
1.1

1.2

1.3

1.4

1.4.1

1.4.2

1.4.3

1.4.4

1.5

1.6

1.7

1.7.1

1.7.2

1.7.3

1.7.4

1.7.5

1.7.6

1.7.7

1.7.8

1.7.9

1.7.10

1.8

1.9

1.10

1.10.1

1.10.2

1.10.3

1.10.4

1.10.5

1.10.6

1.10.7

1.10.8

1.11

1.12

Table	of	Contents
Home

Objectives	&	Prerequisites

Lab	Environment

container-tools

What	container	tools	are	in	RHEL	8?

Container	image	formats

container-tools	artifacts

Install	container-tools

Lab	1.1

Lab	1.2

Podman

Podman	in	RHEL	8

podman	login

podman	login	-	username/password

podman	login	-	token

podman	pull

podman	run

podman	run	example

podman	build

Build	a	container	image	with	a	Dockerfile

Create	a	new	container	image	from	a	running	container

Lab	2.1

Lab	2.2

Buildah

Buildah	in	RHEL	8

Buildah	advantages

buildah	build-using-dockerfile

buildah	images|containers

buildah	from

buildah	mount

buildah	run

buildah	commit

Lab	3

Resources	&	Feedback

1

RHEL	8	Readiness	Training

Container	Tools
Course:	CEE-RL-021
Version:	1.0,	April	2019

How	to	use	this	module:
Look	for	gray	<	and	>	marks	on	either	the	bottom	or	the	left	and	right	sides	of	this	pane,	depending	on	the	size	of	the	window.
Click	those	to	navigate	to	the	previous	or	next	page,	respectively.
Jump	to	a	specific	page	using	the	navigation	links	at	the	left.
Play	audio	for	a	page	using	the	player	at	the	top	of	that	page.	Audio	often	provides	more	complete	information	than	the	text
and	graphics	alone.	A	transcript	is	available	from	a	link	on	the	same	page.

Copyright	©	2019	Red	Hat,	Inc.	Red	Hat,	Red	Hat	Enterprise	Linux,	and	the	Shadowman	logo	are	trademarks	or	registered	trademarks	of	Red	Hat,	Inc.	or	its	subsidiaries	in
the	United	States	and	other	countries.	Linux	is	the	registered	trademark	of	Linus	Torvalds	in	the	U.S.	and	other	countries.

Home

2

Objectives

On	completing	this	training,	you	should	be	able	to:

Identify	software	available	in	the	RHEL	8	container-tools	module
Install	the	container-tools	module	in	RHEL	8
Use	Podman	in	RHEL	8	to	manage	and	build	containers
Use	Buildah	in	RHEL	8	to	build	a	container	image

Prerequisites

This	training	assumes	that	you	have	the	following:

Red	Hat	Certified	Engineer	(RHCE)	or	equivalent	experience	with	Red	Hat	Enterprise	Linux	(RHEL)
Working	knowledge	of	the	Docker	command	line	interface	and	the	Dockerfile	format
Experience	with	container	management	basics	similar	to	what's	included	in	Docker	Essential	Training:	1	Installation	and
Configuration	(Linkedin	Learning)*

*	Red	Hat	internal	associates,	see	this	Mojo	page	about	changes	to	your	Lynda.com	URLs	after	April	30,	2019.

Show	transcript
On	completing	this	training,	you	should	be	able	to:

Identify	software	available	in	the	RHEL	8	container-tools	module,	install	that	container-tools	module	in	RHEL	8,	use	Podman	in	RHEL	8	to	manage	and	build	containers,
and	use	Buildah	in	RHEL	8	to	build	a	container	image.

This	training	assumes	that	you	are	a	Red	Hat	Certified	Engineer	or	that	you	have	equivalent	experience	with	Red	Hat	Enterprise	Linux.	It	also	assumes	that	you	have
working	knowledge	of	the	Docker	command	line	interface	and	the	Dockerfile	format,	and	experience	with	container	management	basics	similar	to	what's	included	in	the
Lynda.com	course	listed	here.

Objectives	&	Prerequisites

3

https://www.linkedin.com/learning/docker-essential-training-1-installation-and-configuration/review-docker-architecture?autoplay=true
https://mojo.redhat.com/docs/DOC-1195001

Lab	Environment
Successful	completion	for	this	training	includes	hands-on	lab	activities	hosted	in	a	cloud-based	lab	environment.

PROVISIONING

(1)	Log	in	to	the	OpenTLC	lab	portal.

(2)	On	the	far	left,	mouse	over	Services	and	select	Catalogs	from	the	pop-up	menu.

(3)	Select	to	expand	All	Services	and	Support	Labs.

(4)	Select	cee-rl-021	under	that	list.

(5)	Select	Order.

(6)	Complete	the	application	request:	read	the	Runtime	Warning,	check	the	box	to	confirm	the	runtime	and	expiration	dates,	and	select
Submit.

IMPORTANT:	Expect	up	to	20	minutes	to	provision	your	lab	environment.

(7)	Look	for	information	on	how	to	access	your	lab	environment	from	one	of	two	places:

Information	email
Look	for	an	email	from	Red	Hat	OPENTLC	<noreply@opentlc.com>	with	the	Subject	similar	to:	Your	Red	Hat	OPENTLC	service
provision	request	for	OTLC-LAB_COMPLETED	has	completed.	This	email	may	arrive	before	the	environment	is	ready	to	use.	If
you	don't	receive	this	email	within	15	minutes,	you	can	generate	a	new	one	from	OpenTLC:	Services	>	Active	Services	>	OTLC-
LAB-NAME*	>	App	Control	>	Status	>	Submit

The	OpenTLC	UI
Look	in	the	Custom	Attributes	section	on	the	right	in	OpenTLC:	Services	>	Active	Services	>	OTLC-LAB-*NAME*

SYSTEM	INFO

System IP Credentials Description

servera.example.com 172.25.250.10 root/shamrock	masher	positron	tweet RHEL	8	container-tools	host

SSH	ACCESS

(1)	Use	the	SSH	command	shown	here	to	access	your	environment,	modifying	the	command	based	on	the	information	you	received	by
email:

$	ssh	flastname-redhat.com@classroom-guid.red.osp.opentlc.com

(2)	When	prompted,	log	in	to	your	lab	environment	using	one	of	these	options:

A	password	set	by	OpenTLC	and	provided	in	the	information	email.

An	SSH	key	pair	configured	as	described	here:	http://www.opentlc.com/ssh.html

Lab	Environment

4

https://labs.opentlc.com
https://labs.opentlc.com
https://labs.opentlc.com
http://www.opentlc.com/ssh.html

$	ssh	flastname-redhat.com@classroom-guid.red.osp.opentlc.com

The	authenticity	of	host	'classroom-guid.red.osp.opentlc.com	(169.47.191.199)'	can't	be	established.

ECDSA	key	fingerprint	is	SHA256:v01n4XWXr0lphfGpBiSSvbasmrlQZul2ntS8g0Kbmdk.

Are	you	sure	you	want	to	continue	connecting	(yes/no)?	yes

flastname-redhat.com@classroom-guid.red.osp.opentlc.com's	password:	<PASSWORD>

[flastname-redhat.com@classroom-guid	~]$	sudo	su	-

Last	login:	Thu	Oct	24	14:19:41	EDT	2019	from	61.0.147.106	on	pts/0

[root@classroom-guid	~]#

CONSOLE	ACCESS

If	you	need	console	access	to	any	of	the	machines	in	this	environment,	follow	these	steps:

(1)	Retrieve	the	Master	Console	URL	from	the	information	email	you	received	on	provisioning	your	lab	environment.	Look	for	a	line
that's	similar	to	this	one:

Master	Console:	https://console-redvnc.apps.shared.na.openshift.opentlc.com

(2)	Open	this	console	URL	in	your	web	browser,	and	select	Log	in	with	OpenShift.

(3)	Enter	your	OpenTLC	username	and	password	at	the	OpenShift	login	prompt.

(4)	If	a	dialog	appears	requiring	you	to	Authorize	Access	for	a	service	account,	choose	to	allow	the	selected	permissions	to	continue.

(5)	Select	Access	Console	for	a	given	virtual	machine	to	open	a	VNC	console	session	with	that	system.

LOCAL	WEB	BROWSER	ACCESS	(HOSTED	WEB	UI)

(1)	Use	the	same	ssh	command	from	your	local	system	as	for	command	line	access,	but	add	the	argument	-CfND	8080

[user1@laptop	~]$	ssh	flastname-redhat.com@classroom-guid.red.osp.opentlc.com	-CfnND	8080

(2)	Configure	your	local	web	browser	to	send	all	web	traffic	through	localhost:8080.

[user1@laptop	~]$	google-chrome	--proxy-server="socks5://127.0.0.1:8080"	--host-resolver-rules="MAP	*	0.0.0.0	,	EXCLUDE	localh

ost"	&

Show	transcript
Successful	completion	for	this	training	includes	hands-on	lab	activities.	Use	the	information	on	this	page	to	launch	you	cloud-based	lab	environment,	locate	the	URLs	and
credentials	to	access	that	environment,	familiarize	yourself	with	the	network	setup,	and	use	SSH	or	a	local	web	browser	to	access	lab	systems.

