

Accessing Container Logs
Docker and OpenShift provide the ability to view logs in running containers and pods to facilitate
the troubleshooting process. But neither of them is aware of application specific logs. Both
expect the application to be configured to send all logging output to the standard output.

A container is just a process tree from the host OS perspective. When Docker starts a container
either directly or on the OCP cluster, it redirects the container standard output and standard

Docker and OpenShift Events

DO180-OCP3.5-en-1-20170524 261

error, saving them on disk as part of the container's ephemeral storage. This way, the container
logs can be viewed using docker and oc commands, even after the container was stopped, but
not removed.

To get the output of a running container, use the following docker command:

$ docker logs <containerName>

In OpenShift, the following command returns the output for a container within a pod:

$ oc logs <podName> [-c <containerName>]

Note
The container name is optional if there is only one container, as oc will just default to
the lone container and return the output.

Docker and OpenShift Events
Some developers find Docker and OpenShift logs are too low-level, and digging for useful
troubleshooting information may not be trivial. Fortunately, both provide a higher-level logging
and auditing facility called events.

Docker and OpenShift events signal significant actions like starting a container or destroying a
pod.

Docker events

To show Docker events, use the events verb, for example:

$ docker events --since=10m

The --since command option allows specifying a time stamp as an absolute date and time
string or as a time interval. The previous example shows events generated during the last 10
minutes.

OpenShift events

To show OpenShift events, use the get verb with the ev resource type for the oc command, for
example:

$ oc get ev

Events listed by the oc command this way are not filtered and span the whole OCP cluster. Using
a pipe to standard UNIX filters like grep can help, but there is a more focused way to show OCP
cluster events: describing an OCP resource shows events related to that resource only.

For example, to list only events related to a pod named mysql, use:

$ oc describe pod mysql

Chapter 8. Troubleshooting Containerized Applications

262 DO180-OCP3.5-en-1-20170524

Accessing Running Containers
While using the docker logs and oc logs commands can be useful for viewing any output
sent by a container, it does not necessarily display all of the available debugging information if
the application is configured to send logs to a file. Other troubleshooting scenarios may require
inspecting the container environment as seen by processes inside the container; for example, to
verify external network connectivity.

Both Docker and OpenShift provide an exec command that allows creating new processes inside
a running container, and have these process standard output and input redirected to the user
terminal. The following is the general syntax for the docker exec command:

$ docker exec [options] container command

This is the general syntax for the oc exec command:

$ oc exec [options] pod [-c container] command

To execute a single interactive command or start a shell, add the -it options. The following
example starts a Bash shell on a pod named myhttpdpod:

$ oc exec -it myhttpdpod bash

Users can use this command to access application logs saved to disk (as part of the container
ephemeral storage). For example, the following command displays the Apache error log from a
container named apache-container:

$ docker exec apache-container cat /var/log/httpd/error_log

Overriding Container Binaries
Many container images do not contain all of the troubleshooting commands users expect to find
in regular OS installations. This is done to keep the images smaller and allows running more
containers per host.

One technique to temporarily provide some of these missing commands, such as ping and dig,
is mounting the host binaries folders, such as /bin, /sbin, and /lib, as volumes inside the
container. This is possible because the -v option from docker run does not require matching
VOLUME instructions to be present in the image Dockerfile.

Note
To obtain a similar effect using OpenShift, it would be necessary to change the pod
resource definition to add more volumeMounts and volumeClaims. It would also
be necessary to create PV resources of kind hostPath. As any container image that
runs as a Kubernetes pod could be run as a simple Docker container, there will be no
OpenShift specific examples for this topic.

The following command starts a container, overriding the image /bin folder with the one from
the host, and starts an interactive shell inside that container:

Getting Files Into and Out of Containers

DO180-OCP3.5-en-1-20170524 263

$ docker run -it -v /bin:/bin image /bin/bash

Note
Which directory of binaries you need to override depends on the base OS image. For
example, some commands require shared libraries from /lib. Another example: some
Linux distributions have different contents in /bin and /usr/bin, or /lib and /usr/
lib, requiring multiple -v options.

An alternative to mounting host binaries folders is to provide troubleshooting commands as part
of the container image. This can be done by adding instructions to install the desired commands
to the image Dockerfile. For example, examine the following partial Dockerfile, which is
a child of the rhel7.3 image used throughout this course and adds commonly used network
troubleshooting commands:

FROM rhel7.3

RUN yum install -y \
less \
dig \
ping \
iputils && \
 yum clean all

When built and run, this container will be identical to a rhel7.3 container, but it will also have
several additional troubleshooting tools available.

Getting Files Into and Out of Containers
When troubleshooting or managing an application, it may be necessary to move files into and out
of running containers, such as configuration files or log files. There are several ways to move files
into and out of containers:

docker cp
As of Docker version 1.8, the cp verb allows users to copy files both into and out of a running
container. To copy a file into a container named todoapi, the syntax looks like the following:

$ docker cp standalone.conf todoapi:/opt/jboss/standalone/conf/standalone.conf

To copy a file from the container to the host, flip the order of the previous command:

$ docker cp todoapi:/opt/jboss/standalone/conf/standalone.conf .

This docker cp alternative has the advantage of working with containers that were already
started, while the next alternative (volume mounts) requires changes to the command used
to start a container.

Volume mounts

Another option for copying files from the host to a container is using volume mounts.
Users can mount a local directory to copy data into a container. For example, the following
command sets the host /conf directory as the volume to use for the Apache configuration

Chapter 8. Troubleshooting Containerized Applications

264 DO180-OCP3.5-en-1-20170524

directory. This creates a simple way to manage the Apache server without having to rebuild
the container image:

$ docker run -v /conf:/etc/httpd/conf -d do180/apache

Piping docker exec
For containers that are already running, the docker exec command can be piped to pass
files both into and out of the running container by appending commands that are executed
in the container. The following example shows how to pass in and execute a SQL file inside a
MySQL container:

$ docker exec -i <containerName> mysql -uroot -proot < /path/on/host/to/db.sql

Using the same concept, it is possible to pull data from a running container and place it onto
the host machine. A useful example of this is using the mysqldump utility to create a backup
of a MySQL database inside a container. For example:

$ docker exec -it <containerName sh -c 'exec mysqldump -h"$MYSQL_PORT_3306_TCP_ADDR"
 \
 -P"$MYSQL_PORT_3306_TCP_PORT" -uroot -p"$MYSQL_ENV_MYSQL_ROOT_PASSWORD" items' \
 > items_dump.sql

The previous command uses the container environment variables to connect to the MySQL
server and execute the mysqldump and redirects the output to a file on the host machine. It
assumes the container image provides the mysqldump utility, so there is no need to install
MySQL administration commands on the host.

The oc rsync command provides functionality similar to docker cp for containers
running under OpenShift pods.

Demonstration: Forwarding Ports
1. Open an SSH session to the ocp VM and verify that the OpenShift cluster is running:

[student@workstation ~]$ ssh ocp
[student@ocp ~]$./ocp-up.sh

The ocp-up.sh script checks that the OCP cluster is running and, if true, exits without
displaying anything, else it starts the cluster.

2. Log out from the ocp VM and return to the workstation VM:

[student@ocp ~]$ Ctrl+D
Connection to ocp closed.
[student@workstation ~]$

3. Log in to OCP as the developer user and create a new project for this demonstration:

[student@workstation ~]$ oc login -u developer -p developer \
https://ocp.lab.example.com:8443
[student@workstation ~]$ oc new-project port-forward

Demonstration: Forwarding Ports

DO180-OCP3.5-en-1-20170524 265

If the oc login command prompts about using insecure connections, answer y (yes).

4. Create a new application from the rhscl/mysql-56-rhel7 container image using the oc
new-app command.

This image requires several environment variables (MYSQL_USER, MYSQL_PASSWORD,
MYSQL_DATABASE, and MYSQL_ROOT_PASSWORD) using the -e option.

Use the --docker-images option for oc new-app and the classroom private registry URI
so that OpenShift does not try and pull the image from the Internet:

[student@workstation ~]$ oc new-app \
--docker-image=infrastructure.lab.example.com:5000/rhscl/mysql-56-rhel7:latest \
--insecure-registry=true --name=port-forwarding \
-e MYSQL_USER=user1 -e MYSQL_PASSWORD=mypa55 -e MYSQL_DATABASE=testdb \
-e MYSQL_ROOT_PASSWORD=r00tpa55

5. Run the oc status command to view the status of the new application, and to check if the
deployment of the MySQL image was successful:

[student@workstation ~]$ oc status
In project port-forward on server https://ocp.lab.example.com:8443

svc/port-forwarding - 172.30.90.144:3306
 dc/port-forwarding deploys istag/port-forwarding:latest
 deployment #1 deployed 23 seconds ago - 1 pod
...

Wait for the MySQL server pod to be ready and running:

[student@workstation ~]$ oc get pods
NAME READY STATUS RESTARTS AGE
port-forwarding-1-t3qfb 1/1 Running 0 14s

6. To allow clients running in the developer's machine (in this environment, the workstation
VM) to access the database server from outside the OCP cluster, forward a local port to the
pod. This can be achieved by using the oc port-forward command:

[student@workstation ~]$ oc port-forward port-forwarding-1-t3qfb 13306:3306
Forwarding from 127.0.0.1:13306 -> 3306
Forwarding from [::1]:13306 -> 3306

Important
The oc port-forward command does not return to the Bash shell. Leave this
terminal open, and then open another terminal for the next steps.

7. Open a new terminal window on the workstation VM and run the following command to
connect to the database using the local port:

Chapter 8. Troubleshooting Containerized Applications

266 DO180-OCP3.5-en-1-20170524

[student@workstation ~]$ mysql -h127.0.0.1 -P13306 -uuser1 -pmypa55
Welcome to the MariaDB monitor
...
Server version: 5.6.34 MySQL Community Server (GPL)
...

8. Verify if the testdb database has been created:

MySQL [(none)]> show databases;
+--------------------+
| Database |
+--------------------+
| information_schema |
| testdb |
+--------------------+
2 rows in set (0.00 sec)

9. Exit from the MySQL prompt:

MySQL [(none)]> exit
Bye

10. Press Ctrl+C in the terminal window where you started the oc port-forward command.
This stops the port-forwarding and prevents further access to the MySQL database from the
developer's machine.

11. Delete the port-forward project:

[student@workstation ~]$ oc delete project port-forward

This concludes the demonstration.

References
More information about port-forwarding is available in the Port Forwarding section of
the OpenShift Container Platform documentation:

Architecture
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/
html/architecture/

The CLI commands for port-forwarding are available in the Port Forwarding chapter of
the OpenShift Container Platform documentation:

Developer Guide
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/
html/developer_guide/

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html/architecture/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html/architecture/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html/developer_guide/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html/developer_guide/

Guided Exercise: Configuring Apache Container Logs for Debugging

DO180-OCP3.5-en-1-20170524 267

Guided Exercise: Configuring Apache Container
Logs for Debugging

In this exercise, you will configure an Apache httpd container to send the logs to the stdout,
then check docker logs and events.

Resources

Files: /home/student/DO180/labs/debug-httpd

Application URL: NA

Resources CentOS httpd image (httpd:2.4)

Outcomes

You should be able to configure an Apache httpd container to send debug logs to stdout and
view them using the docker logs command.

Before you begin

The workstation should have docker running. To check if this is true and to download the
required lab files, run the following command from a terminal window:

[student@workstation ~]$ lab debug-httpd setup

Steps

1. Configure Apache httpd to send log messages to stdout and change the default log level.

1.1. The default log level for the CentOS Apache httpd container image is warn. You can
change the default level for httpd, and re-direct log messages to stdout by overriding
the default httpd.conf file. You can do this by creating a custom image on the host
workstation VM.

Briefly review the custom httpd.conf file at /home/student/DO180/labs/debug-
httpd/conf/httpd.conf. Observe the ErrorLog directive in this file:

ErrorLog /dev/stdout

This directive sends the httpd error log messages to the container's stdout.

Observe the LogLevel directive in this file:

LogLevel debug

This directive changes the default log level to debug.

Observe the CustomLog directive in this file:

CustomLog /dev/stdout common

This directive redirects the httpd access log messages to the container's stdout.

Chapter 8. Troubleshooting Containerized Applications

268 DO180-OCP3.5-en-1-20170524

2. Build a custom container to add the configuration file to the container.

2.1. From the terminal window, run the following commands:

[student@workstation ~]$ cd DO180/labs/debug-httpd
[student@workstation DO180/labs/debug-httpd]$./build.sh

2.2. Verify that the image was created.

From the terminal window, run the following command:

[student@workstation DO180/labs/debug-httpd]$ docker images

The new image must be available in the local docker cache.

REPOSITORY TAG IMAGE ID ...
debug-httpd latest c86936c8e791 ...

3. Start the custom httpd container:

[student@workstation ~]$ docker run \
 --name debug-httpd -d \
 -p 10080:80 debug-httpd

4. View the container's log messages and events.

4.1. View the debug log messages from the container using the docker logs command:

[student@workstation ~]$ docker logs debug-httpd
[Wed Apr 12 07:30:18.542794 2017] [mpm_event:notice] [pid 1:tid 140153712912256]
 AH00489: Apache/2.4.25 (Unix) configured -- resuming normal operations
[Wed Apr 12 07:30:18.543388 2017] [mpm_event:info] [pid 1:tid 140153712912256]
 AH00490: Server built: Mar 21 2017 20:50:17
[Wed Apr 12 07:30:18.543396 2017] [core:notice] [pid 1:tid 140153712912256]
 AH00094: Command line: 'httpd -D FOREGROUND'
[Wed Apr 12 07:30:18.543398 2017] [core:debug] [pid 1:tid 140153712912256]
 log.c(1546): AH02639: Using SO_REUSEPORT: yes (1)
[Wed Apr 12 07:30:18.543253 2017] [mpm_event:debug] [pid 6:tid 140153633576704]
 event.c(2132): AH02471: start_threads: Using epoll
[Wed Apr 12 07:30:18.544103 2017] [mpm_event:debug] [pid 7:tid 140153633576704]
 event.c(2132): AH02471: start_threads: Using epoll
[Wed Apr 12 07:30:18.545100 2017] [mpm_event:debug] [pid 8:tid 140153633576704]
 event.c(2132): AH02471: start_threads: Using epoll

Notice that debug level messages are now visible.

4.2. Request the home page of the web server using curl:

[student@workstation ~]$ curl http://127.0.0.1:10080
<html><body><h1>It works!</h1></body></html>

4.3. Use the docker logs command again to view the access log of the httpd web server:

DO180-OCP3.5-en-1-20170524 269

[student@workstation ~]$ docker logs debug-httpd
[Wed Apr 12 07:03:43.435321 2017] [authz_core:debug] [pid 8:tid 140644341249792]
 mod_authz_core.c(809): [client 172.17.0.1:43808] AH01626: authorization result
 of Require all granted: granted
[Wed Apr 12 07:03:43.435337 2017] [authz_core:debug] [pid 8:tid 140644341249792]
 mod_authz_core.c(809): [client 172.17.0.1:43808] AH01626: authorization result
 of <RequireAny>: granted
172.17.0.1 - - [12/Apr/2017:07:03:43 +0000] "GET / HTTP/1.1" 200 45

4.4. Verify the latest events from the docker daemon, related to previous lab steps using the
docker events command.

Adjust the time interval specified as an argument for the --since option to the
approximate time elapsed since you started this lab:

[student@workstation ~]$ docker events --since=10m
2017-04-28T07:40:52.057034869-04:00 image pull
 infrastructure.lab.example.com:5000/httpd:2.4
 (name=infrastructure.lab.example.com:5000/httpd)
2017-04-28T07:40:52.355087400-04:00 container create ... name=serene_gates)
2017-04-28T07:40:53.166857912-04:00 container commit ... name=serene_gates)
2017-04-28T07:40:53.475573799-04:00 container destroy ... name=serene_gates)
2017-04-28T07:40:53.480235940-04:00 image tag ... (name=debug-httpd:latest)
2017-04-28T07:41:51.835352650-04:00 container create ... image=debug-httpd,
 name=debug-httpd)
2017-04-28T07:41:51.962549582-04:00 network connect ... name=bridge,
 type=bridge)
2017-04-28T07:41:52.221989909-04:00 container start ... image=debug-httpd,
 name=debug-httpd)

Note
Your output may be different compared to the above. The docker events
command will NOT return to the prompt unless you kill the command with
Ctrl+C.