Lab	Environment

5

container-tools

Show	transcript
This	section	covers	the	tools	used	to	create	and	manage	containers	in	RHEL	8.

container-tools

6

What	container	tools	are	in	RHEL	8?

RHEL	8	ships	with	a	set	of	tools	useful	for	managing	and	creating	containers	and	container	images.

Podman	-	Client	tool	for	managing	containers.	Can	replace	most	features	of	the	docker	command	for	working	with	individual	containers
and	images.

podman-docker	-	Provides	a	script	that	emulates	the	Docker	CLI	by	executing	podman	commands.	Also	creates	links	between	all
Docker	CLI	manual	pages	and	Podman.

Buildah	-	Client	tool	for	building	container	images	compliant	with	the	Open	Container	Initiative	(OCI).

Skopeo	-	Client	tool	for	copying	container	images	to	and	from	container	registries.	Includes	features	for	signing	and	authenticating
images	as	well.

runC	-	Container	runtime	client	for	running	and	working	with	OCI	format	containers.

Note:	Container	tools	in	Red	Hat	OpenShift	Container	Platform	(RHOCP)	4

Some	of	the	tools	distributed	in	RHEL	8	are	also	used	in	other	Red	Hat	products,	including	RHOCP	4.	This	module	focuses	on	the
standalone	RHEL	8	usage	for	the	tools	listed	here,	and	it	does	NOT	cover	container	tools	and	technologies	used	with	RHOCP	4	(e.g.
Kubernetes	and	CRI-O).

Show	transcript
What	container	tools	are	in	RHEL	8? 	RHEL	8	ships	with	a	set	of	tools	useful	for	managing	and	creating	containers	and	container	images.	These	tools	include	those	listed
here.

Podman	is	a	client	tool	used	for	managing	containers.	It	replaces	most	of	the	features	that	the	docker	command	provided.

Podman-docker	is	an	optional	package	that	provides	a	script	that	emulates	the	Docker	CLI	by	executing	podman	commands.	If	you	have	other	utilities	that	expect	the
Docker	CLI,	then	this	package	can	provide	backwards	compatibility.	It	also	creates	links	between	all	Docker	CLI	manual	pages	and	Podman.

Buildah	is	a	client	tool	for	building	images	compliant	with	the	Open	Container	Initiative,	or	OCI.	Fun	fact:	the	name	for	this	tool	was	influenced	by	leading	Red	Hat
software	contributor	Dan	Walsh's	strong	Boston	accent	when	pronouncing	"builder".

Skopeo	is	a	client	tool	used	for	copying	container	images	to	and	from	container	registries.	It	also	includes	features	for	signing	and	authenticating	images.

Runc	is	a	container	runtime	client	for	running	and	working	with	OCI	format	containers.

Take	a	moment	to	read	the	note	on	this	page	before	going	on	to	the	next	page.

What	container	tools	are	in	RHEL	8?

7

Container	image	formats

RHEL	8	container	tools	can	create	and	manage	container	images	in	these	formats:

Open	Container	Initiative	(OCI)	images
Docker	version	2	images

Why	OCI?	The	OCI	specification	format	has	these	advantages	over	Docker	version	2:

Not	bound	to	higher	level	constructs,	such	as	a	particular	client	or	orchestration	stack
Not	tightly	associated	with	any	particular	commercial	vendor	or	project
Portable	across	a	wide	variety	of	operating	systems,	hardware,	CPU	architectures,	and	public	clouds

Open	Container	Initiative	FAQ

Show	transcript
There	are	two	container	image	formats	supported	in	RHEL	8:	OCI	images	and	Docker	version	2	images.

Why	OCI? 	The	OCI	specification	format	has	the	advantages	listed	here	over	the	Docker	version	2	format.	First,	OCI	format	images	are	not	bound	to	higher	level	constructs,
such	as	a	particular	client	or	orchestration	stack.	Also,	OCI	format	images	are	not	tightly	associated	with	any	particular	commercial	vendor	or	project.	Finally,	OCI	format
images	are	portable	across	a	wide	variety	of	operating	systems,	hardware,	CPU	architectures,	and	public	clouds.

For	additional	information	about	the	Open	Container	Initiative,	see	the	FAQ	page	linked	here.

Container	image	formats

8

https://www.opencontainers.org/
https://www.opencontainers.org/faq

container-tools	artifacts

The	container-tools	module	is	available	in	RHEL	8	in	the	appstream	repository.
Install	container-tools	with	yum	to	include	all	the	artifacts	shown	here.

[root@servera	~]#	yum	module	info	container-tools

Name													:	container-tools

Stream											:	rhel8	[d][e][a]

Version										:	820190211172150

Context										:	20125149

Profiles									:	common	[d]	[i]

Default	profiles	:	common

Repo													:	rhel-8-for-x86_64-appstream-rpms

Summary										:	Common	tools	and	dependencies	for	container	runtimes

Description						:	Contains	SELinux	policies,	binaries	and	other	dependencies	for	use	with	container	runtimes

Artifacts								:	buildah-0:1.5-3.gite94b4f9.module+el8+2769+577ad176.x86_64

																	:	container-selinux-2:2.75-1.git99e2cfd.module+el8+2769+577ad176.noarch

																	:	containernetworking-plugins-0:0.7.4-3.git9ebe139.module+el8+2769+577ad176.x86_64

																	:	containers-common-1:0.1.32-3.git1715c90.module+el8+2769+577ad176.x86_64

																	:	fuse-overlayfs-0:0.3-2.module+el8+2769+577ad176.x86_64

																	:	oci-systemd-hook-1:0.1.15-2.git2d0b8a3.module+el8+2769+577ad176.x86_64

																	:	oci-umount-2:2.3.4-2.git87f9237.module+el8+2769+577ad176.x86_64

																	:	podman-0:1.0.0-2.git921f98f.module+el8+2785+ff8a053f.x86_64

																	:	podman-docker-0:1.0.0-2.git921f98f.module+el8+2785+ff8a053f.noarch

																	:	runc-0:1.0.0-54.rc5.dev.git2abd837.module+el8+2769+577ad176.x86_64

																	:	skopeo-1:0.1.32-3.git1715c90.module+el8+2769+577ad176.x86_64

																	:	slirp4netns-0:0.1-2.dev.gitc4e1bc5.module+el8+2769+577ad176.x86_64

Show	transcript
The	container-tools	module	is	available	in	RHEL	8	in	the	appstream	repository.	Install	container-tools	with	yum	to	include	all	the	artifacts	shown	here	in	this	"yum	module
info"	command	output.

Take	some	time	to	familiarize	yourself	with	this	list	of	software,	and	notice	that	it	includes	all	the	container	tools	mentioned	earlier.

container-tools	artifacts

9

Install	container-tools

First,	enable	both	the	baseos	and	appstream	repos.
Then,	install	the	container-tools	Yum	4	module.

[root@servera	~]#	subscription-manager	repos	--enable=rhel-8-for-x86_64-baseos-rpms

[root@servera	~]#	subscription-manager	repos	--enable=rhel-8-for-x86_64-appstream-rpms

[root@servera	~]#	yum	module	install	-y	container-tools

Show	transcript
To	install	the	container-tools	Yum	4	module,	first	enable	both	the	"baseos"	and	"appstream"	repos.	Then	run	the	"yum	module	install"	command	as	shown	here.

Install	container-tools

10

Lab	1.1

Objective Lab	activities

Identify	software	available	in	the	RHEL	8
container-tools	module

You	are	able	to	correctly	identify	software	packages	from	a	list	that	are
provided	by	the	container-tools	module.

(1)	If	you	have	not	already,	launch	and	access	your	lab	environment.

(2)	Open	a	command	terminal	to	servera.example.com	in	your	lab	environment	(modify	this	command	as	appropriate	based	on	the
server's	name):

[user@laptop	~]$	ssh	-p	10001	root@serveraexamplecom-ceerl021-abc1234.srv.ravcloud.com

(3)	Register	the	system	to	Red	Hat	using	your	Red	Hat	Customer	Portal	credentials,	and	attach	a	valid	subscription	that	will	provide
access	to	the	Red	Hat	Enterprise	Linux	for	x86_64	product:

[root@servera	~]#	subscription-manager	register	--force

Registering	to:	subscription.rhsm.redhat.com:443/subscription

Username:	rhn-support-XXXXXX

Password:

[root@servera	~]#	subscription-manager	list	--available

[root@servera	~]#	subscription-manager	attach	--pool=<POOL_ID>

(4)	Enable	the	BaseOS	and	AppStream	repos:

[root@servera	~]#	subscription-manager	repos	--enable=rhel-8-for-x86_64-baseos-rpms

[root@servera	~]#	subscription-manager	repos	--enable=rhel-8-for-x86_64-appstream-rpms

(5)	Inspect	the	software	packages	provided	by	the	container-tools	module	available	from	those	repositories.	Use	that	information	to
answer	the	question	that	follows.

[root@servera	~]#	yum	module	info	container-tools

Which	of	the	following	software	packages	are	included	in	the	container-tools	Yum	4	module	in	RHEL	8?	Select	all	that	apply.

		podman	
		runc	
		kubernetes	
		buildah	
		cri-o	
		docker	
		podman-docker	

Lab	1.1

11

Lab	1.2

Objective Lab	activities

Install	the	container-tools	module
in	RHEL	8

Your	system	is	subscribed	to	the	"appstream"	repo,	and	you	have	installed	the	latest
container-tools	Yum	4	module.