5. Verify if the debug configuration for the container was correctly set up. Run the following
from a terminal window:

[student@workstation ~]$ lab debug-httpd grade

6. Delete the container and image used in this lab.

[student@workstation ~]$ docker stop debug-httpd
[student@workstation ~]$ docker rm debug-httpd
[student@workstation ~]$ docker rmi -f httpd:2.4 debug-httpd

This concludes the guided exercise.

Chapter 8. Troubleshooting Containerized Applications

270 DO180-OCP3.5-en-1-20170524

Lab: Troubleshooting Containerized
Applications

In this lab, you will configure the broken-httpd container to send the logs to the stdout. This
container runs an application that has a broken link to download a file.

Resources

Files /home/student/DO180/labs/troubleshooting-lab

Application URL http://localhost:30000

Resources Broken httpd container image (do180/broken-httpd)

Outcomes

You should be able to send the Apache server logs to the stdout and fix a containerized
application from the container that is not working as planned.

Before you begin

The workstation should have the required files to build a broken container. To achieve this goal,
run the following command from a terminal window:

[student@workstation ~]$ lab troubleshooting-lab setup

The previous command downloads the following files:

• Dockerfile: File responsible for building the container image.

• training.repo: File with the local yum repositories available for the classroom environment.

• httpd.conf: File responsible for configuring the Apache HTTP server to send the logs to the
stdout.

• src/index.html: The application file.

1. A custom httpd configuration file is already provided to send the logs to the stdout.
Check the Dockerfile file to confirm that the default configuration file will be replaced
by the customized file. These files are available in the /home/student/DO180/labs/
troubleshooting-lab folder.

2. Build the new container image, tagging it as do180/broken-httpd.

3. The do180/broken-httpd container image has a simple web page containing a link that
should download a file from the following URL:

http://materials.example.com/labs/archive.tgz

Open a web browser and download the file to see that the previous URL is correct.

4. To troubleshoot the application, start a new container with the following characteristics:

• Name: broken-httpd

• Run as daemon: yes

DO180-OCP3.5-en-1-20170524 271

• Volume: from /usr/bin host folder to /usr/bin container folder.

• Container image: do180/broken-httpd

• Port forward: from 30000 host port to 80 container port.

Note
The volume mount is responsible for sharing commands, such as ping, from the /
usr/bin host folder with the container, to help in the troubleshooting.

5. Verify that the httpd daemon logs from the broken-httpd container were forwarded to the
stdout.

6. Open a new web browser and navigate to this URL: http://localhost:30000.

Warning
The final period is not part of the URL.

Click the Download the file link. You should see a server not found message.

7. Troubleshoot the container.

7.1. Access the container shell to start troubleshooting.

7.2. Use the ping command to verify whether the host name from the HTML link is
accessible.

7.3. Edit the index.html file to fix the problem.

7.4. Exit the container.

Warning
In a real-world scenario, the correct approach would be building a new
container image with the fixed page. The fix inside the container is just a
troubleshooting step to confirm the error.

8. Switch back to the web browser and refresh the page.

Click the Download the file link. The download should start.

9. Check your work. Run the following from a terminal window:

[student@workstation troubleshooting-lab]$ lab troubleshooting-lab grade

10. Clean up: Delete all containers and images created by this lab.

Chapter 8. Troubleshooting Containerized Applications

272 DO180-OCP3.5-en-1-20170524

This concludes the lab.

Solution

DO180-OCP3.5-en-1-20170524 273

Solution
In this lab, you will configure the broken-httpd container to send the logs to the stdout. This
container runs an application that has a broken link to download a file.

Resources

Files /home/student/DO180/labs/troubleshooting-lab

Application URL http://localhost:30000

Resources Broken httpd container image (do180/broken-httpd)

Outcomes

You should be able to send the Apache server logs to the stdout and fix a containerized
application from the container that is not working as planned.

Before you begin

The workstation should have the required files to build a broken container. To achieve this goal,
run the following command from a terminal window:

[student@workstation ~]$ lab troubleshooting-lab setup

The previous command downloads the following files:

• Dockerfile: File responsible for building the container image.

• training.repo: File with the local yum repositories available for the classroom environment.

• httpd.conf: File responsible for configuring the Apache HTTP server to send the logs to the
stdout.

• src/index.html: The application file.

1. A custom httpd configuration file is already provided to send the logs to the stdout.
Check the Dockerfile file to confirm that the default configuration file will be replaced
by the customized file. These files are available in the /home/student/DO180/labs/
troubleshooting-lab folder.

The following Dockerfile is expected:

FROM rhel:7.3
...
COPY httpd.conf /etc/httpd/conf/
...

2. Build the new container image, tagging it as do180/broken-httpd.

[student@workstation ~]$ cd DO180/labs/troubleshooting-lab
[student@workstation troubleshooting-lab]$ docker build -t do180/broken-httpd .

3. The do180/broken-httpd container image has a simple web page containing a link that
should download a file from the following URL:

http://materials.example.com/labs/archive.tgz

Chapter 8. Troubleshooting Containerized Applications

274 DO180-OCP3.5-en-1-20170524

Open a web browser and download the file to see that the previous URL is correct.

4. To troubleshoot the application, start a new container with the following characteristics:

• Name: broken-httpd

• Run as daemon: yes

• Volume: from /usr/bin host folder to /usr/bin container folder.

• Container image: do180/broken-httpd

• Port forward: from 30000 host port to 80 container port.

Note
The volume mount is responsible for sharing commands, such as ping, from the /
usr/bin host folder with the container, to help in the troubleshooting.

[student@workstation troubleshooting-lab]$ docker run --name broken-httpd -d \
-p 30000:80 -v /usr/bin:/usr/bin do180/broken-httpd

5. Verify that the httpd daemon logs from the broken-httpd container were forwarded to the
stdout.

[student@workstation troubleshooting]$ docker logs broken-httpd

The expected output is similar to:

...
[Wed Feb 10 11:59:25.648268 2016] [auth_digest:notice] [pid 1] AH01757: generating
 secret for digest authentication ...
[Wed Feb 10 11:59:25.649942 2016] [lbmethod_heartbeat:notice] [pid 1] AH02282: No
 slotmem from mod_heartmonitor
[Wed Feb 10 11:59:25.652586 2016] [mpm_prefork:notice] [pid 1] AH00163: Apache/2.4.6
 (Red Hat Enterprise Linux) configured -- resuming normal operations
...

6. Open a new web browser and navigate to this URL: http://localhost:30000.

Warning
The final period is not part of the URL.

Click the Download the file link. You should see a server not found message.

7. Troubleshoot the container.

7.1. Access the container shell to start troubleshooting.

Solution

DO180-OCP3.5-en-1-20170524 275

[student@workstation troubleshooting-lab]$ docker exec -it broken-httpd \
/bin/bash

7.2. Use the ping command to verify whether the host name from the HTML link is
accessible.

This web page opened in the web browser is available in the /var/www/html folder.

Display the index.html file contents:

[root@9ef58f71371c /]# cat /var/www/html/index.html
<html>
<body>
<h1>Download application</h1>

Download the
 file
</body>
</html>

Copy the host part of the URL and ping it:

[root@9ef58f71371c /]# ping materiasl.example.com

The following output is expected:

ping: materiasl.example.com: Name or service not known

7.3. Edit the index.html file to fix the problem.

The problem is related to a typo. Fix the typo replacing from materiasl to materials
in the index.html file. The vi editor is available because the /usr/bin host folder
was mounted as a volume.

[root@9ef58f71371c /]# vi /var/www/html/index.html

7.4. Exit the container.

[root@9ef58f71371c /]# exit

Warning
In a real-world scenario, the correct approach would be building a new
container image with the fixed page. The fix inside the container is just a
troubleshooting step to confirm the error.

8. Switch back to the web browser and refresh the page.

Click the Download the file link. The download should start.

Chapter 8. Troubleshooting Containerized Applications

276 DO180-OCP3.5-en-1-20170524

9. Check your work. Run the following from a terminal window:

[student@workstation troubleshooting-lab]$ lab troubleshooting-lab grade

10. Clean up: Delete all containers and images created by this lab.

[student@workstation troubleshooting-lab]$ cd ~
[student@workstation ~]$ docker stop broken-httpd
[student@workstation ~]$ docker rm broken-httpd
[student@workstation ~]$ docker rmi -f $(docker images -q)

This concludes the lab.

Summary

DO180-OCP3.5-en-1-20170524 277

Summary

In this chapter, you learned:

• S2I images requires that security concerns must be addressed to minimize build and
deployment issues.

• Development and sysadmin teams must work together to identify and mitigate problems due
to S2I image creation process.

• Troubleshoot containers by using the oc port-forward command to debug applications as a
last resource.

• OpenShift events provide low-level information about a container and its interactions. They
can be used as a last resource to identify communication problems.

278

DO180-OCP3.5-en-1-20170524 279

TRAINING

CHAPTER 9

COMPREHENSIVE REVIEW
OF INTRODUCTION TO
CONTAINERS, KUBERNETES,
AND RED HAT OPENSHIFT

Overview

Goal Demonstrate how to containerize a software application, test
it with Docker, and deploy it on an OpenShift cluster.

Objective Review concepts in the course to assist in completing the
comprehensive review lab.

Sections • Comprehensive Review

Lab • Containerizing and Deploying a Software Application

Chapter 9. Comprehensive Review of Introduction to Containers, Kubernetes, and Red Hat OpenShift

280 DO180-OCP3.5-en-1-20170524

Comprehensive Review

Objectives
After completing this section, students should be able to demonstrate knowledge and skills
learned in Introduction to Containers, Kubernetes, and Red Hat OpenShift .

Reviewing Introduction to Containers, Kubernetes, and
Red Hat OpenShift
Before beginning the comprehensive review lab for this course, students should be comfortable
with the topics covered in the following chapters.

Chapter 1, Getting Started with Container Technology
Describe how software can run in containers orchestrated by Red Hat OpenShift Container
Platform.

• Describe the architecture of Linux containers.

• Describe how containers are implemented using Docker.

• Describe the architecture of a Kubernetes cluster running on the Red Hat OpenShift Container
Platform.

Chapter 2, Creating Containerized Services
Provision a server using container technology.

• Describe three container development environment scenarios and build one using OpenShift.

• Create a database server from a container image stored on Docker Hub.

Chapter 3, Managing Containers
Manipulate pre-built container images to create and manage containerized services.

• Manage the life cycle of a container from creation to deletion.

• Save application data across container restarts through the use of persistent storage.

• Describe how Docker provides network access to containers, and access a container through
port forwarding.

Chapter 4, Managing Container Images
Manage the life cycle of a container image from creation to deletion.

• Search for and pull images from remote registries.

• Export, import, and manage container images locally and in a registry.

Chapter 5, Creating Custom Container Images
Design and code a Dockerfile to build a custom container image.

• Describe the approaches for creating custom container images.

• Create a container image using common Dockerfile commands.

General Container, Kubernetes, and OpenShift Hints

DO180-OCP3.5-en-1-20170524 281

Chapter 6, Deploying Containerized Applications on OpenShift
Deploy single container applications on OpenShift Container Platform.

• Install the OpenShift CLI tool and execute basic commands.

• Create standard Kubernetes resources.

• Build an application using the source-to-image facility of OCP.

• Create a route to a service.

• Create an application using the OpenShift web console.

Chapter 7, Deploying Multi-Container Applications
Deploy applications that are containerized using multiple container images.

• Describe the considerations for containerizing applications with multiple container images.

• Deploy a multi-container application with Docker link.

• Deploy a multi-container application on OpenShift using a template.

Chapter 8, Troubleshooting Containerized Applications
Troubleshoot a containerized application deployed on OpenShift.

• Troubleshoot an application build and deployment on OpenShift.

• Implement techniques for troubleshooting and debugging containerized applications.

General Container, Kubernetes, and OpenShift Hints
These hints may save some time in completing the comprehensive review lab:

• The docker command allows you to build, run, and manage container images. Docker
command documentation can be found by issuing the command man docker.

• The oc command allows you to create and manage OpenShift resources. OpenShift command-
line documentation can be found by issuing either of the commands man oc or oc help.
OpenShift commands that are particularly useful include:

oc login -u

Log in to OpenShift as the specified user. In this classroom, there are two user accounts
defined: system:admin and developer.

oc new-project

Create a new project (namespace) to contain OpenShift resources.

oc project

Select the current project (namespace) to which all subsequent commands apply.

oc create -f

Create a resource from a file.

oc process -f

Convert a template into OpenShift resources that can be created with the oc create
command.

Chapter 9. Comprehensive Review of Introduction to Containers, Kubernetes, and Red Hat OpenShift

282 DO180-OCP3.5-en-1-20170524

oc get

Display the runtime status and attributes of most OpenShift resources.

oc describe

Display detailed information about OpenShift resources.

oc delete

Delete OpenShift resources. The label option, -l label-value is helpful with this
command to delete multiple resources simultaneously.

• Before you mount any volumes on the Docker and OpenShift host, you need to apply the
correct SELinux context to the directory. The correct context is svirt_sandbox_file_t.
Also, make sure the ownership and permissions of the directory are set according to the USER
directive in the Dockerfile that was used to build the container being deployed. Most of the
time you will have to use the numeric UID and GID rather than the user and group names to
adjust ownership and permissions of the volume directory.

• In this classroom, all RPM repositories are defined locally. You must configure the repository
definitions in a custom container image (Dockerfile) before running yum commands.

• When executing commands in a Dockerfile, combine as many related commands as possible
into one RUN directive. This reduces the number of UFS layers in the container image.

• A best practice for designing a Dockerfile includes the use of environment variables for
specifying repeated constants throughout the file.

Lab: Containerizing and Deploying a Software Application

DO180-OCP3.5-en-1-20170524 283

Lab: Containerizing and Deploying a Software
Application

In this review, you will containerize a Nexus Server, build and test using Docker, and deploy on an
OpenShift cluster.

Outcomes

You should be able to:

• Construct a Dockerfile that successfully containerizes a Nexus server.

• Build a Nexus server container image that deploys using Docker.

• Deploy the Nexus server container image to an OpenShift cluster.

Before you begin

Get a copy of the lab files:

[student@workstation ~]$ lab review setup

The lab files are located in the /home/student/DO180/labs/review directory. The solution
files are located in the solutions directory.

Instructions

Create a Docker container image that starts an instance of a Nexus server:

• The server should run as the nexus user and group. They have a UID and GID of 1001,
respectively.

• The server requires that the java-1.8.0-openjdk-devel package be installed. The RPM
repositories are configured in the provided training.repo file. Be sure to add this file to the
container in the /etc/yum.repos.d directory.

• The server is provided as a compressed tar file: nexus-2.14.3-02-bundle.tar.gz. This
file can be retrieved from the server at http://content.example.com/ocp3.4/x86_64/
installers/{tarball name}. A script has been provided to retrieve the tar bundle before
you build the image: image/get-nexus-bundle.sh.