(1)	If	you	don't	have	one	open	already,	open	a	command	terminal	on	servera.example.com	as	the	root	user	as	described	for	your	lab
environment.

(2)	Assuming	successful	completion	of	the	previous	lab	activity,	install	the	container-tools	module	using	yum.

(3)	After	installing	the	Yum	module,	run	the	following	to	verify	your	work,	and	submit	the	completion	code	from	its	output	as
prompted	below:

[root@servera	~]#	cee-rl-021	grade1.2

COMPLETION	CODE	for	Lab	1.2:	______

ans:	OMIT

Lab	1.2

12

Podman

Show	transcript
This	section	defines	the	container	tool	Podman	and	highlights	common	container	management	actions	using	Podman.

Podman

13

Podman	in	RHEL	8

Podman	replaces	both	the	Docker	daemon	and	the	Docker	CLI.

Does	not	require	a	daemon	to	manage	containers	or	container	images
Uses	the	low-level	runtime	runc	to	directly	manage	(run)	containers

Command	syntax:

podman	syntax	works	like	the	docker	syntax	for	pull,	push,	build,	run,	commit,	and	tag
podman-docker	(optional	package)	has	a	script	emulates	the	Docker	CLI	using	podman

Other	podman	features:

-a|--all	flag	for	podman	rm	and	podman	rmi,	making	container	image	cleanup	easier
Container	storage	in	Docker	is	/var/lib/docker	but	Podman	uses	/var/lib/containers

Show	transcript
In	RHEL	8,	Podman	replaces	both	the	Docker	daemon	and	the	Docker	CLI.	Unlike	Docker,	Podman	does	not	require	a	demon	to	manage	containers	or	container	images.
Instead,	Podman	uses	the	low-level	runtime	runC	to	directly	manage,	or	run,	containers.

The	"podman"	command	syntax	works	like	the	"docker"	command	syntax	you're	familiar	with	for	pull,	push,	build,	run,	commit,	and	tag.	If	you	choose	to	install	the	optional
"podman-docker"	package,	a	script	emulates	the	Docker	CLI	using	"podman"	commands,	allowing	you	to	continue	running	the	"docker"	commands	you're	familiar	with.

Beyond	the	parallel	Docker	CLI	commands,	"podman"	has	a	""--all"	for	"podman	rm"	and	"podman	rmi"	actions,	making	container	image	cleanup	easier.

Also	notice	that	the	default	root	container	storage	for	Podman	is	"/var/lib/containers"	instead	of	"/var/lib/docker".

Podman	in	RHEL	8

14

https://www.ianlewis.org/en/container-runtimes-part-1-introduction-container-r

podman	login

Red	Hat's	supported	container	registry	transitioned	from	registry.access.redhat.com	to	registry.redhat.io.

Red	Hat	also	maintains	a	registry	for	third	party	software	at	registry.connect.redhat.com.

Both	of	these	registries	require	authentication.

See	this	Red	Hat	Container	Registry	Authentication	article	for	additional	details.

Two	authentication	methods	with	Podman:	username/password	&	service	account	tokens

Show	transcript
After	installation,	the	first	action	you'll	likely	take	is	to	set	up	authentication.	The	supported	container	registry	has	transitioned	from	registry.access.redhat.com	to
registry.redhat.io.	Red	Hat	also	maintains	a	registry	for	third	party	software	at	registry.connect.redhat.com.	Both	of	these	will	require	authentication.	See	the	Red	Hat
Container	Authentication	article	noted	on	this	page	for	additional	details.

You	can	choose	from	one	of	two	authentication	methods	with	Podman:	username	and	password,	or	service	account	tokens.	The	next	two	pages	cover	how	to	use	each	of	these
with	the	"podman	login"	command.

podman	login

15

https://access.redhat.com/RegistryAuthentication

podman	login	-	username/password

To	gain	access	to	Red	Hat	supported	container	images	from	registry.redhat.io,	use	the	podman	login	command	with	your	valid
Customer	Portal	account	credentials.

[root@servera	~]#	grep	registry	/etc/containers/registries.conf

registries	=	['registry.redhat.io',	'quay.io',	'docker.io']

[root@servera	~]#	podman	login	-u	rhn-support-ablum	https://registry.redhat.io

Password:

Login	Succeeded!

[root@servera	~]#	podman	logout	https://registry.redhat.io

Removed	login	credentials	for	registry.redhat.io

Show	transcript
By	default,	the	registries	used	are	defined	in	/etc/containers/registries.conf.	Notice	in	the	command	output	here	that	registry.redhat.io	is	the	first	registry	configured	in	RHEL
8.	To	log	in	using	a	username	and	password,	use	the	"-u"	flag	with	the	"podman	login"	command	as	shown	in	the	examples	here.

The	username	provided	must	be	a	valid	Customer	Portal	account	with	a	valid	subscription	associated	with	it.

To	log	out,	use	a	"podman	logout"	command	similar	to	the	one	shown	here.

See	the	Red	Hat	Container	Authentication	article	noted	on	this	page	for	additional	details.

podman	login	-	username/password

16

podman	login	-	token

Create	a	named	token	to	use	for	this:

(1)	Log	in	to	https://access.redhat.com/terms-based-registry/#/accounts	using	your	Red	Hat	Customer	Portal	credentials.

(2)	Click	New	Service	Account.

(3)	Enter	a	unique	Name	and	Description	for	the	new	registry	service	account,	and	then	click	Create.

Click	here	to	see	what	this	looks	like

(4)	Click	the	Docker	Login	(or	Podman)	tab	to	see	the	new	command.	It	should	look	something	like	this:

Click	here	to	see	what	this	looks	like

(5)	Copy	the	command,	then	run	that	command	on	the	RHEL	container	host	system.

[root@servera	~]#	podman	login	-u='1979710|ablum-rhel8-training'	-p=eyJh...SNIP...DVUEuY	registry.redhat.io

Login	Succeeded!

podman	login	-	token

17

https://access.redhat.com/terms-based-registry/#/accounts

Show	transcript
Again,	Red	Hat	also	supports	using	a	service	account	token	to	log	in	to	container	registries.	You'll	need	to	use	steps	on	this	page	to	create	and	use	a	named	token.

First,	log	in	to	the	"terms-based-registry"	URL	shown	in	this	first	step	using	your	Red	Hat	Customer	Portal	credentials.

Then,	click	"New	Service	Account."

When	creating	the	new	Service	Account	in	step	3,	make	sure	to	comply	with	the	allowed	characters	for	your	name	and	description.	Then,	click	CREATE.

After	creation,	you'll	be	able	to	see	the	service	account	token	in	the	UI.	Click	the	Docker	Login	tab	and	copy	the	command	provided.

To	log	in,	run	that	command	on	the	RHEL	container	host	system.	If	you've	installed	the	"podman-docker"	package,	then	you	can	use	this	"docker"	command	directly.
Otherwise,	replace	"docker"	with	"podman"	in	the	command	as	shown	in	this	last	example.

podman	login	-	token

18

podman	pull

Use	this	to	copy	an	image	from	a	registry	to	a	local	machine
Command	syntax:	podman	pull	[options]	name[:tag|@digest]
If	you	don't	specify	an	image	tag,	this	pulls	the	latest	tag	by	default

Expand	each	section,	and	familiarize	yourself	with	these	examples:

Pull	the	'rhel7'	image	from	registry.redhat.io

[root@servera	~]#	podman	pull	registry.redhat.io/rhel7

Trying	to	pull	registry.redhat.io/rhel7...Getting	image	source	signatures

Copying	blob	7585ac2ccc88:	0	B	/	72.72	MiB	[-----------------------------------]

Copying	blob	7585ac2ccc88:	70.70	MiB	/	72.72	MiB	[=============================]

Copying	blob	7585ac2ccc88:	72.72	MiB	/	72.72	MiB	[==========================]	6s

Copying	blob	1568bf6457e5:	1.29	KiB	/	1.29	KiB	[============================]	6s

Copying	config	bd0240457182:	6.37	KiB	/	6.37	KiB	[==========================]	0s

Writing	manifest	to	image	destination

Storing	signatures

Pull	the	'fedora'	image	from	the	Docker	hub	with	a	specific	tag

[root@servera	~]#	podman	pull	docker.io/library/fedora:26

Trying	to	pull	docker.io/library/fedora:26...Getting	image	source	signatures

Copying	blob	fef9491d900a:	75.73	MiB	/	75.73	MiB	[==========================]	6s

Copying	config	f36d549d2474:	2.20	KiB	/	2.20	KiB	[==========================]	0s

Writing	manifest	to	image	destination

Storing	signatures

f36d549d2474f7689939a24aedf9690d7dcdc8010250cb98482fe7d2a24cf4d4

Pull	the	'rhel7'	image	with	a	specific	digest

[root@servera	~]#	podman	pull	registry.redhat.io/rhel7@sha256:135cbbec4581cd8b2f550dd90dea06affb55def73c7421e64091dc3f638d05e4