• Run the following script to start the nexus server: nexus-start.sh.

• The working directory and home for the nexus installation should be /opt/nexus. The
version-specific nexus directory should be linked to a directory named nexus2.

• Nexus produces persistent data at /opt/nexus/sonatype-work. Make sure this can be
mounted as a volume. You may want to initially build and test your container image without a
persistent volume and add this in a second pass.

• There are two snippet files in the image lab directory that provide the commands needed
to create the nexus account and install Java. Use these snippets to assist you in writing the
Dockerfile.

Chapter 9. Comprehensive Review of Introduction to Containers, Kubernetes, and Red Hat OpenShift

284 DO180-OCP3.5-en-1-20170524

Build and test the container image using Docker with and without a volume mount. In the lab
file directory, deploy/docker, there is a shell script to assist you in running the container with
a volume mount. Remember to inspect the running container to determine its IP address. Use
curl as well as the container logs to determine if the Nexus server is running properly:

[student@workstation review]$ docker logs -f {container-id}
[student@workstation review]$ curl http://{ipaddress}:8081/nexus/

Deploy the Nexus server container image to the OpenShift cluster:

• Publish the container image to the classroom private registry at
infrastructure.lab.example.com:5000.

• The deploy/openshift lab files directory contains several shell scripts, Kubernetes resource
definitions, and an OpenShift template to help complete the lab:

◦ create-pv.sh

This script creates the Kubernetes persistent volume that stores the Nexus server persistent
data.

◦ delete-pv.sh

This script deletes the Kubernetes persistent volume.

◦ resources/pv.yaml

This is a Kubernetes resource file that defines the persistent volume. This file is used by the
create-pv.sh script.

◦ resources/nexus-template.json

This is an OpenShift template used to deploy the Nexus server container image.

• Several helpful scripts are located in the solutions directory for this lab that can help you
deploy and undeploy the application if you are unsure how to proceed.

• Remember to push the container image to the classroom private registry at
infrastructure.lab.example.com:5000. The container must be named nexus and have
a tag latest. The OpenShift template expects this name.

• A suggestion for the OpenShift project name is review. Make sure you execute the
setpolicy.sh shell script after you create the OpenShift project. This allows the container to
run as the user with which it was configured to run as.

• Be sure to create the persistent volume with the provided shell script before deploying the
container with the template.

• Expose the Nexus server service as a route using the default route name. Test the server using
a browser.

• Use the grading script to test your work:

[student@workstation review]$ lab review grade

DO180-OCP3.5-en-1-20170524 285

• Clean up your project space by deleting the OpenShift project. You may want to remove the
local copy of the Docker container image as well.

Evaluation

After deploying the Nexus server container image to the OpenShift cluster, you can check your
work by running the lab grading script:

[student@workstation ~]$ lab review grade

Chapter 9. Comprehensive Review of Introduction to Containers, Kubernetes, and Red Hat OpenShift

286 DO180-OCP3.5-en-1-20170524

Solution

In this review, you will containerize a Nexus Server, build and test using Docker, and deploy on an
OpenShift cluster.

Outcomes

You should be able to:

• Construct a Dockerfile that successfully containerizes a Nexus server.

• Build a Nexus server container image that deploys using Docker.

• Deploy the Nexus server container image to an OpenShift cluster.

Before you begin

Get a copy of the lab files:

[student@workstation ~]$ lab review setup

The lab files are located in the /home/student/DO180/labs/review directory. The solution
files are located in the solutions directory.

Instructions

Create a Docker container image that starts an instance of a Nexus server:

• The server should run as the nexus user and group. They have a UID and GID of 1001,
respectively.

• The server requires that the java-1.8.0-openjdk-devel package be installed. The RPM
repositories are configured in the provided training.repo file. Be sure to add this file to the
container in the /etc/yum.repos.d directory.

• The server is provided as a compressed tar file: nexus-2.14.3-02-bundle.tar.gz. This
file can be retrieved from the server at http://content.example.com/ocp3.4/x86_64/
installers/{tarball name}. A script has been provided to retrieve the tar bundle before
you build the image: image/get-nexus-bundle.sh.

• Run the following script to start the nexus server: nexus-start.sh.

• The working directory and home for the nexus installation should be /opt/nexus. The
version-specific nexus directory should be linked to a directory named nexus2.

• Nexus produces persistent data at /opt/nexus/sonatype-work. Make sure this can be
mounted as a volume. You may want to initially build and test your container image without a
persistent volume and add this in a second pass.

• There are two snippet files in the image lab directory that provide the commands needed
to create the nexus account and install Java. Use these snippets to assist you in writing the
Dockerfile.

Build and test the container image using Docker with and without a volume mount. In the lab
file directory, deploy/docker, there is a shell script to assist you in running the container with
a volume mount. Remember to inspect the running container to determine its IP address. Use
curl as well as the container logs to determine if the Nexus server is running properly:

Solution

DO180-OCP3.5-en-1-20170524 287

[student@workstation review]$ docker logs -f {container-id}
[student@workstation review]$ curl http://{ipaddress}:8081/nexus/

Deploy the Nexus server container image to the OpenShift cluster:

• Publish the container image to the classroom private registry at
infrastructure.lab.example.com:5000.

• The deploy/openshift lab files directory contains several shell scripts, Kubernetes resource
definitions, and an OpenShift template to help complete the lab:

◦ create-pv.sh

This script creates the Kubernetes persistent volume that stores the Nexus server persistent
data.

◦ delete-pv.sh

This script deletes the Kubernetes persistent volume.

◦ resources/pv.yaml

This is a Kubernetes resource file that defines the persistent volume. This file is used by the
create-pv.sh script.

◦ resources/nexus-template.json

This is an OpenShift template used to deploy the Nexus server container image.

• Several helpful scripts are located in the solutions directory for this lab that can help you
deploy and undeploy the application if you are unsure how to proceed.

• Remember to push the container image to the classroom private registry at
infrastructure.lab.example.com:5000. The container must be named nexus and have
a tag latest. The OpenShift template expects this name.

• A suggestion for the OpenShift project name is review. Make sure you execute the
setpolicy.sh shell script after you create the OpenShift project. This allows the container to
run as the user with which it was configured to run as.

• Be sure to create the persistent volume with the provided shell script before deploying the
container with the template.

• Expose the Nexus server service as a route using the default route name. Test the server using
a browser.

• Use the grading script to test your work:

[student@workstation review]$ lab review grade

• Clean up your project space by deleting the OpenShift project. You may want to remove the
local copy of the Docker container image as well.

Chapter 9. Comprehensive Review of Introduction to Containers, Kubernetes, and Red Hat OpenShift

288 DO180-OCP3.5-en-1-20170524

Steps

1. Develop a Dockerfile that properly containerizes the Nexus server. Use the lab working
directory image. Use the comments in the existing file to guide you in the development of
this container image.

1.1. Specify the base image to use:

FROM rhel7.3

1.2. Enter your name and email as the maintainer:

FROM rhel7.3
MAINTAINER New User <user1@myorg.com>

1.3. Set the environment variables for NEXUS_VERSION and NEXUS_HOME:

FROM rhel7.3
MAINTAINER Jane Doe <jdoe@myorg.com>

ENV NEXUS_VERSION=2.14.3-02 \
 NEXUS_HOME=/opt/nexus

1.4. Add the training.repo to the /etc/yum.repos.d directory. Install the Java
package using the snippet provided in installjava:

...
ENV NEXUS_VERSION=2.14.3-02 \
 NEXUS_HOME=/opt/nexus

ADD training.repo /etc/yum.repos.d/training.repo
RUN yum --noplugins update -y && \
 yum --noplugins install -y --setopt=tsflags=nodocs \
 java-1.8.0-openjdk-devel && \
 yum --noplugins clean all -y

1.5. Create the server home directory and service account/group using the snippet provided
in createnexusacct:

...
RUN yum --noplugins update -y && \
 yum --noplugins install -y --setopt=tsflags=nodocs \
 java-1.8.0-openjdk-devel && \
 yum --noplugins clean all -y

RUN groupadd -r nexus -f -g 1001 && \
 useradd -u 1001 -r -g nexus -m -d ${NEXUS_HOME} \
 -s /sbin/nologin \
 -c "Nexus User" nexus && \
 chown -R nexus:nexus ${NEXUS_HOME} && \
 chmod -R 755 ${NEXUS_HOME}

1.6. Install the Nexus server software at NEXUS_HOME and add the start-up script. Note that
the ADD directive will extract tarballs. Create the nexus2 link pointing to the Nexus
server directory.

Solution

DO180-OCP3.5-en-1-20170524 289

...
RUN groupadd -r nexus -f -g 1001 && \
 useradd -u 1001 -r -g nexus -m -d ${NEXUS_HOME} \
 -s /sbin/nologin \
 -c "Nexus User" nexus && \
 chown -R nexus:nexus ${NEXUS_HOME} && \
 chmod -R 755 ${NEXUS_HOME}

ADD nexus-${NEXUS_VERSION}-bundle.tar.gz ${NEXUS_HOME}/
ADD nexus-start.sh ${NEXUS_HOME}/

RUN ln -s ${NEXUS_HOME}/nexus-${NEXUS_VERSION} \
 ${NEXUS_HOME}/nexus2 && \
 chown -R nexus:nexus ${NEXUS_HOME}

1.7. Make the container run as the nexus user and make the working directory /opt/nexus:

...
RUN ln -s ${NEXUS_HOME}/nexus-${NEXUS_VERSION} \
 ${NEXUS_HOME}/nexus2 && \
 chown -R nexus:nexus ${NEXUS_HOME}

USER nexus
WORKDIR ${NEXUS_HOME}

1.8. Define a volume mount point to hold the Nexus server persistent data:

...
USER nexus
WORKDIR ${NEXUS_HOME}

VOLUME ["/opt/nexus/sonatype-work"]

1.9. Execute the Nexus server shell script. The completed Dockerfile is listed here:

FROM rhel7.3
MAINTAINER Jim Rigsbee <jrigsbee@redhat.com>

ENV NEXUS_VERSION=2.14.3-02 \
 NEXUS_HOME=/opt/nexus

ADD training.repo /etc/yum.repos.d/training.repo
RUN yum --noplugins update -y && \
 yum --noplugins install -y --setopt=tsflags=nodocs \
 java-1.8.0-openjdk-devel && \
 yum --noplugins clean all -y

RUN groupadd -r nexus -f -g 1001 && \
 useradd -u 1001 -r -g nexus -m -d ${NEXUS_HOME} \
 -s /sbin/nologin \
 -c "Nexus User" nexus && \
 chown -R nexus:nexus ${NEXUS_HOME} && \
 chmod -R 755 ${NEXUS_HOME}

ADD nexus-${NEXUS_VERSION}-bundle.tar.gz ${NEXUS_HOME}/
ADD nexus-start.sh ${NEXUS_HOME}/

RUN ln -s ${NEXUS_HOME}/nexus-${NEXUS_VERSION} \

Chapter 9. Comprehensive Review of Introduction to Containers, Kubernetes, and Red Hat OpenShift

290 DO180-OCP3.5-en-1-20170524

 ${NEXUS_HOME}/nexus2 && \
 chown -R nexus:nexus ${NEXUS_HOME}

USER nexus
WORKDIR ${NEXUS_HOME}

VOLUME ["/opt/nexus/sonatype-work"]

CMD ["sh", "nexus-start.sh"]

2. Get the Nexus server tarball into the image directory using the script image/get-nexus-
bundle.sh. Build the container image:

[student@workstation ~]$ cd /home/student/DO180/labs/review/image
[student@workstation image]$./get-nexus-bundle.sh
[student@workstation image]$ docker build -t nexus .

3. Test the image with Docker using the provided deploy/docker/run-persistent.sh
shell script:

[student@workstation docker]$./run-persistent.sh
[student@workstation docker]$ docker logs -f {container id} # wait for Started
 message in log
[student@workstation docker]$ docker inspect {container id} # look for IP address
[student@workstation docker]$ curl {ip address}:8081/nexus/
[student@workstation docker]$ docker kill {container id}

4. Publish the Nexus server container image to the classroom private registry:

[student@workstation docker]$ docker tag nexus:latest \
infrastructure.lab.example.com:5000/nexus:latest
[student@workstation docker]$ docker push \
infrastructure.lab.example.com:5000/nexus:latest

5. Deploy the Nexus server container image to the OpenShift cluster using the resources in the
deploy/openshift directory.

5.1. Create the OpenShift project and set the security context policy:

[student@workstation docker]$ cd /home/student/DO180/labs/review/deploy/
openshift

[student@workstation openshift]$ oc login -u developer -p developer \
https://ocp.lab.example.com:8443
[student@workstation openshift]$ oc new-project review
[student@workstation openshift]$../../setpolicy.sh

5.2. Create the persistent volume that will hold the Nexus server's persistent data:

[student@workstation openshift]$./create-pv.sh

5.3. Process the template and create the Kubernetes resources:

Solution

DO180-OCP3.5-en-1-20170524 291

[student@workstation openshift]$ oc process -f resources/nexus-template.json \
 | oc create -f -
[student@workstation openshift]$ oc get pods -w

5.4. Expose the service (create a route):

[student@workstation openshift]$ oc expose svc/nexus
[student@workstation openshift]$ oc get route

5.5. Use a browser to connect to the Nexus server web application using http://
{routeaddress}/nexus/.

6. Run the grading script to check your work:

[student@workstation review]$ lab review grade

7. Clean up your OpenShift project:

[student@workstation review]$ oc delete project review
[student@workstation review]$./delete-pv.sh

This concludes this lab.

Evaluation

After deploying the Nexus server container image to the OpenShift cluster, you can check your
work by running the lab grading script:

[student@workstation ~]$ lab review grade

292

DO180-OCP3.5-en-1-20170524 293

TRAINING

APPENDIX A

IMPLEMENTING
MICROSERVICES
ARCHITECTURE

Overview

Goal Design and build a custom container image for the deployment
of an application containing multiple containers.

Objectives • Divide an application across multiple containers to separate
distinct layers and services.

Sections • Implementing Microservices Architectures (with Guided
Exercise)

Appendix A. Implementing Microservices Architecture

294 DO180-OCP3.5-en-1-20170524

Implementing Microservices Architectures

Objectives
After completing this section, students should be able to:

• Divide an application across multiple containers to separate distinct layers and services.

• Describe typical approaches to decompose a monolithic application into multiple deployable
units.

• Describe how to break the To Do List application into three containers matching its logical
tiers.

Benefits of Decomposing an Application to Deploy into
Containers
Among recommended practices for decomposing applications in microservices is running a
minimum function set on each container. This is the opposite of traditional development where
many distinct functions are packaged as a single deployment unit, or a monolithic application. In
addition, traditional development may deploy supporting services, such as databases and other
middleware services, on the same server as the application.

Having smaller containers and decomposing an application and its supporting services into
multiple containers provides many advantages, such as:

• Higher hardware utilization, because smaller containers are easier to fit into available host
capacity.

• Easier scaling, because parts of the application can be scaled to support an increased workload
without scaling other parts of the application.

• Easier upgrades, because parts of the application can be updated without affecting other parts
of the same application.

Two popular ways of breaking an application are as follows:

• Tiers: based on architectural layers.

• Services: based on application functionality.

Dividing Based on Layers (Tiers)
Many applications are organized into tiers, based on how close the functions are to end users and
how far from data stores. The traditional three-tier architecture: presentation, business logic, and
persistence is a good example.

This logical architecture usually corresponds to a physical deployment architecture, where the
presentation layer would be deployed to a web server, the business layer to an application server,
and the persistence layer to a database server.