Trying	to	pull	registry.redhat.io/rhel7@sha256:135cbbec4581cd8b2f550dd90dea06affb55def73c7421e64091dc3f638d05e4...Getting	imag

e	source	signatures

Copying	blob	dab9f87f3be2:	1.20	KiB	/	?	[------------------------------=---]	0s

Copying	blob	c181936b24e2:	70.39	MiB	/	?	[-----------------------------=------]

Copying	blob	c181936b24e2:	71.39	MiB	/	?	[-=-------------------------------]	6s

Copying	blob	dab9f87f3be2:	1.20	KiB	/	?	[------------------------------=---]	6s

Writing	manifest	to	image	destination

Storing	signatures

33a3ad89f9ab42d8ab8b462f5b3c9f79aa135e8bc5d62815450724d474775335

As	a	non-root	user,	pull	the	'rhel7'	image	from	registry.redhat.io

[user1@servera	~]$	podman	pull	registry.redhat.io/rhel7

Trying	to	pull	registry.redhat.io/rhel7...Getting	image	source	signatures

Copying	blob	da59b306fcf5:	72.31	MiB	/	72.31	MiB	[==========================]	6s

Copying	blob	e23b0afac3fa:	1.23	KiB	/	1.23	KiB	[============================]	6s

Copying	config	b8fffd14574a:	6.31	KiB	/	6.31	KiB	[==========================]	0s

Writing	manifest	to	image	destination

Storing	signatures

b8fffd14574a044315ebd7afb12cedde603bcf1e03f97b08e8a30d7a462f3144

[user1@servera	~]$	grep	rhel7	~/.local/share/containers/storage/overlay-images/images.json

[{"id":"b8fffd14574a044315ebd7afb12cedde603bcf1e03f97b08e8a30d7a462f3144","digest":"sha256:326768aa8c86dc7785a49f9711ec44a3cd7

d5975b007c6530e97a8ba5934e851","names":["registry.redhat.io/rhel7:latest"]

IMPORTANT	NOTES:

Running	containers	as	a	non-root	user	will	be	in	Technical	Preview	at	the	time	of	RHEL	8.0	GA.
Authentication	is	required	(podman	login)	before	pulling	images	from	registry.redhat.io.

Without	authentication,	expect	errors	like	"unable	to	retrieve	auth	token:	invalid	username/password"

podman	pull

19

If	you	have	trouble	logging	in,	see	Troubleshooting	Authentication	Issues	with	registry.redhat.io

Show	transcript
After	successfully	authenticating,	you	can	use	the	"podman	pull"	command	to	make	a	local	copy	of	an	image	from	a	registry.	Expand	each	of	the	sections	here	and	familiarize
yourself	with	the	examples	and	we	walk	through	those.

The	first	example	shows	how	to	pull	a	copy	of	the	"rhel7"	image	from	registry.redhat.io.

The	second	example	shows	how	to	use	"podman	pull"	to	copy	a	Fedora	image	with	a	specific	tag.	The	tag	in	this	example	is	26.

You	can	also	pull	an	image	by	its	digest	to	insure	that	a	specific	version	is	copied.	This	is	useful	when	specific	versions	of	software	are	QA'd	or	in	busy	build	environments
when	tags	are	being	reused	or	re-purposed.

The	last	example	shows	how	"podman	pull"	supports	the	ability	for	non-root	users	to	pull	and	copy	images	from	a	registry.	In	this	example,	a	"rhel7"	image	is	copied	to	a	local
container	storage	location	in	user1's	home	directory.

Read	the	important	notes	at	the	end	of	this	page	before	going	on	to	the	next	page.

podman	pull

20

https://access.redhat.com/articles/3560571

podman	run

Use	podman	run	to	start	a	process	with	its	own	file	system,	its	own	networking,	and	its	own	isolated	process	tree	(same	as	with
docker	run).

Define	defaults	for	a	process	within	the	image	or	by	adding	them	to	the	podman	run	command.

Inspect	what	defaults	are	defined	for	an	image	using	podman	inspect	<image-name>.
image-name	=	the	name	of	a	local	image	or	the	image	ID	as	given	by	podman	images

Some	of	the	files	added	to	the	container's	file	system	when	running	with	podman	run:

/etc/hosts	for	networking
/etc/hostname	for	networking
/etc/resolv.conf	for	networking
/run/.containerenv	to	indicate	to	programs	that	are	running	in	a	container

Show	transcript
Use	"podman	run"	to	start	a	process	with	its	own	file	system,	its	own	networking,	and	its	own	isolated	process	tree,	same	as	with	"docker	run".

You	can	define	defaults	for	a	process	within	the	image	or	by	adding	them	to	the	*podman	run*	command.	You	can	inspect	what	defaults	are	defined	for	an	image	using
"podman	inspect	<image-name>"	where	"image-name"	can	be	the	name	of	a	local	image	or	the	image	ID	as	given	by	"podman	images".

When	running	a	container	using	"podman	run,"	there	are	several	files	added	to	the	container's	file	system.	These	include	/etc/hosts,	/etc/hostname,	and	/etc/resolv.conf	for
networking,	and	/run/.containerenv	to	indicate	to	programs	that	are	running	in	a	container.

podman	run

21

podman	run	example

What	can	you	expect	when	running	containers	with	podman	run?

Expand	these	sections	to	step	through	an	example:

Run	a	RHEL	7	container	with	an	interactive	shell

[root@servera	~]#	podman	run	-it	registry.redhat.io/rhel7	/bin/bash

Trying	to	pull	registry.redhat.io/rhel7...Getting	image	source	signatures

Copying	blob	7585ac2ccc88:	0	B	/	72.72	MiB	[-----------------------------------]

Copying	blob	7585ac2ccc88:	70.70	MiB	/	72.72	MiB	[=============================]

Copying	blob	7585ac2ccc88:	72.72	MiB	/	72.72	MiB	[==========================]	6s

Copying	blob	1568bf6457e5:	1.29	KiB	/	1.29	KiB	[============================]	6s

Copying	config	bd0240457182:	6.37	KiB	/	6.37	KiB	[==========================]	0s

Writing	manifest	to	image	destination

Storing	signatures

[root@a2c2c12e9811	/]#		yum	install	httpd	-y

[root@a2c2c12e9811	/]#	ps	-ef

UID								PID		PPID		C	STIME	TTY										TIME	CMD

root									1					0		0	19:23	pts/0				00:00:00	/bin/bash

root								21					1		0	19:23	pts/0				00:00:00	ps	-ef

[root@a2c2c12e9811	/]#	ls	-l	/run/.containerenv

-rw-r--r--.	1	root	root	0	Mar	26	19:25	/run/.containerenv

List	processes	running	outside	of	this	container's	namespace

(from	a	2nd	terminal	to	the	host	system)

[root@servera	~]#	ps	-ef	|	grep	podman

root						2749		1470		5	08:52	pts/0				00:00:11	podman	run	-it	registry.redhat.io/rhel7	/bin/bash

root						2950					1		0	08:53	?								00:00:00	/usr/libexec/podman/conmon	-s	-c	a2c2c12e9811b31daa58843e72c9eab907a2c78ef486e

33a3536d35094ef2a6f	-u	a2c2c12e9811b31daa58843e72c9eab907a2c78ef486e33a3536d35094ef2a6f	-r	/usr/bin/runc	-b	/var/lib/container

s/storage/overlay-containers/a2c2c12e9811b31daa58843e72c9eab907a2c78ef486e33a3536d35094ef2a6f/userdata	-p	/var/run/containers/

storage/overlay-containers/a2c2c12e9811b31daa58843e72c9eab907a2c78ef486e33a3536d35094ef2a6f/userdata/pidfile	-l	/var/lib/conta

iners/storage/overlay-containers/a2c2c12e9811b31daa58843e72c9eab907a2c78ef486e33a3536d35094ef2a6f/userdata/ctr.log	--exit-dir	

/var/run/libpod/exits	--socket-dir-path	/var/run/libpod/socket	-t	--log-level	error

Remove	a	specific	running	container

[root@servera	~]#	podman	ps

CONTAINER	ID		IMAGE																												COMMAND				CREATED								STATUS												PORTS		NAMES

a2c2c12e9811		registry.redhat.io/rhel7:latest		/bin/bash		6	minutes	ago		Up	6	minutes	ago									modest_bartik

[root@servera	~]#	podman	rm	a2c2c12e9811

cannot	remove	container	a2c2c12e9811b31daa58843e72c9eab907a2c78ef486e33a3536d35094ef2a6f	as	it	is	running	-	running	or	paused	

containers	cannot	be	removed:	container	state	improper

[root@servera	~]#	podman	stop	a2c2c12e9811

[root@servera	~]#	podman	rm	a2c2c12e9811

a2c2c12e9811b31daa58843e72c9eab907a2c78ef486e33a3536d35094ef2a6f

[root@servera	~]#	podman	ps

CONTAINER	ID		IMAGE		COMMAND		CREATED		STATUS		PORTS		NAMES

Remove	all	containers	and	container	images

podman	run	example

22

[root@servera	~]#	podman	rm	-a

486f52aa8dc135ae1c0c3fb029af607449662b816a61c3b4ce27e0717f3a6b16

[root@servera	~]#	podman	rmi	-a

a80dad1c19537b0961e485dfa0a43fbe3c0a71cec2cca32d3264e087e396a211

[root@servera	~]#	podman	images

[root@servera	~]#	podman	ps	-a

CONTAINER	ID		IMAGE		COMMAND		CREATED		STATUS		PORTS		NAMES

[root@servera	~]#	ps	-ef	|	grep	podman

root						3909		3118		0	15:53	pts/1				00:00:00	grep	--color=auto	podman

[root@servera	~]#	ps	-ef	|	grep	conmon

root						3911		3118		0	15:53	pts/1				00:00:00	grep	--color=auto	conmon

Warning:	Don't	mistake	"conmon"	for	a	daemon	for	Podman

One	conmon	process	runs	in	addition	to	the	processes	running	in	a	given	container's	namespace.	When	the	container's	process	exits	or	is
killed,	so	will	its	associated	conmon	process.	Thus,	it	is	not	a	daemon,	but	rather	a	process	that	wraps	each	container	launched.	For
more	information,	see	Question,	Podman	architecture	#1175	(from	libpod	on	GitHub)

Show	transcript
What	can	you	expect	when	running	containers	with	podman	run? 	Expand	these	sections	as	we	narrate	an	example	for	you.