Decomposing an application based on tiers allows developers to specialize in particular tier
technologies. For example, there are web developers and database developers. Another
advantage is the ability to provide alternative tier implementations based on different

Dividing Based on Discrete Services

DO180-OCP3.5-en-1-20170524 295

technologies; for example, creating a mobile application as another front end for an existing
application. The mobile application would be an alternative presentation tier, reusing the
business and persistence tiers of the original web application.

Smaller applications usually have the presentation and business tiers deployed as a single unit,
for example, to the same web server, but as the load increases, the presentation layer is moved
to its own deployment unit to spread the load. Smaller applications might even embed the
database. Bigger applications are often built and deployed in this monolithic fashion.

When a monolithic application is broken into tiers, it usually has to go though several changes:

• Connection parameters to database and other middleware services, such as messaging, were
hard coded to fixed IPs or host names, usually localhost. They need to be parameterized to
point to external servers that might be different from development to production.

• In the case of web applications, Ajax calls cannot be made using relative URLs. They need to
use an absolute URL pointing to a fixed public DNS host name.

• Modern web browsers refuse Ajax calls to servers different from the one the page was
downloaded from, as a security measure. The application needs to have provisions for cross-
origin resource sharing (CORS).

After application tiers are divided so that they can run from different servers, there should be no
problem running them from different containers.

Dividing Based on Discrete Services
Most complex applications are composed of many semi-independent services. For example, an
online store would have a product catalog, shopping cart, payment, shipping, and so on.

Both traditional service-oriented architectures (SOA) and more recent microservices architectures
package and deploy those function sets as distinct units. This allows each function set to be
developed by its own team, be updated, and be scaled without disturbing other function sets (or
services).

Cross-functional concerns such as authentication can also be packaged and deployed as services
that are consumed by other service implementations.

Splitting each concern into a separated server might result in many applications. They are
logically architected, packaged, and deployed as a small number of units, sometimes even a
single monolithic unit using a service approach.

Containers enable architectures based on services to be realized during deployment. That is the
reason microservices are so frequently talked about alongside containers. But containers alone
are not enough; they need to be complemented by orchestration tools to manage dependencies
among services.

Microservices can be viewed as taking service-based architectures to the extreme. A service
is as small as it can be (without breaking a function set) and is deployed and managed as an
independent unit, instead of part of a bigger application. This allows existing microservices to be
reused to create new applications.

To break an application into services, it needs the same kind of change as when breaking into
tiers; for example, parameterize connection parameters to databases and other middleware
services and deal with web browser security protections.

Appendix A. Implementing Microservices Architecture

296 DO180-OCP3.5-en-1-20170524

Refactoring the To Do List Application
The To Do List application is a simple application with a single function set, so it cannot be truly
broken into services. But refactoring it into presentation and business tiers, that is, into a front
end and a back end to be deployed into distinct containers, illustrates the same kind of changes a
typical application would need to be broken into services.

The following figure shows how the To Do List application would be deployed to three containers,
one for each tier:

Figure A.1: To Do List application broken into tiers and each deployed as containers

Comparing the source code of the original monolithic application with the new one re-factored
into services. The following are the high-level changes:

• The front-end JavaScript in script/items.js uses workstation.lab.example.com as
the host name to reach the back end.

• The back end uses environment variables to get the database connection parameters.

• The back end has to reply to requests using the HTTP OPTIONS verb with headers telling the
web browser to accept requests coming from different DNS domains using CORS.

Other versions of the back end service might have similar changes. Each programming language
and REST framework has their own syntax and features.

References
CORS page in Wikipedia
https://en.wikipedia.org/wiki/Cross-origin_resource_sharing

https://en.wikipedia.org/wiki/Cross-origin_resource_sharing

Guided Exercise: Refactoring the To Do List Application

DO180-OCP3.5-en-1-20170524 297

Guided Exercise: Refactoring the To Do List
Application

In this lab, you will refactor the To Do List application into multiple containers that are linked
together, allowing the front-end HTML 5 application, the Node.js REST API, and the MySQL
server to run in their own containers.

Resources

Files /home/student/DO180/labs/todoapp /home/student/
DO180/labs/appendix-microservices

Application URL http://127.0.0.1:30080

Resources MySQL 5.6 image (mysql:5.6), RHEL 7.3 Image (rhel7.3),
To Do API image (do180/todoapi_nodejs), To Do front-end
image (do180/todo_frontend)

Outcomes

You should be able to refactor a monolithic application into its tiers and deploy each tier as a
microservice.

Before you begin

Run the following command to set up the working directories for the lab with the To Do List
application files:

[student@workstation ~]$ lab appendix-microservices setup

Create a new directory to host the new front-end application.

[student@workstation ~]$ mkdir -p ~/DO180/labs/appendix-microservices/apps/html5/src

Steps

1. Move HTML Files

The first step in refactoring the To Do List application is to move the front-end code from the
application into its own running container. This step guides you through moving the HTML
application and its dependent files into its own directory, so that it can be deployed to an
Apache server running in a container.

1.1. Move the HTML and static files to the src/ directory from the monolithic Node.js To Do
List Application:

[student@workstation ~]$ cd ~/DO180/labs/appendix-microservices/apps/html5/
[student@workstation html5]$ mv \
~/DO180/labs/appendix-microservices/apps/nodejs/todo/* \
~/DO180/labs/appendix-microservices/apps/html5/src/

1.2. The current front-end application interacts with the API service using a relative URL.
Because the API and front-end code will now run in separate containers, the front-end
needs to be adjusted to point to the absolute URL of the To Do List application API.

Appendix A. Implementing Microservices Architecture

298 DO180-OCP3.5-en-1-20170524

Open the /home/student/DO180/labs/appendix-microservices/apps/
html5/src/script/item.js file. At the bottom of the file, look for the following
method:

app.factory('itemService', function ($resource) {
 return $resource('api/items/:id');
});

Replace that code with the following:

app.factory('itemService', function ($resource) {
 return $resource('http://workstation.lab.example.com:30080/todo/api/
items/:id');
});

Make sure there are no line breaks in the new URL, save the file and exit the editor.

2. Build the HTML Image

2.1. Run the build script to build the Apache parent image that was created in the previous
chapter:

[student@workstation ~]$ cd /home/student/DO180/labs/appendix-microservices/
[student@workstation appendix-microservices]$ cd images/apache
[student@workstation apache]$./build.sh

2.2. Verify that the image built correctly:

[student@workstation apache]$ docker images
REPOSITORY TAG IMAGE ID
 CREATED VIRTUAL SIZE
do180/httpd latest 34376f2a318f 2
 minutes ago 282.6 MB
...

2.3. Build the child Apache image:

[student@workstation ~]$ cd /home/student/DO180/labs/appendix-microservices/
[student@workstation appendix-microservices]$ cd deploy/html5
[student@workstation html5]$./build.sh

2.4. Verify that the image built correctly:

[student@workstation html5]$ docker images
REPOSITORY TAG IMAGE ID
 CREATED VIRTUAL SIZE
do180/todo_frontend latest 30b3fc531bc6 2
 minutes ago 286.9 MB
do180/httpd latest 34376f2a318f 4
 minutes ago 282.6 MB
...

DO180-OCP3.5-en-1-20170524 299

3. Modify the REST API to Connect to External Containers

3.1. The REST API currently uses hard-coded values to connect to the MySQL database.
Update these values to utilize environment variables instead. Edit the /home/
student/DO180/labs/appendix-microservices/apps/nodejs/models/
db.js file, which holds the database configuration. Replace the contents with the
following:

module.exports.params = {
 dbname: process.env.MYSQL_ENV_MYSQL_DATABASE,
 username: process.env.MYSQL_ENV_MYSQL_USER,
 password: process.env.MYSQL_ENV_MYSQL_PASSWORD,
 params: {
 host: process.env.MYSQL_PORT_3306_TCP_ADDR,
 port: process.env.MYSQL_PORT_3306_TCP_PORT,
 dialect: 'mysql'
 }
};

Note
This file can be copied and pasted from /home/student/DO180/labs/
appendix-microservices/apps/nodejs_api/models/db.js.

3.2. Configure the back end to handle Cross-origin resource sharing (CORS). This occurs when
a resource request is made from a different domain from the one in which the request
was made. Because the API needs to handle requests from a different DNS domain
(the front-end application), it is necessary to create security exceptions to allow these
requests to succeed. Make the following modifications to the application in the language
of your preference in order to handle CORS.

Add the following line to the server variable for the default CORS settings to allow
requests from any origin in the app.js file located at /home/student/DO180/labs/
appendix-microservices/apps/nodejs/:

var server = restify.createServer()
 .use(restify.fullResponse())
 .use(restify.queryParser())
 .use(restify.bodyParser())
 .use(restify.CORS());

4. Build the REST API Image

4.1. Build the REST API child image using the following command. This image is the same
child image that was created in the previous guided exercise.

[student@workstation ~]$ cd /home/student/DO180/labs/appendix-microservices/
[student@workstation appendix-microservices]$ cd deploy/nodejs
[student@workstation nodejs]$./build.sh

4.2. Run the docker images command to verify that all of the required images built
successfully:

Appendix A. Implementing Microservices Architecture

300 DO180-OCP3.5-en-1-20170524

[student@workstation ~]$ docker images
REPOSITORY TAG IMAGE ID CREATED
 VIRTUAL SIZE
do180/todonodejs latest 18f48b42445d 14
minutes ago 518.3 MB
do180/httpd latest ebc1d069d189 49
minutes ago 493.7 MB
do180/todo_frontend latest 46a3c5521828 50
minutes ago 503.3 MB
registry.access.redhat.com/rhel7.3 latest 6c3a84d798dc 5
weeks ago 201.7 MB

5. Run the Containers

5.1. Use the run script to run the containers:

[student@workstation ~]$ cd /home/student/DO180/labs/appendix-microservices
[student@workstation appendix-microservices]$ cd deploy/nodejs/linked/
[student@workstation linked]$./run.sh

5.2. Run the docker ps command to confirm that all three containers are running:

[student@workstation linked]$ docker ps
CONTAINER ID IMAGE COMMAND CREATED
 STATUS PORTS NAMES
a97c5e1ab922 do180/todo_frontend "httpd -D FOREGROUND" About
 a minute ago Up About a minute 0.0.0.0:30000->80/tcp todoui
a9920830b53f do180/todoapi_nodejs "./run.sh" About
 a minute ago Up About a minute 0.0.0.0:30080->30080/tcp todoapi
984d636591b8 mysql "container-entrypoint" About
 a minute ago Up About a minute 0.0.0.0:30306->3306/tcp mysql

6. Test the Application

6.1. Use a curl command to verify that the REST API for the To Do List application is
working correctly:

[student@workstation linked]$ curl 127.0.0.1:30080/todo/api/items/1
{"description": "Pick up newspaper", "done": false, "id":1}

6.2. Open Firefox on the workstation and navigate to http://127.0.0.1:30000, where
you should see the To Do List application.

6.3. Verify that the correct images were built and that the application is running correctly:

[student@workstation linked]$ lab appendix-microservices grade

This concludes the guided exercise.

7. Clean Up

7.1. Stop the running containers:

[student@workstation linked]$ docker stop todoapi todoui mysql

DO180-OCP3.5-en-1-20170524 301

7.2. Remove the stopped containers:

[student@workstation linked]$ docker rm todoapi todoui mysql

7.3. Remove the images created during the appendix:

[student@workstation linked]$ docker rmi -f \
 do180/todonodejs do180/todo_frontend \
 do180/httpd

This concludes the guided exercise.

Appendix A. Implementing Microservices Architecture

302 DO180-OCP3.5-en-1-20170524

Summary

In this chapter, you learned:

• Breaking a monolithic application into multiple containers allows for greater application
scalability, makes upgrades easier, and allows higher hardware utilization.

• The three common tiers for logical division of an application are the presentation tier, the
business tier, and the persistence tier.

• Cross-origin resource sharing (CORS) can prevent Ajax calls to servers different from the one
from where the pages were downloaded. Be sure to make provisions to allow CORS from other
containers in the application.

• Container images are intended to be immutable, but configurations can be passed in either at
image build time or by creating persistent storage for configurations.

• Passing environment variables into a container is not an ideal solution for starting an
application composed of multiple containers, because it is prone to typing mistakes and the
connection information is dynamic. The linked containers feature in Docker resolves this issue.

• Environment variables created by the --link container:alias option are based on the
alias given in the command.

	Introduction to Containers, Kubernetes, and Red Hat OpenShift
	Table of Contents
	Document Conventions
	Notes and Warnings

	Introduction
	Introduction to Containers, Kubernetes, and Red Hat OpenShift
	Orientation to the Classroom Environment
	Internationalization
	Language Codes Reference

	Chapter 1. Getting Started with Container Technology
	Overview of the Container Architecture
	Quiz: Overview of the Container Architecture
	Overview of the Docker Architecture
	Quiz: Overview of the Docker Architecture
	Describing Kubernetes and OpenShift
	Quiz: Describing Kubernetes and OpenShift
	Summary

	Chapter 2. Creating Containerized Services
	Building a Development Environment
	Guided Exercise: Starting an OpenShift Cluster
	Provisioning a Database Server
	Guided Exercise: Creating a MySQL Database Instance
	Lab: Creating Containerized Services
	Summary

	Chapter 3. Managing Containers
	Managing the Life Cycle of Containers
	Guided Exercise: Managing a MySQL Container
	Attaching Docker Persistent Storage
	Guided Exercise: Persisting a MySQL Database
	Accessing Docker Networks
	Guided Exercise: Loading the Database
	Lab: Managing Containers
	Summary

	Chapter 4. Managing Container Images
	Accessing Registries
	Quiz: Working With Registries
	Manipulating Container Images
	Guided Exercise: Creating a Custom Apache Container Image
	Lab: Managing Images
	Summary

	Chapter 5. Creating Custom Container Images
	Design Considerations for Custom Container Images
	Quiz: Approaches to Container Image Design
	Building Custom Container Images with Dockerfile
	Guided Exercise: Creating a Basic Apache Container Image
	Lab: Creating Custom Container Images
	Summary

	Chapter 6. Deploying Containerized Applications on OpenShift
	Installing the OpenShift Command-line Tool
	Quiz: OpenShift CLI
	Creating Kubernetes Resources
	Guided Exercise: Deploying a Database Server on OpenShift
	Creating Applications with Source-to-Image
	Guided Exercise: Creating a Containerized Application with Source-to-Image
	Creating Routes
	Guided Exercise: Exposing a Service as a Route
	Creating Applications with the OpenShift Web Console
	Guided Exercise: Creating an Application with the Web Console
	Lab: Deploying Containerized Applications on OpenShift
	Summary

	Chapter 7. Deploying Multi-Container Applications
	Considerations for Multi-Container Applications
	Quiz: Multi-Container Application Considerations
	Deploying a Multi-Container Application with Docker
	Guided Exercise: Linking the Web Application and MySQL Containers
	Deploying a Multi-Container Application on OpenShift
	Guided Exercise: Creating an Application with a Template
	Lab: Deploying Multi-Container Applications
	Summary

	Chapter 8. Troubleshooting Containerized Applications
	Troubleshooting S2I Builds and Deployments
	Guided Exercise: Troubleshooting an OpenShift Build
	Troubleshooting Containerized Applications
	Guided Exercise: Configuring Apache Container Logs for Debugging
	Lab: Troubleshooting Containerized Applications
	Summary

	Chapter 9. Comprehensive Review of Introduction to Containers, Kubernetes, and Red Hat OpenShift
	Comprehensive Review
	Lab: Containerizing and Deploying a Software Application

	Appendix A. Implementing Microservices Architecture
	Implementing Microservices Architectures
	Guided Exercise: Refactoring the To Do List Application
	Summary