Consider	a	RHEL	container	run	with	an	interactive	shell.	The	"-i"	in	the	example	"podman	run"	command	keeps	standard	input	open,	allowing	for	keyboard	interactions	with
the	container	after	the	"run"	command.	The	"-t"	option	allocates	a	pseudo-TTY	and	attaches	it	to	the	standard	input	of	the	container.	The	"/bin/bash"	argument	is	the	command
that	will	be	run	within	the	container's	isolated	namespace.	Once	in	the	interactive	shell,	you	could	install	software	or	run	other	commands	like	"ps"	if	available.

What	processes	are	running	outside	of	this	container's	namespace? 	This	second	section	shows	listing	those	processes.	The	"ps"	output	here	shows	that	the	"podman	run"
command	executed,	but	notice	also	there	is	an	additional	process	on	the	host	called	"conmon".

To	remove	a	specific	running	container,	notice	that	the	"podman	rm"	in	the	third	section	returns	an	error.	To	remove	it	properly,	you	should	first	stop	the	container	using
"podman	stop"	command,	then	remove	it.

One	convienent	feature	available	with	"podman	rm"	or	"podman	rmi"	is	the	"-a"	flag.	This	option	removes	all	stopped	containers	and	container	images	that	are	not	in	use.	Take
care	when	using	the	"-a"	and	"-f"	flags	together	when	removing	containers	because	together	they	will	forcibly	remove	all	containers	and	container	images	from	a	system.

Read	the	warning	here	about	the	"conmon"	process	before	going	on	to	the	next	page.

podman	run	example

23

https://github.com/containers/libpod/issues/1175

podman	build

Use	either	podman	or	buildah	to	build	a	container	image.
Buildah	is	covered	more	later	in	this	training.

Two	ways	to	build	a	container	with	podman:

Option	1:	Use	podman	build	and	a	Dockerfile
Option	2:	Commit	changes	made	in	a	running	container	to	a	new	container	image	tag

Note:	podman	build	is	a	subset	of	Buildah

The	podman	build	command	provides	a	subset	of	functionality	and	code	from	the	buildah	command.

Show	transcript
Use	either	podman	or	buildah	to	build	a	container	image.	Buildah	is	covered	more	later	in	this	training.

There	are	two	ways	to	build	a	container	using	"podman".	Option	1	is	to	use	"podman	build"	and	a	Dockerfile.	Option	2	is	to	commit	changes	made	in	a	running	container	to	a
new	container	image	tag.	The	next	two	pages	cover	each	of	these	options.

Note	that	the	"podman	build"	command	provides	a	subset	of	functionality	and	code	from	the	"buildah"	command,	which	is	covered	later.

podman	build

24

Build	a	container	image	with	a	Dockerfile

podman	build	<build	context	directory>	
build	context	directory	=	local	directory	path	to	the	Dockerfile

The	Dockerfile	format	that	Red	Hat	supports	in	the	podman	build	command	is	equivalent	to	what's	supported	using	a	docker	build
command.

Consider	this	example	Dockerfile:

[root@servera	tmp]#	vi	Dockerfile

FROM	registry.redhat.io/rhel:latest

ENTRYPOINT	["/bin/ps","-e","f"]

RUN	yum	install	procps-ng	-y

You	can	use	this	file	to	build	a	container	image	with	podman	build:

[root@servera	tmp]#	podman	build	-t	rhel:with_ps	.

STEP	1:	FROM	registry.redhat.io/rhel:latest

STEP	2:	ENTRYPOINT	["/bin/ps","-e","f"]

-->	77625bb5fded060d1e3c5ecbceb6cc40307adc17053bb3ab8c368f0b500835cd

STEP	3:	FROM	77625bb5fded060d1e3c5ecbceb6cc40307adc17053bb3ab8c368f0b500835cd

STEP	4:	RUN	yum	install	procps-ng	-y

Loaded	plugins:	ovl,	product-id,	search-disabled-repos,	subscription-manager

rhel-7-server-rpms																																							|	3.5	kB					00:00					

(1/3):	rhel-7-server-rpms/7Server/x86_64/group													|	774	kB			00:00					

(2/3):	rhel-7-server-rpms/7Server/x86_64/updateinfo								|	3.1	MB			00:01					

(3/3):	rhel-7-server-rpms/7Server/x86_64/primary_db								|		56	MB			00:03					

Package	procps-ng-3.3.10-23.el7.x86_64	already	installed	and	latest	version

Nothing	to	do

-->	ead2aab00c5ae80f55962b3b6a079907b7a2533b92ce791a4fdc946aeb385e64

STEP	5:	COMMIT	rhel:with_ps

[root@servera	tmp]#	cat	Dockerfile

[root@servera	tmp]#	podman	images

REPOSITORY																TAG							IMAGE	ID							CREATED														SIZE

localhost/rhel												with_ps			ead2aab00c5a			About	a	minute	ago			605	MB

Show	transcript
In	the	"podman	build"	command,	you	should	specify	the	build	context	directory,	which	is	the	relative	local	directory	path	to	the	Dockerfile.	For	that,	you	can	also	use	the
HTTP	or	HTTPS	URL	of	an	archive,	or	a	Git	repository.	The	Dockerfile	format	that	Red	Hat	supports	in	the	"podman	build"	command	is	equivalent	to	what's	supported	using
a	"docker	build"	command.

Consider	the	example	Dockerfile	shown	here.	This	example	has	3	lines	in	it.

The	FROM	instruction	in	the	first	line	creates	an	initial	image	storage	layer	based	on	the	"rhel"	image.

ENTRYPOINT	in	this	example	runs	the	command	"ps	-ef"	without	starting	a	command	shell.	This	format	is	known	as	the	"exec"	format,	and	it's	the	preferred	way	of	running	a
command	when	a	shell	or	shell	variables	are	not	needed.

The	RUN	instruction	in	the	file	installs	the	"procps-ng"	package	and	its	dependencies.

To	build	a	container	image	based	on	these	3	instructions,	you	can	use	this	file	with	"podman	build"	as	shown	in	this	second	example.	The	"-t"	option	specifies	the	name	to
assign	to	the	resulting	image	if	the	build	process	completes	successfully.	Don't	overlook	the	period	at	the	end	of	the	"podman	build"	example	here:	that	argument	represents
the	build	context	directory,	which	here	is	the	relative	directory	path	to	the	Dockerfile.

Build	a	container	image	with	a	Dockerfile

25

Create	a	new	container	image	from	a	running	container

Use	podman	commit	to	commit	changes	made	in	a	running	container	to	a	new	container	image	tag.

Consider	these	example	changes	to	the	running	container	from	the	container	image	registry.redhat.io/rhel7:latest:

[root@servera	~]#	podman	run	-it	registry.redhat.io/rhel7	/bin/bash

[root@c7e6e5edcdbf	/]#	pstree

bash:	pstree:	command	not	found

[root@c7e6e5edcdbf	/]#	yum	install	psmisc	-y

[root@c7e6e5edcdbf	/]#	pstree

bash---pstree

[root@c7e6e5edcdbf	/]#	exit

After	making	those	changes,	they	can	be	committed	to	a	new	image	by	running:

[root@servera	~]#	podman	ps	-a

CONTAINER	ID		IMAGE																												COMMAND				CREATED													STATUS																				PORTS		NAMES

c7e6e5edcdbf		registry.redhat.io/rhel7:latest		/bin/bash		About	a	minute	ago		Exited	(0)	2	seconds	ago									sharp_morse

[root@servera	~]#	podman	commit	c7e6e5edcdbf	rhel7:with_pstree

Getting	image	source	signatures

Skipping	blob	cd645bd4dc85	(already	present):	205.13	MiB	/	205.13	MiB	[=====]	0s

Skipping	blob	e9f742d619c9	(already	present):	10.00	KiB	/	10.00	KiB	[=======]	0s

Skipping	blob	cd645bd4dc85	(already	present):	205.13	MiB	/	205.13	MiB	[=====]	9s

Skipping	blob	cd645bd4dc85	(already	present):	205.13	MiB	/	205.13	MiB	[====]	10s

Skipping	blob	e9f742d619c9	(already	present):	10.00	KiB	/	10.00	KiB	[======]	10s

Copying	blob	387093245481:	407.77	MiB	/	407.77	MiB	[=======================]	10s

Copying	config	965f536a0535:	3.20	KiB	/	3.20	KiB	[==========================]	0s

Writing	manifest	to	image	destination

Storing	signatures

965f536a05358e7f4e0aaf9277c1203b8edab30bb4554775aa2fcaa52bfc9567

[root@servera	~]#	podman	images

REPOSITORY																	TAG											IMAGE	ID							CREATED										SIZE

localhost/rhel7												with_pstree			965f536a0535			46	seconds	ago			643	MB

registry.redhat.io/rhel7			latest								bd0240457182			10	days	ago						215	MB

Show	transcript
Another	way	to	build	a	container	image	using	"podman"	is	to	use	"podman	commit"	to	commit	the	changes	made	in	a	running	container	to	a	NEW	container	image	tag.

Consider	these	example	changes	to	the	running	container	from	the	"rhel7"	container	image.	The	container	is	running	interactively,	and	while	it	is	running,	a	package	is
installed,	which	provides	the	pstree	binary.

One	you	exit	the	shell	is	exited	the	container	process	ends,	but	the	image	associated	with	it	still	exists	as	given	in	the	"podman	ps"	output	shown	here	with	the	"-a"	flag.	To
create	a	new	container	image	that	includes	these	changes,	notice	how	"podman	commit"	is	used	with	that	container	ID,	and	new	image	name	is	specified	with	its	optional	tag.

After	the	successful	commit,	a	new	container	image	exists	in	the	local	registry.	This	new	container	image	includes	the	pstree	binary	that	was	installed	in	the	original	running
container.

Create	a	new	container	image	from	a	running	container

26

Lab	2.1

Objective Lab	activities

Use	Podman	in	RHEL	8	to	manage	and	build
containers

Identify	key	container	attributes	from	a	running	container.

Run	a	container	from	an	image	stored	in	registry.connect.redhat.com.

Remove	specific	containers	and	container	images	on	a	RHEL	8
system.

(1)	To	set	up	this	lab	activity,	launch	the	following	command	as	the	root	user	on	servera.example.com:

[root@servera	~]#	cee-rl-021	setup2.1

Initiating	cee-rl-021	with	option(s)	setup2.1

running	a	simple	podman	command								PASS

build	and	run	container	image...				PASS

pulling	some	auspicious	containers...				PASS

launching	several	containers.....				PASS

This	command	should	build	and	launch	a	container	with	the	name	alexwhen-2048.

(2)	Use	podman	commands	to	answer	the	following	questions	about	this	container	and	image:

Which	host	port	is	alexwhen-2048's	container	port	is	mapped	to?

		80	
		8080	
		8087	
		9080	

Enter	the	tag	associated	with	the	alexwhen-2048	image:	______

ans:	OMIT

(3)	Use	podman	login	to	log	in	to	registry.connect.redhat.com	using	your	personal	Customer	Portal	credentials.

(4)	Use	podman	search	to	find	the	"official	Axibase	Time	Series	Database	images	for	Docker	containers"	(atsd)	repository	in	the
registry.connect.redhat.com	registry.	Hint:	Read	through		man	1	podman-search		for	some	ways	to	search	within	a	given	registry.	Make
sure	you	use	the	repository	that	matches	the	description	"official	Axibase	Time	Series	Database".

(5)	Use	podman	pull	to	copy	the	latest	atsd	container	image	from	registry.connect.redhat.com.

(6)	Use	podman	run	to	start	a	container	based	on	the	latest	atsd	container	image.	The	container	must	be:

Lab	2.1

27

Running	in	detached	mode
Running	with	the	name	atsd-lab2.1
Exposing	container	ports	to	equivalent	host	ports	(containerPort:hostPort):

8088:8088
8443:8443

(7)	Clean	up	(remove)	all	running	containers	and	container	images	on	servera.example.com	EXCEPT	those	from	either	registry.redhat.io
or	registry.connect.redhat.com.

(8)	After	completing	these	steps,	run	the	following	to	verify	your	work,	and	submit	the	completion	code	from	its	output	as	prompted
below:

[root@servera	~]#	cee-rl-021	grade2.1

COMPLETION	CODE	for	Lab	2.1:	______

ans:	OMIT

Info:	Fun	fact!	2048	is	a	game	you	can	play

The	container	used	in	this	exercise	is	actually	a	game	you	can	play	called	2048.

If	you	setup	an	SSH	tunnel	to	the	learning	environment,	you	can	proxy	your	browser's	traffic	to	play.	See	the	"LOCAL	WEB
BROWSER	ACCESS"	section	of	the	the	lab	environment	page	for	the	command	to	set	up	this	tunnel.

From	there,	you	can	launch	the	game	by	running	your	web	browser's	executable.	For	Google	Chrome	on	Fedora	and	port	8080,	for
example,	you	might	run:

google-chrome	--proxy-server="socks5://127.0.0.1:8080"	--host-resolver-rules="MAP	*	0.0.0.0	,	EXCLUDE	localhost"
http://servera.example.com:8087

Lab	2.1

28

http://servera.example.com:8087

Lab	2.2

Objective Lab	activities

Use	Podman	in	RHEL	8	to	manage	and	build	containers Create	a	container	image	using	a	Dockerfile.

(1)	Create	a	new	working	directory	for	this	activity:

[root@servera	~]#	mkdir	/root/lab2.2

[root@servera	~]#	cd	lab2.2/

[root@servera	lab2.2]#

(2)	Use	your	personal	Customer	Portal	account	to	log	into	the	registry.redhat.io	registry.

(3)	Pull	the	latest	rhel7	container	image	from	registry.redhat.io.

(4)	Create	a	Dockerfile	that	meets	these	requirements:

Uses	registry.redhat.io/rhel7	as	the	base	container	image
Installs	the	redhat-support-tool	package
Creates	the	file	/opt/DONE	that	contains	the	string	lab2.2

(5)	Use	your	new	Dockerfile	with	podman	build	to	create	a	container	image	with	repo:tag	name	rhel7:lab2.2.

(6)	Run	a	container	from	the	newly	created	image	to	verify	it	includes	the	software	and	expected	contents.

(7)	After	completing	these	steps,	run	the	following	to	verify	your	work,	and	submit	the	completion	code	from	its	output	as	prompted
below:

[root@servera	~]#	cee-rl-021	grade2.2

COMPLETION	CODE	for	Lab	2.2:	______

ans:	OMIT

Lab	2.2

29

Buildah

Show	transcript
This	section	introduces	the	container	image	building	tool	Buildah	available	in	RHEL	8.

Buildah

30

Buildah	in	RHEL	8

Command:	buildah

Using	Buildah,	you	can	create	container	images	from:

A	working	container
A	Dockerfile
"Scratch"	(built	from	its	basic	parts)

The	resulting	images	are	OCI-compliant,	so	they	will	work	on	any	container	runtime	that	meet	the	OCI	Runtime	Specification	(e.g.
Podman,	Docker,	and	CRI-O).

Buildah	stores	images	in	an	area	identified	as	containers-storage	in	/var/lib/containers

Show	transcript
Using	Buildah,	you	can	create	container	images	from	a	working	container,	a	Dockerfile,	or	from	scratch,	meaning	from	assembling	basic	parts.	The	resulting	images	are	OCI-
compliant,	so	they	will	work	on	any	container	runtime	that	meet	the	OCI	Runtime	Specification	(such	as	Podman,	Docker,	and	CRI-O).	Buildah	stores	images	in	an	area
identified	as	"containers-storage"	in	/var/lib/containers.

Buildah	in	RHEL	8

31

Buildah	advantages...

...or	how	building	container	images	with	Buildah	is	different	from	Docker:

There's	no	daemon.	Like	Podman,	Buildah	does	not	require	a	daemon	like	the	Docker	daemon.

You	can	build	a	container	using	either	an	existing	base	image	or	an	empty	image.

It	builds	smaller	images	than	Docker.

It	makes	the	image	more	secure	by	not	including	the	build	tools	(e.g.	gcc,	make,	dnf)	within	that	resulting	image.

Show	transcript
Listed	here	are	the	ways	in	which	building	container	images	with	Buildah	is	different	from	building	with	Docker.	First,	there's	no	daemon.	Just	like	with	Podman,	Buildah
does	not	require	a	daemon	like	the	Docker	daemon.

Second,	you	can	start	building	a	container	using	either	an	existing	base	image	or	an	empty	image.

Third,	Buildah	builds	smaller	images	than	Docker.	And	fourth,	Buildah	makes	the	image	more	secure	by	not	including	the	build	tools	used	to	build	the	image	within	that
resulting	image.

Buildah	advantages

32

buildah	build-using-dockerfile

Buildah	supports	building	OCI-compliant	container	images	from	a	Dockerfile:

#>	buildah	build-using-dockerfile

#>	buildah	bud

This	command	shares	code	with	podman	build.

First,	create	a	working	directory	and	Dockerfile	(as	with	podman	build)

[root@servera	~]#	mkdir	myecho

[root@servera	~]#	cd	myecho

[root@servera	myecho]#	ls

Dockerfile		myecho

[root@servera	myecho]#	cat	Dockerfile

FROM	registry.redhat.io/rhel8-beta/rhel

ADD	myecho	/usr/local/bin

ENTRYPOINT	"/usr/local/bin/myecho"

[root@servera	myecho]#	cat	myecho

echo	"This	container	works!"

[root@servera	myecho]#	ls	-l	myecho

-rwxr-xr-x.	1	root	root	29	Apr		1	09:28	myecho

[root@servera	myecho]#

Then,	build	the	container	image	with	buildah	bud

[root@servera	myecho]#	buildah	bud	-t	myecho	--creds	RHNID	--format	oci	.

Password:	RHNPASSWD

STEP	1:	FROM	registry.redhat.io/rhel8-beta/rhel

Getting	image	source	signatures

Copying	blob	sha256:619051b1fc41546ce2c2d6911145f66472d72caf7a4aaf8ffcad782f27227e9c

	66.48	MiB	/	66.48	MiB	[==]	5s

Copying	blob	sha256:386105ae8b6231e5c25160d9a40bec1da1fdb822455f6e3094bef2b6e877d865

	1.33	KiB	/	1.33	KiB	[==]	0s

Copying	config	sha256:a80dad1c19537b0961e485dfa0a43fbe3c0a71cec2cca32d3264e087e396a211

	6.33	KiB	/	6.33	KiB	[==]	0s

Writing	manifest	to	image	destination

Storing	signatures

STEP	2:	ADD	myecho	/usr/local/bin

STEP	3:	ENTRYPOINT	"/usr/local/bin/myecho"

STEP	4:	COMMIT	containers-storage:[overlay@/var/lib/containers/storage+/var/run/containers/storage:overlay.override_kernel_che

ck=true]localhost/myecho:latest

Getting	image	source	signatures

Skipping	fetch	of	repeat	blob	sha256:fba35a2d01b7bb0adfb3c6efeac57bf2f8ba85e21d2bc6c5ae8b441ed12b1d23

Skipping	fetch	of	repeat	blob	sha256:848ae511b438d35ce6defcecfbbd287bf84e7fca37cfacd42d5af079c528c750

Copying	blob	sha256:96b9c9c8261779543d18b9264a6e9ff2d883bbdb85e0081438c882c9676dac23

	206	B	/	206	B	[==]	0s

Copying	config	sha256:e7604cc5442aecc4090fc60310f5491897afbf4235f75f3c5a200a76391e550d

	3.12	KiB	/	3.12	KiB	[==]	0s

Writing	manifest	to	image	destination

Storing	signatures

-->	e7604cc5442aecc4090fc60310f5491897afbf4235f75f3c5a200a76391e550d

Note

You	may	see	errors	indicating	that	"HOSTNAME	is	not	supported	for	OCI	image	format,"	which	is	a	known	issue	in	Buildah	and
should	be	addressed	in	a	future	release.

Show	transcript
Before	looking	at	Buildah	as	an	independent	container	image,	note	its	backward	compatibility	feature	to	support	images	from	Docker.	Buildah	supports	supports	building
OCI-compliant	container	images	from	a	Dockerfile	using	the	its	build-using-dockerfile	feature.	This	command	also	shares	code	with	"podman	build"	covered	earlier.

buildah	build-using-dockerfile

33

Because	this	can	be	a	long	command	to	type,	there	is	an	abbreviated	"buildah	bud"	command	you	can	use.

To	build	a	container	using	"buildah	bud,"	first	create	a	working	directory	and	Dockerfile	as	if	you	were	using	"podman	build".	Expand	this	first	section	to	see	the	commands
and	outputs.	In	the	example	Dockerfile,	notice	the	ENTRYPOINT	uses	shell	form	rather	than	the	exec	form.	The	shell	form	used	here	will	execute	"myecho"	in	a	/bin/sh	shell.

With	the	working	directory	and	Dockerfile	in	place,	build	the	container	image	using	the	"buildah	bud"	command.	Expand	this	second	section	to	see	how	the	arguments	were
used.

The	"-t"	option	specifies	the	name	that	should	be	assigned	to	the	resulting	image	if	the	build	process	completes	successfully.

The	"--creds"	option	identifies	the	credentials	to	use	when	pulling	an	image	from	a	registry	that	requires	authentication.	Using	the	"--creds"	is	not	required	if	you've	already
logged	in	using	using	"podman	login".	Red	Hat	recommends	logging	in	rather	than	using	the	"--creds"	option.

The	"--format"	option	controls	which	image	format	to	build:	either	"oci"	or	"docker".	You	may	see	errors	indicating	that	"HOSTNAME	is	not	supported	for	OCI	image	format,"
which	is	a	known	issue	in	Buildah	and	should	be	addressed	in	a	future	release.

The	period	at	the	end	of	the	"buildah	bud"	example	here	is	the	build	context	directory.	As	mentioned	before,	this	can	be	the	HTTP	or	HTTPS	URL	of	an	archive,	a	Git
repository,	or	a	local	file	path	to	the	Dockerfile.	In	this	example,	the	relative	current	working	directory	contains	the	Dockerfile.

buildah	build-using-dockerfile

34

buildah	images	&	buildah	containers

Use	buildah	images	to	list	available	images:

[root@servera	~]#	buildah	images

IMAGE	NAME																																															IMAGE	TAG												IMAGE	ID													CREATED	AT													SIZE

registry.redhat.io/rhel8-beta																												latest															a80dad1c1953									Nov	13,	2018	13:11					210	

MB

registry.redhat.io/rhel7																																	latest															6979ec30598b									Apr	8,	2019	09:39						214	

MB

docker.io/library/nginx																																		latest															bb776ce48575									Apr	10,	2019	17:22					113	

MB

Use	buildah	containers	to	list	working	containers:

[root@servera	~]#	buildah	containers

CONTAINER	ID		BUILDER		IMAGE	ID					IMAGE	NAME																							CONTAINER	NAME

3f71cb46dced					*					a80dad1c1953	registry.redhat.io/rhel8-beta:latest	rhel8-beta-working-container

Show	transcript
Use	the	commands	"buildah	images"	and	"buildah	containers"	to	list	images	and	containers	respectively.	The	buildah	images	command	displays	locally	stored	images.	In	the
example	here,	there	are	3	different	stored	images.	The	buildah	containers	command	shows	a	list	of	working	containers	only.

buildah	images|containers

35

buildah	from

Creates	a	working	container	based	on	the	specified	image
Useful	for:

Testing	an	existing	container	image
When	you	need	greater	control	over	the	build	process	beyond	what's	allowed	in	a	Dockerfile

[root@servera	myecho]#	buildah	images

IMAGE	NAME																																															IMAGE	TAG												IMAGE	ID													CREATED	AT													SIZE

localhost/myecho																																									latest															e7604cc5442a									Apr	1,	2019	09:48						210	

MB

[root@servera	myecho]#	buildah	from	myecho

myecho-working-container

[root@servera	myecho]#	buildah	containers

CONTAINER	ID		BUILDER		IMAGE	ID					IMAGE	NAME																							CONTAINER	NAME

0b6840873b5c					*					e7604cc5442a	localhost/myecho:latest										myecho-working-container

This	working	container	can	be	modified	and	then	committed.

Show	transcript
Another	way	of	creating	a	container	image	is	to	create	a	working	container	as	starting	material	and	make	iterative	changes	to	it.	The	"buildah	from"	command	creates	a
working	container	based	on	the	specified	image.	This	is	useful	for	testing	an	existing	container	image,	or	when	you	need	greater	control	over	the	build	process	beyond	what
is	allowed	in	a	Dockerfile.

The	first	example	here	shows	listing	Buildah	images	and	then	creating	a	working	container	based	on	that	image.	The	second	example	shows	listing	the	available	containers
and	their	base	images.	This	working	container	can	be	modified	and	then	committed.

buildah	from

36

buildah	mount

Mounts	a	given	container's	root	file	system	in	a	location	accessible	from	the	host
Returns	the	local	mountpoint	on	the	host	system

You	can	use	that	path	to	directly	modify	files	in	a	working	container's	root	file	system.

Example:

[root@servera	~]#	buildah	containers

CONTAINER	ID		BUILDER		IMAGE	ID					IMAGE	NAME																							CONTAINER	NAME

0b6840873b5c					*					e7604cc5442a	localhost/myecho:latest										myecho-working-container

[root@servera	~]#	buildah	mount	0b6840873b5c

/var/lib/containers/storage/overlay/17b4d245e03730f2ba6906c9dfb28255571fa8e85d7c1c1b854caada4a538bbb/merged

[root@servera	~]#	echo	"...and	now	it	has	been	changed	!"	>>	/var/lib/containers/storage/overlay/17b4d245e03730f2ba6906c9dfb28

255571fa8e85d7c1c1b854caada4a538bbb/merged/usr/local/bin/myecho

To	unmount,	use	buildah	umount	with	that	same	container	ID:

[root@servera	~]#	buildah	umount	0b6840873b5c

Show	transcript
After	creating	a	working	container	using	"buildah	from",	you	can	use	"buildah	mount"	to	mount	a	given	container's	root	file	system	in	a	location	accessible	from	the	host.
When	running	"buildah	mount",	the	path	returned	will	be	the	local	mountpoint	on	the	host	system.	You	can	use	that	path	to	directly	modify	files	in	a	working	container's
root	file	system.

In	this	example,	the	myecho	file	in	the	myecho-working-container	is	modified	directly	from	the	host.

After	making	changes,	you	can	unmount	the	container's	file	system	using	"buildah	umount"	with	that	same	container	ID.

buildah	mount

37

buildah	run

Another	way	to	modify	a	working	container
Not	the	same	as	podman	run
The	same	as	the	RUN	action	in	a	Dockerfile
Use	when	you	want	to	run	a	single	command	in	a	working	container	for	the	purpose	of	building	a	container

Example:

[root@servera	~]#	buildah	from	rhel8-beta/rhel

rhel-working-container

[root@servera	~]#	buildah	run	rhel-working-container	yum	install	httpd	-y

Add	some	content	for	this	"httpd"	container	to	serve:

[root@servera	~]#	buildah	mount	rhel-working-container

/var/lib/containers/storage/overlay/9f51055e238f4d230a10e99eaedceeba77bf74328129b4ee0fc6fca3057c2816/merged

[root@servera	~]#	echo	"hello	world"	>	/var/lib/containers/storage/overlay/9f51055e238f4d230a10e99eaedceeba77bf74328129b4ee0fc

6fca3057c2816/merged/var/www/html/hello.html

[root@servera	~]#	chmod	644	/var/lib/containers/storage/overlay/9f51055e238f4d230a10e99eaedceeba77bf74328129b4ee0fc6fca3057c28

16/merged/var/www/html/hello.html

[root@servera	~]#	buildah	umount	rhel-working-container

Modify	the	working	container	to	run	a	specific	command	and	expose	a	port:

[root@servera	~]#	buildah	config	--cmd	"/usr/sbin/httpd	-DFOREGROUND"	rhel-working-container

[root@servera	~]#	buildah	config	--port	80/tcp	rhel-working-container

[root@servera	~]#	buildah	commit	rhel-working-container	myhttpd

[root@servera	~]#	podman	run	-d	-p	80:80	myhttpd

Show	transcript
Another	way	to	modify	a	working	container	is	to	use	the	"buildah	run"	command.	This	is	NOT	the	same	as	"podman	run".	Rather,	"buildah	run"	is	the	same	as	the	"RUN"
action	in	a	Dockerfile.	Use	"buildah	run"	when	you	want	to	run	a	single	command	in	a	working	container	for	the	purpose	of	*building*	a	container.

Consider	the	example	here	of	using	"buildah"	and	"buildah	run"	to	create	an	"httpd"	container	that	serves	up	some	custom	content.	First,	use	"buildah	from"	to	create	a
working	container	based	on	the	"rhel8-beta"	container	image.	In	the	next	command,	"buildah	run"	installs	"httpd"	and	its	dependencies	in	the	working	container.

Notice	how	the	example	progresses	to	modifying	the	working	container	while	referencing	it	by	the	same	*rhel-working-container*	name.	To	create	a	working	"httpd"
container,	you	can	also	modify	the	default	command	and	exposed	port.	To	commit	all	the	changes	made	to	this	working	container	to	a	new	container	image,	use	"buildah
commit",	which	we'll	look	at	closer	on	the	next	page.

buildah	run

38

buildah	commit

Use	buildah	commit	to	commit	the	changes	made	to	a	working	container	to	a	new	container	image.

[root@servera	~]#	buildah	commit	0b6840873b5c	myecho:modified

Getting	image	source	signatures

Skipping	fetch	of	repeat	blob	sha256:fba35a2d01b7bb0adfb3c6efeac57bf2f8ba85e21d2bc6c5ae8b441ed12b1d23

Skipping	fetch	of	repeat	blob	sha256:848ae511b438d35ce6defcecfbbd287bf84e7fca37cfacd42d5af079c528c750

Skipping	fetch	of	repeat	blob	sha256:402a86247ba740f956c0dd164b95ecd11c3e0bc11b24536795895a52c09f4be8

Copying	blob	sha256:d8d4b909f8e2b46113298f65bee974c1a19fbd0c1637176cf8b2f88e8f5e55c5

	231	B	/	231	B	[==]	0s

Copying	config	sha256:8cd3b597a6feed5f0f115a341758c23fbb348167fecfc62cacbb94ad7dc4b809

	3.23	KiB	/	3.23	KiB	[==]	0s

Writing	manifest	to	image	destination

Storing	signatures

8cd3b597a6feed5f0f115a341758c23fbb348167fecfc62cacbb94ad7dc4b809

[root@servera	~]#	buildah	images

IMAGE	NAME																																															IMAGE	TAG												IMAGE	ID													CREATED	AT													SIZE

registry.redhat.io/rhel8-beta/rhel																							latest															a80dad1c1953									Nov	13,	2018	13:11					210	

MB

localhost/myecho																																									latest															e7604cc5442a									Apr	1,	2019	09:48						210	

MB

localhost/myecho																																									modified													8cd3b597a6fe									Apr	1,	2019	11:57						210	

MB

Show	transcript
Use	"buildah	commit"	to	commit	the	changes	made	to	a	working	container	to	a	new	container	image.	Like	in	the	"httpd"	example	on	the	previous	page,	the	iterative	changes
made	to	"myecho"	can	be	written	to	a	new	container	image.	The	working	container's	image	ID	used	in	this	example	started	with	"0b68".	As	demonstrated	earlier,	you	can	view
the	working	containers	and	their	IDs	using	"buildah	containers".	Once	a	working	container	is	committed,	it	should	be	listed	in	"buildah	images"	output	alongside	other
container	images	that	are	available	to	run	or	modify.

buildah	commit

39

Lab	3

Objective Lab	activity

Use	Buildah	in	RHEL	8	to	build	a	container
image

Build	a	container	image	that	uses	the	"centos:latest"	container	and	runs	the	"sl"
command.

(1)	To	set	up	this	lab	activity,	launch	the	following	command	as	the	root	user	on	servera.example.com:

[root@servera	~]#	cee-rl-021	setup3

Initiating	cee-rl-021	with	option(s)	setup3

running	a	simple	buildah	command		PASS

pulling	centos	container	image								PASS

(2)	Use	buildah	to	run	a	working	container	using	the	centos:latest	image,	which	was	pulled	in	the	previous	step.

(3)	Install	/root/training/sl-5.02-1.el7.x86_64.rpm	(from	servera	container	host	system)	into	the	centos	working	container.

(4)	Modify	the	centos	working	container	to	use	/usr/bin/sl	as	the	ENTRYPOINT.

(5)	Commit	the	previous	changes	made	to	the	centos	working	container	to	a	new	container	image	called	lab3

(6)	Test	running	this	container	with	commands	like	podman	run	lab3.

Note:	Resetting	the	terminal

The	sl	command	can	leave	your	terminal	configuration	in	an	undesirable	state.	To	reset	the	terminal	in	the	learning	environment,	run	tput
init	or	tput	reset.

(7)	After	completing	these	steps,	run	the	following	to	verify	your	work,	and	submit	the	completion	code	from	its	output	as	prompted
below:

[root@servera	~]#	cee-rl-021	grade3

COMPLETION	CODE	for	Lab	3:	______

ans:	OMIT

Lab	3

40

Not	at	all	Likely 0 1 2 3 4 5 6 7 8 9 10 Extremely	likely

Resources

This	list	includes	both	resources	we	used	to	develop	this	training	and	resources	you	can	use	for	ongoing	reference	or	additional	learning:

Podman	and	Buildah	for	Docker	users	by	William	Henry,	Senior	Consulting	Engineer,	Red	Hat	Inc.

Building,	running,	and	managing	containers	RHEL	8.0	Beta	Product	Documentation

Open	Container	Initiative	(GitHub)

axibase/atsd	Installation:	Docker	Image	(GitHub)

Manual	pages	installed	with	the	container-tools	module	in	RHEL:
	man	1	podman-run	

	man	1	podman-pull	

	man	1	buildah-from	

	man	1	buildah-containers	

	man	1	buildah-images	

Feedback

Thank	you	for	taking	time	to	provide	your	feedback	on	this	training	using	the	form	below.

How	likely	are	you	to	recommend	this	training	module	to	other	associates?

Enter	additional	comments	here...

Submit	FeedbackReset

Resources	&	Feedback

41

https://developers.redhat.com/blog/2019/02/21/podman-and-buildah-for-docker-users/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8-beta/html-single/building_running_and_managing_containers/#podman
https://github.com/opencontainers/image-spec/blob/master/spec.md
https://github.com/axibase/atsd/blob/master/installation/docker.md

	Home
	Objectives & Prerequisites
	Lab Environment
	container-tools
	What container tools are in RHEL 8?
	Container image formats
	container-tools artifacts
	Install container-tools

	Lab 1.1
	Lab 1.2
	Podman
	Podman in RHEL 8
	podman login
	podman login - username/password
	podman login - token
	podman pull
	podman run
	podman run example
	podman build
	Build a container image with a Dockerfile
	Create a new container image from a running container

	Lab 2.1
	Lab 2.2
	Buildah
	Buildah in RHEL 8
	Buildah advantages
	buildah build-using-dockerfile
	buildah images|containers
	buildah from
	buildah mount
	buildah run
	buildah commit

	Lab 3
	Resources & Feedback

